
HAL Id: insu-00907431
https://insu.hal.science/insu-00907431

Submitted on 21 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects of margin-parallel shortening and density
contrasts on back-arc extension during subduction:
Experimental insights and possible application to

Anatolia
Lena Driehaus, Thierry Nalpas, Peter Robert Cobbold, B. Gelabert, F. Sabat

To cite this version:
Lena Driehaus, Thierry Nalpas, Peter Robert Cobbold, B. Gelabert, F. Sabat. Effects of
margin-parallel shortening and density contrasts on back-arc extension during subduction: Ex-
perimental insights and possible application to Anatolia. Tectonophysics, 2013, 608, pp.288-302.
�10.1016/j.tecto.2013.09.028�. �insu-00907431�

https://insu.hal.science/insu-00907431
https://hal.archives-ouvertes.fr


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

1 

 

Effects of margin-parallel shortening and density contrasts on back-arc extension 

during subduction: Experimental insights and possible application to Anatolia 

L. Driehaus a, b, T. Nalpas a*, P.R. Cobbold a, B. Gelabert c, F. Sàbat b  

a Géosciences Rennes, UMR 6118, CNRS, Université de Rennes 1, Campus de 

Beaulieu, 35042 Rennes Cedex, France. 

b Departament de Geodinàmica i Geofísica, Facultat de Geologia, Universitat de 

Barcelona (UB) C/ Martí i Franquès s/n, 08028-Barcelona, Spain. 

c Departament de Ciències de la Terra, Universitat de les Illes Balears (UIB) Ctra. De 

Valldemossa, km 7.5, 07122 Balears, Spain. 

 

* Corresponding author. Tel.: (34)934035914 

E-mail address: lena.driehaus@univ-rennes1.fr 

 

Keywords: Analogue Modelling, Subduction, Back-Arc Extension, Anatolia. 

 

ABSTRACT 

So as to investigate the parameters influencing subduction and back-arc extension, we 

have done three series of laboratory experiments (32 in all) on physical models. Each 
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model consisted of adjacent oceanic and continental plates, floating on an 

asthenosphere. In experiments of Series A, a wide rigid piston, moving horizontally, 

controlled the rate of convergence of the oceanic and continental plates, whereas, in 

Series B or C, a wide or narrow piston produced lateral compression, parallel to the 

continent-ocean boundary (COB) and perpendicular to the subduction direction. The 

parameters that we tested were (1) the velocity of plate convergence (Series A), (2) the 

width of the compressing piston (Series B and C), and (3) the density ratio between 

oceanic and continental plates (Series B and C). This density ratio was a key factor. For 

a ratio of 1.4, the amount of extension in the continental plate increased regularly 

throughout time; for a ratio of 1.3, the extension remained small, until the piston stopped 

moving laterally; and for a ratio of 1.1, there was little or no extension. The width of the 

compressing piston had a smaller effect, although a narrow piston provided more space, 

into which the continental plate could extend. 

One possible application of our models is to Anatolia. Despite similar geological settings, 

the areas north of the Hellenic and Cyprus subduction zones differ, in that extension is 

large in the former and much smaller in the latter. We suggest that one of the main 

driving forces for Aegean extension may have been a high density ratio between 

subducting oceanic lithosphere and a Hellenic-Balkanic upper plate. 

 

1. Introduction 
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It is a common observation that continental margins next to subduction zones have 

undergone horizontal extension in directions perpendicular to the margins. According to 

Mantovani et al., (2001) and Heuret and Lallemand (2005), there are three main models 

for explaining how subduction can lead to such back-arc extension. 

1. In the slab-pull model, back-arc extension results from the negative buoyancy of the 

subducting lithosphere with respect to the surrounding mantle (e.g. Molnar and Atwater, 

1978; Dewey, 1980; Malinverno and Ryan, 1986; Royden, 1993). Several series of 

physical experiments have tested this model (Becker et al., 1999; Regard el al., 2003, 

2005 and 2008; Faccenna et al., 1996, 1999, 2004 and 2006; Heuret and Lallemand, 

2005; Heuret et al., 2007; Funiciello et al., 2008; Guillaume et al., 2009). 

2. In the corner flow model, back-arc extension results from mantle flow in the 

asthenospheric wedge overlying the subducting slab (e.g. Toksoz and Bird, 1977; 

Toksoz and Hsui, 1978; Jurdy and Stefanick, 1983; Rodkin and Rodnikov, 1996). 

Several series of physical experiments have tested this model also (Funiciello et al., 

2004; Heuret and Lallemand, 2005; Regard et al., 2008)  

3. In the sea anchor model, back-arc extension results from landward motion of the 

overriding plate with respect to the subducting plate, which encounters viscous 

resistance in the asthenosphere (e.g. Scholz and Campos, 1995). Once again, several 

series of physical experiments have tested this model (Faccenna et al., 1996; Heuret 

and Lallemand, 2005). 
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In other models (Mantovani, 1997; Mantovani et al., 2001; Gelabert et al., 2001, 2002, 

2004), back-arc extension helps to drive subduction. One of the possible reasons for 

such back-arc extension is compression parallel (or slightly oblique) to a continental 

margin. This might explain why some orogenic arcs start as straight features in plan 

view and then acquire curvature as their back-arc basins develop. Although a few 

physical experiments have tested this model (Faccenna el al., 1996), we know of none 

that have tested the relationship between back-arc extension and the density ratio 

between oceanic and continental plates. Therefore in this paper, we describe three 

series of experiments (32 in all), in which we tested the effects of (1) the density ratio 

between oceanic and continental plates and (2) shortening parallel to a continental 

margin. 

Our experimental design follows that of Faccenna et al., (1996), who modelled the 

Tyrrhenian-Apennine system in a framework of collision between the African and 

Eurasian plates. Faccenna et al. (1996) in their experiments tested the influence of 

margin-parallel compression, but only within a continent. In contrast, we tested the 

effects of compression within oceanic and continental plates simultaneously, as well as 

the effects of a wider range of density ratios and velocities of plate convergence. 

Finally, we have compared our experimental results with the history of back-arc 

extension in Anatolia. 

 

2 Experimental Procedure 
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We did the experiments in the modelling laboratory at Géosciences Rennes (University 

of Rennes 1), using the experimental procedure of Davy and Cobbold (1988, 1991), 

which is based on simplified strength profiles of the lithosphere. For boundary 

conditions, we followed partially Becker et al. (1999). 

The models simulated the formation of subduction zones and deformation at lithospheric 

scale. Each model consisted of one continental plate (CP) and one oceanic plate (OP). 

Between them was the continent-ocean boundary (COB). 

2.1 Strength profiles 

To calculate the vertical strength profile of the continental or oceanic lithosphere, we 

assume that the upper crust is brittle and that the lower crust is ductile. To model the 

mantle lithosphere, the number of layers should depend on the temperature: two-layer 

lithosphere for high temperatures; three-layer lithosphere for intermediate temperatures; 

four-layer lithosphere for low temperatures (Davy and Cobbold, 1991). For our purposes 

we assumed high temperature and therefore a two-layer lithosphere for Aegean 

system (see Gautier et al., 1999; Tesauro et al., 2009). 

We consider that the oceanic lithosphere is a thermal boundary layer and its base is an 

isotherm. To calculate shapes of isotherms, we follow Turcotte and Schubert (1982). If 

the lithosphere cools in the same way as a semi-infinite half-space, a lithospheric 

segment that forms between 10 Ma and 35 Ma is up to 100 Km thick, moves at 3 cm/yr 

and, if the base of the lithosphere is at 1400⁰ K, has an average slope of about 3⁰. In our 

experiments, the base of the oceanic plate had a slope of 4⁰. 
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2.2 Materials 

Following previous authors (Faccenna et al., 1996, 1999, 2004, 2006; Becker et al., 

1999; Regard et al., 2003, 2005, 2008) we used sand to model the brittle upper crust, 

silicone putty for the ductile lower crust (Tables 1 and 2) and honey for the 

asthenosphere. 

The sand was a pure dry variety from Fontainebleau, France. This consists of more than 

95% quartz. Grains are well-rounded and their size is between 2 x 10-4 and 4 x 10-4 m. 

The material yields according to a Mohr-Coulomb envelope, with negligible cohesion 

and an angle of internal friction between 30° and 40⁰ (Krantz, 1991). The pure sand has 

a density of 1.56 g/cm³ (± 0.6 %) and this is what we used for the oceanic plate. In 

contrast, for the continental plate the density was 1.36 g/cm³ (± 1.5 %), because we 

mixed the sand with ethyl-cellulose powder. This did not change the mechanical 

properties of the sand. We measured the density of the sand by first sieving it into a dish 

of known volume and then recording its weight. This we did 3 times, so as to obtain an 

average value. 

The pink silicone putty (Silbione Gomme 70009, Rhône Poulenc, France) is a Newtonian 

fluid, in other words, it has a linear dependence of strain rate upon stress. At room 

temperature (20 ± 2⁰C), the density of the pure silicone is about 1.2 g/cm³ and the 

viscosity is about 104 Pa s. The viscosity varies with temperature (Weijermars, 1986). To 

investigate the effects of various densities in the models, we mixed the silicone with 

heavy mineral powders, so that the density of the mixture for the continental plate was 

between 1.175 and 1.346 g/cm³ and the viscosity was between 31700 and 56800 Pa s 
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(± 10 %). For the oceanic plate, the density of the silicone was between 1.33 and 1.67 

g/cm³ (± 1 %), and the viscosity was between 26800 and 153000 Pa s. To measure the 

density, we first weighed a sample of silicone and then dropped it into water, to record 

the increase in volume. This we did 3 times, so obtaining an average value. To measure 

the viscosity and check the flow law, we used a thick-ring rotary viscosimeter, of the kind 

that was in use at Uppsala University in 1981 (see Weijermars, 1986; Cobbold and 

Jackson, 1992). In such a viscometer, both the stress and the flow rate vary radially, 

allowing the operator to obtain a flow law, by observing the change in shape of a radial 

line on the free surface. The precision of this method is ± 5% and we repeated all 

measurements 3 times to decrease errors. 

The density of the natural honey that represented the asthenosphere was 1.43 g/cm³ 

and the viscosity was 10² Pa s. We measured and carefully controlled these values. We 

obtained the viscosity and the flow law from a thick-ring rotary viscometer, as well as by 

dropping spherical objects into a column of honey and using Stokes’ Law (Lamb, 1994). 

2.3 Scaling 

We adopted the experimental procedure of Davy and Cobbold (1988, 1991) for 

lithospheric modelling (see Table 2 for the parameters and model ratios). The length 

ratio was 3 ×106 (1 cm representing 30 km in nature). The density ratio was between 2 

and 2.5, therefore, according to Davy and Cobbold (1991), the stress ratio was about 8 

× 106, and the time ratio was 6 × 109. 
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In nature, the density of oceanic lithosphere varies, but in our models we did not take 

this into account. Instead, we used a silicone layer of uniform density, but variable 

thickness, having an average basal slope of 4°. 

2.4 Apparatus and procedure 

Each model consisted of two plates, an oceanic plate (in blue, Fig. 1) and a continental 

plate (in dark grey).  

We built and deformed all models inside a rectangular tank (40 × 40 cm, corresponding 

to 1200 × 1200 km in Nature; Table 1). The base and walls of the tank were of rigid 

transparent material. The models were built up layer by layer. 

To deform the models, we used two kinds of pistons (Fig. 1). In experiments of Series A, 

the piston was as wide as the model (40 cm), its leading edge was in contact with the 

oceanic plate and it advanced in a direction perpendicular to the COB. In experiments of 

Series B, the piston was also wide (40 cm), but its leading edge was perpendicular to 

the COB and it advanced in a direction parallel to the COB, compressing both the 

oceanic and continental plates. Finally, in experiments of Series C, the piston was 

narrower (20 cm), so that its leading edge spanned the continental pate. As in Series B, 

the piston was perpendicular to the COB and it advanced in a direction parallel to the 

COB. However, it compressed the continental plate only. 

To record progressive deformation at the surface of the model, we laid down a grid of 

thin white lines of sand at a spacing of 5 cm and photographed it every 15 minutes. We 
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also took photographs of the lateral boundaries of the model, visible through the 

transparent sidewalls.  

To measure the amount of extension, we calculated local changes in surface area of the 

continental and oceanic plate, by counting pixels automatically on the photographs. This 

procedure yields the percentage areas of piston, continental plate and oceanic plate. 

Each of these values changed with time, the area of the piston varying at the same rate 

in all the experiments having the same piston size (see Fig. 6a, b, c, for Series A). 

In our experiments, we did not investigate the possible effects of other parameters, such 

as (1) the viscosity and flexural resistance of the oceanic plate (Becker et al., 1999; 

Regard et al., 2003; Funiciello et al., 2008), (2) conditions at the base of a subducting 

slab (Regard et al., 2003; Guillaume et al., 2009), (3) slab break-off (Regard et al., 2008; 

Regard et al., 2003), (4) relative thicknesses of oceanic and continental plates 

(Faccenna et al., 1999; Nikolaeva et al., 2010), or (5) free lateral boundaries of 

subducting plates (Funiciello et al., 2004). 

 

3 Experimental results 

Of the three series of experiments, those of Series A were to determine which was the 

most appropriate piston velocity, whereas those of Series B and C were to investigate 

the influence of the density contrast, for two different widths of piston. 
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To simplify the description (Figs. 2 to 5), we will use geographical coordinates, such that 

North is upwards and the piston is in the West. This means that the displacement of the 

piston is always eastwards. 

Following previous workers (e.g. Faccenna et al., 1996, 1999, 2003, 2006; Becker et al., 

1999; Regard et al., 2005, 2008), we used a rectangular box, which had rigid lateral 

boundaries. Inevitably, these led to some boundary effects, resulting from rigidity and 

from sidewall friction. In our experiments, the effects of friction were visible over a 

distance of 2 to 3 cm from the sidewalls. However, we realize that their mechanical 

effects may have extended further across the model, and they might have contributed to 

increase normal faulting near the north-eastern corner. 

When continental material was spreading over the oceanic plate, the deformation 

affected the entire continental plate (sand and silicone).  

We stopped the piston after 12 hours in almost all the experiments. For a piston moving 

at 0.5 cm/h, 12 hours corresponded to 6 cm of shortening, in other words, 120 km in 

nature, which is a reasonable value. 

3.1 Series A 

In experiments of Series A, the piston was as wide as the model (40 cm), its leading 

edge was in contact with the oceanic plate and it advanced in a direction perpendicular 

to the COB. The piston velocities were 0.1, 0.5 or 2.5 cm/h. Surface views before 

deformation show an initially linear COB (Fig. 2, Series A). The total displacement was 

2.4 cm for model A1 and 6 cm for models A2 and A3. 
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In Model A1 the velocity was 0.1 cm/h. Extension initiated in the continental plate, next 

to the COB, and propagated westward toward the piston. After 20 hours (2 cm of piston 

displacement), the oceanic plate had subducted almost completely, while the continental 

plate had extended from 20 cm to about 35 cm. After 24 hours (2.4 cm of piston 

displacement), there was no further change and we stopped the experiment. 

In Model A2 the velocity was 0.5 cm/h. Folding of the oceanic plate started after 2 hours 

(1 cm of piston displacement); subduction of the oceanic plate, after 4 hours (2 cm of 

piston displacement); and extension of the continental plate, after 7 hours (3.5 cm of 

piston displacement). At the end of the experiment, after 12 hours (6 cm of 

displacement), a zone in the continental plate near the COB was still undergoing 

extension, while the oceanic plate was shortening and subducting. 

In Model A3 the velocity was 2.5 cm/h. Folding of the oceanic plate started after 0.5 

hours (1.25 cm of piston displacement); subduction of the oceanic plate, after 1 hour 

(2.5 cm of piston displacement); but no extension was visible in the continental plate. 

When the piston stopped, after 2.4 hours (6 cm of piston displacement), the oceanic 

plate was still shortening and subducting. 

In both models A1 and A2, extension of the continental plate and shortening of the 

oceanic plate occurred synchronously. However in model A2 displacement of the piston 

was balanced by shortening and subduction of the oceanic plate with minor deformation 

of the continental plate. Thus, after this first series of experiments, using different 

velocities, we decided to adopt a piston velocity of 0.5 cm/h (Fig. 2), corresponding to 
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1.5 cm/yr in nature (Table 2). In the future it might be interesting to test other velocities 

and to compare the results. 

3.2 Series B 

For this series, we again used a wide piston (40 cm), which moved eastwards, 

perpendicularly to the COB (Figs. 2 and 3). In the early stages (0 to 12 hours) the piston 

moved at a steady velocity of 0.5 cm/h, whereas in later stages (12 to 18 hours) it was 

stationary. Before deformation, the COB was straight (Fig. 2, Series B). 

We will describe six stages in the development of Model 7 (after 3, 6, 9, 12, 15 and 18 

hours, Fig. 3).  

Stage 1 (3 hours). By this stage, the COB, especially its western part, had moved 

southwards. Slight bending, next to the piston and opposite sidewall, was a boundary 

effect, due to friction, and was also visible at later stages. In the south-western part of 

the continental plate, where the displacement of the COB was larger, elements of the 

reference grid had become somewhat rectangular, so that the total area of the 

continental plate had increased by about 2.7%. In the north-western part of the oceanic 

plate, near the COB, E-W-trending folds (fo1) and reverse faults had appeared. 

Elsewhere in the oceanic plate, the square grid had not deformed. 

Stage 2 (6 hours). By this stage, the COB had rotated counter-clockwise and its 

western part had moved further southward. At 21.5 cm from the piston, a slight change 

in strike defined an inflexion point (Inf). More generally, offsets of the grid lines 

demonstrated a small amount of right-lateral shear along the COB. In the continental 
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plate, North-trending folds (fc1) appeared near the piston in the north-western corner of 

the model. Also, several major right-lateral faults (d) and minor conjugate left-lateral 

faults appeared in the south-western and central area of the continental plate. At the end 

of one right-lateral fault, a zone of extension (e1) developed. In western areas (at 5 to 15 

cm from the piston), where the displacement of the COB was larger, elements of the 

reference grid had become more rectangular and, next to the COB, the sand layer had 

thinned and faulting was diffuse. At this stage, the total area of the continental plate had 

increased by about 2.4% since the start of the experiment, but had decreased by 0.2% 

since Stage 1. In the oceanic plate, new North-trending folds (fo2) had appeared near 

the piston in the western area. Elsewhere in the oceanic plate, the square grid showed 

little or no deformation. 

Stage 3 (9 hours). By this stage, southward displacement of the COB had increased. 

The inflexion point (Inf) had migrated eastward through the material, remaining at 21.5 

cm from the piston. Right-lateral slip along the COB had increased. In the continental 

plate, new North-trending folds formed in the north-western corner of the model (fc1) 

and more centrally (fc2). Strike-slip faults formed a triangular pattern, with a new major 

left-lateral fault (s) in the North and right-lateral fault (d) in the South. At the eastern ends 

of these faults, in the centre of the continental plate, the original zone of extension (e1) 

had become more visible, while a new one (e2) had developed further north. Where the 

displacement of the COB was larger, near the piston, the zone of diffuse faulting had 

become wider. The greatest distortion of the surface grid was in an area about 5 to 15 

cm in front of the piston. To a first approximation, elements of the grid had rotated about 
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6⁰ clockwise in the south-western area and 11⁰ counter-clockwise in the south-central 

area. At this stage, the total area of the continental plate had increased by about 5.9% 

since the start of the experiment, and by 3.4% since Stage 2. In the oceanic plate, the 

North-trending folds (fo2) had propagated to the South, while the COB had overridden 

them in the North. Where the displacement of the COB was larger, a sharp fold (dashed 

line) appeared within the oceanic plate, parallel to the COB. Elsewhere in the oceanic 

plate, the square grid showed little or no deformation. 

Stage 4 (12 hours). At this stage we stopped the advance of the piston. Southward 

displacement of the COB had increased even more. The inflexion point was at 23 cm 

beyond the piston. Right-lateral slip along the COB reached a maximum at a point 

between 12 and 20 cm in front of the piston. In the continental plate, some of the folds, 

which had formed at Stage 3, were still active. The left-lateral fault (s) had lengthened 

and the right-lateral fault (d) had shortened. The previous zones of extension (e1 and 

e2) had become even more visible, while another one (e3) had appeared further South. 

Where the displacement of the COB was greater, in the western area, the zone of 

diffuse faulting had enlarged. The greatest distortion of the surface grid was in an area 

about 5 to 17 cm in front of the piston. To a first approximation, elements of the grid had 

rotated about 14⁰ clockwise in the south-western area (8⁰ since Stage 3), and 22⁰ 
counter-clockwise in the south-central area (11⁰ since Stage 3). At this stage, the total 

area of the continental plate had increased by about 8.8% (2.9% since Stage 3). In the 

oceanic plate a new North-trending fold (fo3) had formed in front of the southern area of 

maximum curvature of the COB, the previous fold (fo2) had developed further, while the 
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COB had overridden it in the North. Apart from the sharp fold (dashed line) within the 

oceanic plate, the square grid showed little or no deformation. 

Stage 5 (15 hours). By this stage the piston was stationary. Southward displacement of 

the COB had increased even more. The inflexion point was still at 23 cm beyond the 

piston. Left-lateral slip had occurred along the first 4 cm of the COB in front of the piston 

and right-lateral slip was present further away. In the continental plate the left-lateral 

fault (s) had lengthened and almost traversed the model, from the piston to the opposite 

wall. The previous zones of extension (e1, e2 and e3) had increased, while another 

small one had appeared (next to e2). Where the displacement of the COB was greater, 

in the western area, the zone of diffuse faulting had enlarged. The greatest distortion of 

the surface grid was within 23 cm of the piston. Elements of the grid had rotated, by 

about 25⁰ counter-clockwise in the south-central area (3⁰ since Stage 4). At this stage, 

the total area of the continental plate had increased by about 17.9% (9.1% since Stage 

4). Apart from the sharp fold (dashed line) within the oceanic plate, the square grid 

showed little or no deformation. 

Stage 6 (18 hours). By this stage the piston was stationary. Southward displacement of 

the COB had increased even more. The inflexion point was still at 23 cm beyond the 

piston. Left-lateral slip had occurred along the first 4 cm of the COB in front of the piston 

and right-lateral slip was present further away. In the continental plate, the left-lateral 

fault zone (s) had widened and shortened (the fault had an extensional component). 

Right-lateral faults (d in the previous stage) had vanished. The previous zones of 

extension (e1, e2 and e3) had increased in area. Where the displacement of the COB 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

16 

 

was greater, in the west-central area, the zone of diffuse faulting had enlarged. The 

greatest distortion of the surface grid was within 26 cm of the piston. Elements of the 

grid had rotated about 29⁰ counter-clockwise in the south-central area (4⁰ since Stage 5). 

At this stage, the total area of the continental plate had increased by about 26.3% (8.4% 

since Stage 3). In the oceanic plate a new East-trending fold (fo4) had formed to the SE 

of the COB. Apart from the sharp fold (dashed line) within the oceanic plate, the square 

grid showed little or no deformation. 

3.3 Series C  

For this series, we used a narrow piston (20 cm), which moved eastwards, 

perpendicularly to the COB (Figs. 2 and 4). In the early stages (0 to 12 hours) the piston 

moved at a steady velocity of 0.5 cm/h, whereas in later stages (12 to 18 hours) it was 

stationary. Before deformation, the COB was straight (Fig. 2, Series C), after shortening 

the asymmetric curvature of the COB may be due to the size of the piston. 

We will describe 6 stages in the development of Model 8 (after 3, 6, 9, 12, 15 and 18 

hours, Fig. 4).  

Stage 1 (3 hours). By this stage, the COB, especially its western part, had moved 

southwards. Slight bending, next to the piston and to the opposite sidewall, was 

probably due to friction. These boundary effects were visible also at later stages. At 23 

cm from the piston, a slight change in strike defined an inflexion point (Inf). Left-lateral 

slip had occurred along the first 12 cm of the COB in front of the piston and right-lateral 

slip was present further away. In the continental plate, two elongate extension zones (e1 
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and e2) developed parallel to the COB, in northern and central areas. At the eastern end 

of the extension zones, we observed left-lateral faults (s) striking NW-SE. In western 

areas, where the displacement of the COB was larger, elements of the reference grid 

next to the COB had become somewhat rectangular, the sand layer had thinned and 

faulting was diffuse. In the eastern area, where the displacement of the COB was 

smaller, a group of small normal faults had appeared, striking NW-SE. At this stage, the 

total area of the continental plate had increased by about 13.3%. Elsewhere in the 

oceanic plate, the square grid had not deformed. 

Stage 2 (6 hours). By this stage, southward displacement of the COB had increased 

and had become symmetric. Left-lateral slip had increased along the first 12 cm of the 

COB in front of the piston and right-lateral slip was present further away. In the 

continental plate, the extension zones (e1 and e2) had propagated and branched out 

sideways. At the eastern end of these extension zones, left-lateral faults were still active. 

In front of the piston, strike-slip faults formed a triangular pattern, with a new left-lateral 

fault (s) in the North and a right-lateral fault (d) in the South. Normal faults appeared, 

next to the area of diffuse faulting, and propagated in a direction almost perpendicular to 

the COB. The zone of diffuse faulting had become wider, forming a belt across the 

continental plate, north of the COB. The greatest distortion of the surface grid was in an 

area about 10 to 20 cm in front of the piston. To a first approximation, elements of the 

grid had rotated about 19⁰ clockwise in the south-western area and 17⁰ counter-

clockwise in the south-central area. At this stage, the total area of the continental plate 

had increased by about 30.6% since the start of the experiment (17.3% since Stage 1). 
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In the oceanic plate, where the displacement of the COB was larger, a sharp fold 

(dashed line) had appeared within the oceanic plate, parallel to the COB. Elsewhere in 

the oceanic plate, the square grid showed little or no deformation. 

Stage 3 (9 hours). By this stage, southward displacement of the COB had increased. 

Left-lateral slip had increased along the first 15 cm of the COB in front of the piston and 

right-lateral slip was present further away. In the continental plate, the extension zones 

(e1 and e2) had become larger. In front of the piston, strike-slip faults still formed a 

triangular pattern, with a left-lateral fault (s) in the North and a right-lateral fault (d) in the 

South. New normal faults appeared, next to the area of diffuse faulting, and propagated 

in a direction almost perpendicular to the COB. The zone of diffuse faulting, north of the 

COB, had become narrower. To a first approximation, elements of the grid had rotated 

about 30⁰ clockwise in the south-western area and 25⁰ counter-clockwise rotation in the 

south-central area. At this stage, the total area of the continental plate had increased by 

about 39.8% since the start of the experiment (9.2% since Stage 2). Apart from the 

sharp fold (dashed line) next to the COB, the square grid showed little or no deformation 

in the oceanic plate. 

Stage 4 (12 hours). At this stage we stopped the advance of the piston. Southward 

displacement of the COB had increased. Left-lateral slip had increased along the first 15 

cm of the COB, in front of the piston, and right-lateral slip was present further away. In 

the continental plate, the extension zones (e1 and e2) had propagated further, 

surrounding rigid blocks, which had moved towards the oceanic plate. In front of the 

piston, left-lateral faults (s) were still active. The normal faults, which had formed roughly 
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perpendicular to the COB, had become wider and somewhat longer. The zone of diffuse 

faulting had become narrower. To a first approximation, elements of the grid had rotated 

about 39⁰ clockwise in the south-western area and 38⁰ counter-clockwise in the south-

central area. At this stage, the total area of the continental plate had increased by about 

49% since the start of the experiment (9.2% since Stage 3). Apart from the sharp fold 

(dashed line) next to the COB, the square grid showed little or no deformation in the 

oceanic plate. 

Stage 5 (15 hours). By this stage the piston was stationary. Southward displacement of 

the COB had increased even more. Left-lateral slip had increased along the first 16 cm 

of the COB in front of the piston and right-lateral slip was present further away. In the 

continental plate, the extension zones had become larger, isolating more blocks. Left-

lateral faults (s) were still active. The normal faults, which had formed roughly 

perpendicular to the COB, had become wider and longer, isolating a few blocks. The 

zone of diffuse faulting had become narrower. To a first approximation, elements of the 

grid had rotated about 48⁰ clockwise in the south-western area and 49⁰ counter-

clockwise in the south-central area. At this stage, the total area of the continental plate 

had increased by about 52.9% since the start of the experiment (3.9% since Stage 4). In 

the oceanic plate, where the displacement of the COB was larger, a sharp fold (dashed 

line) appeared within the oceanic plate, parallel to the COB. Elsewhere, the square grid 

showed little or no deformation in the oceanic plate. 

Stage 6 (18 hours). By this stage the piston was stationary. Southward displacement of 

the COB had increased even more. Left-lateral slip had increased along the first 17.5 cm 
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of the COB, in front of the piston, and right-lateral slip was present further away. In the 

continental plate, the extension zones had become larger, isolating more blocks. The 

zone of diffuse faulting in central areas had become so narrow, that continental blocks 

had reached the COB. To a first approximation, elements of the grid had rotated about 

50⁰ clockwise in the south-western area and 52⁰ counter-clockwise rotation in the south-

central area. At this stage, the total area of the continental plate had increased by about 

67.8% since the start of the experiment (14.9% since Stage 5). Apart from the sharp fold 

(dashed line) next to the COB, the square grid showed little or no deformation in the 

oceanic plate. 

3.4 Experiments of Series B and Series C for various density ratios 

We will now describe experiments of Series B and C (small or large piston) after 12 

hours (6 cm of displacement), when the piston had stopped moving, and for various 

values of the density ratio (R = o/c), where o is the density of the oceanic plate and c 

is the density of the continental plate (Fig. 5). 

Density ratio: 1.13 - 1.16 

Model 5, Series B. For this density ratio (1.13 - 1.16), the pattern of grid lines at the COB 

showed bilateral symmetry, but little deformation. Offsets of the grid lines demonstrated 

a small amount of right-lateral shear along the eastern part of the COB. In the 

continental plate, North- and Northwest-trending folds developed on the western side of 

the model, near the piston. Strike-slip faults formed a triangular pattern, with a major left-

lateral fault in the North and a right-lateral fault in the South. Another left-lateral slip fault 
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formed at the northern boundary of the model. In the north-eastern part of the model, an 

extension zone developed. No zone of diffuse faulting was visible. In the oceanic plate, 

North-trending folds formed in three places: (1) in the western area, next to the piston, 

(2) in the centre, where the curvature of the COB was a maximum, and (3) in the eastern 

area, next to the sidewall. Furthermore, East-trending folds appeared in the southern 

area. 

Model 4, Series C. For this density ratio (1.13 - 1.16), the pattern of grid lines at the COB 

showed very little deformation. Offsets of the grid lines demonstrated a small amount of 

right-lateral shear along the COB. In the continental plate, Northwest-trending folds 

formed in the northern area of the model and North-trending folds in the south-eastern 

area. A major Northwest-trending left-lateral fault formed between these two fold 

families. No zone of diffuse faulting was visible. At the northern edge of the oceanic 

plate, near the COB, E-W-trending folds appeared. 

Density ratio: 1.33 - 1.34 

Model 7, Series B. For this density ratio (1.33 - 1.34), the COB bulged southwards as far 

as the inflexion point. Right-lateral slip occurred along the COB. In the continental plate, 

North-trending folds appeared in the north-western area and major strike-slip faults 

crosscut the plate, forming a zone of extension where they intersected. A zone of diffuse 

faulting appeared, where the displacement of the COB was greater. In the oceanic plate, 

a North-trending fold formed next to the COB and a sharp fold (dashed line) developed 

parallel to the COB, where its displacement was larger. 
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Model 6, Series C. For this density ratio (1.33 - 1.34), the COB bulged symmetrically 

southward. Slip was left-lateral along the western part of the COB and right-lateral along 

its eastern part. In the continental plate, there was a large area of diffuse faulting, where 

a series of minor left-lateral faults were visible. Where the displacement of the COB was 

larger, a sharp fold (dashed line) appeared within the oceanic plate, parallel to the COB. 

Density ratio: 1.41 - 1.42 

Model 9, Series B. For this density ratio (1.41 - 1.42), the COB underwent a large 

southward displacement. Right-lateral slip occurred along the COB. In the continental 

plate, extension zones linked, isolating rigid blocks, which also moved southwards, 

rotating clockwise in the south-western area and counter-clockwise in the south-central 

area. In the North, left-lateral faults were active. The zone of diffuse faulting formed a 

long narrow belt next to the COB. In the oceanic plate, where the displacement of the 

COB was larger, a sharp fold (dashed line) appeared within the oceanic plate, parallel to 

the COB. 

Model 8, Series C. For this density ratio (1.41 - 1.42), the COB underwent a large 

southward displacement. Left-lateral slip occurred along the western part of the COB 

and right-lateral slip along its eastern part. In the continental plate, extension zones 

linked, isolating rigid blocks, which moved southwards, rotating clockwise in the south-

western area and counter-clockwise in the south-central area. In the North, left-lateral 

faults were active. The zone of diffuse faulting formed a long narrow belt next to the 

COB. In the oceanic plate, where the displacement of the COB was larger, a sharp fold 

(dashed line) appeared within the oceanic plate, parallel to the COB. 
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4 Discussion 

Effect of density contrast 

In a first group of experiments (Model 5 of Series B and Model 4 of Series C), where the 

density ratio (between oceanic and continental plate) was 1.1, the percentage area of 

continental plate changed very little, while the piston was in motion. Until the end of each 

experiment (percentage area of 2.2 % for a wide piston and -2.2% for a narrow piston, 

after 18 hours) there was no extension and no oceanic subduction (Fig. 6a). 

In a second group of experiments (Model 7 of Series B and Model 6 of Series C), where 

the density ratio was 1.3, the percentage area of continental plate changed little (8.7% 

for a wide piston and 20.8% for a narrow piston), while the piston was moving, but 

changed much more (17.4% for a wide piston and 32.3% for a narrow piston) after the 

piston had stopped (after 12 hours) and until the end of observations (18 hours for series 

B and 15 hours for series C). After 6h of compression, the oceanic plate started to 

subduct; the slab sank slowly, while the piston was in motion, but much more quickly, 

after the piston had stopped (Fig. 6b). 

In a third group of experiments (Model 9 of Series B and Model 8 of Series C), where the 

density ratio was 1.4, the percentage area of continental plate increased steadily from 

the beginning to the end of the experiment (by 42.8% for a wide piston and by 67.8% for 

a narrow piston, after 18 hours). After 3h of compression, the oceanic plate started to 

subduct; the slab then sank continuously and fast (Fig. 6c). However, the surface area 
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increased to higher values for the narrow piston than it did for the wide piston. A narrow 

piston provided more space for a continental plate to spread over the adjacent oceanic 

plate. 

For all these experimental results (Series B and C), we infer that the density ratio 

(between oceanic and continental plates) was a very important factor in facilitating 

extension in the continental plate during subduction (Fig. 7). When the density ratio was 

lower than 1.2-1.25, no extension occurred in the continental plate. When the density 

ratio was between 1.25-1.35, extension occurred in the continental plate, although 

mainly after compression stopped. Finally, when the density ratio was higher than 1.35, 

extension occurred in the continental plate from the very beginning of the experiment. 

Most authors have assumed that an oceanic plate is denser than the underlying 

asthenosphere and some have investigated the effect of systematically varying the 

density ratio between the two, either in physical models (Faccenna et al., 1999; 

Shemenda, 1994) or in numerical models (Becker et al., 1999; Nikolaeva et al., 2010). 

When other parameters remained constant, the rate of subduction was higher for larger 

density ratios and we agree with that conclusion. 

The dimensionless buoyancy number, F (Houseman and Gubbins, 1997; Faccenna et 

al., 1999) is a measure of the density contrast between oceanic lithosphere and 

asthenosphere, as well as the thickness and ductile resistance of the oceanic 

lithosphere: 

     (1) 
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Here L is the thickness of the oceanic plate (h sand + h silicone), ɳ  is the viscosity (of 

what) (which we have denoted as µ),  is the velocity of convergence of the piston, g is 

the gravitational acceleration, and  is the density contrast between the oceanic 

lithosphere and the asthenosphere. 

We have calculated the buoyancy number for all of our experiments (Table 1). For the 

second and third group of experiments, F>1 and we observed subduction, whereas for 

model 5 of the first group of experiments, F<1 and there was no subduction. These 

results are in agreement with the observations of Faccenna et al. (1999). In contrast, for 

Model 4, F>1, yet there was no subduction. We infer that, although the buoyancy 

number is important in determining if subduction will occur, it is not the only factor. We 

suggest that the density ratio between oceanic and continental plates is also important. 

In our experiments, subduction did not occur, even for F>1, if the density ratio was not 

high enough (Table 1 and Fig. 7). 

Piston velocity 

In previous experimental studies, as in our own, it is clear that piston velocity was one of 

the most important parameters controlling subduction and continental extension 

(Faccenna et al., 1996; Becker et al., 1999). When the piston velocity was fast, no 

extension was visible in the continental plate. In contrast, when the velocity was slow, 

extension of the continental plate and subduction of the oceanic plate occurred 

synchronously. However, these two processes did not always balance, so that in some 

experiments there was much extension, for almost no piston displacement (Fig. 2). 
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Having said this, we would like to make it clear that, in our experiments, the following 

parameters were equally important, if not more so, in controlling the amount of 

continental extension. 

Convergence history  

Although some authors have described what happened when a converging piston 

stopped moving (Faccenna et al., 1996, 1999; Becker et al., 1999), we have investigated 

this more fully. For various density ratios between continental and oceanic plates, we 

found that extension continued to accumulate, even after the piston stopped (Fig. 6). 

Moreover we found that the density ratio between continental and oceanic plates had 

important effects on the styles of subduction and continental extension, for all directions 

of piston convergence. 

Viscosity and flexural resistance of the oceanic plate, slab break-off 

Previous authors (Becker 1999; Regard et al., 2003, 2005, 2008; Funiciello et al., 2008) 

have concluded that the rheological properties of the slab are important, in that they 

control the development of the subduction zone. According to Regard et al. (2008), 

viscous removal of the denser parts of the slab decreases the slab-pull force. However, 

if the slab is strong, it does not deform and the slab-pull force remains active. The other 

way for a slab to deform is by breaking off entirely. Pyskywec et al. (2000) have 

modelled this process numerically.  

Conditions at the base of a subducting slab  
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In all experiments, the thickness of the lowermost ductile layer influences the 

development of viscous instabilities (Regard et al., 2003). A very thick layer favours the 

formation of instabilities, but we did not study this parameter. In all our models the initial 

thickness of honey was the same. 

 

5 Comparing models and nature  

The Aegean-Anatolian orocline and back-arc system have developed in a context of 

convergence of the African plate with Eurasia since the Upper Jurassic (Sengör and 

Yilmaz, 1981; Robertson and Dixon, 1984). The present-day Aegean-Anatolian system 

is bounded to the north by the right-lateral North Anatolian Fault (NAF), to the east by 

the left-lateral East Anatolian Fault (EAF) and to the south by the Hellenic and Cyprus 

Subduction Zones (Fig. 8).  

Although both the Hellenic Subduction Zone and the Cyprus Subduction Zone have 

accommodated large amounts of plate convergence between Africa and Eurasia, the 

former has a back-arc area where extension is large - the Aegean Sea - whereas the 

latter has a back-arc area - Central Anatolia - where extension is small. 

The back-arc area of the Hellenic Subduction Zone, North of Crete, includes the Aegean 

Sea and surrounding areas. Late Cenozoic extension has been responsible for 

exhumation of several metamorphic complexes (Cyclades, Menderez and at least some 

part of Rhodope) (Lister et al., 1984; Gautier at el., 1999 and Jolivet et al., 2012). 

Extension in a roughly NNE-SSW direction occurred by southward retreat of the Hellenic 
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trench (Mercier et al., 1989; Le Pichon and Angelier, 1981; Gautier at al., 1999 and Van 

Hinsberger and Schmid, 2012). This was coeval with southward migration of 

magmatism, from the Rhodope Massif to the Cyclades (since about 35 Ma according to 

Jolivet et al., 2013). 

The back-arc area of the Cyprus Subduction Zone, north of Cyprus, includes the region 

of Central and East Anatolia, a Mesozoic to Tertiary collision zone. This region consists 

of three main terrains with ophiolitic sutures. These terrains are, from north to south, the 

Pontides, Central Anatolian Crystalline Complex and Taurides (Moix et al., 2008). The 

Central Anatolian Crystalline Complex consists of high-grade metamorphic rocks 

intruded by late granitoids (Floyd et al., 2000). This complex was formerly covered by 

ophiolitic nappes, which are now widespread in the Anatolian terrains (Moix et al., 2008). 

For this region, South of the North Anatolian Fault, the tectonic setting during the 

Cenozoic is debatable. It could be a strike-slip system (Koçyigit and Beyham 1998) a 

compressional system (Gülyüz et al., in press) or an extensional system (Genç and 

Yürür, 2010). In any case, unlike in the Aegean area, there has not been so much 

extension as to produce a metamorphic core complex (see discussion in Gautier et al., 

2002). 

The question is: why, in one geodynamic setting, are the tectonic responses so 

different? According to Jolivet et al. (2013), extension in the Aegean began at 35 Ma or 

before. In contrast, westward extrusion of Anatolia may not have started before 10-13 

Ma (Sengör et al., 1985). Therefore lateral shortening may have helped to control 

subduction and continental extension only during the later stages. 
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A map of Bouguer gravity anomalies for Turkey shows a residual positive anomaly in 

Central Anatolia (Ates et al., 1999), which could be due to the high density of deep 

crustal rocks. In contrast, the rocks forming the Aegean Sea are mainly sedimentary or 

metasedimentary, so of low density. Exceptions are metamorphic rocks in the Cyclades, 

Menderez and the Rhodope Metamorphic Complex, of which the exhumation partly 

resulted from Aegean extension. Thus, prior to the extension, the density of the 

continental lithosphere could have been higher, north of the Cyprus Subduction Zone, 

than it was north of the Hellenic Subduction Zone. If so, and if the oceanic lithosphere 

had the same density south of both subduction zones, the density ratio between the 

oceanic and continental lithospheres was higher, across the Hellenic subduction zone, 

than it was across the Cyprus subduction zone. We suggest that a high density ratio has 

been an important driving force for Aegean extension, while in Central Anatolia a low 

density ratio may have prevented extension. Likewise in our models, density ratio has 

been a key factor. 

In general, three other factors may influence the lithospheric density variations between 

subducting lithosphere and continental lithosphere in order to favour back-arc extension. 

1) Initial properties of the oceanic plate. Variations in the properties of the subducting 

lithosphere (more oceanic versus less oceanic) may explain the difference in resulting 

back-arc extension. A more oceanic composition means that the density is higher, so 

that the density ratio between subducting lithosphere and continental lithosphere is 

higher, so favouring back-arc extension. 
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2) Hydration of the lithospheric upper plate. During subduction processes, dehydration of 

the downgoing plate (Peacock, 1993; Ringwood 1974) causes hydration of the upper 

mantle wedge (Hyndman et al., 2003; Arcay et al., 2005). This will change its physical 

properties, including density and seismic velocity (Bostock et al., 2002; Hacker et al 

2003). A decrease in density of the upper plate, due to hydration of the mantle wedge, 

may contribute to back-arc extension (Arcay et al., 2005; Levander et al., 2011) 

3) Initial continental thickness. The initial crustal thickness could have been large 

enough to favour gravity spreading. 

 

6 Conclusions 

For the experiments, we draw the following conclusions. 

- In every experiment, where there was extension in the continental plate, there was also 

subduction of the oceanic plate. 

- However, in some experiments, there was subduction of the oceanic plate, but no 

extension in the continental plate. Therefore subduction was not enough to explain 

continental extension. 

- Compression parallel to the continent-ocean boundary did not favour continental 

extension. 
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- In contrast, the density ratio between the oceanic plate and continental plate was a key 

factor: the higher the density ratio, the greater the amount of extension in the continental 

plate during subduction. 

For the application to Anatolia, we draw the following conclusions. 

- Despite similar geological settings, the areas north of the Hellenic and Cyprus 

subduction zones differ, in that extension is larger in the former and much smaller in the 

latter. 

- In the light of our experiments, an important control on extension and retreat of the 

trench should be the density ratio between oceanic and continental plates. Accordingly, 

we suggest that Aegean extension was due to a high density ratio between subducting 

oceanic lithosphere and a Hellenic-Balkanic upper plate of relatively low density, 

whereas in the Anatolian upper plate (of relatively high density) the density contrast was 

lower and there was less extension. 
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Figure captions 

Fig. 1. Experimental apparatus and models. In experiments of Series A, wide piston (40 

cm) advanced in direction perpendicular to continent-ocean boundary (COB). In Series 

B, wide piston (40 cm) advanced in direction parallel to COB. In Series C, narrow piston 

(20 cm) compressed continental plate in direction parallel to COB. 

Fig. 2. Surface views of Series A, B and C before piston displacement (upper part of 

figure), and of Series A after deformation (lower part), for piston velocities of 0.1 cm/h 

(A1), 0.5 cm/h (A2) or 2.5 cm/h (A3). 

Fig. 3. Surface views (photographs and their interpretations) of Model 7 (Series B) after 

3, 6, 9, 12, 15, and 18 h. Piston moved at 0.5 cm/h, then stopped after 12 h (6 cm of 

shortening). 

Fig. 4. Surface views (photographs and their interpretations) of Model 8 (Series C) after 

3, 6, 9, 12, 15, and 18 h. Piston moved at 0.5 cm/h, then stopped after 12 h (6 cm of 

shortening). 

Fig. 5. Surface views (photographs and their interpretations) of Models 5, 7 and 9 

(Series B, upper part of figure) and Models 4, 6 and 8 (Series C, lower part of figure) 

after 12h of shortening at 0.5 cm/h (6 cm of shortening) and for three values of density 

ratio (R) between oceanic plate and continental plate. 
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Fig. 6. Top: change in surface area (as % of total area) with time, for each of continental 

plate, oceanic plate and piston of Model 5 (a), Model 7 (b) and Model 9 (c) of Series B. 

Bottom: change in surface area (%) with time for continental plate of each of Models 5, 7 

and 11 (Series B, left, e) and Models 4, 6 and 8 (Series C, right, f). In all graphs, thick 

grey vertical line marks moment when piston stopped. 

Fig. 7. Change in surface area (%) with time, for continental plates of 6 models, versus 

density ratio between oceanic plate and continental plate. Numbers in brackets indicate 

density ratios between oceanic plate and asthenosphere. 

Fig. 8. Map of Aegean Sea, Anatolia and surrounding areas, showing main structural 

features and area of Late Oligocene to present-day extension (GPS data from Reilinger 

et al., 2010). Inset (top left) shows location with respect to Europe and Africa and the 

main tectonic elements of Turkey. Abbreviations in figure are KFZ, Kžrklareli Fault Zone; 

NAFZ, North Anatolian Fault Zone; WAGS, West Anatolian graben System; EFZ, 

Eskis¸ehir Fault Zone; FBFZ, Fethiye Burdur Fault Zone; IASZ, I™zmir Ankara Suture 

Zone; EAFZ, East Anatolian Fault Zone; DSFZ, Dead Sea Fault Zone; KTJ, Karlžova 

Triple Junction. (modified from Gürer and Bayrak, 2007). 

Table 1. Values of experimental parameters for each of models 1 to 12 (h for layer 

thickness,  for density and  for viscosity). 

Table 2. Characteristic values of parameters in nature and models and corresponding 

model ratios. 
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Table 1 

 
Series A Series B Series C 

 
Velocity test  R=1.3 R = 1.1 R = 1.3 R = 1.4 R = 1.1 R = 1.3 R = 1.4 

MODEL 1 2 3 5 7 9 4 6 8 

Continental Plate 

h sand (cm) 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 

ρ sand (g/cm³) 1,32 1,32 1,32 1,32 1,32 1,36 1,36 1,32 1,36 

h silicone (cm) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 

ρ silicone (g/cm³) 1,23 1,23 1,23 1,18 1,25 1,175 1,346 1,25 1,175 

µ silicone Pa s 47200 47200 47200 32800 50000 46000 31700 56807 46000 

Oceanic Plate 

h sand (cm) 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 

ρ sand (g/cm³) 1,56 1,56 1,56 1,56 1,56 1,56 1,56 1,56 1,56 

h silicone (cm) 0,7-1,2  0,7-1,2  0,7-1,2  0,7-1,2  0,7-1,2  0,7-1,2  0,7-1,2  0,7-1,2  0,7-1,2 

ρ silicone (g/cm³) 1,67 1,67 1,67 1,336 1,67 1,655 1,557 1,67 1,655 

µ silicone Pa s 153000 153000 136000 66500 153000 78500 26800 136000 78500 

Honey 

ρ  (g/cm³) 1,432 1,432 1,432 1,432 1,432 1,432 1,37 1,432 1,432 

µ  Pa s 10 10 10 10 10 10 10 10 10 

Piston Velocity 

cm/h 0,1 0,5 2,5 0,5 0,5 0,5 0,5 0,5 0,5 

Buoyancy number, F 

 
-- -- -- 0,26 1,32 2,48 7,81 1,49 2,48 
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Table 2 

Parameter   Nature Models Nature/model 

  g (m/s) 9.81 9.81 1.00 

  Length 30 km 1 cm 3.0 x10
6
 

  Time 1 Ma 1 h 6.4 x10
9
 

Thickness (cm)       

  Oceanic lithosphere 7.2 x10
6
 0.7 to 1.2 7.5 x10

6
 

  
Contiental 
lithosphere 1.5 x10

7
 3.00 5.0 x10

6
 

Density (kg/m³)       

  Oceanic plate 3300 1670 1.98 

  Continental plate 3220 1250 2.58 

  Asthenosphere 3300 1432 2.30 

Viscosity (Pa.s)       

  Oceanic plate 2.5 x 10
20

 2.7 x10
4
 9.3 x10

15
 

  Continental plate 2.5 x 19
22

 5.7 x10
4
 4.4 x10

17
 

Velocity         

    1.5 cm/y 0.5 cm/h 3.0 x10
3
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Highlights 

 

 Models consisted on oceanic and continental plates floating on asthenosphere. 

 We tested deformation velocity and density ratio (oceanic vs continental plate). 

 We examine the factors generating extension during subduction. 

 The density ratio is a key factor to facilitate extension during subduction. 

 We propose an application to the Anatolian system. 

 


