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A B S T R A C T

A wavelet-based method was presented in a previous work to introduce multiscale seismic

attributes for high-resolution seismic data. Because of the limited frequency bandwidth of the

seismic source, we observed distortions in the seismic attributes based on the wavelet response

of the subsurface discontinuities (Le Gonidec et al.). In this paper, we go further in the seismic

source-correction by considering Lévy alpha-stable distributions introduced in the formalism

of the continuous wavelet transform (CWT). The wavelets are Gaussian derivative functions

(GDF), characterized by a derivative order. We show that a high-resolution seismic source,

after a classical signature processing, can be taken into account with a GDF. We demonstrate

that in the framework of the Born approximation, the CWT of a seismic trace involving such a

finite frequency bandwidth can be made equivalent to the CWT of the impulse response of the

subsurface and is defined for a reduced range of dilations. We apply the method for the SYSIF

seismic device (Marsset et al.; Ker et al.) and show that the source-corrections allow to define

seismic attributes for layer thicknesses in the range [24; 115 cm]. We present the analysis for

two seismic reflectors identified on a SYSIF profile, and we show that the source-corrected

multiscale analysis quantifies their complex geometries.

Key words: Wavelet transform; Wave propagation; Acoustic properties.

1 I N T RO D U C T I O N

The geophysical characterization of marine sediments over large

areas is generally greatly improved when seismic data are joined

with local ground truth measurements providing information on

the physical properties of the geological materials constituting the

subseabed (e.g. Sherrif 1992; Pennington 2001; Sultan et al. 2007).

This joined interpretation extensively uses various seismic attributes

from which the interpreters derive quantitative relations between at-

tributes and sediments properties (Gastaldi et al. 1997; Barnes 2001;

Fomel 2007). Such interpretations are faced with a notable difficulty

when relating seismic attributes to in situ measurements because of

the huge discrepancy in the scale ranges associated with both kind

of data, that is, seismic wavelengths and layer thickness ranges

(Widess 1973; Morlet et al. 1982; Banik et al. 1985; Burridge et al.

1988). Recent technological improvements of seismic devices result

in a significant extension of the frequency range available towards

the high-frequencies (Wood et al. 2003; Ker et al. 2010; Marsset

et al. 2010). The availability of seismic data spanning several oc-

taves of wavelengths motivates developments of analysis methods

relying on the multiscale analysis of seismic traces such as the win-

dowed Fourier transform and the wavelet transform (Le Gonidec

et al. 2002; Castagna et al. 2003; Chopra et al. 2006, Gesret et al.

2010; Ker et al. 2011).

Introduced by Le Gonidec et al. (2002), the wavelet response

(WR) is a promising method to perform a multiscale characteriza-

tion of complex discontinuities. Assuming the validity of the Born

approximation, the authors demonstrate that the WR is equivalent

to the continuous wavelet transform (CWT), that is, the analysis

from the WR benefit by the properties of the CWT. In particular,

the method has already been experimented to study granular inter-

faces from the analysis of the ridge functions (Le Gonidec & Gibert

2006, 2007). Remarkably, all information necessary to characterize

the discontinuities forming the reflector is brought by the ridge func-

tions connecting the extrema of the wavelet transform and forming

a sparse support (Mallat & Hwang 1992; Alexandrescu et al. 1995;

Mallat 1998; Le Gonidec et al. 2002).

For laboratory studies in acoustics, Le Gonidec et al. (2002,

2003) uses a family of dilated wavelets as source signals to record

the experimental WR of random media. The wavelet-based method

contributes efficiently to the understanding of the wavelet decom-

position of reflected signals by exploiting wave propagation phe-

nomena. From this point of view, the WR represents the collection

of traces which would be obtained by sounding the medium with

an ensemble of wavelet signals forming a wavelet family. However,

such an ideal approach is not possible when dealing with general

source signals, that is, the limited frequency band of such sources

should produce distortions of the ridge functions. Indeed, the first
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time the WR method has been performed to seismic data by us-

ing the ridge functions as new multiscale seismic attributes, strong

distortions of the ridge function were clearly observed (Ker et al.

2011).

To go further into this original multiscale seismic analysis, re-

called in Section 2, this paper aims at fully correcting the ridge

functions according to the specific processing method described in

Section 3. The method is based on the properties of Lévy alpha-

stable distributions L(t) (Voit 2003) and we show that effective

analysing wavelets, required for the source-corrected WR, may be

obtained if both the analysing wavelet ξ (t) and the source filter

b(t) are derivatives of L(t). Section 4 is dedicated to determine the

Gaussian wavelet model for a real seismic source so as to apply the

mathematical development to seismic experiments. In Section 5,

the methodology is applied to the deep-towed seismic SYSIF

sources. We discuss the dilation range of the best gaussian filters

related to the band-limited seismic sources to perform the source-

corrected WR of a thin homogeneous layer. In the last section, we

process real field data according to this approach and we demon-

strate and discuss the validity of the method on complex seismic

traces.

2 R E M I N D E R O F T H E WAV E L E T - B A S E D

M E T H O D

In a previous paper (Ker et al. 2011), we propose a wavelet trans-

form approach to perform a multiscale characterization of acoustic

impedance discontinuities from seismic data. This method con-

tributes to the understanding of the wavelet decomposition of seis-

mic signals by exploiting wave propagation phenomena and it is

based on the WR introduced by Le Gonidec et al. (2002). The WR

is a natural extension of the classical CWT where the convolution

operator is replaced by the propagating operator involved by seismic

waves. The WR is expressed by

R [ξ, p] (t, a) ≡ (Daξ ⊗ p) (t) (1a)

= Daξ (t) ∗ r (t) (1b)

= W [ξ, r ] (t, a) , (1c)

where ξ is the analysing wavelet and Da is the dilation operator

such that Daξ (t) = a−1ξ (t/a) with the dilation factor a ∈ R
+. The

operator ⊗ represents the 1-D propagation of the wavelet family

through the medium with impedance p(z), and ∗ stands for convo-

lution. The introduction of the Green’s function of the medium r(t)

instead of p(z) allows to write the WR R as the wavelet transform

W of r(t) in eq. (1c).

From the point of view of wave propagation, R[ξ , p](t, a) repre-

sents the collection of the seismic traces which would be obtained

by sounding the medium with an ensemble of seismic source sig-

nals forming a wavelet family. Le Gonidec et al. (2002, 2003) have

shown that, assuming the validity of the Born approximation, the

WR provides the same information on the structure of the medium

than the CWT directly applied on the impedance profile p(z). The

full equivalence is obtained if the CWT of the impedance profile is

computed with the time derivative, ξ ′, of the analysing wavelet, ξ ,

used in the WR,

a × R [ξ, p] (t, a) ⇔ W
[

ξ ′, p
]

(z, a) . (2)

The ⇔ symbol is used instead of the = symbol to emphasize the

fact that the WR and the CWT of p(z) share the same multiscale

properties although they do not belong to the same physical spaces,

that is, time t for the WR and space z for the CWT. This equiva-

lence relationship (2) allows to apply the properties of the CWT to

the WR.

The concepts recalled above are illustrated in Fig. 1 which con-

siders the case of a reflector formed by a layer of finite thickness,

�z, embedded in a homogeneous half-space. This reflector corre-

sponds to a window impedance profile p(z) (Fig. 1a-1) whose CWT

(Fig. 1a-2) has a global cone-like structure pointing onto the seis-

mic reflector. In the small-dilation domain, this conical pattern splits

into two sub-cones, each pointing on an edge of the window. All

information necessary to characterize discontinuities is brought by

the ridge functions connecting the extrema of the CWT and form-

ing a sparse support in the (z, a) half-plane (Mallat & Hwang 1992;

Alexandrescu et al. 1995; Mallat 1998; Le Gonidec et al. 2002). The

useful information is obtained through the analysis of the amplitude

of the ridges as a function of a as shown in Fig. 1a-3. For this partic-

ular example, the ridge function of Fig. 1a-3 is typical of a step-like

discontinuity at small dilations (i.e. slope = 0) and of a Dirac-like

singularity at large dilations (i.e. slope = −1). The complicated

behaviour of the ridge for intermediate dilations comes from the

finite width of the window which controls the dilation ac where

the ridge amplitude has a maximum. More discussion concerning

the interpretation of the ridge functions is given by Le Gonidec et al.

(2002) and Ker et al. (2011).

The WR of the same reflector is shown in Fig. 1(b) and, according

to eq. (2), it has been multiplied by a and computed with the integral

ξ of the wavelet ξ ′ used to computed the CWT of p(z). By this way,

both transforms are equivalent (compare Figs 1a-3 and 1b-3).

In a previous paper, we propose to use the ridge functions as new

multiscale seismic attributes to quantify the geometrical character-

istics (e.g. thickness) of superficial sediment layers (Ker et al. 2010;

Ker et al. 2011). To achieve this goal, it is of paramount importance

that the WR be equivalent to a CWT as stated in eq. (1c). However,

such an approach is not possible when dealing with real seismic

data, and the limited frequency band of the seismic sources pro-

duces distortions of the ridge functions as shown in Fig. 1c-3 which

represents the WR obtained with a source with a finite bandwidth.

These dramatic distortions are due to the fact that the dilated ver-

sions of the mother wavelet are no more of the same shape all over

the frequency range because of the presence of the seismic source

signal b(t) which modifies eq. (1b),

R [ξ, p] (t, a) ≡ Daξ (t) ∗ [r (t) ∗ b(t)] (3a)

= [Daξ (t) ∗ b(t)] ∗ r (t) (3b)

= W [ξ, b] (t, a) ∗ r (t). (3c)

These equations show that the experimental WR (eq. 3a), which

takes into account the limited source bandwidth, is no more a simple

wavelet transform (compare eq. 1b with eq. 3b).

In a first step, Ker et al. (2011) dealt with the ridge distortion

by performing an empirical correction to validate the relationship

between the CWT and the WR methods and estimate reflector thick-

nesses with the ridge function attributes. This correction consists in

normalizing the experimental distorted ridge functions by using the

distorted synthetic ridge function of an Heaviside discontinuity.

In this paper, we propose a more rigorous procedure to correct the

experimental ridges like the one in Fig. 1c-3 to retrieve undistorted

ridges as in Fig. 1b–3.

C© 2012 The Authors, GJI, 190, 1746–1760
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Figure 1. Multiscale analysis of a window discontinuity of thickness �z = 60 cm. (a, left to right) Complex discontinuity, modulus of the continuous wavelet

transform (CWT) in the depth-dilation domain with a GDF of order n = 3, and ridge function. (b, left to right) Complex discontinuity, modulus of the wavelet

response (WR) in the time-dilation domain with a GDF of order n = 2, and ridge function. (c, left to right) Complex discontinuity, modulus of the WR when

a limited frequency bandwidth source is taken into account (n = 2, m = 2, ab = 318 μs and b0 = 1), and raw ridge function. (d, left to right) Complex

discontinuity, modulus of the source-corrected WR (l = 4) versus the effective dilation ae, and source-corrected ridge function.

3 S O U RC E - C O R R E C T E D WAV E L E T

R E S P O N S E : P R I N C I P L E S O F T H E

M E T H O D

Our approach is similar to the one developed for the wavelet analysis

of potential fields to characterize their causative sources by using

analysing wavelet belonging to the Poisson semi-group (Moreau

et al. 1997, 1999; Sailhac et al. 2009). The main idea at the root of

the method detailed below is to find wavelets ξ such that,

Daξ (t) ∗ b(t) = A × Dae ξe(t), (4)

where ξ e is an effective analysing wavelet accounting for the effects

of the finite frequency band of the seismic source, A is an amplitude

function, and ae is an effective dilation accounting for the time-

widening of the initial wavelet ξ produced by the convolution with

the filter b (eq. 3b).

3.1 Lévy alpha-stable distribution model for ξ (t) and b(t)

We now address the derivation of analysing wavelets ξ (t) satisfying

eq. (4), that is, such that the action of the source filter, b(t), onto the

wavelet family Daξ (t) produces the wavelet family Dae ξe(t) where

the dilations a map on a range of effective dilations ae. We have the

following theorem:

Theorem 3.1. Eq. (4) is satisfied if ξ (t) and b(t) are derivatives of

order n and m of a Lévy alpha-stable distribution L(t).

Proof . Taking

ξ (t) =
dn

dtn
L(t), (5)

C© 2012 The Authors, GJI, 190, 1746–1760
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and

b(t) =
dm

dtm L(t), (6)

where L(t) satisfies the stability property,

L

(

t

a1

)

∗ L

(

t

a2

)

= α × L

(

t

ae

)

, (7)

the left-hand term of eq. (4) becomes:

Daξ (t) ∗ b(t) =
1

a
×

dn

d(t/a)n
L

(

t

a

)

∗
dm

d(t/ab)m
L

(

t

ab

)

(8a)

=
1

a
×

am
b

am
×

dn+m

d(t/a)n+m

[

L

(

t

a

)

∗ L

(

t

a

a

ab

)]

(8b)

=
α

a
×

anam
b

an+m
e

×
dn+m

d(t/ae)n+m
L

(

t

ae

)

(8c)

= A × Dae ξe(t), (8d)

where A = α × ae

a
× an am

b

an+m
e

and ξ e(t) is defined as the (n + m)th

derivative of L(t). The proof terminates by observing that eq. (8d)

is equivalent to eq. (4). �

3.2 Gaussian models for ξ (t) and b(t)

We now apply the theory explained above with the Lévy alpha-

stable Gaussian wavelet family. For this purpose, we derive Gaussian

models for both the analysing wavelet, ξ (t), and the source filter,

b(t), to satisfy eq. (4). The choice of Gaussian derivative function

(GDF) is of a particular interest in the framework of the wavelet

transform (Goupillaud et al. 1984; Holschneider 1995; n = 2, 3 or 4

are commonly used, see Le Gonidec et al. 2002, 2003 and Ker et al.

2011). Consequently, we take both ξ (t) and b(t) as GDF of order n

and m, respectively

Daξ (t) =
1

a

dn

dtn
exp

(

−
t2

a2

)

, (9)

and

b(t) = b0

dm

dtm
exp

(

−
t2

a2
b

)

, (10)

where b0 is an amplitude factor and ab controls the frequency band-

width of b(t).

Using these expressions, eq. (4) gives,

Daξ (t) ∗ b(t) =
2b0ab

√
π

√

a2 + a2
b

dl

dt l
exp

(

−
t2

a2 + a2
b

)

(11a)

= A × Dae ξe(t), (11b)

where,

l = n + m, (12a)

ae =
√

a2 + a2
b , (12b)

A = 2b0ab

√
π, (12c)

and the effective analysing wavelet

ξe(t) =
dl

dt l
exp

(

−t2
)

(13a)

= (−1)l Hl (t) exp(−t2). (13b)

The Hermite polynomial is defined as (Abramowitz & Stegun 1972),

Hl (t) = (−1)l exp
(

t2
) dl

dt l
exp

(

−t2
)

. (14)

Expressions for ξ e(t) up to l = 10 are given in Appendix A.

Using Gaussian models for both ξ (t) and b(t) allows to further

simplify eq. (3b) which rewrites in a form equivalent to eq. (1c),

R [ξ, p] (t, a) = A × Dae ξe(t) ∗ r (t) (15a)

= A × W [ξe, r ] (t, ae) . (15b)

The equations above show that the CWT of a seismic trace with

finite frequency bandwidth can be made equivalent to the CWT of

the reflectivity function, that is, the impulse response of the medium

p(z), through the rescaling given by eq. (12b). This practically cor-

responds to the removal of the distortions induced by the source

signal b(t) that differs from an impulse signal δ(t). The rescaling of

eq. (12b) accounts for the low-pass nature of the source signal in

the sense that the effective CWT, W [ξ e, r], spans the reduced range

of dilations ae ≥ ab instead of R
+. Such a result is analogous to

what happens for the multiscale analysis of potential fields where

the undistorted CWT obtained with wavelets belonging to the Pois-

son semi-group is limited to dilations larger than the depth of the

causative sources (Moreau et al. 1997, 1999; Sailhac et al. 2009).

3.3 Example: ridge function topology

of a homogeneous layer

We now complete the example of Fig. 1 to illustrate the theoretical

developments on a homogeneous layer of thickness �z, that is, we

take into account a limited frequency bandwidth source to perform

the WR including the term b(t) (eq. 3a). For this purpose, we con-

sider a Ricker wavelet, which is a GDF of order 2, for both ξ (t) and

b(t) (i.e. n = m = 2). The modulus of the WR (Fig. 1c-2), that is,

the absolute value of eq. (3a), shows distortions procuded by b(t)

on the WR defined by eq. (1b) (Fig. 1b-2). In particular, the ridge

function (Fig. 1c-3) is strongly affected by b(t): at small dilations,

the asymptotic behaviour does not correspond to a Heaviside-like

discontinuity and the location of the maximum has been shifted.

When we process the WR according to the processing method (eq.

11a, with l = n + m = 4), we obtain the WR plotted in Fig. 1(d-2) af-

ter amplitude and dilation range corrections. The source-corrected

ridge function of Fig. 1(d-3) looks very similar to Fig. 1(b-3) where

b(t) is not considered. In particular, the asymptotic behaviour is

retrieved with a slope ∼−1 typical of a Dirac discontinuity at large

dilations. However, the small-dilation domain is reduced by the

rescaling given by eq. (12b) and, consequently, the horizontal slope

observed in the ridge of Fig. 1(b-3) is not recovered. Other discrep-

ancies are observed in the medium-dilation domain with a more

pronounced maximum and the appearance of a tiny minimum which

is not present in the ridge of Fig. 1(b-3). These discrepancies must

not be attributed to a defect of either the rescaling (eq. 12b) or the

amplitude correction (eq. 12c) but, instead, to the fact that the WR

is now obtained with the effective wavelet ξ e(t) (eq. 13a), that is,

a GDF of order l = 4 with more oscillations than the analysing

wavelet ξ (t).

C© 2012 The Authors, GJI, 190, 1746–1760
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Depending on the derivative order l of the analysing GDF

(Figs 2a–d), the ridge function shows some changes, as illustrated

in Figs 2(e)–(h) computed for l = 4, 6, 8, 10, respectively. Note that

the number of extrema in a GDF of order l is l + 1. For all ridges, the

asymptotic behaviours at small and large scales remain the same,

but differences can be observed at intermediate dilations: both the

number, the location and the amplitude of the extrema increase with

l because of interferences between the wavelet family and the multi-

scale structure of the discontinuity. In particular, slight shifts of the

dilation ac of the absolute maximum amplitude are due to changes

of the shape of ξ e(t) with l, and the relation between ac and �z

depends on the wavelet actually used, as detailed in Section 5.3.2

(see eq. 24). As a consequence, the reference WR associated to the

source-corrected WR must be a GDF of the same order (l = 4),

that is, the efficiency of the source-correction method is highlighted

by the perfect agreement between ridge functions of Figs 1(d-3)

and 2e.

4 G AU S S I A N WAV E L E T M O D E L b ( t )

F O R A H I G H - R E S O LU T I O N S E I S M I C

S O U RC E

4.1 Methodology to determine the derivative order m

In the example of section 3.3, the source signal is supposed to be—

and indeed is—a perfect GDF, and we now consider the case of real

source signals, s(t), whose complicated shape makes impossible

to directly find a GDF source model b(t) ≈ s(t). The seismic de-

vices used in marine surveys use sources emitting modulated chirps

(Quinn et al. 1998) which allow to deconvolve the data so that the

resulting post-deconvolution source, s(t), has a flat spectrum in a

wide frequency band (see Ker et al. 2010, for explanations on this

seismic processing). Now, we instead search for a GDF whose spec-

trum may be considered contained in the frequency band where the

spectrum ŝ( f ) of s(t) is constant and zero-phase. For such a b(t) we

have,

b(t) ∗ s(t) ≈ b(t), (16)

which, in the Fourier domain reads,

b̂( f )[1 − ŝ( f )] ≈ 0. (17)

This eq. is satisfied whenever b̂( f ) has a compact support contained

in the frequency band where ŝ( f ) = 1. For GDF, eq. (16) will

be more or less respected depending on the value of ab and m

which control the roll-off of b̂( f ) outside the source bandwidth. In

a certain sense, b(t) may be considered as a shaping filter which

transforms the source s(t) into the desired GDF. In this case, s(t) can

be considered as an identity element for the convolution in a limited

frequency bandwidth (i.e. zero-phase and flat spectrum), thus both

the shaping filter and the GDF are the same b(t).

The determination of b0, m and ab (eq. 10) is constrained by

the fact that l = n + m must be as low as possible to reduce the

number of oscillations in the effective wavelet ξ e(t) (see Fig. 2).

The retained GDF must also be such that the source model b(t) has

a spectrum very near the one of the real seismic source s(t). By this

way, we ensure that as much as possible information contained in the

original source signal is preserved in the source filter. In practice,

we determine ab and m in the frequency domain by minimizing the

quadratic misfit,

RMS(ab, m) =
∫

∣

∣b̂( f ) [1 − ŝ( f )]
∣

∣

2
d f. (18)

Using the expression of b(t) given by eq. (10), we obtain,

RMS(ab, m)

=
√

πb0ab

∫

∣

∣(2iπ f )m exp[−(πab f )2] [1 − S( f )]
∣

∣

2
d f. (19)

It is worth to highlight the non-unicity of b(t) as several GDF can

respect eq. (16). The choice of the GDF can be fixed by the respect

of a threshold of the RMS value and by considering the complexity

of the GDF related to its derivative order.

4.2 Particular case of a high-resolution seismic source

Even if the processing method described in previous sections can

be applied to any kind of source signal, we discuss here the method

by considering the example of a high resolution seismic source.

Generated by transducers in marine seismics, such a seismic source

typically emits a linearly modulated chirp signal spanning frequen-

cies from f low to f high. According to Ker et al. (2010), we suppose a

signature deconvolution that compacts the source duration and flat-

tens the frequency spectrum inside the bandwidth [f low; f high]. From

now, it is obviously necessary to better conform with the terminol-

ogy used in seismic practice, that is, a correspondence between

dilation and frequency is required.

As described above, we consider a GDF of order m defined by

a dilated wavelet of dilation a (dimension of time). Recalling that

the Fourier transform of such a Gaussian is a Gaussian, and that

the time-derivative translates into a multiplication of the spectrum

by (2iπ f )m (e.g. Bracewell 1999), the frequency f peak of the GDF

is determined from its Fourier transform which has a maximum at

(Heigl 2007)

fpeak =
1

πa

√

m

2
. (20)

The frequency bandwidth �f is also a function of both the derivative

order m and the dilation a (Ravela & Manmatha; 1999): �f is larger

when m is high and a is low.

In practice, the limits amin and amax are determined in such a way

that their corresponding frequencies f high and f low, respectively,

given by eq. (20), correctly covers the source spectrum. It is im-

portant to observe that the constant frequency range, determined

from the source bandwidth, corresponds to a variable dilation range

depending on m, as discussed below.

5 S Y S I F S O U RC E - C O R R E C T E D

A NA LY S I S O F A H O M O G E N E O U S

T H I N L AY E R

The SYSIF seismic device is a deep-towed system developed by

Ifremer to image the subseabed with a metric (HR) to sub-metric

(VHR) resolution for depth penetrations up to 350 m in a silty clay

sediment type. The reader is referred to Ker et al. (2010) and Mars-

set et al. (2010) for a detailed presentation of the SYSIF system and

the processing of SYSIF seismic data. Actually, two sources are

involved in the SYSIF device, so two source filters b(t) have to be

defined according to the method proposed in the previous sections,

one for the HR and one for the VHR seismic sources. As noted

in the previous section, the processing method deals with the de-

convolved source signatures: Fig. 3 shows these source signals and

frequency spectra involved in the present study. We also introduce

C© 2012 The Authors, GJI, 190, 1746–1760
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Figure 2. (a–d) Analysing wavelets with derivative orders n = 4, 6, 8, 10, respectively. (e–h) Associated ridge functions computed for a window function.

the effective wavelet ξ e(t) associated to the seismic SYSIF source

and we use it to analyse a synthetic window function discontinuity to

discuss the method and its limitations when a real seismic source is

involved.

5.1 Effective wavelet ξ e(t) of the SYSIF seismic source

The SYSIF deep-towed seismic device is equipped with two seismic

sources covering the high-resolution (HR: 220 < f < 1050 Hz) and

very-high-resolution (VHR: 580 < f < 2200 Hz) frequency bands.

The aim of this section is to determine the parameters ab and m

of the best GDF source wavelet b(t) by computing the RMS of

eq. (19) for a range of dilation amin ≤ ab ≤ amax and for a range

of derivation order m = 1, . . ., 10 of the GDF b(t). Following the

method described in Section 4, we compute the minimum value of

the RMS errors (Fig. 4a) and the dilations ab (Figs 4b and c) for both

SYSIF sources. We remember that the dilation range depends on m:

for the HR source for instance, m = 1 implies amin = 214 μs and

amax = 1023 μs and m = 10 gives amin = 678 μs and amax = 3235 μs.

In Fig. 4(a), we observe that both sources follow similar behaviours,

with a strong decrease of the RMS error at m = 3. In Figs 4(b) and

(c), we observe that ab increases in the range [430; 1224 μs] for

the HR source and [250; 549 μs] for the VHR source. To shape the

seismic source, b(t) is defined by a derivative order m that is a trade-

off between a small value of the RMS error and a low value of ab:

m = 3 and m = 4 appear as good candidates. The final choice for m

may also rely on a visual inspection of the fit in the time domain as

in Figs 5(a)–(d) where the approximation b(t) ∗ s(t) ≈ b(t) appears

much better for m = 4 than for m = 3. In the frequency domain

(Figs 5e–h), one can observe the good match between the spectra of

b(t) and b(t) ∗ s(t) for both sources excepted at the lower and upper

bounds of the bandwidth. This mismatch at the bounds is more

pronounced for m = 3 than for m = 4. The dilation ab of the source

filter of order m = 4 is ab = 776 μs for HR and ab = 357 μs for

VHR.

With these parameters, the source filters b(t) take into account

the frequency bandwidth limitations of the SYSIF source and can

be considered for a multiscale analysis of a discontinuity in the

framework of the processed WR (eq. 11b). To assimilate the two

SYSIF sources as a single seismic source which covers a very large

frequency range, we merge both the HR and VHR WRs. To do so,

a common order m is mandatory for both b(t) models of the SYSIF

device.

The WR analysis deals with both the source filter b(t) and the

analysing wavelet ξ (t), through the effective wavelet ξ e(t) which

C© 2012 The Authors, GJI, 190, 1746–1760
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Figure 3. SYSIF seismic sources the HR (a) and the VHR (b) deconvolved signatures cover the 220–1050 Hz and (c) 580–2200 Hz (d) frequency bands,

respectively.

Figure 4. (a) Minimum rms errors versus the derivative order m, for both the SYSIF HR source (stars) and the SYSIF VHR source (circles) and (b, c) the

corresponding dilation ab.

C© 2012 The Authors, GJI, 190, 1746–1760

Geophysical Journal International C© 2012 RAS



Multiscale seismic attributes 1753

Figure 5. Comparison between b(t) ∗ s(t) (blue) and b(t) (red). In the time domain: (a) HR, m = 3; (b) VHR, m = 3; (c) HR, m = 4; (d) VHR, m = 4. In the

frequency domain: (e) HR, m = 3; (f) VHR, m = 3; (g) HR, m = 4; (h) VHR, m = 4.

complexity is related to its derivative order l. The analysing wavelet

ξ (t) is taken as GDF of order n = 1 to minimize the order l. As a

conclusion, the effective wavelet ξ e(t) of the merged SYSIF sources

is a GDF of order l = 5.

5.2 Discussions on the effective dilation range

of the merged SYSIF source

At this stage of the discussion, it is worth recalling that dimen-

sionless relative dilations ar are often more comfortable to use for

practical computations instead of absolute dilations a. In the previ-

ous paper Ker et al. (2011), we defined ar = λ/λ0 with λ and λ0 the

wavelengths of the dilated and mother wavelets, respectively, that

is, ar = a/a0 where a0 is a reference time unit related to a frequency

sampling rate. In the following, we present the results in terms of

dimensionless relative dilations, with the sampling rate involved in

the SYSIF device (1/a0 = 10 kHz).

In the remainder of this paper, the effective wavelet ξ e(t) is a GDF

of order l = 5 with a frequency f peak = 5033 Hz given by eq. (20)

with a = a0 and m = l. In this section, the wavelength is λpeak =
29.8 cm (for a P-wave velocity V p = 1500 m s−1). The effective

C© 2012 The Authors, GJI, 190, 1746–1760
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Figure 6. Absolute dilation and peak frequency ranges of the SYSIF HR (on the left) and VHR (on the right) sources, plotted versus the dimensionless dilation

ar = a/a0 for a rms threshold of 20 per cent.

dilation ae depends on the dilation ab of the source filter, different

for the HR and for the VHR b(t) models (eq. 10). This leads to two

different dilation ranges, noted R
HR
ar

and R
VHR
ar

, where ar refers now

to the dimensionless dilation ae/a0 according to Ker et al. (2011).

Similarly, we note RHR
f and R

VHR
f the associated frequency ranges,

which represent the physical peak frequency of the effective wavelet

ξ e(t). When both SYSIF sources are merged into one broad-band

source, we note

Rar = R
HR
ar

∪ R
VHR
ar

, (21a)

R f = R
HR
f ∪ R

VHR
f , (21b)

for the global effective dilation range (eq. 21a) and accordingly, the

associated frequency ranges (eq. 21b).

It is important to remember that the lower bounds of RHR
ar

and

R
VHR
ar

are fixed by the dilations ab of the source filters b(t). On

the other hand, the upper bounds are not constraint but the lack

of low frequency content of b(t) ∗ s(t) for both SYSIF sources (see

Figs 5g and h) introduces distortions in the dilated wavelets. These

distortions, more and more pronounced when dilations increase, can

be quantified with a relative rms error related to the consideration

of ξ e(t), a GDF of order l = 5 and an effective dilation ae ≥ ab,

instead of an analysing wavelet ξ (t) of the same order n = l but with

dilations a ∈ R
+. We define the maximum value of this relative rms

error such that Rar is continuous, that is, the upper bound of RHR
ar

joins the lower band of RVHR
ar

: this condition R
HR
ar ,max ∼ R

VHR
ar ,min is

satisfied with a threshold of 20 per cent on the relative error.

The relation between the absolute dilation a, detailed in the for-

malism of section 3 and expressed in μs, versus the dimension-

less dilation ar = ae/a0, is shown in Figs 6(a) and (b). With a

rms threshold of 20 per cent, RHR
ar

= [7.84; 17.64] and R
VHR
ar

=
[3.74; 7.61]. According to eq. (20), the associated frequency ranges

are shown in Figs 6(c) and (d): R
HR
f = [285; 642 Hz] and

R
VHR
f = [600; 1345 Hz]. It is interesting to note that the effec-

tive frequency ranges overlap, even if the dilation ranges do not. As

a conclusion, we get

Rar = [3.74; 17.64], (22a)

R f = [285; 1345Hz]. (22b)

5.3 Source-corrected seismic attributes of a thin

homogeneous layer

5.3.1 Processed WR and ridge function of the thin layer

In this section, we compute the synthetic seismic data set of a

window function discontinuity analysed simultaneously with the

HR and the VHR sources of the SYSIF device. The synthetic seismic

data set is computed for a homogeneous layer thickness �z = 45 cm,

which associated Green’s function is computed from a method based

on the Goupillaud’s model (1961) (see Ker et al. 2011 for details

on the forward modelling). The reference continuous WR of the

discontinuity, defined for a ∈ R
+, is performed with an analysing

C© 2012 The Authors, GJI, 190, 1746–1760
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Figure 7. WR of a window function �z = 45 cm analysed (a) with the

reference wavelet (n = 5, a ∈ R
+), and (b) with the effective wavelet (l = 5,

ar ∈ Rar = R
HR
ar

∪R
VHR
ar

) which takes into account the limited frequency

bandwidth of the HR and VHR SYSIF sources.

wavelet ξ (t) with a derivative order n = 5 (Fig. 7a). When the SYSIF

source is taken into account, the corresponding WRe is computed

with an effective wavelet ξ e(t) of order l = 5 which dimensionless

effective dilation is ar ∈ Rar , shown in Fig. 7(b). Since ξ and ξ e are

both based on a GDF of the fifth order (f peak = 5033 Hz), WR and

WRe can be directly compared in the common dilation range Rar .

As discussed in the previous section, the transition between the

HR and the VHR components shows some imperfections (Fig. 7b),

that is, the amplitude continuity and the distortions of the analysing

wavelets in the intermediate band correspond to larger errors of the

correction processing. Nevertheless, we observe a very good agree-

ment between both time-scale maps, WR and WRe. The shapes of

the raw HR and VHR ridge functions of WRe, that is, ridge func-

tions not corrected from the distortions induced by the source, are

shown in Fig. 8(a). When we apply the amplitude factor correc-

tion (eq. 12c) and display the results versus the effective dilation

ae (eq. 12b), the processed ridge functions are in perfect agreement

with the reference, even for rms errors up to 20 per cent (Fig. 8b):

the solid line corresponds to the reference WR and the symbols

to the WRe (HR in red, VHR in blue). This illustrates the efficiency

of the method developed here to remove the WR distortions induced

by limited frequency bandwidth sources.

We remember that in Section 5.1, the derivative order m of the

Gaussian filter b(t) of the source has been justified by a better

match with a GDF for m = 4 than for m = 3. Compare to the

case m = 4 shown in Fig. 8(b), the processing quality for m = 3

fails to reproduce exactly the shape of the reference ridge function,

computed for n = 4, as shown in Fig. 9. This mismatch confirms

that the fourth derivative order is the smallest order that can be used

Figure 8. Ridge functions extracted from the SYSIF WRe (l = 5) for a

window function �z = 45 cm (HR in red, VHR in blue, reference (n = 5)

in solid line): (a) raw version in the reference dilation range and (b) source-

corrected version in the effective dilation range (m = 4).

Figure 9. Ridge function extracted from the effective WRe (l = 4) for a

window function �z = 45 cm computed with a source filtering b(t) of the

third order (m = 3; HR in red, VHR in blue, reference (n = 4) in solid line).

to obtain an appropriate Gaussian filter adapted to SYSIF sources.

The methodology to select the derivative order m is efficient and

enables to remove the WR distortions induced by SYSIF seismic

sources: this analysis of a window function may be included in

the processing workflow used to define this filter as a final quality

control.

C© 2012 The Authors, GJI, 190, 1746–1760
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5.3.2 Thin-layer thickness based on the seismic attributes

In Ker et al. (2011), we have suggested that a multiscale attribute

based on the ridge function can inform about the structure of a

discontinuity which characteristic size �z is identified from the

dimensionless dilation ac associated to the maximum amplitude of

the ridge function, easier to point when dealing with real seismic

data. According to this previous work, we can write

�z = λc/β, (23)

where β is a dimensionless proportionality factor specific to the con-

sidered wavelet, and the wavelength λc = Vp/ fpeak,c = Vpπaca0

√

2
l

(eq. 20 with a = ac × a0). We can then relate the characteristic size

of the reflector to the dimensionless dilation ac

�z =
ac

β
λpeak. (24)

For �z = 45 cm, we identify ln(ac) = 1.93 from the ridge function

shown in Fig. 8(b), that is, we are able to define β = 4.57 for a GDF

of order l = 5. Note that in Ker et al. (2011), we worked with β =
2.61 in the CWT with Ricker wavelets (l = 2), in agreement with the

literature on such seismic wavelets (Kallweit & Wood 1982; Chung

& Lawton 1995): for a GDF wavelet l = 5, no literature exists on

the subject but the approach is the same to define the associated β

value. In the remaining of this section, we use the relation �z =
ac/15.33 to define the characteristic size of a complex discontinuity

in the framework of the wavelet transform (see Appendix B for an

extension to the dominant wavelength representation).

In the present work, we show that the merged WRe of the SYSIF

sources is defined in the effective dilation range Rar , that is, ac ∈
[3.74; 17.64]. Accordingly, the SYSIF device can be used to identify

seismic reflector thicknesses �z ∈ R�z , where the range is defined

by

R�z = [24; 115 cm]. (25)

Thicknesses smaller than 24 cm, as illustrated in Fig. 10(a) for

�z = 22 cm, can not be estimated from ac as the effective dilation

is restricted to the decreasing part of the ridge function with a slope

close to −1. In that case, a thin layer can be approximated to a

Dirac discontinuity with no characteristic size. Nevertheless, the

segment of ridge function limited to Rar is not a perfect straight

line, suggesting the presence of a complex structure rather than a

pure Dirac discontinuity.

In the range R�z , the layer thickness is determined from the di-

lation ac of the maximum of the ridge function following eq. (24).

Within this range, the location of ac can be correctly identified (see

Fig. 8b for �z = 45 cm and the associated WRe in Fig. 7b). Con-

sequently, good estimation of ac can be attempted when accepting

correction rms errors up to 20 per cent. Close to the upper bound,

the case �z = 112 cm is shown in Fig. 10(b) where a very good

agreement between the reference and the source-corrected ridge

functions is still observed, even in the complex part of the ridge

function where interference phenomena occur. From such seismic

attributes, the layer thickness �z is perfectly given by the dilation

located at ln(ac) = 2.84, according to eq. (24). Note that it is theo-

retically possible to relate �z to other extrema of the ridge function,

such as the minimum amplitude (Le Gonidec et al. 2003), but a

maximum is easier to identify in real seismic data.

For thicknesses larger than 115 cm, the dilation ac can not be

identified since it is out of the effective dilation range which is on

the left hand side of the maximum amplitude, that is, where the

internal structure is detected. This dilation range covers the Heav-

iside asymptotic behaviour and the multiscale attributes analysis

Figure 10. Ridge functions extracted from the SYSIF WRe (l = 5) for

window functions of thicknesses (a) �z = 22 cm and (b) �z = 112 cm (HR

in red, VHR in blue, reference (n = 5) in solid line).

may become useless as a direct estimation of the thickness can be

made by a straightforward interpretation of the seismograms.

6 A P P L I C AT I O N T O C O M P L E X

S U B - S U R FA C E S E D I M E N TA RY L AY E R S

We now assess the multiscale seismic attributes to analyse super-

ficial deep-sea hemipelagic sediments from the seismic data sets

detailed in Ker et al. (2011): one concerns synthetic seismic traces,

computed with a forward modelling on in situ and core measure-

ments, and the other concerns seismic traces acquired at sea by the

SYSIF deep-towed device in the close vicinity of the ground truth

data. In Ker et al. (2011), this case study shows a very good match

between the subsurface structure described from the ground truth

data and the seismic reflectors.

6.1 Source-corrected seismic attributes of the impedance

log defined from ground truth data

In this section, we work on a synthetic WR of the subseabed: from

ground truth data, we define the in situ acoustic impedance log of

the subsurface used to compute the Green’s function of the struc-

ture (Fig. 11a). The analysis is based on two steps, presented in

Section 5.3 for a window discontinuity. First, we use eq. (1a) to

compute the reference continuous WR of the subsurface with an

unlimited frequency bandwidth seismic source, that is, for dila-

tions a ∈ R
+. This WR, displayed in Fig. 11(b), shows numerous

C© 2012 The Authors, GJI, 190, 1746–1760
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Figure 11. Seismic attributes from the Green’s function of hemipelagic sediment impedance (synthetic seismic data): (a) impedance profile, (b) reference WR

(n = 5, a ∈ R
+), (c) effective SYSIF WRe (l = 5, ar ∈ Rar ) and (d, e) ridge functions of reflectors A and B (WR in solid line and source-corrected WRe in

symbols: HR in red and VHR in blue).

cone-like structures pointing towards the position of seismic reflec-

tors. Second, we use eq. (3a) to numerically sound the subsurface

with the SYSIF device, taken into account with b(t), which limited

frequency bandwidth induces distortions in the seismic attributes:

we apply the source-correction method to remove these distortions

and perform the effective wavelet response WRe (Fig. 11c). Note

that WRe is defined in the limited and dimensionless dilation range

Rar , which corresponds to the frequency range [285; 1345 Hz] (see

eqs 22a,b).

In the common dilation range, we observe a very good agree-

ment between the reference WR and the source-corrected WRe

maps (Figs 11b and c, respectively). In particular, the two reflectors

A and B already introduced in Ker et al. (2011) can be identified

(dashed lines) from cone-like structures that point towards them.

Since the WR and the WRe are associated to the same GDF (l =
5), the associated ridge functions can be plotted versus the same

dimensionless dilation, the reference curve in solid line and the

source-corrected curve in symbols (Figs 11d and e). The very good

agreement between the curves puts in evidence the efficiency of the

source-correction method which allows to analyse a complex struc-

ture with quantitative descriptions based on the multiscale seismic

attributes. For instance, the maximum of the ridge function indicates

the characteristic size of the seismic reflectors A and B: according to

eq. (24), �zA = 85 cm and �zB = 99 cm, respectively (uncertainties

estimated to ±2 cm and V p = 1485 m s−1).

6.2 Source-corrected seismic attributes of superficial

sediment structures: SYSIF seismic data

In this section, we work on field seismic traces, that is, the data

acquired at sea with the SYSIF seismic device and we perform the

source-correction processing to compute the effective wavelet re-

sponse WRe of superficial structures (Fig. 12a). As in the previous

synthetic analysis, reflectors A and B can be identified, plotted in

dashed lines in the WRe map. Note that in this case, no continu-

ous reference WR can be associated to the results. Nevertheless,

since the seismic traces have been acquired at the same site than

the ground truth data used in the previous analysis, the results can

be compared to the synthetic results displayed in Fig. 11(b). We ob-

serve a good agreement between both approaches. In particular, the

ridge functions associated to reflectors A and B (Figs 11b and c) are

in good agreement with the synthetic results and the characteristic

sizes are �zA = 89 cm and �zB = 100 cm, respectively.

6.3 Discussions

Results obtained in Section 6.1 validate the source-correction pro-

cessing and even in the case of complex seismic signals, we are

able to remove the distortions induced by real seismic sources. We

highlight that the analysis based on both seismic and ground truth

data are in very good agreement, which indicates the robustness of

the method. In particular, the characteristic sizes of reflectors A and

B estimated from these two approaches are in good accordance. In

the previous work (Ker et al. 2011), the empirical correction gives

a satisfactory thickness estimation for both reflectors, �zA = 81 cm

and �zB = 99 cm (to compare with the present source-corrected

results �zA = 89 cm and �zB = 100 cm) but the distortion residuals

of the ridge function remain strong and do not allow to use the

whole ridge function as a correct multiscale seismic attributes.

The source-corrected method applied on seismic SYSIF data con-

firms the efficiency of the multiscale analysis, despite the structure

complexity of the subsurface and the limited frequency bandwidth

of the seismic sources. It is important to highlight that this power-

ful data processing allows to work not only with the characteristic

size of a seismic reflector but also with the global shape of the

C© 2012 The Authors, GJI, 190, 1746–1760
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Figure 12. Seismic attributes from field SYSIF data: (a) effective SYSIF

WRe (l = 5, ar ∈ Rar ) and (b, c) source-corrected ridge functions of

reflectors A and B (HR in red and VHR in blue).

processed ridge function, that is, with the full content of the multi-

scale attributes.

7 C O N C LU D I N G R E M A R K S

Real seismic sources are characterized by limited frequency band-

widths, that is, they act as bandpass filters b(t) which distort the

multiscale seismic attributes based on the WR, as introduced in Ker

et al. (2011). In this paper, we present a source-corrected method

used to remove such distortions induced by a seismic source. In

a way similar to the wavelet analysis of potential field performed

with the Poisson wavelet semi-group (Moreau et al. 1997, 1999;

Sailhac et al. 2009), we work with Lévy alpha-stable distributions

to define an effective analysing wavelet ξ e(t) accounting for the

source effects. The wavelets considered here are GDF, both for the

analysing wavelet family Daξ (t) (order n and dilation a) and for the

source filter b(t) (order m and dilation ab), that is, the convolution

Daξ (t) ∗ b(t) results in an effective wavelet family Dae ξe(t) which

is a GDF of order l = n + m with an effective dilation ae =
√

a2+a2
b .

Note that ae does not span in R
+ but ae > ab. The multiscale anal-

ysis based on this effective GDF—scaled with an amplitude factor

depending on ab and displayed versus ae accounting for the time-

widening of ξ (t) when convolved with the source filter b(t)—allows

to work with source-corrected ridge functions.

To define the Gaussian filter that reshapes the seismic source, that

is, the GDF required to perform the undistorted WR, two parameters

have to be determined: the derivative order m and the dilation ab. For

both SYSIF deep-towed seismic sources (HR and VHR), we find

that the associated GDF are both defined with m = 4 and different

ab. We consider n = 1 for ξ (t) to minimize the complexity of the

effective analysing wavelet, which order is then l = 5 and ae spans

in a reduced dilatation range. To cover all dilations between the HR

and VHR sources, which frequency bandwidths overlap, we define

a maximum rms error value of 20 per cent between the effective

wavelet associated to the SYSIF sources (GDF of order l = 5 and

ae > ab) and the associated equivalent ξ (t) (GDF of order l = 5

and a ∈ R
+), that is, we accept some disagreements of the dilated

wavelets. Applied on a window function, the SYSIF WR is in very

good accordance with a reference WR computed without the source

limitation. This agreement is highlighted by the comparison of the

ridge functions which are similar in the dilation range covered by

the SYSIF sources and associated to layer thicknesses in the range

[24;115 cm].

We work on both synthetic and field seismic traces. We define the

former from ground truth data related to deep-water hemipelagic

sediments and we take into account the SYSIF source properties

to perform the source-corrected WR. We compare the results with

a reference WR, that is, without any source limitation, and we

show very good accordances. In particular, the seismic attributes

of reflectors A and B indicate layer thicknesses of 85 and 99 cm,

respectively: the multiscale analysis of the acoustic impedance log

is in perfect agreement with the synthetic WR corrected from dis-

tortions induced by the SYSIF sources. In the close vicinity of the

ground truth data, SYSIF field seismic data are also available to per-

form the undistorted WR analysis: the ridge functions associated to

reflectors A and B are very similar to the ones performed with the

synthetic traces, providing the same layer thicknesses.

The theoretical context of the source-corrected WR, enhanced by

the first application on seismic data, evidences a major improvement

to quantify multiscale seismic attributes, despite the complexity of

the reflectors and the limited frequency bandwidth of the source.

This multiscale processing allows to work with the global shape of

the source-corrected ridge function and is promising to go further

into such seismic attributes analysis.

Actually, we highlight that the WR source-corrected processing

can be applied not only with the SYSIF device but with any kind

of source signal device which signature is well known and stable.

This method, based on the theoretical framework of the wavelet

transform, has potentiel interests for many physical applications,

such as Non Destructive Testing (NDT) performed with ultrasonics

or electromagnetic measurements. In particular, the method can be

used to perform a source-corrected experimental WR by the use of

a single broad-band source signal, that is, an extension of the WR

introduced by Le Gonidec et al. (2002).
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A P P E N D I X A

The effective wavelet can be expressed as eqs (13a) and (13b)

ξe(t) =
dl

dt l
exp

(

−t2
)

(A1a)

= (−1)l Hl (t) exp(−t2). (A1b)

The Hermite polynomial is defined as (Abramowitz & Stegun 1972),

Hl (t) = (−1)l exp
(

t2
) dl

dt l
exp

(

−t2
)

. (A2)

The expressions of the first tenth Hermite polynomials are now

given in eqs (A3)–(A12).

H1(t) = (2t) , (A3)

H2(t) =
(

4t2 − 2
)

, (A4)

H3(t) =
(

8t3 − 12t
)

, (A5)

H4(t) =
(

16t4 − 48t2 + 12
)

, (A6)

H5(t) =
(

32t5 − 160t3 + 120t
)

, (A7)

H6(t) =
(

64t6 − 480t4 + 720t2 − 120
)

, (A8)

H7(t) =
(

128t7 − 1344t5 + 3360t3 − 1680t
)

, (A9)

H8(t) =
(

256t8 − 3584t6 + 13440t4 − 13440t2 + 1680
)

, (A10)

H9(t) =
(

512t9 − 9216t7 + 48384t5 − 80640t3 + 30240t
)

,

(A11)

H10(t) =
(

1024t10 − 23040t8 + 161280t6 − 403200t4

+ 302400t2 − 30240
)

. (A12)

A mathematical framework on Hermite polynomials can be found

in Kreyszig (1978).
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Figure B1. Ridge functions of a window discontinuity analysed with wavelets of derivative orders l = 2, 3, 4, 5 (from top to bottom). The curves are plotted

versus the dilation (left-hand panel), the peak wavelength (middle panel) and the dominant wavelength (right-hand panel). Black crosses indicate the location

of the maximum: note that for the left-hand and middle columns, this location depends on l whereas it is fixed when the ridge function is plotted versus the

dominant wavelength.

A P P E N D I X B

In the framework of the wavelet transform, ridge functions corre-

spond to the extrema of the CWT as a function of the dilation a of

the dilated wavelet. This is the representation chosen in the present

work but it is interesting to plot the results with respect to the peak

wavelength λpeak, inversely proportional to f peak (see eq. 20) and

to the dominant wavelength λd , commonly used in seismology. For

λpeak, the peak frequency f peak is uniquely defined in the wavelet

spectrum as the frequency of the largest amplitude. The dominant

wavelength λd is related to the breadth of the wavelet (Kallweit &

Wood 1982) which is defined as the time between two secondary

extrema close to the central lobe of a symmetrical wavelet (even

derivative order l, that is, for a Ricker wavelet l = 2, the breadth

is defined by a trough-to-trough time). For asymmetrical wavelets

(odd l values), we define the breadth of the wavelet as twice the time

between the two primary extrema.

To illustrate the three representations, we plot the ridge func-

tion of a thin homogeneous layer (see Fig. 1) analysed with GDF

wavelets of orders l = 2, 3, 4, 5, respectively. For the natural repre-

sentation of the ridge function plotted versus a (Figs B1a–d), the

location of the maximum shifts with respect to the derivative or-

der l, in accordance with Fig. 2. This shift also exists when the

ridge function is plotted versus λpeak (Figs B1e–h). In the last rep-

resentation, we observe that the maximum of the ridge function

plotted versus the dominant wavelength λd remains at a position

independent of the derivative order l (Figs B1i–l) and corresponds

to λd,max = 4�z.
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