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Abstract 27 

 28 

The temporal and geochemical evolution of Marquesas hotspot volcanoes have often been interpreted 29 

with reference to the Hawaiian model, where a tholeiitic shield-building stage is followed by an alkali basaltic 30 

post-shield stage, followed after a 0.4 to 2.5 Myr long quiescence period, by a rejuvenated 31 

basanitic/nephelinitic stage. Here we discuss geochemical data on 110 Marquesas lavas also dated using 32 

the unspiked 
40

K-
40

Ar method on separated groundmass (including 45 new ages measured on the southern 33 

islands of Hiva Oa, Motane, Tahuata and Fatu Hiva). Sample locations were positioned on detailed 34 

geological maps to determine their shield or post-shield position with respect to the caldera collapse 35 

event(s), without taking into account their geochemical features. A rather regular decrease of the ages 36 

towards SE, consistent with the Pacific plate motion, is observed from Eiao (5.52 Ma) to Fatu Hiva (1.11 37 

Ma), and rejuvenated basanitic volcanism occurs only in Ua Huka (1.15-0.76 Ma). The occurrence of 38 

intermediate and evolved lavas is restricted to the post-caldera stage, with the exception of Eiao island. 39 

However, many other features of the Marquesas chain are rather atypical with respect to those of Hawaii. 40 
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Although Marquesas shields are tholeiitic, several of them (Eiao, Tahuata) contain interbedded alkali 41 

basaltic and basanitic flows. Moreover, post-shield volcanoes are either alkali basalts (Ua Huka), tholeiites 42 

(Hiva Oa, Tahuata, Fatu Hiva) or both (Nuku Hiva). This feature is consistent with the temporal continuity of 43 

the two stages and the usually short length of the post-shield period (<0.2 Myr). In a given island, the trace 44 

element and isotopic compositions of shield and post-shield lavas overlap, although both display large 45 

variations. The sources of alkali basalts and basanites are more enriched than those of the 46 

contemporaneous tholeiites. These specific features support the hypothesis of an extremely heterogeneous 47 

Marquesas plume. The “weak” character of this plume led to low partial melting degrees, which in turn 48 

resulted in the preservation in the basaltic magmas of geochemical features inherited from small-size source 49 

heterogeneities. 50 

 51 

Keywords: Shield, Post-shield, Tholeiite, Alkali basalt, Trachyte,
 40

K-
40

Ar age, Hotspot, Marquesas. 52 

 53 

 54 

 55 

1. Introduction 56 

 57 

The temporal evolution of plume-related oceanic intraplate volcanoes has often been investigated with 58 

reference to the classical Hawaiian model, in which four successive growth stages are distinguished (Clague 59 

and Dalrymple, 1987; Clague, 1987; Hanano et al., 2010): (1) a small volume (ca. 3%) alkalic pre-shield 60 

stage, emplacing mostly submarine alkali basalts and basanites; (2) the main shield-building stage, during 61 

which the majority (95-98%) of the volcano is rapidly constructed, culminating in subaerial flows of tholeiitic 62 

basalts; (3) the alkalic post-shield phase, during which small volumes (1-2%) of alkali basalts and related 63 

intermediate/evolved lavas (hawaiites, mugearites, benmoreites and trachytes) are erupted; and finally (4) 64 

the alkalic rejuvenated stage, during which very small volumes (<<1%) of basanites, alkali basalts and 65 

nephelinites are emplaced after a quiescence period. In the Hawaiian chain, shield tholeiitic basalts are less 66 

enriched in incompatible elements and derive from larger melting rates than the post-shield and rejuvenated 67 

alkalic lavas; in addition, the mantle sources of the latter are isotopically depleted with respect to those of 68 

the tholeiites (lower 
87

Sr/
86

Sr and 
206

Pb/
204

Pb, higher 
143

Nd/
144

Nd: Frey et al., 1990, 2005; Shafer et al., 2005; 69 

Fekiacova et al., 2007; Garcia et al., 2010; Hanano et al., 2010). 70 

For Hawaiian volcanoes, the main criterion used for the distinction between the shield-building and post-71 

shield stages is the change from tholeiites to alkali basalts. Indeed, Clague and Dalrymple (1987) stated 72 

(their page 7) that “the shield stage usually includes caldera collapse and eruptions of caldera-filling tholeiitic 73 

basalt. During the next stage, the alkalic postshield stage, alkalic basalt also may fill the caldera and form a 74 

thin cap of alkalic basalt and associated differentiated lava that covers the main shield”. They also 75 

mentioned (their page 8) that “we have omitted the main caldera-collapse stage of Stearns (1966) from the 76 

eruption sequence because it can occur either during the shield stage or near the beginning of the alkalic 77 

postshield stage. The lava erupted may therefore be tholeiitic or alkali basalt, or of both types”. 78 



 3 

Large major, trace element and isotopic variations in Marquesas lavas have been known for decades 79 

(Vidal et al., 1984, 1987; Duncan et al., 1986). They have been interpreted with reference to the shield/post-80 

shield Hawaiian model by several authors (Duncan et al., 1986; Woodhead, 1992; Desonie et al., 1993; 81 

Castillo et al., 2007). However, most of these works were based on the pioneer (and hence limited) sampling 82 

of Marquesas Islands made during the 1970’s by R.A. Duncan (Duncan and McDougall, 1974; Duncan, 83 

1975; McDougall and Duncan, 1980) and R. Brousse (Vidal et al., 1984; Brousse et al., 1990). No geological 84 

maps of the islands were available at that time, and therefore the distinction between shield and post-shield 85 

lavas was usually made using geochemical criteria. For instance, the observation that the oldest lavas from 86 

Nuku Hiva, Ua Pou and Hiva Oa are tholeiitic basalts (Duncan, 1975; Duncan et al., 1986) led Woodhead 87 

(1992) to classify hypersthene-normative Marquesas lavas as shield-related and alkali basalts/basanites as 88 

post-shield. Later, Castillo et al. (2007) studied samples collected by H. Craig, and used 
87

Sr/
86

Sr (>0.7041) 89 

and 
143

Nd/
144

Nd (<0.51285) ratios to characterize post-shield lavas, based on the isotopic data of Woodhead 90 

(1992) obtained on R.A. Duncan’s samples. 91 

A mapping program of the Marquesas archipelago (2001-2009) led us to collect a number of new 92 

samples and draw detailed geological maps of the islands. The trace element and Sr, Nd, Pb and Hf isotopic 93 

features of these samples (Chauvel et al., 2012) point towards relationships between shield and post-shield 94 

lavas more complex than previously thought. Here, we use geological settings combined with unspiked 
40

K-95 
40

Ar ages measured on groundmass and petrologic/geochemical features of this new sample set to 96 

demonstrate that the temporal evolution of the Marquesas volcanoes is rather different from that of Hawaiian 97 

volcanoes. We also discuss the constraints that they set on the corresponding plume/hotspot model.  98 

 99 

 100 

2. Geological setting and previous work 101 

 102 
2.1. The Marquesas archipelago 103 

The ca. 350 km-long Marquesas archipelago, located in northern French Polynesia, includes eight main 104 

islands (Fig. 1) that cluster into a northern group (Eiao, Nuku Hiva, Ua Huka and Ua Pou) and a southern 105 

group (Hiva Oa, Tahuata, Motane, Fatu Hiva); few islets (“motu”), banks and seamounts also exist (Fig. 1). 106 

The age of the islands decreases towards the SE (Duncan and McDougall, 1974; Brousse et al., 1990) from 107 

5.5 Ma in Eiao to 0.6-0.35 Ma on the DH12 seamount south of Fatu Hiva (Desonie et al., 1993). However, 108 

no active volcanoes are known at the southeastern edge of the chain. 
40

K-
40

Ar ages younger than 1 Ma have 109 

been obtained only on DH12 and on the Teepoepo (1.15-0.96 Ma) and Tahoatikikau (0.82-0.76 Ma) 110 

strombolian cones on Ua Huka (Legendre et al., 2006; Blais et al., 2008). These cones were emplaced after 111 

a 1.3 Myr quiescence period, and are considered as the only example of rejuvenated volcanism in the 112 

Marquesas (Legendre et al., 2006; Chauvel et al., 2012). Most authors believe that the Marquesas Fracture 113 

Zone (MFZ; Pautot and Dupont, 1974) overlies the present position of the hotspot activity (McNutt et al., 114 

1989; Brousse et al., 1990; Guille et al., 2002). However, the MFZ is aseismic (Jordahl et al., 1995) and no 115 

young volcanic rock has been recovered from the adjacent Marquesas Fracture Zone Ridge (MFZR; Fig. 1). 116 

The seamount chain parallel to the MFZ ridge ca. 50 km to the north (Fig. 1) has not yet been dredged and it 117 

could possibly mark the present location of Marquesas hotspot activity. 118 
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The Marquesas archipelago is atypical in many respects (Brousse et al., 1990; Guille et al., 2002; Devey 119 

and Haase, 2003). It lies on an anomalously shallow (less than 4,000 m deep) 53-49 Ma old oceanic crust 120 

generated at the axis of the Pacific-Farallon ridge (Crough and Jarrard, 1981), and its crustal thickness 121 

reaches 15-20 km below the central part of the chain (Filmer et al., 1993; Caress et al., 1995). This 122 

abnormally thick crust is attributed either to underplating of plume magmas below the Moho (Caress et al., 123 

1995; McNutt and Bonneville, 2000) or to the construction of the archipelago over a small 50-45 Ma old 124 

oceanic plateau that formed near the axis of the Pacific-Farallon ridge (Gutscher et al., 1999). In addition, 125 

the N30-40°W direction of the archipelago is oblique to that of the current N65°W motion of the Pacific plate 126 

(Fig. 1), but parallel to the spreading axis of the Pacific-Farallon ridge prior to the current orientation of 127 

accretion along the East Pacific Rise. This feature suggests that zones of weakness in the underlying 128 

Pacific-Farallon plate might have controlled the emplacement of the Marquesas magmas (Crough and 129 

Jarrard, 1981; McNutt et al., 1989). Age-distance to the MFZR plots using the main N30-40°W trend of the 130 

chain and all available 
40

K-
40

Ar ages display considerable scatter (Brousse et al., 1990; Desonie et al., 1993; 131 

Guille et al., 2002). Similar plots using the N65°W trend give better fits (Legendre et al., 2006; Chauvel et al., 132 

2012), especially when considering only unspiked 
40

K-
40

Ar ages measured on separated groundmass (Fig. 133 

2), which are more accurate and reliable than conventional 
40

K-
40

Ar data on whole rocks. Recently, Chauvel 134 

et al. (2012) showed that the chain is made of two adjacent rows of islands with distinct Sr, Nd, Pb isotopic 135 

features, delineating two isotopic stripes. At any given 
143

Nd/
144

Nd value, the northeastern row (the “Ua Huka 136 

group”) has systematically higher 
87

Sr/
86

Sr and lower 
206

Pb/
204

Pb ratios than the southwestern row (the “Fatu 137 

Hiva group”). These rows are thought to originate from the partial melting of two adjacent filaments 138 

contained in an elongated ascending plumelet or secondary plume, rooted in a larger dome located at the 139 

base of the upper mantle (Davaille et al., 2002; Courtillot et al., 2003; Cadio et al., 2011).  140 

The common occurrence of nested volcanoes in the Marquesas was first reported by L.J. Chubb (1930). 141 

Half of the islands (Nuku Hiva, Ua Huka, Tahuata, Fatu Hiva) are made up of a large external (outer) shield 142 

volcano with a central caldera. A younger and smaller internal (inner) post-shield volcanic edifice has grown 143 

inside this caldera. Hiva Oa comprises three adjacent shields: the larger one is unconformably overlain by 144 

post-shield flows, which also filled up part of its caldera. Ua Pou is rather unusual, because this island lacks 145 

a well-exposed outer shield and is mostly made up of phonolitic flows interbedded with basanitic and 146 

tephritic flows (Fig. 3), and crosscut by huge phonolitic spines (Legendre et al., 2005a). The two smallest 147 

islands, Eiao and Motane, represent crescent-shaped remnants of the caldera wall and external upper 148 

slopes of much larger collapsed shield volcanoes (Brousse et al., 1990; Guille et al., 2002). Therefore, the 149 

shield-building or post-shield character of a given Marquesan sample with respect to caldera collapse events 150 

(see Stearns, 1966, for the case of Hawaii) can be determined using only its geological position deduced 151 

from field relationships and its 
40

K-
40

Ar age, without making any assumption based on its petrologic and 152 

geochemical features. We choose this approach because no well-defined temporal change from tholeiitic to 153 

alkali volcanism is observed in most Marquesas volcanoes. In the present work, we use a coherent set of 154 

110 lava samples to investigate the temporal geochemical evolution of the Marquesas volcanoes, with 155 

special attention to the respective features of shield-building, post-shield and rejuvenated (Ua Huka) stages 156 

of volcanic activity. All samples were collected during the 2001-2009 mapping program, dated by the 157 
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unspiked 
40

K-
40

Ar method on groundmass at Gif-sur-Yvette laboratory and analyzed for major and trace 158 

elements by ICP-AES at Plouzané (Brest) laboratory.  159 

  160 

2.2. Summary of the geological and geochemical features of the northern group islands 161 

The four islands from the northern group (Eiao, Nuku Hiva, Ua Huka and Ua Pou) were studied 162 

previously using the same methods (Caroff et al., 1995, 1999; Legendre et al., 2005a, 2005b, 2006; Maury 163 

et al., 2006, 2009; Blais et al., 2008; Guille et al., 2010). Their volcanic successions are shown schematically 164 

in Figure 4. Below we provide a short description of their main features. 165 

2.2.1. Eiao 166 

Eiao (Maury et al., 2009) is the northernmost (Fig. 1) and largest (44 km
2
) uninhabited island in French 167 

Polynesia. It corresponds to the northwestern crescent-shaped remains of the caldera wall and of the 168 

external upper slopes of a 20 km large collapsed volcano. Its coastal cliffs expose a ca 400 m thick pile of 169 

tholeiitic basaltic flows interbedded with less common alkali basalts and crosscut by a dense network of 170 

radial dykes. Three deep core drillings have sampled the upper 1,200 m thick sequence of the Eiao shield, 171 

down to -700 m below sea level (Caroff et al., 1995, 1999). The base of this sequence, dated at 5.52-5.48 172 

Ma (Fig. 2), is made up of quartz-normative tholeiitic flows overlain by olivine tholeiitic flows (Fig. 3). These 173 

are in turn overlain by a ca 250 m thick sequence of hawaiites and mugearites, with a single intercalated 174 

trachytic flow 5.44 Ma old (Fig. 4). The middle (dated at 5.36-5.25 Ma) and upper (4.98-4.95 Ma) parts of the 175 

drilled pile are mostly made up of olivine tholeiites intercalated with picrobasaltic and alkali basaltic flows 176 

(Caroff et al., 1995, 1999; Maury et al., 2009). The old quartz tholeiites are less enriched in incompatible 177 

elements than the overlying olivine tholeiites and alkali basalts, and their Sr, Nd, Pb isotopic composition 178 

tends towards a HIMU end-member. Hawaiites and mugearites result from open-system fractional 179 

crystallization of the latter basaltic magmas, coupled with variable extents of assimilation of materials from 180 

the underlying oceanic crust (Caroff et al., 1999). 181 

2.2.2. Nuku Hiva 182 

Nuku Hiva (Legendre et al., 2005b; Maury et al., 2006) is the largest island of the archipelago (339 km
2
). 183 

It has a semicircular shape, and its northern, western and eastern parts correspond to the northern half of a 184 

huge shield, the Tekao volcano (Fig. 4). It is exclusively made up of olivine tholeiites (Fig. 2) derived from a 185 

mantle source containing a depleted MORB mantle (DMM) component. Its upper flows were emplaced 186 

between 4.01 and 3.83 Ma according to unspiked 
40

K-
40

Ar data (Fig. 3), although altered flows from the 187 

lower part of the exposed pile yielded 
40

Ar-
39

Ar ages ranging from 4.52 to 4.08 Ma (Maury et al., 2006). 188 

Between 4.00 and 3.62 Ma (unspiked 
40

K-
40

Ar data), the Taiohae inner (post-shield) volcano grew inside the 189 

caldera of the Tekao shield, after the southern part of the latter collapsed along a N75°E trending normal 190 

fault parallel to the MFZ. This collapse event at ca 4.0 Ma (Fig. 4) has been attributed to the lateral 191 

spreading of a weak hydrothermal zone located in the central part of the Tekao shield over an unconfined 192 

boundary, corresponding to the lower compartment of this fault (Merle et al., 2006). Mapping relationships 193 

allow us to estimate the volume of the Taiohae post-shield volcano to 45±5 km
3
, i.e. 28% of the emerged 194 

volume of the edifice (160 km
3
), but only 0.6% of its total volume (6,950 km

3
, Chauvel et al., 2012). Lavas 195 
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from the Taiohae volcano include, from bottom to top: olivine tholeiites more enriched in incompatible 196 

element than those of the Tekao shield; alkali basalts and a few basanites; and large amounts of hawaiites 197 

and mugearites, which cover 47% of its surface, together with benmoreites and trachytes (25% of its 198 

surface). In addition, parasitic vents erupted hawaiitic (3.93 Ma) and trachytic (3.92 Ma) flows on the 199 

external slopes of the Tekao shield. All the Taiohae post-shield lavas are more radiogenic in Sr and Nd and 200 

less radiogenic in Nd than the Tekao ones. Hawaiites and mugearites likely derived from the fractional 201 

crystallization from mafic magmas involving separation of amphibole (Legendre et al., 2005b). The isotopic 202 

signature of benmoreites and trachytes is closer to the enriched mantle II (EM II) end-member than that of 203 

mafic lavas, a feature inconsistent with simple fractionation processes. 204 

 205 

2.2.3. Ua Huka 206 

Despite its moderate size (83 km
2
), Ua Huka Island (Legendre et al., 2006; Blais et al., 2008, Chauvel et 207 

al., 2012) displays a relatively prolonged, multi-phase geological evolution. Like Nuku Hiva, it has a 208 

semicircular shape due to the collapse of the southern half of its outer shield, the Hikitau volcano. It is made 209 

up of olivine tholeiitic flows emplaced between 3.24 and 2.94 Ma. The Hane inner (post-shield) volcano was 210 

built inside the central caldera of the Hikitau shield between 2.97 and 2.43 Ma (Fig. 4). Its alkali basaltic 211 

flows derived from a spinel lherzolite source similar to that of the Hikitau tholeiites but having experienced 212 

smaller degrees of melting (Legendre et al., 2006). Associated benmoreitic flows and trachytic and phonolitic 213 

domes were simultaneously emplaced (between 2.93 and 2.71 Ma) within the Hane post-shield volcano and 214 

from parasitic vents located on the outer slopes of the Hikitau shield. Then, after a 1.3 Myr long quiescence 215 

period (Fig. 2), volcanic activity resumed, building over the inner slopes of the Hane volcano two basanitic 216 

strombolian cones, the Teepoepo (1.15-0.96 Ma) and the Tahoatikikau (0.82-0.76 Ma). Their lavas 217 

originated from temporally decreasing melting degrees of a garnet lherzolite source deeper and isotopically 218 

more depleted than that of the older Ua Huka tholeiitic and alkali basalts (Chauvel et al., 2012). The origin of 219 

this rejuvenated volcanism (the single case identified so far in the archipelago) has been attributed to a 220 

secondary melting zone located downstream the Marquesas plume (Legendre et al., 2006), similar to that 221 

envisioned by Ribe and Christensen (1999) for the Hawaiian islands. The volumes (estimated from mapping 222 

relationships) of the Hane post-shield volcano (6±1 km
3
) and the rejuvenated cones (0.6±0.1 km

3
) 223 

correspond respectively to 21% and 2% of the total emerged volume of Ua Huka (28 km
3
), and less than 224 

0.2% only of the bulk volume of the edifice (3,250 km
3
). 225 

 226 

2.2.4. Ua Pou 227 

The 105 km
2
 diamond-shaped island of Ua Pou (Legendre et al., 2005a; Guille et al., 2010) is famous 228 

for the exceptional abundance of phonolites (Figs. 3 and 4), which cover 65% of its surface and include 229 

spectacular phonolitic spines (Ua Pou means “The Pillars” in Marquesan). Its oldest lavas are olivine 230 

tholeiite flows derived from a young HIMU-type mantle source (Duncan et al., 1986, Vidal et al., 1987). They 231 

outcrop in a very small area near Hakahau village in the northeast part of the island. The base of their ca 40 232 

m thick pile (Guille et al., 2010) is not accessible presently but has been dated at 5.61, 4.51 and 4.46 Ma by 233 
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the 
40

K-
40

Ar method on whole rocks (Duncan et al., 1986). Its presently exposed top flow was dated at 4.00 234 

Ma by the unspiked 
40

K-
40

Ar method on groundmass (Legendre et al., 2005a). These Hakahau tholeiitic 235 

flows are overlain either by up to 100 m thick laharic deposits or by trachytic and phonolitic domes dated at 236 

3.86 and 3.27 Ma (Guille et al., 2010). The latter sequence is in turn overlain by a strongly silica-237 

undersaturated lava suite forming the bulk of the island and dated between 2.95 and 2.35 Ma (unspiked 
40

K-238 
40

Ar ages). It includes from bottom to top: (1) basanitic and tephritic lava flows with intercalated laharic 239 

deposits, (2) lower phonolitic flows and intrusions, (3) basanitic and intermediate (tephritic, tephriphonolitic 240 

and benmoreitic) flows with occasional interbedded phonolites, (4) upper phonolitic flows, up to 500 m thick, 241 

and finally (5) phonolitic domes and spines, the summit of which tower several hundred meters above the 242 

older units. The basanitic magmas of this suite derived from low degrees of melting of an heterogeneous 243 

mantle source intermediate between EM II and HIMU end-members, and evolved towards tephritic liquids by 244 

fractional crystallization (Legendre et al., 2005a). The origin of tephriphonolitic and benmoreitic magmas was 245 

ascribed to the remelting at depth of basanitic rocks, leaving an amphibole-rich residuum (Legendre et al., 246 

2005a). These liquids evolved by either closed-system or more commonly open-system fractionation 247 

towards phonolitic and trachytic magmas. 248 

In contrast with the other Marquesas Islands, the main Ua Pou volcanic sequence (2.95-2.35 Ma) does 249 

not include a basaltic shield. We therefore support Duncan et al.’s (1986) suggestion that the Ua Pou shield 250 

is mainly below sea level, with only its uppermost tholeiitic part presently exposed, and that the rest of the 251 

island belongs to the post-shield phase. This interpretation is supported by the occurrence of thick laharic 252 

deposits overlying the tholeiitic flows, which indicate an erosional event. However, the temporal hiatus 253 

between the shield and post-shield phases (only between 4.00 and 3.86 Ma according to Guille et al., 2010) 254 

is much shorter than that proposed by former authors: 1.58 Myr calculated using Duncan et al.’s (1986) data 255 

and 2.34 Myr according to Woodhead (1992). 256 

 257 

3. New geological, geochemical and K-Ar age data on the southern Marquesas islands. 258 

 259 

3.1. Methods 260 

The analytical techniques are identical to those used to study the northern islands. Unspiked 
40

K-261 
40

Ar ages were obtained at the LSCE (Laboratoire des Sciences du Climat et de l’environnement) in 262 

Gif-sur-Yvette. Fresh and well-crystallized samples were selected for dating after macroscopic and 263 

microscopic inspections allowing us to check the lack of post-magmatic mineral phases. In addition, 264 

the degree of alteration of these samples was estimated from their loss on ignition value (LOI). For 40 265 

out of 45 dated samples (Tables 2 and 4) LOI ranges from -0.39 to 1.56 wt% and these samples are 266 

considered as essentially unaltered. The 5 other samples (HV81, HV99, MT11,TH35 and FH30) have 267 

LOI between 1.90 and 2.77 wt%. Despite their higher LOI, we selected them because of their critical 268 

geological position or their unusual composition (tephriphonolitic sample TH35). The samples were 269 

crushed and sieved to 0.250-0.125 mm size fractions, and ultrasonically washed in acetic acid (1N) 270 

during 45 minutes at a temperature of 60°C to remove unsuspected minute amounts of secondary 271 

mineral phases. Potassium and argon were measured on the microcrystalline groundmass, after 272 

removal of phenocrysts using heavy liquids and magnetic separations. This process removes at least 273 
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some potential sources of systematic error due to the presence of excess 
40

Ar in olivine and feldspar 274 

phenocrysts (Laughlin et al., 1994). The K content of the separated groundmass was measured by 275 

ICP-AES in Plouzané using the same method as for major elements while Ar analyses were 276 

performed in Gif-sur-Yvette using the procedures of Guillou et al. (2011). Ages given in Tables 1 and 3 277 

were calculated using the constants recommended by Steiger and Jäger (1977). Unspiked K-Ar 278 

analysis of each sample involved three independent determinations of potassium and two of argon. 279 

Based on replicate analysis of material references, the potassium concentrations were determined 280 

with an uncertainty of 1% (1). These potassium concentrations were averaged to yield a mean value. 281 

Age determinations of each sample were made using this mean value and the weighted mean of the 282 

two independent measurements of 
40

Ar*(radiogenic argon). Analytical uncertainties for the Ar data are 283 

1, and consist of propagated and quadratically averaged experimental uncertainties arising from the 284 
40

Ar (total) and 
40

Ar* determinations (see Westaway et al., 2005 for more details). Uncertainties on the 285 

ages are given at 2.  286 

Before chemical analyses, all samples were crushed using an agate mortar. Major and trace element 287 

data (Tables 2 and 4) were obtained by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-288 

AES) at IUEM, Plouzané using the method of Cotten et al. (1995). The international standards used for 289 

calibration were ACE, BEN, JB-2, PM-S and WS-E and the relative standard deviations are ±1 % for SiO2, 290 

and ±2 % for other major elements except P2O5 and MnO (absolute precision ±0.01 %). Samples were 291 

classified according to their position in the TAS diagram (Fig. 3). Within the basalt group, silica-saturated or -292 

oversaturated lavas (normative hy + ol or hy + Q) were called tholeiitic basalts while nepheline-normative 293 

samples were called alkali basalts (normative compositions given in Tables 2 and 4). Some tholeiitic basalts 294 

plot close to or even above the Macdonald and Katsura’s (1964) boundary in Figure 3 and could therefore 295 

be considered as transitional basalts. We did not include the latter category in our classification chart 296 

because it has not been previously used in the Marquesas and is not defined rigorously. 297 

 298 

3.2. Hiva Oa  299 

Hiva Oa (320 km
2
), the second largest Marquesas island and the highest one (1276 m at Mt Temetiu), 300 

has a WSW-ENE elongated shape parallel to the MFZ (Fig. 1). New field data (Fig. 5) combined with 20 new 301 

unspiked 
40

K-
40

Ar ages (Table 1) show that the island consists in four coalescent volcanoes whose age 302 

decreases eastwards from 2.55 ± 0.05 to 1.46-1.44 ± 0.03 Ma (Figs. 4 and 5). All of them are made up of 303 

tholeiitic basalts, some of which display a transitional affinity, and hawaiites (Table 2). Alkali basalts and 304 

basanites were not identified in our set of 87 newly collected samples (Maury et al., 2012) nor in previous 305 

samplings by R. Brousse (Chauvel et al., 2012, their Supplementary file D). Mugearites, benmoreites and 306 

trachytes (Table 2) occur only in the post-shield Ootua volcano, or as dykes and plugs crosscutting the 307 

Puamau shield. 308 

The oldest volcano, Taaoa, is located on the western coast of Hiva Oa (Fig. 5). It represents the 309 

crescent-shaped remnants of a largely collapsed shield, which are unconformably overlain by the flows of 310 

the much bigger Temetiu shield. The Taaoa edifice is formed by a monotonous pile of meter-thick tholeiitic 311 

flows interbedded with strombolian ashes and lapilli. The lowermost flow of this pile, located in Taaoa 312 
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village, was dated at 2.55 ± 0.05 Ma (HV64, Table 1 and Fig. 4). Taaoa basalts have lower K contents, lower 313 
87

Sr/
86

Sr and higher 
206

Pb/
204

Pb ratios compared to all other Hiva Oa basalts, and their trace element and 314 

isotopic signatures are closer to HIMU (Chauvel et al., 2012). They plot within the “Ua Pou” trend unlike all 315 

other lavas that plot in the “Ua Huka” trend. Accordingly, the N65°W limit between the two isotopic stripes 316 

defined by Chauvel et al. (2012) has been set at Taaoa village. 317 

The Temetiu shield (Fig. 5) is the largest volcano of Hiva Oa. It is made of a more than 1,200 m thick 318 

pile of meter-thick quartz or olivine normative tholeiites and hawaiites (Table 2). The construction of its 319 

exposed part started around 2.27 ± 0.05 Ma (HV87, foot of Mt Temetiu) and 2.25 ± 0.05 Ma (HV84, northern 320 

slopes near Hanaiapa village). Its major activity occurred between 2.13 ± 0.05 and 1.91 ± 0.04 Ma, based on 321 

seven unspiked 
40

K-
40

Ar ages (Table 1 and Fig. 4). Its well-exposed semicircular caldera facing south 322 

collapsed before 2.01 Ma. Indeed, this event was followed by landslides which generated avalanche and 323 

debris flow deposits, later crosscut by a number of dykes, including HV99 (2.01 ± 0.04 Ma) south of Atuona 324 

village. Volcanic activity of the Temetiu shield ended at 1.83 ± 0.04 Ma (sample HV81 north of Hanapaaoa 325 

village). It was almost immediately followed by the emplacement at 1.80 ± 0.04 Ma (sample HV65) of a thick 326 

pile of post-shield tholeiitic flows (the Atuona flows) within the caldera, east and north of Atuona village. 327 

Temetiu shield and Atuona post-shield tholeiitic flows share the same isotopic signature typical of the “Ua 328 

Huka” stripe (Chauvel et al., 2012). The origin of the collapse of the southern part of these edifices is 329 

attributed to the lateral spreading of an hydrothermal zone located beneath the Temetiu caldera over an 330 

unconfined boundary corresponding to the lower compartment of a fault parallel to the MFZ (Maury et al., 331 

2013), such as in the case of Nuku Hiva. 332 

The Puamau shield forms the eastern part of Hiva Oa (Fig. 5). Its lower part is made up of an up to 500 333 

m thick pile of meter-thick flows of quartz tholeiites, olivine tholeiites and interbedded hawaiites dipping 334 

gently towards the Temetiu shield or the southern coast. They are dated at 1.65 ± 0.04 (HV70) and 1.62 ± 335 

0.04 Ma (HV62). They are overlain by a 200 m thick pile of tholeiitic basalts and minor interbedded hawaiites 336 

occurring as thicker (5-20 m) and usually columnar-jointed flows (Puamau shield upper flows in Fig. 5). 337 

Although this unit is younger (1.46 ± 0.03 Ma, sample HV88) than the main shield, we do not consider it as 338 

belonging to the post-shield stage. Indeed, both were affected by the collapse event that led to a caldera 339 

open NE, with its center near the village of Puamau (Fig. 5). Post-caldera volcanic edifices have not been 340 

identified within this caldera, but several small benmoreitic and trachytic dykes and plugs (not shown in the 341 

simplified geologic map of Fig. 5) crosscut the Puamau shield pile. They are usually altered and therefore 342 

unsuitable for 
40

K-
40

Ar dating. 343 

The Ootua post-shield edifice was emplaced on the eastern slopes of the Temetiu shield. Its central unit, 344 

ca 200 m thick, is exclusively made up of intermediate (mugearitic, benmoreitic and phonotephritic) and 345 

silica-oversaturated trachytic flows and N-S trending dykes. It culminates at Mt Ootua, a 500 m wide and 346 

200 m high columnar-jointed dome of quartz normative trachyte. This unit is dated at 1.73 ± 0.04 Ma (HV56 347 

mugearitic flow) and 1.64 ± 0.03 Ma (HV54 benmoreitic dyke). Its peripherical unit consists of an up to 400 348 

m thick pile of fissure erupted tholeiitic and hawaiitic flows. Most of these flows display well-developed basal 349 

autoclastic breccias. They flow over either (1) the northern and southern slopes of the Temetiu shield, (2) its 350 

caldera within which they overlie the Atuona post-shield flows, and finally (3) towards the topographic trough 351 
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separating the Temetiu and Puamau shields (Fig. 5). They fill most of this trough, flowing either towards the 352 

northern coast or the southern coast where a tholeiitic basalt (HV107) yields the youngest age measured in 353 

Hiva Oa (1.44 ± 0.03 Ma). Another young age of 1.51 ± 0.03 Ma has been obtained on an hawaiitic flow 354 

(HV86) overlying the Temetiu shield. 355 

The volumes (estimated from mapping relationships) of the Atuona and Ootua post-shield lavas (14±1 356 

km
3
) correspond to 9.5% of the total emerged volume of Hiva Oa (145 km

3
), and 0.2% of the bulk volume of 357 

the edifice (6,900 km
3
, Chauvel et al., 2012). 358 

 359 

3.3. Motane and Tahuata  360 

Motane (Figs. 1 and 5) is a small (13 km
2
) crescent-shaped uninhabited island located southeast of Hiva 361 

Oa and east of Tahuata. Like Eiao, it corresponds to a sector of the caldera wall (up to 500 m high) and the 362 

upper external slopes of a largely collapsed shield volcano. It is made up of a monotonous pile of meter-363 

thick quartz and olivine tholeiitic flows, interbedded with picrobasalts and minor hawaiites. This pile is 364 

crosscut by a dense network of radial dykes, which include alkali basalts and basanites (Fig. 4) displaying 365 

incompatible element patterns more fractionated than those of the tholeiites. Two tholeiitic flows from the 366 

middle part of the pile are dated at 1.59 ± 0.04 Ma (MT04, altitude 120 m) and 1.53 ± 0.03 Ma (MT08, 367 

altitude 190 m) (see Table 3). An alkali basaltic dyke collected at sea level yields an older age (1.96 ± 0.04 368 

Ma, MT11 in Table 3) that is barely consistent with the others and may indicate sample contamination by 369 

seawater (also consistent with its relatively high LOI of 2.53 wt%). The isotopic Sr, Nd, Pb compositions of 370 

tholeiites MT04 and MT08 are typical of the “Ua Pou” stripe (Chauvel et al., 2012), as well as that of 371 

basanitic sample MT12 that is clearly more radiogenic in Sr and less radiogenic in Nd than the tholeiites. 372 

Tahuata (69 km
2
) corresponds to the northwestern half of a large shield known as the Vaitahu shield 373 

(Maury et al., 2013). Its southern part has collapsed over an unconfined boundary. The latter probably 374 

corresponds to the SE down-faulted block, lowered by 1,000 m, of a major N35°E fault lineament well-375 

identified off the SE coast of the island (Maury et al., 2013). This collapse event led to the formation of an 8 376 

km large caldera opened toward SE (Fig. 5). A small edifice, the inner Hanatetena volcano (Figs. 4 and 5) 377 

grew inside this caldera. The caldera wall was later affected by large landslides, which generated an up to 378 

300 m thick pile of avalanche and debris flow deposits. The latter partly filled up the topographic trough 379 

separating the foot of the caldera wall from the Hanatetena post-shield edifice. 380 

The 700 m thick lower unit of the Vaitahu shield consists of meter-thick basaltic and hawaiitic flows. The 381 

unspiked 
40

K-
40

Ar ages (Table 3) indicate that it was emplaced rather quickly, between 2.11 ± 0.05 Ma 382 

(TH39 tholeiitic basalt, western coast south of Hapatoni village) and 1.81 ± 0.04 Ma (TH14 alkali basalt, 383 

northern coast). Three ages clustering around 1.90 Ma (TH37, TH38 and TH18 tholeiitic basalts, central part 384 

of the island) may record the paroxysmal event. This lower unit is overlain by a pile of thick (>10 m) and 385 

usually columnar-jointed tholeiitic flows. This upper unit forms the central ridge of the island, and is up to 500 386 

m thick. Its basal flow has an age of 1.88 ± 0.04 Ma (TH13). We consider it as the upper part of the Vaitahu 387 

shield, because (1) it conformably overlies the top of the lower unit, (2) its age is similar to that of the main 388 



 11 

building phase of the lower unit between 1.91 ± 0.04 and 1.88 ± 0.04 Ma, and (3) it was obviously affected 389 

by the caldera collapse event, as it forms presently the uppermost slopes of the caldera wall (Fig. 5). 390 

A specific feature of the Vaitahu shield is its chemical heterogeneity. It is mostly tholeiitic (18 quartz 391 

tholeiites and olivine tholeiites in our sample set), but also includes alkali basalts (2 samples), basanites (3 392 

samples) and hawaiites (3 samples). Alkali basalts and basanites are more sodic and more enriched in the 393 

most incompatible elements compared to the tholeiites (Table 4), and they display consistently higher 394 
87

Sr/
86

Sr and lower 
143

Nd/
144

Nd and 
206

Pb/
207

Pb ratios according to data obtained on the same samples 395 

(Chauvel et al., 2012). 396 

The small (less than 200 m high) post-caldera Hanatetena volcano is composed exclusively of tholeiitic 397 

and hawaiitic flows. The basal flows display pahoehoe and lava tube features; they are overlain by highly 398 

weathered flows of meter thickness. Their trace element and isotopic compositions plot within the range of 399 

the Vaitahu shield tholeiites (Chauvel et al., 2012). Two flows are dated at 1.80 ± 0.04 Ma (TH31) and 1.74 ± 400 

0.04 Ma (TH8). The exposed volume of the Hanatetena edifice (0.5±0.1 km
3
) represents only 2% of the 401 

volume of Tahuata island (25 km
3
). 402 

The single intermediate/evolved lava documented in Tahuata is a columnar-jointed tephriphonolitic 403 

spine, 200 m in diameter, which crosscuts the northern slopes of the Vaitahu shield and forms the summit of 404 

Mt Tumu Meae Ufa (1,050 m). Because of its young age (1.78 ± 0.04 Ma, sample TH35), we relate its 405 

emplacement to the post-shield stage. 406 

 407 

3.4. Fatu Hiva  408 

Fatu Hiva Island (84 km
2
) displays a typical semicircular shape. It includes an external (outer) shield, the 409 

Touaouoho volcano, truncated by a 8 km wide caldera opening westwards, inside which grew a smaller 410 

post-caldera edifice, the Omoa volcano (Fig. 5). As in Tahuata, the caldera wall was affected by landslides 411 

which generated avalanche and debris flow deposits up to 250 m thick. These deposits now outcrop within 412 

the topographic trough separating the outer shield from the inner Omoa post-shield edifice. The drowning of 413 

the western half of the island and the development of the caldera are probably related to major sector 414 

collapse events, marked in the regional bathymetry by a 15 km wide trough (at 2,500 m depth) located west 415 

of Fatu Hiva, downslope from the Omoa volcano. 416 

The Touaouoho shield has an up to 1,100 m thick rather monotonous pile of meter-thick flows of olivine 417 

tholeiites, tholeiitic picrobasalts and minor hawaiites (Table 4), crosscut by a dense network of radial 418 

inframetric tholeiitic dykes. Their unspiked 
40

K-
40

Ar ages (Table 3) range from 1.81 ± 0.04 Ma (FH13) to 1.35 419 

± 0.03 Ma (FH18). The Omoa post-caldera edifice is composed of a 700 m thick pile of inframetric tholeiitic 420 

flows, with lava tubes in pahoehoe composite flows. Their ages (Table 3) range from 1.43 ± 0.03 Ma (FH08) 421 

to 1.23 ± 0.04 Ma (FH05). In addition, a tholeiitic dyke (FH30) crosscutting the debris flow deposits at 422 

Hanavave village yielded an age of 1.41 ± 0.03 Ma, consistent with the end of volcanic activity in Touaouoho 423 

shield and the initiation of that of the post-shield Omoa edifice. These two stages led to the emplacement of 424 

rather similar tholeiitic basalts and hawaiites (Table 4). Their major, trace element (Table 4) and isotopic Sr 425 



 12 

Nd Pb and Hf compositions largely overlap, and both are typical of the predominantly EM II-HIMU sources of 426 

the southwestern trend, which has been labelled the “Fatu Hiva group” (Chauvel et al., 2012). 427 

The youngest Fatu Hiva lavas are two well-preserved trachytic domes (Figs. 4 and 5) crosscutting and 428 

overlying the Touaouoho shield flows on the northern coast (FH16, 1.11 ± 0.02 Ma) and east of Omoa 429 

village (FH06, 1.22 ± 0.03 Ma). In addition, a 15 m wide trachytic dyke (FH12) crosscutting the basal flows of 430 

Omoa post-shield edifice is dated at 1.38 ± 0.03 Ma, and was therefore emplaced during the post-shield 431 

stage. The volumes (estimated from mapping relationships) of the Omoa post-shield lavas (5±1 km
3
) 432 

correspond to 28% of the total emerged volume of Fatu Hiva (28 km
3
), and 0.2% only of the bulk volume of 433 

the edifice (2,800 km
3
). 434 

 435 

4. Discussion 436 

4.1. Timing of eruptions: no gap between shield-building and post-caldeira stages 437 

The new unspiked 
40

K-
40

Ar ages plotted against the distances of the islands to the MFZR along the 438 

N65°W direction of movement of the Pacific plate (Fig. 2) are reasonably consistent with its local motion rate 439 

of 10.5 cm/year, as previously pointed out by Legendre et al. (2006). These new ages display much less 440 

scatter than the age-distance to the MFZR plots using the main N30-40°W trend of the chain and all the 441 

available 
40

K-
40

Ar ages measured on bulk rocks (Brousse et al., 1990; Desonie et al., 1993; Guille et al., 442 

2002). The dashed line in Fig. 2, which corresponds to distances to the unexplored seamount chain located 443 

ca 50 km north of the MFZR (Fig. 1), provides a better fit to the start of activity in some islands. Thus, this 444 

seamount chain is a strong candidate for the present-day location of the Marquesas hotspot. Overall, Ua 445 

Huka differs from all the other islands by the fact that the emplacement of the exposed part of its shield 446 

started clearly later than predicted by the hotspot hypothesis (Fig. 2). It is also the only Marquesas Island 447 

showing a rejuvenated volcanic stage (Legendre et al., 2006). 448 

Data plotted in Figures 2 and 4 show that there is no consistent temporal hiatus between the shield-449 

building and post-caldeira activities. Usually the two stages either slighly overlap (Nuku Hiva, Ua Huka, Fatu 450 

Hiva) or the gap between them is within the range of analytical uncertainties (Temetiu shield and Atuona 451 

post-caldeira lavas in Hiva Oa, Tahuata). In Ua Pou, a marginal hiatus (Guille et al., 2010) is observed 452 

between the youngest shield tholeiitic basalt (4.00±0.06 Ma) and the oldest post-shield phonolite (3.86±0.06 453 

Ma). However, this might be due to sampling bias because of the very small size of the emergent part of the 454 

shield that is mostly overlain by lahar deposits. Such a temporal continuity implies that the growth of post-455 

shield edifices started immediately after the main caldera collapse event, while eruptive activity was still 456 

occurring at least in some parts of the shield volcano. Another striking feature of the data shown in Figure 2 457 

is that contemporaneous volcanism occurred in islands located more than 100 km away from each other 458 

(Fig. 1), e.g. around 2.5 Ma (Ua Huka, Ua Pou, Hiva Oa) or between 2.0 and 1.5 Ma (Hiva Oa, Tahuata, 459 

Motane and Fatu Hiva). This feature is consistent with a “classical” plume model involving a 200 km large 460 

summital melting zone (Farnetani and Hoffmann, 2010), and it is also observed in other hotspot-related 461 

islands such as the Hawaiian chain (Clague and Dalrymple, 1987), the Society archipelago (Guillou et al., 462 

2005) and the Canaries (Carracedo et al., 1998). However, rejuvenated volcanism is much less common in 463 
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the Marquesas (Ua Huka) than in the Hawaiian chain, the Canaries, Mauritius (Paul et al., 2005) and Samoa 464 

(Konter and Jackson, 2012). 465 

 466 

4.2. Evidence for post-shield emplacement of nearly all the intermediate and evolved lavas 467 

The TAS diagram (Fig. 3) and the age versus SiO2 plot (Fig. 6) show that nearly all the dated lavas more 468 

evolved than tholeiitic and alkali basalts, basanites and hawaiites were erupted during the post-shield stage 469 

of Marquesan volcanoes. These include rare tephrites (Ua Pou), mugearites (Hiva Oa), benmoreites (Nuku 470 

Hiva, Ua Pou, Hiva Oa) and tephriphonolites (Ua Pou, Tahuata), and more abundant trachytes (Nuku Hiva, 471 

Ua Huka, Ua Pou, Hiva Oa, Fatu Hiva) and phonolites (Ua Pou, Ua Huka). The only exception is Eiao, in 472 

which coring has recovered a 10 m thick trachytic flow in the Dominique drill hole (Caroff et al., 1995; Maury 473 

et al., 2009), at depths of 462 to 472 m below sea level. It has been dated at 5.44±0.04 Ma, an age perfectly 474 

consistent with its position within the Eiao shield pile. This trachyte represents only a very small fraction of 475 

the 2,100 m long cored volcanic sequences recovered from the three Eiao deep drillings. However, 476 

mugearites (undated) also occur in the three cored sequences, in which they have a total thickness of ca 70 477 

m (Maury et al., 2009). The origin of Eiao mugearites and trachytes has been ascribed to open-system 478 

fractional crystallization of associated alkali basaltic magmas, coupled with assimilation of the oceanic crust 479 

underlying the shield (Caroff et al., 1999). 480 

In the other islands, the intermediate and evolved lavas erupted within the post-shield volcanoes (Nuku 481 

Hiva, Ua Huka, Ua Pou, Ootua edifice in Hiva Oa). However, some of them outcrop as parasitic domes, 482 

spines, plugs or dykes crosscutting the older (outer) volcanic shields: trachytes in Nuku Hiva, Ua Huka, Hiva 483 

Oa (within the Puamau shield) and Fatu Hiva, and the tephriphonolitic spine of Mt Tumu Meae Ufa in 484 

Tahuata. In Nuku Hiva, Ua Huka and Ua Pou, these trachytes or phonolites and the associated intermediate 485 

lavas outcrop together with alkali basalts and/or basanites. Their 
40

K-
40

Ar ages fall within the range of those 486 

of the latter or are slightly younger. In the case of Nuku Hiva, petrogenetic studies (Legendre et al., 2005b) 487 

led to the conclusion that trachytes derived from open system fractional crystallization of alkali basalt 488 

magmas coupled with assimilation of enriched oceanic crust with an EM II signature. The origin of the 489 

unusually abundant phonolites from Ua Pou is thought to result from the fractionation of tephriphonolitic and 490 

benmoreitic magmas derived from the remelting of basanitic rocks (Legendre et al., 2005a). In Fatu Hiva, 491 

the emplacement of trachytes was contemporaneous with or post-dated that of post-caldera tholeiitic 492 

basalts, but the possible petrogenetic relationships between them have not been investigated. The same 493 

situation pertains to the Ootua post-shield volcano in Hiva Oa, where a spatial and temporal association of 494 

tholeiitic basalts (some of which display a transitional affinity), hawaiites, mugearites, benmoreites and 495 

trachytes is exposed (Maury et al., 2013). Evolved lavas were emplaced during the known entire history of 496 

the archipelago (Fig. 6): Eiao trachyte is one of the oldest lavas of our set of data and Fatu Hiva ones count 497 

among the youngest. Nuku Hiva and Ua Huka trachytes as well as the very abundant Ua Pou phonolites 498 

were emplaced between ca 4.0 and 2.5 Ma (Fig. 6).  499 

4.3. Chemical diversity of shield and post-shield basaltic lavas 500 

In the Hawaiian model, basaltic magmas derive from temporally decreasing melt fractions of the mantle 501 

sources: the emplacement of tholeiitic shield basalts is followed by that of post-shield alkali basalts and then 502 
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by rejuvenated basanites or nephelinites, and Sr isotopic ratios decrease during this evolution (Garcia et al., 503 

2010; Hanano et al., 2010). In the Marquesas, Ua Huka island volcanism followed this trend, with the 504 

successive emplacement of Hikitau shield tholeiites, Hane post-shield alkali basalts and associated 505 

benmoreites, trachytes and phonolites, and finally Teepoepo and Tahoatikikau rejuvenated basanitic cones. 506 

However, Hikitau and Hane basalts display similar radiogenic Sr isotopic compositions, and only the 507 

basanites from the rejuvenated cones are less radiogenic (Chauvel et al., 2012). In Ua Pou, the small 508 

emergent remnants of an HIMU-type tholeiitic shield are overlain by a thick post-shield pile of basanites, 509 

phonolites and other silica-undersaturated lavas more radiogenic in Sr, with a dominant EM II signature 510 

(Duncan et al., 1986; Vidal et al., 1987; Legendre et al., 2005a).  511 

The temporal petrologic evolution of other islands is more complex. Most shield lavas are tholeiitic, but 512 

minor amounts of alkali basalts and basanites displaying higher enrichments in incompatible elements and 513 

more radiogenic Sr isotopic ratios are interbedded with them in the shields of Eiao and Tahuata, or occur as 514 

dykes crosscutting them in the Motane shield. In Nuku Hiva, the large post-shield Taiohae volcano includes 515 

olivine tholeiites, alkali basalts and basanites more radiogenic in Sr than the Tekao shield tholeiites 516 

(Legendre et al., 2005b). Post-shield basaltic lavas are exclusively tholeiitic or transitional in Hiva Oa 517 

(Atuona and Ootua units), Tahuata (Hanatetena) and Fatu Hiva (Omoa). Although displaying a rather large 518 

isotopic variability, they fall within the range of shield tholeiites from the same islands (Chauvel et al., 2012).  519 

As a whole, the claim by Woodhead (1992) and Castillo et al. (2007) that Marquesas shield lavas have 520 

systematically lower 
87

Sr/
86

Sr ratios than post-shield lavas is not supported by isotopic studies conducted on 521 

our sample set (Chauvel et al., 2012). This conclusion applies to islands from the two isotopic groups, e.g. to 522 

Eiao and Ua Huka in the “Ua Huka group” and Hiva Oa, Tahuata and Fatu Hiva in the “Fatu Hiva group” 523 

(Chauvel et al., 2012). The isotopic features of the sources of the Marquesas lavas are therefore not related 524 

to the temporal pattern of volcanism (shield/post-shield activities) in a given island. The mafic lavas from the 525 

two groups display similar La/Yb ratios (Fig. 7), while the Ua Huka rejuvenated basanites exhibit higher 526 

ones. Post-shield intermediate and evolved lavas are more scattered in Fig. 7, probably because of their 527 

complex petrogenesis (open-system fractionation or remelting of mafic magmas). In a similar La/Yb versus 528 

La plot in which samples are sorted by petrographic type, alkali basalts display La/Yb ratios higher than 529 

those of tholeiites (Chauvel et al., 2012, their Figure 6). 530 

4.4. Implications for Marquesas plume heterogeneity and hotspot models 531 

Hotspot models previously proposed for the Marquesas (Duncan et al., 1986; Woodhead, 1992; Desonie 532 

et al., 1993; Castillo et al., 2007) involved melting of a heterogeneous zoned mantle plume and of the 533 

overlying oceanic lithosphere, or interactions between ascending plume-derived melts and this lithosphere. 534 

These models were based on the assumption that the archipelago followed an “Hawaiian-type” temporal 535 

evolution, the main difference being that in the Marquesas shield tholeiitic basalts were less radiogenic in Sr 536 

(closer to DMM and/or HIMU) than the post-shield alkalic lavas (closer to EM end-members). In addition, 537 

some authors used the tholeiitic or alkalic compositions of the basalts (Woodhead, 1992) or even their Sr 538 

isotopic ratios (Castillo et al., 2007) to classify them as shield or post-shield, which led to additional 539 

confusion. 540 
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In the present study and in the Chauvel et al. paper (2012), we used exclusively geological (field 541 

relationships determined from detailed mapping) and chronological (unspiked 
40

K-
40

Ar ages) data to 542 

determine the shield or post-shield position of the samples. Our results show that: (1) there was usually no 543 

temporal gap between shield and post-shield activities at a given island; (2) eruptions occurred 544 

simultaneously in islands distant as much as 100 km one from another; (3) although most shields are 545 

tholeiitic, several of them (Eiao, Tahuata) contain interbedded alkali basaltic and basanitic flows; (4) while 546 

post-shield intermediate and evolved lavas derive usually from alkali basaltic or basanitic magmas, several 547 

post-shield volcanoes are tholeiitic (Hiva Oa, Tahuata, Fatu Hiva); (5) the trace element and isotopic 548 

compositions of shield and post-shield tholeiites display large variations, but the two groups overlap in most 549 

diagrams (Chauvel et al., 2012); and finally (6) the “Ua Huka” and “Fatu Hiva” isotopic groups involve 550 

mixtures of different mantle components, all of them likely located within the plume itself (Chauvel et al., 551 

2012) as also envisioned for Hawaii (Frey et al., 2005; Fekiacova et al., 2007; Garcia et al., 2010; Hanano et 552 

al., 2011). 553 

The Sr and Nd isotopic differences between tholeiitic basalts and alkali basalts/basanites from 554 

Marquesas Islands are shown in Figure 8. This plot shows all the data from the GEOROC database on 555 

basaltic lavas whose major element and isotopic data were available. The sources of alkali basalts and 556 

basanites are generally more enriched than those of the tholeiites at the scale of the archipelago. This is 557 

also true within a given island, although the isotopic contrasts range from huge at Ua Pou to large at 558 

Tahuata, Nuku Hiva, and Motane and small at Eiao and Ua Huka. These contrasts are consistent with the 559 

hypothesis of an extremely heterogeneous character of the Marquesas plume. The nearly contemporaneous 560 

emplacement of tholeiites and alkali basalts with different isotopic compositions in Tahuata (Chauvel et al., 561 

2012) suggests the occurrence of heterogenous mantle domains 10 km or less in diameter, as envisioned 562 

for several other plumes including Hawaii (Marske et al., 2007; Hanano et al., 2010), Mauritius (Paul et al., 563 

2005) and the Galápagos (Gibson et al., 2012). When affected by the same high thermal regime in the 564 

central part of a plume, domains with contrasted lithologies could experience variable degrees of melting, 565 

generating the observed diversity of basaltic magmas. Especially, low-degree melts might sample 566 

preferentially fertile (and isotopically enriched) pyroxenite while the signature of the more depleted peridotitic 567 

source dominates in high-degree melts (Sobolev et al., 2005, 2007; Jackson and Dasgupta, 2008; Day et 568 

al., 2009; Dasgupta et al., 2010; White, 2010; Davis et al., 2011; Herzberg, 2011).  569 

The occurrence of tholeiitic post-shield basalts in several islands is not surprising given the temporal 570 

continuity between the shield and post-shield stages and the usually short period of emplacement of these 571 

post-shield tholeiites (<0.1 Ma in Tahuata, Nuku Hiva and for Ootua basaltic flows in Hiva Oa; 0.2 Ma in Fatu 572 

Hiva, Fig. 5 and Tables 1 and 3). It is likely that during such short time spans the extent of melting of the 573 

plume at depth did not change significantly, while the volcano structure was considerably modified after the 574 

caldera collapse event. Longer post-shield activities might record a decrease of melting and possible 575 

preferential sampling of enriched materials. In the Taiohae inner edifice (Nuku Hiva) where post-shield 576 

activity lasted ca 0.4 Ma (from 4.00 to 3.62 Ma; Maury et al., 2006), a brief tholeiitic episode was followed by 577 

the emplacement of alkali basalts and basanites, and then by that of mugearites, benmoreites and trachytes 578 

derived from an enriched mantle source. A rather similar evolution has been documented in the post-shield 579 

volcanism of Mauna Kea, Hawaii (Frey et al., 1990), where the initial emplacement of tholeiites and alkali 580 
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basalts (basaltic substage) was followed by that of intermediate and evolved lavas (hawaiitic substage). 581 

Finally, the emplacement of the rejuvenated basanitic strombolian cones in Ua Huka after a 1.3 Myr long 582 

quiescence period (Fig. 2) was accompanied by major petrogenetic changes, involving very low melting 583 

degrees of a garnet lherzolite source deeper and isotopically more depleted than that of the older tholeiitic 584 

and alkali basalts (Legendre et al., 2006). 585 

The petrologic and geochemical diversity of Marquesas lavas is rather exceptional given the modest 586 

size of the archipelago, as appreciated since the pioneer works of A. Lacroix (1928) and L.J. Chubb (1930). 587 

It can be related to the “weak” character of the Marquesas plume (McNutt et al., 1989), which produced 588 

“only” 7,700 km
3
 of magma per Myr in the Marquesas (Chauvel et al., 2012), compared to 213,000 km

3
 for 589 

the Big Island of Hawaii (Robinson and Eakins, 2006). Indeed, low degrees of partial melting resulted in the 590 

preservation in the Marquesas basaltic magmas of geochemical features inherited from small-size source 591 

heterogeneities, while high degrees of partial melting and resulting high magma production rate tend to 592 

blend these features. The complex petrogenesis (open-system processes or remelting of mafic precursors) 593 

of post-shield intermediate and evolved lavas contributed further to increase this diversity. 594 

5. Conclusions 595 

The study of 110 Marquesas lavas located on detailed geological maps and dated by the unspiked 
40

K-596 
40

Ar method on separated groundmass allows us to demonstrate that the temporal evolution of the 597 

archipelago is rather different with respect to that of Hawaii and many other hotspot-related chains. There is 598 

usually no temporal gap between shield and post-shield activities in a given island, and rejuvenated 599 

volcanism is uncommon. Although most shields are tholeiitic, several of them (Eiao, Tahuata) contain 600 

interbedded alkali basaltic and basanitic flows. The occurrence of intermediate and evolved lavas is 601 

restricted to the post-shield stage, with one exception (Eiao). Although these lavas are usually associated 602 

with alkali basaltic or basanitic magmas, several post-shield volcanoes are tholeiitic (Hiva Oa, Tahuata, Fatu 603 

Hiva) or include tholeiites (Nuku Hiva). In a given island, the trace element and isotopic compositions of 604 

shield and post-shield tholeiites overlap although both display large variations (Chauvel et al., 2012). 605 

These features are inconsistent with former models (Duncan et al., 1986; Woodhead, 1992; Desonie et 606 

al., 1993; Castillo et al., 2007) that postulated that the Marquesas followed a “Hawaiian-type” evolution. 607 

They are consistent with the hypothesis of an extremely heterogeneous character of the Marquesas plume. 608 

The “weak” character of this plume led to low degrees of partial melting, which in turn resulted in the 609 

preservation in the basaltic magmas of geochemical features inherited from such small-size source 610 

heterogeneities. 611 

Acknowledgements 612 

This study has been funded by CNRS (INSU and UMR 8212, 6538, 5275, 6518), BRGM and CEA-613 

DASE-DSM. We thank two anonymous reviewers for their very constructive comments that helped us to 614 

improve the overall content of the manuscript. We also thank Mayors Guy Rauzy and Etienne Tehaamoana 615 

(Hiva Oa), Henri Tuieinui (Fatu Hiva) and Félix Barsinas (Tahuata) who provided logistic support during 616 

fieldwork. We are very grateful to Andy Teiki Richmond and the team of the Service du Développement 617 

Rural of Atuona-Hiva Oa for their considerable help in the field, especially during coastal sampling and work 618 



 17 

in densely forested areas. Joseph Cotten’s contribution to analytical work is greatly appreciated. Jean 619 

François Tannau and Vincent Scao provided helpful technical assistance. This is LSCE contribution N°5115.  620 

 621 

References 622 

Blais, S., Legendre, C., Maury, R.C., Guille, G., Guillou, H., Rossi, P., Chauvel, C., 2008. 623 
Notice explicative, carte géologique de France, feuille de Ua Huka, Polynésie française, 102 pp, scale 1: 624 
50,000, Bureau de Recherches Géologiques et Minières, Orléans, France. 625 
 626 
Brousse, R., Barsczus, H.G., Bellon, H., Cantagrel, J.M., Diraison, C., Guillou, H., Léotot, 627 
C., 1990. Les Marquises (Polynésie française): volcanologie, géochronologie, discussion d’un modèle de 628 
point chaud [The Marquesas alignment (French Polynesia) – Volcanology, geochronology, a hotspot model]. 629 
Bulletin de la Société géologique de France 6, 933-949. 630 
 631 
Cadio, C., Panet, I., Davaille, A., Diament, M., Métivier, L., de Viron, O., 2011. Pacific geoid 632 
anomalies revisited in light of thermochemical oscillating domes in the lower mantle. Earth 633 
Planetary Science Letters 306, 123-135. 634 
 635 
Caress, D.V., McNutt, M.K., Detrick, R.S., Mutter, J.C., 1995. Seismic imaging of hotspot 636 
related crustal underplating beneath the Marquesas Islands. Nature 373, 600-603. 637 
 638 
Caroff, M., Maury, R.C., Vidal, P., Guille, G., Dupuy, C., Cotten, J., Guillou, H., Gillot, P.Y., 639 
1995. Rapid temporal changes in ocean island basalt composition – evidence from an 800 m 640 
deep drill hole in Eiao shield (Marquesas). Journal of Petrology 36, 1333-1365. 641 
 642 
Caroff, M., Guillou, H., Lamiaux, M.l., Maury, R.C., Guille, G., Cotten, J., 1999. 643 
Assimilation of ocean crust by hawaiitic and mugearitic magmas: an example from Eiao 644 
(Marquesas). Lithos 46, 235-258. 645 
 646 
Carracedo, J.C., Day, S., Guillou, H., Badiola, E.R., Canas, J.A., Pérez Torrado, F.J., 1998. 647 
Hotspot volcanism close to a passive continental margin: The Canary Islands. Geological Magazine 135, 648 
591-604. 649 
 650 
Castillo, P.R., Scarsi, P., Craig, H., 2007. He, Sr, Nd and Pb isotopic constraints on the origin 651 
of the Marquesas and other linear volcanic chains. Chemical Geology 240, 205-221. 652 
 653 
Chauvel, C., Maury, R.C., Blais, S., Lewin, E., Guillou, H., Guille, G., Rossi, P., Gutscher, M.-A., 2012. The 654 
size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochemistry Geophysics 655 
Geosystems 13(1), Q07005, doi: 10.129/2012GC004123. 656 
 657 
Chubb, L.J., 1930. The geology of the Marquesas islands. Bernice P. Bishop Museum Bulletin, 68, 1-71. 658 
 659 
Clague, D.A., 1987. Hawaiian xenolith populations, magma supply rates, and development of magma 660 
chambers. Bulletin of Volcanology 49, 577-587. 661 
 662 
Clague, D.A., Dalrymple, G.B., 1987. The Hawaiian-Emperor volcanic chain. Part 1. Geological evolution. 663 
United States Geological Survey Professional Paper 1350, 5-54. 664 
 665 
Cotten, J., Le Dez, A., Bau, M., Caroff, M., Maury, R.C., Dulski, P., Fourcade, S., Bohn, M., 666 
Brousse, R., 1995. Origin of anomalous rare-earth element and yttrium enrichments in 667 
subaerially exposed basalts: Evidence form French Polynesia. Chemical Geology 119, 115-138. 668 
 669 
Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the 670 
Earth's mantle. Earth and Planetary Science Letters 205, 295-308. 671 
 672 
Crough, S.T., Jarrard, R.D., 1981. The Marquesas-line swell. Journal of Geophysical Research 86, 1763-673 
1771. 674 
 675 
Dasgupta, R., Jackson, M.G., Lee, C.T.A., 2010. Major element chemistry of ocean island 676 



 18 

basalts - Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science 677 
Letters 289, 377-392. 678 
 679 
Davaille, A., Girard, F., Le Bars, M., 2002. How to anchor hotspots in a convecting mantle ? Earth and 680 
Planetary Science Letters 203, 621-634.  681 
 682 
Davis, F.A., Hirschmann, M.M., Humayun, M., 2011. The composition of the incipient partial melt of garnet 683 
peridotite at 3 GPa and the origin of OIB. Earth and Planetary Science Letters 308, 380-390. 684 
 685 
Day, J.M.D., Pearson, D.G., Macpherson, C.G., Lowry, D., Carracedo, J.C., 2009. 686 
Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope 687 
evidence from Canary Island lavas. Geology 37, 555-558. 688 
 689 
Desonie, D.L., Duncan, R.A., Natland, J.H., 1993. Temporal and geochemical variability of 690 
volcanic products of the Marquesas hotspot. Journal of Geophysical Research 98, 691 
17649-17665. 692 
 693 
Devey, C.W., Haase, K.M., 2003. The sources for hotspot volcanism in the South Pacific 694 
Ocean, in: R. Hékinian, P.S., J.L. Cheminée (Ed.), Oceanic hotspots: intraplate submarine 695 
magmatism and tectonism. Springer Verlag, Berlin, pp. 253-284. 696 
 697 
Duncan, R.A., 1975. Linear volcanism in French Polynesia. Unpublished PhD Thesis, Australian National 698 
University. 699 
 700 
Duncan, R.A., McDougall, I., 1974. Migration of volcanism with time in the Marquesas 701 
Islands, French Polynesia. Earth and Planetary Science Letters 21, 414-420. 702 
 703 
Duncan, R.A., McCulloch, M.T., Barczus, H.G., Nelson, D.R., 1986. Plume versus 704 
lithospheric sources for the melts at Ua Pou, Marquesas Island. Nature 303, 142-146. 705 
 706 
Farnetani, C.G., Hofmann, A.W., 2010. Dynamics and internal structure of the Hawaiian 707 
plume. Earth and Planetary Science Letters 295, 231-240. 708 
 709 
Fekiacova, Z., Abouchami, W., Galer, S.J.G., Garcia, M.O., Hofmann, A.W., 2007. Origin 710 
and temporal evolution of Ko'olau Volcano, Hawai'i: Inferences from isotope data on the 711 
Ko'olau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843. Earth 712 
and Planetary Science Letters 261, 65-83. 713 
 714 
Filmer, P.E., McNutt, M.K., Wolfe, C.J., 1993. Elastic thickness of the lithosphere in the 715 
Marquesas and Society Islands. Journal of Geophysical Research 98, 19565- 716 
19577. 717 
 718 
Frey, F.A., Wise, W.S., Garcia, M.O.,West, H., Kwon, S.-T., Kennedy, A., 1990. Evolution of Mauna Kea 719 
volcano, Hawaii: petrologic and geochemical constraints on postshield volcanism. Journal of Geophysical 720 
Research 95, 1271-1300. 721 
 722 
Frey, F.A., Huang, J., Blichert-Toft, J., Regelous, M., Boyet, M., 2005. Origin of depleted components in 723 
basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios. 724 
Geochemistry Geophysics Geosystems 6, Q02l07, doi:10.129/2004GC000757. 725 
 726 
Garcia, M.O., Swinnard, L., Weis, D., Greene, A.R., Tagami, T., Sano, H., Gandy, C.E., 727 
2010. Petrology, geochemistry and geochronology of Kaua'i lavas over 4.5 Myr: implications 728 
for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume. Journal of Petrology 51, 729 
1507-1540. 730 
 731 
Gibson, S.A., Geist, D.G., Day, J.A., Dale, C.W., 2012. Short wavelength heterogeneity in the Galápagos 732 
plume: evidence from compositionally diverse basalts on Isla Santiago.. Geochemistry Geophysics 733 
Geosystems 13(1), Q09007, doi: 10.129/2012GC004244. 734 
 735 
Guille, G., Legendre, C., Maury, R.C., Caroff, M., Munschy, M., Blais, S., Chauvel, C., 736 



 19 

Cotten, J., Guillou, H., 2002. Les Marquises (Polynésie française): un archipel intraocéanique 737 
atypique. Géologie de la France 2, 5-36. 738 
 739 
Guille, G., Legendre, C., Maury, R.C., Guillou, H., Rossi, P., Blais, S., 2010. Notice explicative, carte 740 
géologique de France, feuille de Ua Pou, Polynésie française, 133 pp, scale 1: 30,000, Bureau de 741 
Recherches Géologiques et Minières, Orléans, France, in press. 742 
 743 
Guille, G., Maury, R.C., (coordinators), 2013. Carte géologique de la feuille Groupe Sud de l’archipel des 744 
Iles Marquises (Hiva Oa – Tahuata – Motane et Fatu Hiva), Polynésie française, scale 1: 100,000, Bureau 745 
de Recherches Géologiques et Minières, Orléans, France, in press. 746 
 747 
Guillou, H, Maury, R.C., Blais, S., Cotten, J., Legendre, C., Guille, G., Caroff, M., 2005. Age progression 748 
along the Society hot spot chain (French Polynesia) based on new unspiked K-Ar ages. Bulletin de la 749 
Société géologique Française 176, 135-150. 750 
 751 
Guillou, H., Nomade, S., Carracedo, J.C., Kissel, C., Laj, C., Perez Torrado, F.J., Wandres, 752 
C., 2011. Effectiveness of combined unspiked K-Ar and 40Ar/39Ar dating methods in the 753 
14C age range. Quaternary Geochronology 6, 530-538. 754 
 755 
Gutscher, M.A., Olivet, J.L., Aslanian, D., Eissen, J.P., Maury, R., 1999. The "lost Inca 756 
Plateau": cause of flat subduction beneath Peru? Earth and Planetary Science Letters 171, 335-341. 757 
 758 
Hanano, D., Weis, D., Scoates, J.S., Aciego, S., DePaolo, D.J., 2010. Horizontal and vertical 759 
zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive 760 
postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochemistry 761 
Geophysics Geosystems 11, Q01004, doi:10.129/2009GC002782. 762 
 763 
Herzberg, C., 2011. Identification of Source Lithology in the Hawaiian and Canary Islands: 764 
Implications for Origins. Journal of Petrology 52, 113-146. 765 
 766 
Jackson, M.G., Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from global 767 
trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planetary Science 768 
Letters 276, 175-186. 769 
 770 
Jordahl, K.A., McNutt, M.K., Webb, H.F., Kruse, S.E., Kuykendall, M.G., 1995. Why there 771 
are no earthquakes on the Marquesas Fracture Zone. Journal of Geophysical Research 100, 24431-24447. 772 
 773 
Konter, J.G., Jackson, M.G., 2012. Large volumes of rejuvenated volcanism in Samoa: evidence supporting 774 
a tectonic influence on late-stage volcanism. Geochemistry Geophysics Geosystems 13, Q0AM04, 775 
doi:10.129/2011GC003974. 776 
 777 
Lacroix, A., 1928. Nouvelles observations sur les laves des îles Marquises et de l’île Tubuai (Polynésie 778 
australe). Comptes Rendus de l’Académie des Sciences Paris 187, 365-369. 779 
 780 
Laughlin, A.W., Poths, J., Healey, H.A., Reneau, S., Woldegabriel, G., 1994. Dating of Quaternary basalts 781 
using the cosmogenic He-3 and C-14 methods with implications for excess Ar-40. Geology 22, 135-138. 782 
 783 
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks 784 
based on the total-alkali-silica diagram. Journal of Petrology 27, 745-750. 785 
 786 
Legendre, C., Maury, R.C., Caroff, M., Guillou, H., Cotten, J., Chauvel, C., Bollinger, C., 787 
Hémond, C., Guille, G., Blais, S., Rossi, P., Savanier, D., 2005a. Origin of exceptionally 788 
abundant phonolites on Ua Pou island (Marquesas, french Polynesia): partial melting of 789 
basanites followed by crustal contamination. Journal of Petrology 46, 1925-1962. 790 
 791 
Legendre, C., Maury, R.C., Savanier, D., Cotten, J., Chauvel, C., Hémond, C., Bollinger, C., 792 
Guille, G., Blais, S., Rossi, P., 2005b. The origin of intermediate and evolved lavas in the 793 
Marquesas archipelago: an example from Nuku Hiva island (French Polynesia). Journal of Volcanology and 794 
Geothermal Research 143, 293-317. 795 
 796 



 20 

Legendre, C., Maury, R.C., Blais, S., Guillou, H., Cotten, J., 2006. Atypical hotspot chains: 797 
evidence for a secondary melting zone below the Marquesas (French Polynesia). Terra Nova 798 
18, 210-216. 799 
 800 
Macdonald, G.A., Katsura, T., 1964. Chemical composition of Hawaiian lavas. Journal of Petrology 5, 82-801 
133. 802 
 803 
Marske, J.P., Pietruszka, A.J., Weis, D., Garcia, M.O., Rhodes, J.M., 2007. Rapid passage of a small-scale 804 
mantle heterogeneity though the melting regions of Kilauea and Mauna Loa volcanoes. Earth and Planetary 805 
Science Letters 259, 34-50. 806 
 807 
Maury, R.C., Guille, G., Legendre, C., Savanier, D., Guillou, H., Rossi, P., Blais, S., 2006. 808 
Notice explicative, carte géologique de France, feuille de Nuku Hiva, Polynésie française. 809 
116 pp, scale 1: 50,000, Bureau de Recherches Géologiques et Minières, Orléans, France. 810 
 811 
Maury, R.C., Legendre, C., Guille, G., Demange, J., Caroff, M., 2009.Notice explicative, carte géologique de 812 
France, feuille d’Eiao, Polynésie française,89 pp, scale 1: 25,000, Bureau de Recherches Géologiques et 813 
Minières, Orléans, France. 814 
 815 
Maury, R.C., Guille, G., Guillou, H., Rossi, P., Legendre, C., Chauvel, C., Blais, S., Ottino, 816 
P., Meyer, J.-Y., Deroussi, S., Tegyey, M., Cabioch, G., 2013. Notice explicative, carte 817 
géologique de France, feuille Groupe Sud de l’archipel des Iles Marquises (Hiva Oa – Tahuata – Motane et 818 
Fatu Hiva), Polynésie française, XX pp, scale 1: 100,000, Bureau de Recherches Géologiques et Minières, 819 
Orléans, France, in press. 820 
 821 
McDougall, I., Duncan, R.A., 1980. Libnear volcanic chains: recording plate motions? Tectonophysics 63, 822 
275-295. 823 
 824 
McNutt, M., Bonneville, A., 2000. A shallow, chemical origin for the Marquesas Swell. 825 
Geochemistry Geophysics Geosystems 1, 1999GC000028. 826 
 827 
McNutt, M., Fischer, K., Kruse, S., Natland, J., 1989. The origin of the Marquesas fracture 828 
zone ridge and its implications for the nature of hot spots. Earth and Planetary Science Letters 91, 381-393. 829 
 830 
Merle, O., Barde-Cabusson, S., Maury, R.C., Legendre, C., Guille, G., Blais, S., 2006. Volcano core collapse 831 
triggered by regional faulting. Journal of Volcanology and Geothermal Research 158, 269-280. 832 
 833 
Paul, D., White, W.M., Blichert-Toft, J, 2005. Geochemistry of Mauritius and the origin of rejuvenescent 834 
volcanism on oceanic island volcanoes. Geochemistry Geophysics Geosystems 6, Q06007, doi: 835 
10.129/2004GC000883. 836 
 837 
Pautot, G., Dupont, J., 1974. La zone de fracture des Marquises. Comptes Rendus de l’Académie des 838 
Sciences Paris 279, 1519-1523. 839 
 840 
Ribe N.M, Christensen U.R., 1999. The dynamical origin of Hawaiian volcanism. Earth and Planetary 841 
Science Letters 171, 517-531. 842 
 843 
Shafer, J.T., Neal, C.R., Regelous, M. 2005. Petrogenesis of Hawaiian postshield lavas: evidence from 844 
Nintoku Seamount, Emperor Seamount Chain. Geochemistry Geophysics Geosystems 6, Q05L09, doi: 845 
10.129/2004GC000875. 846 
 847 
Smith, W.H.F., Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and 848 
ship depth soundings. Science 277, 1956-1962. 849 
 850 
Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K., 2005. An olivine-free 851 
mantle source of Hawaiian shield basalts. Nature 434, 590-597. 852 
 853 
Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V.,Yaxley, G.M., Arndt, N.T., Chung, S.-L., Danyushevsky, L.V., 854 
Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., 855 



 21 

Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M., Teklay, M., 2007. 856 
The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science 316, 412-417. 857 
 858 
Stearns, H.T., 1966. Geology of the State of Hawaii: Palo Alto. Pacific Books, 266 p. 859 
 860 
Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: convention on the use of 861 
decay constants in geo-and cosmochronology. Earth and Planetary Science Letters 36, 359-362. 862 
 863 
Vidal, P., Chauvel, C., Brousse, R., 1984. Large mantle heterogeneity beneath French 864 
Polynesia. Nature 307, 536-538. 865 
 866 
Vidal, P., Dupuy, C., Barsczus, H.G., Chauvel, C., 1987. Hétérogénéités du manteau et 867 
origine des basaltes des Marquises (Polynésie). Bulletin de la Société géologique de France 4, 633-642. 868 
 869 
Westaway, R., Guillou, H., Yurtmen, S., Demir, T., Scaillet, S., Rowbotham, G., 2005. Constraints on 870 
the timing and regional conditions at the start of the present phase of crustal extension in western 871 
Turkey, from observations in and around the Denizli region. Geodinamica Acta. 18/3-4, 209-238. 872 
 873 
White, W.M., 2010. Oceanic Island Basalts and Mantle Plumes: The Geochemical 874 
Perspective, in: Jeanloz, R., Freeman, K.H. (Eds.), Annual Review of Earth and Planetary 875 
Sciences, Vol 38. Annual Reviews, Palo Alto, pp. 133-160. 876 
 877 
Woodhead, J.D., 1992. Temporal geochemical evolution in oceanic intra-plate volcanics: a 878 
case study from the Marquesas (French Polynesia) and comparison with other hotspots. 879 
Contributions to Mineralogy and Petrology 111, 458-467. 880 
 881 
 882 
 883 

884 



 22 

Figure captions 885 

 886 

Fig. 1. Location map of Marquesas Islands. The bathymetry comes from the global altimetry data set of 887 

Smith and Sandwell (1997). The main trend of the Marquesas chain is N40°W. Current Pacific plate motion 888 

is 10.5 cm/yr at N65°W, corresponding to the line shown in white. The names of the southern islands are in 889 

large print. MFZ: Marquesas Fracture Zone. 890 

 891 

Fig. 2. Age versus distance plot for the Marquesas. The distances to the MFZ Ridge (MFZR) along 892 

N65°W trend corresponding to the 10.5 cm/yr motion of the Pacific plate are from Chauvel et al. (2012). The 893 

dashed line starts from the unexplored chain of seamounts located 50 km NW of the MFZR. Shield ages are 894 

denoted by open symbols, post-shield ages by filled symbols and rejuvenated ages by grey symbols. 895 

Sources of unspiked 
40

K-
40

Ar ages on groundmass: Tables 1 and 3 for southern islands; Caroff et al. (1995) 896 

and Maury et al. (2009) for Eiao; Maury et al. (2006) for Nuku Hiva; Legendre et al. (2006) and Blais et al. 897 

(2008) for Ua Huka; Legendre et al. (2005a) and Guille et al. (2010) for Ua Pou. 898 

 899 

Fig. 3. Total-Alkali-Silica (TAS) diagram (Le Bas et al., 1986) for the dated Marquesas lavas. The 900 

dashed line separating the fields of tholeiitic (Thol.) and alkali (Alk.) basalts is from Macdonald and Katsura 901 

(1964). Shield ages are denoted by open symbols, post-shield ages by filled symbols and rejuvenated ages 902 

by grey symbols. Sources of major and trace element analyses: Tables 2 and 4 for southern islands; Caroff 903 

et al. (1995) and Maury et al. (2009) for Eiao; Maury et al. (2006) for Nuku Hiva; Legendre et al. (2006) and 904 

Blais et al. (2008) for Ua Huka; Legendre et al. (2005a) and Guille et al. (2010) for Ua Pou. 905 

 906 

Fig. 4. Sketches of the Marquesas volcanic successions, showing caldera collapse events (red dashed 907 

lines) and simplified distributions of tholeiitic basalts, alkali basalts and basanites, and felsic lavas (trachytes 908 

and phonolites). Intermediate lavas have been omitted for clarity. Vertical scales are arbitrary. Abbreviated 909 

volcano names: Ha: Hane; Hi: Hikitau; Hk: Hakahau; Hn: Hanatetena; Om: Omoa; Oo: Ootua; Pu: Puamau; 910 

Ta: Taaoa; Te: Temetiu; Th: Taiohae; Tk: Tekao; To: Touaouoho; Va: Vaitahu. In Ua Huka, a temporal gap 911 

separates the end of building of the Hane volcano from the rejuvenated volcanic phase which emplaced the 912 

Teepoepo (1.15-0.96 Ma) and Tahoatikikau (0.82-0.76 Ma) basanitic cones. In Tahuata, the horizontal line 913 

below the red dashed line separates the upper from the lower tholeiitic flows of Vaitahu shield. 914 

 915 

Fig. 5. Geological sketch maps of the southern Marquesas islands, simplified from Guille and Maury 916 

(2013) and Maury et al. (2013). The locations of the dated samples are shown by small red crosses 917 

(corresponding ages in Ma from Tables 1 and 3). Most flow dips range from 8 to 12°. See text for 918 

explanations. 919 

 920 

Fig. 6. Plot of unspiked 
40

K-
40

Ar ages against SiO2 for dated samples. Symbols and sources of data as 921 

in Figs. 2 and 3. 922 

 923 

Fig. 7. Plot of La/Yb against La (ppm) for dated samples. Symbols and sources of data as in Fig. 3. 924 
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 925 

Fig. 8. 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd diagram showing the differences between tholeiitic basalts and alkali 926 

basalts/basanites from Marquesas islands. Data from the GEOROC database and Chauvel et al. (2012). 927 

The Fatu Hiva sample plotting away from the main trend (low
143

Nd/
144

Nd) is from Woodhead (1992). 928 

 929 

 Table captions 930 

 931 

Table 1. Unspiked 
40

K-
40

Ar ages measured on groundmass for Hiva Oa lavas. See text for analytical 932 

methods and Fig. 4 for sample locations. SH: shield; PS: post-shield. Mugear.: mugearite; benmor.: 933 

benmoreite. *: ages already given in Chauvel et al. (2012) but without details. 934 

 935 

Table 2. Major and trace element ICP-AES analyses of dated lavas from Hiva Oa. Major element oxides 936 

in wt%, trace elements in ppm. Fe2O3*: total iron as Fe2O3. See text for analytical methods, Table 1 for ages 937 

and Fig. 4 for sample locations. Samples are ranked by order of decreasing ages. SH: shield; PS: post-938 

shield. Thol: tholeiite; haw: hawaiite; mug: mugearite; ben: benmoreite; tra: trachyte. The rare earth element 939 

and Y concentrations of sample HV54 have been modified by supergene alteration involving crystallization 940 

of rhabdophane (Cotten et al., 1995), and therefore this sample has not been plotted in Fig. 6. *: Major 941 

element analyses given in Chauvel et al. (2012) together with ICP-MS trace element analyses. 942 

 943 

Table 3. Unspiked 
40

K-
40

Ar ages measured on groundmass for Motane, Tahuata and Fatu Hiva lavas. 944 

See text for analytical methods and Fig. 4 for sample locations. SH: shield; PS: post-shield. Alk. bas.: alkali 945 

basalt. *: ages already given in Chauvel et al. (2012) but without details. 946 

 947 

Table 4. Major and trace element ICP-AES analyses of dated lavas from Motane, Tahuata and Fatu 948 

Hiva. Major element oxides in wt%, trace elements in ppm. Fe2O3*: total iron as Fe2O3. See text for 949 

analytical methods, Table 3 for ages and Fig. 4 for sample locations. For each island, samples are ranked 950 

by order of decreasing ages. SH: shield; PS: post-shield. Thol: tholeiite; alb: alkali basalt; bas: basanite; 951 

haw: hawaiite; teph: tephriphonolite; tra: trachyte. *: Major element analyses given in Chauvel et al. (2012) 952 

together with ICP-MS trace element analyses. 953 

 954 
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Abstract 27 

 28 

The temporal and geochemical evolution of Marquesas hotspot volcanoes have often been interpreted 29 

with reference to the Hawaiian model, where a tholeiitic shield-building stage is followed by an alkali basaltic 30 

post-shield stage, followed after a 0.4 to 2.5 Myr long quiescence period, by a rejuvenated 31 

basanitic/nephelinitic stage. Here we discuss geochemical data on 110 Marquesas lavas also dated using 32 

the unspiked 
40

K-
40

Ar method on separated groundmass (including 45 new ages measured on the southern 33 

islands of Hiva Oa, Motane, Tahuata and Fatu Hiva). Sample locations were positioned on detailed 34 

geological maps to determine their shield or post-shield position with respect to the caldera collapse 35 

event(s), without taking into account their geochemical features. A rather regular decrease of the ages 36 

towards SE, consistent with the Pacific plate motion, is observed from Eiao (5.52 Ma) to Fatu Hiva (1.11 37 

Ma), and rejuvenated basanitic volcanism occurs only in Ua Huka (1.15-0.76 Ma). The occurrence of 38 

intermediate and evolved lavas is restricted to the post-caldera stage, with the exception of Eiao island. 39 

However, many other features of the Marquesas chain are rather atypical with respect to those of Hawaii. 40 

*Revision, changes marked
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Although Marquesas shields are tholeiitic, several of them (Eiao, Tahuata) contain interbedded alkali 41 

basaltic and basanitic flows. Moreover, post-shield volcanoes are either alkali basalts (Ua Huka), tholeiites 42 

(Hiva Oa, Tahuata, Fatu Hiva) or both (Nuku Hiva). This feature is consistent with the temporal continuity of 43 

the two stages and the usually short length of the post-shield period (<0.2 Myr). In a given island, the trace 44 

element and isotopic compositions of shield and post-shield lavas overlap, although both display large 45 

variations. The sources of alkali basalts and basanites are more enriched than those of the 46 

contemporaneous tholeiites. These specific features support the hypothesis of an extremely heterogeneous 47 

Marquesas plume. The “weak” character of this plume led to low partial melting degrees, which in turn 48 

resulted in the preservation in the basaltic magmas of geochemical features inherited from small-size source 49 

heterogeneities. 50 

 51 

Keywords: Shield, Post-shield, Tholeiite, Alkali basalt, Trachyte,
 40

K-
40

Ar age, Hotspot, Marquesas. 52 

 53 

 54 

 55 

1. Introduction 56 

 57 

The temporal evolution of plume-related oceanic intraplate volcanoes has often been investigated with 58 

reference to the classical Hawaiian model, in which four successive growth stages are distinguished (Clague 59 

and Dalrymple, 1987; Clague, 1987; Hanano et al., 2010): (1) a small volume (ca. 3%) alkalic pre-shield 60 

stage, emplacing mostly submarine alkali basalts and basanites; (2) the main shield-building stage, during 61 

which the majority (95-98%) of the volcano is rapidly constructed, culminating in subaerial flows of tholeiitic 62 

basalts; (3) the alkalic post-shield phase, during which small volumes (1-2%) of alkali basalts and related 63 

intermediate/evolved lavas (hawaiites, mugearites, benmoreites and trachytes) are erupted; and finally (4) 64 

the alkalic rejuvenated stage, during which very small volumes (<<1%) of basanites, alkali basalts and 65 

nephelinites are emplaced after a quiescence period. In the Hawaiian chain, shield tholeiitic basalts are less 66 

enriched in incompatible elements and derive from larger melting rates than the post-shield and rejuvenated 67 

alkalic lavas; in addition, the mantle sources of the latter are isotopically depleted with respect to those of 68 

the tholeiites (lower 
87

Sr/
86

Sr and 
206

Pb/
204

Pb, higher 
143

Nd/
144

Nd: Frey et al., 1990, 2005; Shafer et al., 2005; 69 

Fekiacova et al., 2007; Garcia et al., 2010; Hanano et al., 2010). 70 

For Hawaiian volcanoes, the main criterion used for the distinction between the shield-building and post-71 

shield stages is the change from tholeiites to alkali basalts. Indeed, Clague and Dalrymple (1987) stated 72 

(their page 7) that “the shield stage usually includes caldera collapse and eruptions of caldera-filling tholeiitic 73 

basalt. During the next stage, the alkalic postshield stage, alkalic basalt also may fill the caldera and form a 74 

thin cap of alkalic basalt and associated differentiated lava that covers the main shield”. They also 75 

mentioned (their page 8) that “we have omitted the main caldera-collapse stage of Stearns (1966) from the 76 

eruption sequence because it can occur either during the shield stage or near the beginning of the alkalic 77 

postshield stage. The lava erupted may therefore be tholeiitic or alkali basalt, or of both types”. 78 
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Large major, trace element and isotopic variations in Marquesas lavas have been known for decades 79 

(Vidal et al., 1984, 1987; Duncan et al., 1986). They have been interpreted with reference to the shield/post-80 

shield Hawaiian model by several authors (Duncan et al., 1986; Woodhead, 1992; Desonie et al., 1993; 81 

Castillo et al., 2007). However, most of these works were based on the pioneer (and hence limited) sampling 82 

of Marquesas Islands made during the 1970’s by R.A. Duncan (Duncan and McDougall, 1974; Duncan, 83 

1975; McDougall and Duncan, 1980) and R. Brousse (Vidal et al., 1984; Brousse et al., 1990). No geological 84 

maps of the islands were available at that time, and therefore the distinction between shield and post-shield 85 

lavas was usually made using geochemical criteria. For instance, the observation that the oldest lavas from 86 

Nuku Hiva, Ua Pou and Hiva Oa are tholeiitic basalts (Duncan, 1975; Duncan et al., 1986) led Woodhead 87 

(1992) to classify hypersthene-normative Marquesas lavas as shield-related and alkali basalts/basanites as 88 

post-shield. Later, Castillo et al. (2007) studied samples collected by H. Craig, and used 
87

Sr/
86

Sr (>0.7041) 89 

and 
143

Nd/
144

Nd (<0.51285) ratios to characterize post-shield lavas, based on the isotopic data of Woodhead 90 

(1992) obtained on R.A. Duncan’s samples. 91 

A mapping program of the Marquesas archipelago (2001-2009) led us to collect a number of new 92 

samples and draw detailed geological maps of the islands. The trace element and Sr, Nd, Pb and Hf isotopic 93 

features of these samples (Chauvel et al., 2012) point towards relationships between shield and post-shield 94 

lavas more complex than previously thought. Here, we use geological settings combined with unspiked 
40

K-95 
40

Ar ages measured on groundmass and petrologic/geochemical features of this new sample set to 96 

demonstrate that the temporal evolution of the Marquesas volcanoes is rather different from that of Hawaiian 97 

volcanoes. We also discuss the constraints that they set on the corresponding plume/hotspot model.  98 

 99 

 100 

2. Geological setting and previous work 101 

 102 
2.1. The Marquesas archipelago 103 

The ca. 350 km-long Marquesas archipelago, located in northern French Polynesia, includes eight main 104 

islands (Fig. 1) that cluster into a northern group (Eiao, Nuku Hiva, Ua Huka and Ua Pou) and a southern 105 

group (Hiva Oa, Tahuata, Motane, Fatu Hiva); few islets (“motu”), banks and seamounts also exist (Fig. 1). 106 

The age of the islands decreases towards the SE (Duncan and McDougall, 1974; Brousse et al., 1990) from 107 

5.5 Ma in Eiao to 0.6-0.35 Ma on the DH12 seamount south of Fatu Hiva (Desonie et al., 1993). However, 108 

no active volcanoes are known at the southeastern edge of the chain. 
40

K-
40

Ar ages younger than 1 Ma have 109 

been obtained only on DH12 and on the Teepoepo (1.15-0.96 Ma) and Tahoatikikau (0.82-0.76 Ma) 110 

strombolian cones on Ua Huka (Legendre et al., 2006; Blais et al., 2008). These cones were emplaced after 111 

a 1.3 Myr quiescence period, and are considered as the only example of rejuvenated volcanism in the 112 

Marquesas (Legendre et al., 2006; Chauvel et al., 2012). Most authors believe that the Marquesas Fracture 113 

Zone (MFZ; Pautot and Dupont, 1974) overlies the present position of the hotspot activity (McNutt et al., 114 

1989; Brousse et al., 1990; Guille et al., 2002). However, the MFZ is aseismic (Jordahl et al., 1995) and no 115 

young volcanic rock has been recovered from the adjacent Marquesas Fracture Zone Ridge (MFZR; Fig. 1). 116 

The seamount chain parallel to the MFZ ridge ca. 50 km to the north (Fig. 1) has not yet been dredged and it 117 

could possibly mark the present location of Marquesas hotspot activity. 118 
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The Marquesas archipelago is atypical in many respects (Brousse et al., 1990; Guille et al., 2002; Devey 119 

and Haase, 2003). It lies on an anomalously shallow (less than 4,000 m deep) 53-49 Ma old oceanic crust 120 

generated at the axis of the Pacific-Farallon ridge (Crough and Jarrard, 1981), and its crustal thickness 121 

reaches 15-20 km below the central part of the chain (Filmer et al., 1993; Caress et al., 1995). This 122 

abnormally thick crust is attributed either to underplating of plume magmas below the Moho (Caress et al., 123 

1995; McNutt and Bonneville, 2000) or to the construction of the archipelago over a small 50-45 Ma old 124 

oceanic plateau that formed near the axis of the Pacific-Farallon ridge (Gutscher et al., 1999). In addition, 125 

the N30-40°W direction of the archipelago is oblique to that of the current N65°W motion of the Pacific plate 126 

(Fig. 1), but parallel to the spreading axis of the Pacific-Farallon ridge prior to the current orientation of 127 

accretion along the East Pacific Rise. This feature suggests that zones of weakness in the underlying 128 

Pacific-Farallon plate might have controlled the emplacement of the Marquesas magmas (Crough and 129 

Jarrard, 1981; McNutt et al., 1989). Age-distance to the MFZR plots using the main N30-40°W trend of the 130 

chain and all available 
40

K-
40

Ar ages display considerable scatter (Brousse et al., 1990; Desonie et al., 1993; 131 

Guille et al., 2002). Similar plots using the N65°W trend give better fits (Legendre et al., 2006; Chauvel et al., 132 

2012), especially when considering only unspiked 
40

K-
40

Ar ages measured on separated groundmass (Fig. 133 

2), which are more accurate and reliable than conventional 
40

K-
40

Ar data on whole rocks. Recently, Chauvel 134 

et al. (2012) showed that the chain is made of two adjacent rows of islands with distinct Sr, Nd, Pb isotopic 135 

features, delineating two isotopic stripes. At any given 
143

Nd/
144

Nd value, the northeastern row (the “Ua Huka 136 

group”) has systematically higher 
87

Sr/
86

Sr and lower 
206

Pb/
204

Pb ratios than the southwestern row (the “Fatu 137 

Hiva group”). These rows are thought to originate from the partial melting of two adjacent filaments 138 

contained in an elongated ascending plumelet or secondary plume, rooted in a larger dome located at the 139 

base of the upper mantle (Davaille et al., 2002; Courtillot et al., 2003; Cadio et al., 2011).  140 

The common occurrence of nested volcanoes in the Marquesas was first reported by L.J. Chubb (1930). 141 

Half of the islands (Nuku Hiva, Ua Huka, Tahuata, Fatu Hiva) are made up of a large external (outer) shield 142 

volcano with a central caldera. A younger and smaller internal (inner) post-shield volcanic edifice has grown 143 

inside this caldera. Hiva Oa comprises three adjacent shields: the larger one is unconformably overlain by 144 

post-shield flows, which also filled up part of its caldera. Ua Pou is rather unusual, because this island lacks 145 

a well-exposed outer shield and is mostly made up of phonolitic flows interbedded with basanitic and 146 

tephritic flows (Fig. 3), and crosscut by huge phonolitic spines (Legendre et al., 2005a). The two smallest 147 

islands, Eiao and Motane, represent crescent-shaped remnants of the caldera wall and external upper 148 

slopes of much larger collapsed shield volcanoes (Brousse et al., 1990; Guille et al., 2002). Therefore, the 149 

shield-building or post-shield character of a given Marquesan sample with respect to caldera collapse events 150 

(see Stearns, 1966, for the case of Hawaii) can be determined using only its geological position deduced 151 

from field relationships and its 
40

K-
40

Ar age, without making any assumption based on its petrologic and 152 

geochemical features. We choose this approach because no well-defined temporal change from tholeiitic to 153 

alkali volcanism is observed in most Marquesas volcanoes. In the present work, we use a coherent set of 154 

110 lava samples to investigate the temporal geochemical evolution of the Marquesas volcanoes, with 155 

special attention to the respective features of shield-building, post-shield and rejuvenated (Ua Huka) stages 156 

of volcanic activity. All samples were collected during the 2001-2009 mapping program, dated by the 157 
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unspiked 
40

K-
40

Ar method on groundmass at Gif-sur-Yvette laboratory and analyzed for major and trace 158 

elements by ICP-AES at Plouzané (Brest) laboratory.  159 

  160 

2.2. Summary of the geological and geochemical features of the northern group islands 161 

The four islands from the northern group (Eiao, Nuku Hiva, Ua Huka and Ua Pou) were studied 162 

previously using the same methods (Caroff et al., 1995, 1999; Legendre et al., 2005a, 2005b, 2006; Maury 163 

et al., 2006, 2009; Blais et al., 2008; Guille et al., 2010). Their volcanic successions are shown schematically 164 

in Figure 4. Below we provide a short description of their main features. 165 

2.2.1. Eiao 166 

Eiao (Maury et al., 2009) is the northernmost (Fig. 1) and largest (44 km
2
) uninhabited island in French 167 

Polynesia. It corresponds to the northwestern crescent-shaped remains of the caldera wall and of the 168 

external upper slopes of a 20 km large collapsed volcano. Its coastal cliffs expose a ca 400 m thick pile of 169 

tholeiitic basaltic flows interbedded with less common alkali basalts and crosscut by a dense network of 170 

radial dykes. Three deep core drillings have sampled the upper 1,200 m thick sequence of the Eiao shield, 171 

down to -700 m below sea level (Caroff et al., 1995, 1999). The base of this sequence, dated at 5.52-5.48 172 

Ma (Fig. 2), is made up of quartz-normative tholeiitic flows overlain by olivine tholeiitic flows (Fig. 3). These 173 

are in turn overlain by a ca 250 m thick sequence of hawaiites and mugearites, with a single intercalated 174 

trachytic flow 5.44 Ma old (Fig. 4). The middle (dated at 5.36-5.25 Ma) and upper (4.98-4.95 Ma) parts of the 175 

drilled pile are mostly made up of olivine tholeiites intercalated with picrobasaltic and alkali basaltic flows 176 

(Caroff et al., 1995, 1999; Maury et al., 2009). The old quartz tholeiites are less enriched in incompatible 177 

elements than the overlying olivine tholeiites and alkali basalts, and their Sr, Nd, Pb isotopic composition 178 

tends towards a HIMU end-member. Hawaiites and mugearites result from open-system fractional 179 

crystallization of the latter basaltic magmas, coupled with variable extents of assimilation of materials from 180 

the underlying oceanic crust (Caroff et al., 1999). 181 

2.2.2. Nuku Hiva 182 

Nuku Hiva (Legendre et al., 2005b; Maury et al., 2006) is the largest island of the archipelago (339 km
2
). 183 

It has a semicircular shape, and its northern, western and eastern parts correspond to the northern half of a 184 

huge shield, the Tekao volcano (Fig. 4). It is exclusively made up of olivine tholeiites (Fig. 2) derived from a 185 

mantle source containing a depleted MORB mantle (DMM) component. Its upper flows were emplaced 186 

between 4.01 and 3.83 Ma according to unspiked 
40

K-
40

Ar data (Fig. 3), although altered flows from the 187 

lower part of the exposed pile yielded 
40

Ar-
39

Ar ages ranging from 4.52 to 4.08 Ma (Maury et al., 2006). 188 

Between 4.00 and 3.62 Ma (unspiked 
40

K-
40

Ar data), the Taiohae inner (post-shield) volcano grew inside the 189 

caldera of the Tekao shield, after the southern part of the latter collapsed along a N75°E trending normal 190 

fault parallel to the MFZ. This collapse event at ca 4.0 Ma (Fig. 4) has been attributed to the lateral 191 

spreading of a weak hydrothermal zone located in the central part of the Tekao shield over an unconfined 192 

boundary, corresponding to the lower compartment of this fault (Merle et al., 2006). Mapping relationships 193 

allow us to estimate the volume of the Taiohae post-shield volcano to 45±5 km
3
, i.e. 28% of the emerged 194 

volume of the edifice (160 km
3
), but only 0.6% of its total volume (6,950 km

3
, Chauvel et al., 2012). Lavas 195 
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from the Taiohae volcano include, from bottom to top: olivine tholeiites more enriched in incompatible 196 

element than those of the Tekao shield; alkali basalts and a few basanites; and large amounts of hawaiites 197 

and mugearites, which cover 47% of its surface, together with benmoreites and trachytes (25% of its 198 

surface). In addition, parasitic vents erupted hawaiitic (3.93 Ma) and trachytic (3.92 Ma) flows on the 199 

external slopes of the Tekao shield. All the Taiohae post-shield lavas are more radiogenic in Sr and Nd and 200 

less radiogenic in Nd than the Tekao ones. Hawaiites and mugearites likely derived from the fractional 201 

crystallization from mafic magmas involving separation of amphibole (Legendre et al., 2005b). The isotopic 202 

signature of benmoreites and trachytes is closer to the enriched mantle II (EM II) end-member than that of 203 

mafic lavas, a feature inconsistent with simple fractionation processes. 204 

 205 

2.2.3. Ua Huka 206 

Despite its moderate size (83 km
2
), Ua Huka Island (Legendre et al., 2006; Blais et al., 2008, Chauvel et 207 

al., 2012) displays a relatively prolonged, multi-phase geological evolution. Like Nuku Hiva, it has a 208 

semicircular shape due to the collapse of the southern half of its outer shield, the Hikitau volcano. It is made 209 

up of olivine tholeiitic flows emplaced between 3.24 and 2.94 Ma. The Hane inner (post-shield) volcano was 210 

built inside the central caldera of the Hikitau shield between 2.97 and 2.43 Ma (Fig. 4). Its alkali basaltic 211 

flows derived from a spinel lherzolite source similar to that of the Hikitau tholeiites but having experienced 212 

smaller degrees of melting (Legendre et al., 2006). Associated benmoreitic flows and trachytic and phonolitic 213 

domes were simultaneously emplaced (between 2.93 and 2.71 Ma) within the Hane post-shield volcano and 214 

from parasitic vents located on the outer slopes of the Hikitau shield. Then, after a 1.3 Myr long quiescence 215 

period (Fig. 2), volcanic activity resumed, building over the inner slopes of the Hane volcano two basanitic 216 

strombolian cones, the Teepoepo (1.15-0.96 Ma) and the Tahoatikikau (0.82-0.76 Ma). Their lavas 217 

originated from temporally decreasing melting degrees of a garnet lherzolite source deeper and isotopically 218 

more depleted than that of the older Ua Huka tholeiitic and alkali basalts (Chauvel et al., 2012). The origin of 219 

this rejuvenated volcanism (the single case identified so far in the archipelago) has been attributed to a 220 

secondary melting zone located downstream the Marquesas plume (Legendre et al., 2006), similar to that 221 

envisioned by Ribe and Christensen (1999) for the Hawaiian islands. The volumes (estimated from mapping 222 

relationships) of the Hane post-shield volcano (6±1 km
3
) and the rejuvenated cones (0.6±0.1 km

3
) 223 

correspond respectively to 21% and 2% of the total emerged volume of Ua Huka (28 km
3
), and less than 224 

0.2% only of the bulk volume of the edifice (3,250 km
3
). 225 

 226 

2.2.4. Ua Pou 227 

The 105 km
2
 diamond-shaped island of Ua Pou (Legendre et al., 2005a; Guille et al., 2010) is famous 228 

for the exceptional abundance of phonolites (Figs. 3 and 4), which cover 65% of its surface and include 229 

spectacular phonolitic spines (Ua Pou means “The Pillars” in Marquesan). Its oldest lavas are olivine 230 

tholeiite flows derived from a young HIMU-type mantle source (Duncan et al., 1986, Vidal et al., 1987). They 231 

outcrop in a very small area near Hakahau village in the northeast part of the island. The base of their ca 40 232 

m thick pile (Guille et al., 2010) is not accessible presently but has been dated at 5.61, 4.51 and 4.46 Ma by 233 
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the 
40

K-
40

Ar method on whole rocks (Duncan et al., 1986). Its presently exposed top flow was dated at 4.00 234 

Ma by the unspiked 
40

K-
40

Ar method on groundmass (Legendre et al., 2005a). These Hakahau tholeiitic 235 

flows are overlain either by up to 100 m thick laharic deposits or by trachytic and phonolitic domes dated at 236 

3.86 and 3.27 Ma (Guille et al., 2010). The latter sequence is in turn overlain by a strongly silica-237 

undersaturated lava suite forming the bulk of the island and dated between 2.95 and 2.35 Ma (unspiked 
40

K-238 
40

Ar ages). It includes from bottom to top: (1) basanitic and tephritic lava flows with intercalated laharic 239 

deposits, (2) lower phonolitic flows and intrusions, (3) basanitic and intermediate (tephritic, tephriphonolitic 240 

and benmoreitic) flows with occasional interbedded phonolites, (4) upper phonolitic flows, up to 500 m thick, 241 

and finally (5) phonolitic domes and spines, the summit of which tower several hundred meters above the 242 

older units. The basanitic magmas of this suite derived from low degrees of melting of an heterogeneous 243 

mantle source intermediate between EM II and HIMU end-members, and evolved towards tephritic liquids by 244 

fractional crystallization (Legendre et al., 2005a). The origin of tephriphonolitic and benmoreitic magmas was 245 

ascribed to the remelting at depth of basanitic rocks, leaving an amphibole-rich residuum (Legendre et al., 246 

2005a). These liquids evolved by either closed-system or more commonly open-system fractionation 247 

towards phonolitic and trachytic magmas. 248 

In contrast with the other Marquesas Islands, the main Ua Pou volcanic sequence (2.95-2.35 Ma) does 249 

not include a basaltic shield. We therefore support Duncan et al.’s (1986) suggestion that the Ua Pou shield 250 

is mainly below sea level, with only its uppermost tholeiitic part presently exposed, and that the rest of the 251 

island belongs to the post-shield phase. This interpretation is supported by the occurrence of thick laharic 252 

deposits overlying the tholeiitic flows, which indicate an erosional event. However, the temporal hiatus 253 

between the shield and post-shield phases (only between 4.00 and 3.86 Ma according to Guille et al., 2010) 254 

is much shorter than that proposed by former authors: 1.58 Myr calculated using Duncan et al.’s (1986) data 255 

and 2.34 Myr according to Woodhead (1992). 256 

 257 

3. New geological, geochemical and K-Ar age data on the southern Marquesas islands. 258 

 259 

3.1. Methods 260 

The analytical techniques are identical to those used to study the northern islands. Unspiked 
40

K-261 
40

Ar ages were obtained at the LSCE (Laboratoire des Sciences du Climat et de l’environnement) in 262 

Gif-sur-Yvette. Fresh and well-crystallized samples were selected for dating after macroscopic and 263 

microscopic inspections allowing us to check the lack of post-magmatic mineral phases. In addition, 264 

the degree of alteration of these samples was estimated from their loss on ignition value (LOI). For 40 265 

out of 45 dated samples (Tables 2 and 4) LOI ranges from -0.39 to 1.56 wt% and these samples are 266 

considered as essentially unaltered. The 5 other samples (HV81, HV99, MT11,TH35 and FH30) have 267 

LOI between 1.90 and 2.77 wt%. Despite their higher LOI, we selected them because of their critical 268 

geological position or their unusual composition (tephriphonolitic sample TH35). The samples were 269 

crushed and sieved to 0.250-0.125 mm size fractions, and ultrasonically washed in acetic acid (1N) 270 

during 45 minutes at a temperature of 60°C to remove unsuspected minute amounts of secondary 271 

mineral phases. Potassium and argon were measured on the microcrystalline groundmass, after 272 

removal of phenocrysts using heavy liquids and magnetic separations. This process removes at least 273 
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some potential sources of systematic error due to the presence of excess 
40

Ar in olivine and feldspar 274 

phenocrysts (Laughlin et al., 1994). The K content of the separated groundmass was measured by 275 

ICP-AES in Plouzané using the same method as for major elements while Ar analyses were 276 

performed in Gif-sur-Yvette using the procedures of Guillou et al. (2011). Ages given in Tables 1 and 3 277 

were calculated using the constants recommended by Steiger and Jäger (1977). Unspiked K-Ar 278 

analysis of each sample involved three independent determinations of potassium and two of argon. 279 

Based on replicate analysis of material references, the potassium concentrations were determined 280 

with an uncertainty of 1% (1). These potassium concentrations were averaged to yield a mean value. 281 

Age determinations of each sample were made using this mean value and the weighted mean of the 282 

two independent measurements of 
40

Ar*(radiogenic argon). Analytical uncertainties for the Ar data are 283 

1, and consist of propagated and quadratically averaged experimental uncertainties arising from the 284 
40

Ar (total) and 
40

Ar* determinations (see Westaway et al., 2005 for more details). Uncertainties on the 285 

ages are given at 2.  286 

Before chemical analyses, all samples were crushed using an agate mortar. Major and trace element 287 

data (Tables 2 and 4) were obtained by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-288 

AES) at IUEM, Plouzané using the method of Cotten et al. (1995). The international standards used for 289 

calibration were ACE, BEN, JB-2, PM-S and WS-E and the relative standard deviations are ±1 % for SiO2, 290 

and ±2 % for other major elements except P2O5 and MnO (absolute precision ±0.01 %). Samples were 291 

classified according to their position in the TAS diagram (Fig. 3). Within the basalt group, silica-saturated or -292 

oversaturated lavas (normative hy + ol or hy + Q) were called tholeiitic basalts while nepheline-normative 293 

samples were called alkali basalts (normative compositions given in Tables 2 and 4). Some tholeiitic basalts 294 

plot close to or even above the Macdonald and Katsura’s (1964) boundary in Figure 3 and could therefore 295 

be considered as transitional basalts. We did not include the latter category in our classification chart 296 

because it has not been previously used in the Marquesas and is not defined rigorously. 297 

 298 

3.2. Hiva Oa  299 

Hiva Oa (320 km
2
), the second largest Marquesas island and the highest one (1276 m at Mt Temetiu), 300 

has a WSW-ENE elongated shape parallel to the MFZ (Fig. 1). New field data (Fig. 5) combined with 20 new 301 

unspiked 
40

K-
40

Ar ages (Table 1) show that the island consists in four coalescent volcanoes whose age 302 

decreases eastwards from 2.55 ± 0.05 to 1.46-1.44 ± 0.03 Ma (Figs. 4 and 5). All of them are made up of 303 

tholeiitic basalts, some of which display a transitional affinity, and hawaiites (Table 2). Alkali basalts and 304 

basanites were not identified in our set of 87 newly collected samples (Maury et al., 2012) nor in previous 305 

samplings by R. Brousse (Chauvel et al., 2012, their Supplementary file D). Mugearites, benmoreites and 306 

trachytes (Table 2) occur only in the post-shield Ootua volcano, or as dykes and plugs crosscutting the 307 

Puamau shield. 308 

The oldest volcano, Taaoa, is located on the western coast of Hiva Oa (Fig. 5). It represents the 309 

crescent-shaped remnants of a largely collapsed shield, which are unconformably overlain by the flows of 310 

the much bigger Temetiu shield. The Taaoa edifice is formed by a monotonous pile of meter-thick tholeiitic 311 

flows interbedded with strombolian ashes and lapilli. The lowermost flow of this pile, located in Taaoa 312 
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village, was dated at 2.55 ± 0.05 Ma (HV64, Table 1 and Fig. 4). Taaoa basalts have lower K contents, lower 313 
87

Sr/
86

Sr and higher 
206

Pb/
204

Pb ratios compared to all other Hiva Oa basalts, and their trace element and 314 

isotopic signatures are closer to HIMU (Chauvel et al., 2012). They plot within the “Ua Pou” trend unlike all 315 

other lavas that plot in the “Ua Huka” trend. Accordingly, the N65°W limit between the two isotopic stripes 316 

defined by Chauvel et al. (2012) has been set at Taaoa village. 317 

The Temetiu shield (Fig. 5) is the largest volcano of Hiva Oa. It is made of a more than 1,200 m thick 318 

pile of meter-thick quartz or olivine normative tholeiites and hawaiites (Table 2). The construction of its 319 

exposed part started around 2.27 ± 0.05 Ma (HV87, foot of Mt Temetiu) and 2.25 ± 0.05 Ma (HV84, northern 320 

slopes near Hanaiapa village). Its major activity occurred between 2.13 ± 0.05 and 1.91 ± 0.04 Ma, based on 321 

seven unspiked 
40

K-
40

Ar ages (Table 1 and Fig. 4). Its well-exposed semicircular caldera facing south 322 

collapsed before 2.01 Ma. Indeed, this event was followed by landslides which generated avalanche and 323 

debris flow deposits, later crosscut by a number of dykes, including HV99 (2.01 ± 0.04 Ma) south of Atuona 324 

village. Volcanic activity of the Temetiu shield ended at 1.83 ± 0.04 Ma (sample HV81 north of Hanapaaoa 325 

village). It was almost immediately followed by the emplacement at 1.80 ± 0.04 Ma (sample HV65) of a thick 326 

pile of post-shield tholeiitic flows (the Atuona flows) within the caldera, east and north of Atuona village. 327 

Temetiu shield and Atuona post-shield tholeiitic flows share the same isotopic signature typical of the “Ua 328 

Huka” stripe (Chauvel et al., 2012). The origin of the collapse of the southern part of these edifices is 329 

attributed to the lateral spreading of an hydrothermal zone located beneath the Temetiu caldera over an 330 

unconfined boundary corresponding to the lower compartment of a fault parallel to the MFZ (Maury et al., 331 

2013), such as in the case of Nuku Hiva. 332 

The Puamau shield forms the eastern part of Hiva Oa (Fig. 5). Its lower part is made up of an up to 500 333 

m thick pile of meter-thick flows of quartz tholeiites, olivine tholeiites and interbedded hawaiites dipping 334 

gently towards the Temetiu shield or the southern coast. They are dated at 1.65 ± 0.04 (HV70) and 1.62 ± 335 

0.04 Ma (HV62). They are overlain by a 200 m thick pile of tholeiitic basalts and minor interbedded hawaiites 336 

occurring as thicker (5-20 m) and usually columnar-jointed flows (Puamau shield upper flows in Fig. 5). 337 

Although this unit is younger (1.46 ± 0.03 Ma, sample HV88) than the main shield, we do not consider it as 338 

belonging to the post-shield stage. Indeed, both were affected by the collapse event that led to a caldera 339 

open NE, with its center near the village of Puamau (Fig. 5). Post-caldera volcanic edifices have not been 340 

identified within this caldera, but several small benmoreitic and trachytic dykes and plugs (not shown in the 341 

simplified geologic map of Fig. 5) crosscut the Puamau shield pile. They are usually altered and therefore 342 

unsuitable for 
40

K-
40

Ar dating. 343 

The Ootua post-shield edifice was emplaced on the eastern slopes of the Temetiu shield. Its central unit, 344 

ca 200 m thick, is exclusively made up of intermediate (mugearitic, benmoreitic and phonotephritic) and 345 

silica-oversaturated trachytic flows and N-S trending dykes. It culminates at Mt Ootua, a 500 m wide and 346 

200 m high columnar-jointed dome of quartz normative trachyte. This unit is dated at 1.73 ± 0.04 Ma (HV56 347 

mugearitic flow) and 1.64 ± 0.03 Ma (HV54 benmoreitic dyke). Its peripherical unit consists of an up to 400 348 

m thick pile of fissure erupted tholeiitic and hawaiitic flows. Most of these flows display well-developed basal 349 

autoclastic breccias. They flow over either (1) the northern and southern slopes of the Temetiu shield, (2) its 350 

caldera within which they overlie the Atuona post-shield flows, and finally (3) towards the topographic trough 351 
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separating the Temetiu and Puamau shields (Fig. 5). They fill most of this trough, flowing either towards the 352 

northern coast or the southern coast where a tholeiitic basalt (HV107) yields the youngest age measured in 353 

Hiva Oa (1.44 ± 0.03 Ma). Another young age of 1.51 ± 0.03 Ma has been obtained on an hawaiitic flow 354 

(HV86) overlying the Temetiu shield. 355 

The volumes (estimated from mapping relationships) of the Atuona and Ootua post-shield lavas (14±1 356 

km
3
) correspond to 9.5% of the total emerged volume of Hiva Oa (145 km

3
), and 0.2% of the bulk volume of 357 

the edifice (6,900 km
3
, Chauvel et al., 2012). 358 

 359 

3.3. Motane and Tahuata  360 

Motane (Figs. 1 and 5) is a small (13 km
2
) crescent-shaped uninhabited island located southeast of Hiva 361 

Oa and east of Tahuata. Like Eiao, it corresponds to a sector of the caldera wall (up to 500 m high) and the 362 

upper external slopes of a largely collapsed shield volcano. It is made up of a monotonous pile of meter-363 

thick quartz and olivine tholeiitic flows, interbedded with picrobasalts and minor hawaiites. This pile is 364 

crosscut by a dense network of radial dykes, which include alkali basalts and basanites (Fig. 4) displaying 365 

incompatible element patterns more fractionated than those of the tholeiites. Two tholeiitic flows from the 366 

middle part of the pile are dated at 1.59 ± 0.04 Ma (MT04, altitude 120 m) and 1.53 ± 0.03 Ma (MT08, 367 

altitude 190 m) (see Table 3). An alkali basaltic dyke collected at sea level yields an older age (1.96 ± 0.04 368 

Ma, MT11 in Table 3) that is barely consistent with the others and may indicate sample contamination by 369 

seawater (also consistent with its relatively high LOI of 2.53 wt%). The isotopic Sr, Nd, Pb compositions of 370 

tholeiites MT04 and MT08 are typical of the “Ua Pou” stripe (Chauvel et al., 2012), as well as that of 371 

basanitic sample MT12 that is clearly more radiogenic in Sr and less radiogenic in Nd than the tholeiites. 372 

Tahuata (69 km
2
) corresponds to the northwestern half of a large shield known as the Vaitahu shield 373 

(Maury et al., 2013). Its southern part has collapsed over an unconfined boundary. The latter probably 374 

corresponds to the SE down-faulted block, lowered by 1,000 m, of a major N35°E fault lineament well-375 

identified off the SE coast of the island (Maury et al., 2013). This collapse event led to the formation of an 8 376 

km large caldera opened toward SE (Fig. 5). A small edifice, the inner Hanatetena volcano (Figs. 4 and 5) 377 

grew inside this caldera. The caldera wall was later affected by large landslides, which generated an up to 378 

300 m thick pile of avalanche and debris flow deposits. The latter partly filled up the topographic trough 379 

separating the foot of the caldera wall from the Hanatetena post-shield edifice. 380 

The 700 m thick lower unit of the Vaitahu shield consists of meter-thick basaltic and hawaiitic flows. The 381 

unspiked 
40

K-
40

Ar ages (Table 3) indicate that it was emplaced rather quickly, between 2.11 ± 0.05 Ma 382 

(TH39 tholeiitic basalt, western coast south of Hapatoni village) and 1.81 ± 0.04 Ma (TH14 alkali basalt, 383 

northern coast). Three ages clustering around 1.90 Ma (TH37, TH38 and TH18 tholeiitic basalts, central part 384 

of the island) may record the paroxysmal event. This lower unit is overlain by a pile of thick (>10 m) and 385 

usually columnar-jointed tholeiitic flows. This upper unit forms the central ridge of the island, and is up to 500 386 

m thick. Its basal flow has an age of 1.88 ± 0.04 Ma (TH13). We consider it as the upper part of the Vaitahu 387 

shield, because (1) it conformably overlies the top of the lower unit, (2) its age is similar to that of the main 388 



 11 

building phase of the lower unit between 1.91 ± 0.04 and 1.88 ± 0.04 Ma, and (3) it was obviously affected 389 

by the caldera collapse event, as it forms presently the uppermost slopes of the caldera wall (Fig. 5). 390 

A specific feature of the Vaitahu shield is its chemical heterogeneity. It is mostly tholeiitic (18 quartz 391 

tholeiites and olivine tholeiites in our sample set), but also includes alkali basalts (2 samples), basanites (3 392 

samples) and hawaiites (3 samples). Alkali basalts and basanites are more sodic and more enriched in the 393 

most incompatible elements compared to the tholeiites (Table 4), and they display consistently higher 394 
87

Sr/
86

Sr and lower 
143

Nd/
144

Nd and 
206

Pb/
207

Pb ratios according to data obtained on the same samples 395 

(Chauvel et al., 2012). 396 

The small (less than 200 m high) post-caldera Hanatetena volcano is composed exclusively of tholeiitic 397 

and hawaiitic flows. The basal flows display pahoehoe and lava tube features; they are overlain by highly 398 

weathered flows of meter thickness. Their trace element and isotopic compositions plot within the range of 399 

the Vaitahu shield tholeiites (Chauvel et al., 2012). Two flows are dated at 1.80 ± 0.04 Ma (TH31) and 1.74 ± 400 

0.04 Ma (TH8). The exposed volume of the Hanatetena edifice (0.5±0.1 km
3
) represents only 2% of the 401 

volume of Tahuata island (25 km
3
). 402 

The single intermediate/evolved lava documented in Tahuata is a columnar-jointed tephriphonolitic 403 

spine, 200 m in diameter, which crosscuts the northern slopes of the Vaitahu shield and forms the summit of 404 

Mt Tumu Meae Ufa (1,050 m). Because of its young age (1.78 ± 0.04 Ma, sample TH35), we relate its 405 

emplacement to the post-shield stage. 406 

 407 

3.4. Fatu Hiva  408 

Fatu Hiva Island (84 km
2
) displays a typical semicircular shape. It includes an external (outer) shield, the 409 

Touaouoho volcano, truncated by a 8 km wide caldera opening westwards, inside which grew a smaller 410 

post-caldera edifice, the Omoa volcano (Fig. 5). As in Tahuata, the caldera wall was affected by landslides 411 

which generated avalanche and debris flow deposits up to 250 m thick. These deposits now outcrop within 412 

the topographic trough separating the outer shield from the inner Omoa post-shield edifice. The drowning of 413 

the western half of the island and the development of the caldera are probably related to major sector 414 

collapse events, marked in the regional bathymetry by a 15 km wide trough (at 2,500 m depth) located west 415 

of Fatu Hiva, downslope from the Omoa volcano. 416 

The Touaouoho shield has an up to 1,100 m thick rather monotonous pile of meter-thick flows of olivine 417 

tholeiites, tholeiitic picrobasalts and minor hawaiites (Table 4), crosscut by a dense network of radial 418 

inframetric tholeiitic dykes. Their unspiked 
40

K-
40

Ar ages (Table 3) range from 1.81 ± 0.04 Ma (FH13) to 1.35 419 

± 0.03 Ma (FH18). The Omoa post-caldera edifice is composed of a 700 m thick pile of inframetric tholeiitic 420 

flows, with lava tubes in pahoehoe composite flows. Their ages (Table 3) range from 1.43 ± 0.03 Ma (FH08) 421 

to 1.23 ± 0.04 Ma (FH05). In addition, a tholeiitic dyke (FH30) crosscutting the debris flow deposits at 422 

Hanavave village yielded an age of 1.41 ± 0.03 Ma, consistent with the end of volcanic activity in Touaouoho 423 

shield and the initiation of that of the post-shield Omoa edifice. These two stages led to the emplacement of 424 

rather similar tholeiitic basalts and hawaiites (Table 4). Their major, trace element (Table 4) and isotopic Sr 425 
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Nd Pb and Hf compositions largely overlap, and both are typical of the predominantly EM II-HIMU sources of 426 

the southwestern trend, which has been labelled the “Fatu Hiva group” (Chauvel et al., 2012). 427 

The youngest Fatu Hiva lavas are two well-preserved trachytic domes (Figs. 4 and 5) crosscutting and 428 

overlying the Touaouoho shield flows on the northern coast (FH16, 1.11 ± 0.02 Ma) and east of Omoa 429 

village (FH06, 1.22 ± 0.03 Ma). In addition, a 15 m wide trachytic dyke (FH12) crosscutting the basal flows of 430 

Omoa post-shield edifice is dated at 1.38 ± 0.03 Ma, and was therefore emplaced during the post-shield 431 

stage. The volumes (estimated from mapping relationships) of the Omoa post-shield lavas (5±1 km
3
) 432 

correspond to 28% of the total emerged volume of Fatu Hiva (28 km
3
), and 0.2% only of the bulk volume of 433 

the edifice (2,800 km
3
). 434 

 435 

4. Discussion 436 

4.1. Timing of eruptions: no gap between shield-building and post-caldeira stages 437 

The new unspiked 
40

K-
40

Ar ages plotted against the distances of the islands to the MFZR along the 438 

N65°W direction of movement of the Pacific plate (Fig. 2) are reasonably consistent with its local motion rate 439 

of 10.5 cm/year, as previously pointed out by Legendre et al. (2006). These new ages display much less 440 

scatter than the age-distance to the MFZR plots using the main N30-40°W trend of the chain and all the 441 

available 
40

K-
40

Ar ages measured on bulk rocks (Brousse et al., 1990; Desonie et al., 1993; Guille et al., 442 

2002). The dashed line in Fig. 2, which corresponds to distances to the unexplored seamount chain located 443 

ca 50 km north of the MFZR (Fig. 1), provides a better fit to the start of activity in some islands. Thus, this 444 

seamount chain is a strong candidate for the present-day location of the Marquesas hotspot. Overall, Ua 445 

Huka differs from all the other islands by the fact that the emplacement of the exposed part of its shield 446 

started clearly later than predicted by the hotspot hypothesis (Fig. 2). It is also the only Marquesas Island 447 

showing a rejuvenated volcanic stage (Legendre et al., 2006). 448 

Data plotted in Figures 2 and 4 show that there is no consistent temporal hiatus between the shield-449 

building and post-caldeira activities. Usually the two stages either slighly overlap (Nuku Hiva, Ua Huka, Fatu 450 

Hiva) or the gap between them is within the range of analytical uncertainties (Temetiu shield and Atuona 451 

post-caldeira lavas in Hiva Oa, Tahuata). In Ua Pou, a marginal hiatus (Guille et al., 2010) is observed 452 

between the youngest shield tholeiitic basalt (4.00±0.06 Ma) and the oldest post-shield phonolite (3.86±0.06 453 

Ma). However, this might be due to sampling bias because of the very small size of the emergent part of the 454 

shield that is mostly overlain by lahar deposits. Such a temporal continuity implies that the growth of post-455 

shield edifices started immediately after the main caldera collapse event, while eruptive activity was still 456 

occurring at least in some parts of the shield volcano. Another striking feature of the data shown in Figure 2 457 

is that contemporaneous volcanism occurred in islands located more than 100 km away from each other 458 

(Fig. 1), e.g. around 2.5 Ma (Ua Huka, Ua Pou, Hiva Oa) or between 2.0 and 1.5 Ma (Hiva Oa, Tahuata, 459 

Motane and Fatu Hiva). This feature is consistent with a “classical” plume model involving a 200 km large 460 

summital melting zone (Farnetani and Hoffmann, 2010), and it is also observed in other hotspot-related 461 

islands such as the Hawaiian chain (Clague and Dalrymple, 1987), the Society archipelago (Guillou et al., 462 

2005) and the Canaries (Carracedo et al., 1998). However, rejuvenated volcanism is much less common in 463 
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the Marquesas (Ua Huka) than in the Hawaiian chain, the Canaries, Mauritius (Paul et al., 2005) and Samoa 464 

(Konter and Jackson, 2012). 465 

 466 

4.2. Evidence for post-shield emplacement of nearly all the intermediate and evolved lavas 467 

The TAS diagram (Fig. 3) and the age versus SiO2 plot (Fig. 6) show that nearly all the dated lavas more 468 

evolved than tholeiitic and alkali basalts, basanites and hawaiites were erupted during the post-shield stage 469 

of Marquesan volcanoes. These include rare tephrites (Ua Pou), mugearites (Hiva Oa), benmoreites (Nuku 470 

Hiva, Ua Pou, Hiva Oa) and tephriphonolites (Ua Pou, Tahuata), and more abundant trachytes (Nuku Hiva, 471 

Ua Huka, Ua Pou, Hiva Oa, Fatu Hiva) and phonolites (Ua Pou, Ua Huka). The only exception is Eiao, in 472 

which coring has recovered a 10 m thick trachytic flow in the Dominique drill hole (Caroff et al., 1995; Maury 473 

et al., 2009), at depths of 462 to 472 m below sea level. It has been dated at 5.44±0.04 Ma, an age perfectly 474 

consistent with its position within the Eiao shield pile. This trachyte represents only a very small fraction of 475 

the 2,100 m long cored volcanic sequences recovered from the three Eiao deep drillings. However, 476 

mugearites (undated) also occur in the three cored sequences, in which they have a total thickness of ca 70 477 

m (Maury et al., 2009). The origin of Eiao mugearites and trachytes has been ascribed to open-system 478 

fractional crystallization of associated alkali basaltic magmas, coupled with assimilation of the oceanic crust 479 

underlying the shield (Caroff et al., 1999). 480 

In the other islands, the intermediate and evolved lavas erupted within the post-shield volcanoes (Nuku 481 

Hiva, Ua Huka, Ua Pou, Ootua edifice in Hiva Oa). However, some of them outcrop as parasitic domes, 482 

spines, plugs or dykes crosscutting the older (outer) volcanic shields: trachytes in Nuku Hiva, Ua Huka, Hiva 483 

Oa (within the Puamau shield) and Fatu Hiva, and the tephriphonolitic spine of Mt Tumu Meae Ufa in 484 

Tahuata. In Nuku Hiva, Ua Huka and Ua Pou, these trachytes or phonolites and the associated intermediate 485 

lavas outcrop together with alkali basalts and/or basanites. Their 
40

K-
40

Ar ages fall within the range of those 486 

of the latter or are slightly younger. In the case of Nuku Hiva, petrogenetic studies (Legendre et al., 2005b) 487 

led to the conclusion that trachytes derived from open system fractional crystallization of alkali basalt 488 

magmas coupled with assimilation of enriched oceanic crust with an EM II signature. The origin of the 489 

unusually abundant phonolites from Ua Pou is thought to result from the fractionation of tephriphonolitic and 490 

benmoreitic magmas derived from the remelting of basanitic rocks (Legendre et al., 2005a). In Fatu Hiva, 491 

the emplacement of trachytes was contemporaneous with or post-dated that of post-caldera tholeiitic 492 

basalts, but the possible petrogenetic relationships between them have not been investigated. The same 493 

situation pertains to the Ootua post-shield volcano in Hiva Oa, where a spatial and temporal association of 494 

tholeiitic basalts (some of which display a transitional affinity), hawaiites, mugearites, benmoreites and 495 

trachytes is exposed (Maury et al., 2013). Evolved lavas were emplaced during the known entire history of 496 

the archipelago (Fig. 6): Eiao trachyte is one of the oldest lavas of our set of data and Fatu Hiva ones count 497 

among the youngest. Nuku Hiva and Ua Huka trachytes as well as the very abundant Ua Pou phonolites 498 

were emplaced between ca 4.0 and 2.5 Ma (Fig. 6).  499 

4.3. Chemical diversity of shield and post-shield basaltic lavas 500 

In the Hawaiian model, basaltic magmas derive from temporally decreasing melt fractions of the mantle 501 

sources: the emplacement of tholeiitic shield basalts is followed by that of post-shield alkali basalts and then 502 
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by rejuvenated basanites or nephelinites, and Sr isotopic ratios decrease during this evolution (Garcia et al., 503 

2010; Hanano et al., 2010). In the Marquesas, Ua Huka island volcanism followed this trend, with the 504 

successive emplacement of Hikitau shield tholeiites, Hane post-shield alkali basalts and associated 505 

benmoreites, trachytes and phonolites, and finally Teepoepo and Tahoatikikau rejuvenated basanitic cones. 506 

However, Hikitau and Hane basalts display similar radiogenic Sr isotopic compositions, and only the 507 

basanites from the rejuvenated cones are less radiogenic (Chauvel et al., 2012). In Ua Pou, the small 508 

emergent remnants of an HIMU-type tholeiitic shield are overlain by a thick post-shield pile of basanites, 509 

phonolites and other silica-undersaturated lavas more radiogenic in Sr, with a dominant EM II signature 510 

(Duncan et al., 1986; Vidal et al., 1987; Legendre et al., 2005a).  511 

The temporal petrologic evolution of other islands is more complex. Most shield lavas are tholeiitic, but 512 

minor amounts of alkali basalts and basanites displaying higher enrichments in incompatible elements and 513 

more radiogenic Sr isotopic ratios are interbedded with them in the shields of Eiao and Tahuata, or occur as 514 

dykes crosscutting them in the Motane shield. In Nuku Hiva, the large post-shield Taiohae volcano includes 515 

olivine tholeiites, alkali basalts and basanites more radiogenic in Sr than the Tekao shield tholeiites 516 

(Legendre et al., 2005b). Post-shield basaltic lavas are exclusively tholeiitic or transitional in Hiva Oa 517 

(Atuona and Ootua units), Tahuata (Hanatetena) and Fatu Hiva (Omoa). Although displaying a rather large 518 

isotopic variability, they fall within the range of shield tholeiites from the same islands (Chauvel et al., 2012).  519 

As a whole, the claim by Woodhead (1992) and Castillo et al. (2007) that Marquesas shield lavas have 520 

systematically lower 
87

Sr/
86

Sr ratios than post-shield lavas is not supported by isotopic studies conducted on 521 

our sample set (Chauvel et al., 2012). This conclusion applies to islands from the two isotopic groups, e.g. to 522 

Eiao and Ua Huka in the “Ua Huka group” and Hiva Oa, Tahuata and Fatu Hiva in the “Fatu Hiva group” 523 

(Chauvel et al., 2012). The isotopic features of the sources of the Marquesas lavas are therefore not related 524 

to the temporal pattern of volcanism (shield/post-shield activities) in a given island. The mafic lavas from the 525 

two groups display similar La/Yb ratios (Fig. 7), while the Ua Huka rejuvenated basanites exhibit higher 526 

ones. Post-shield intermediate and evolved lavas are more scattered in Fig. 7, probably because of their 527 

complex petrogenesis (open-system fractionation or remelting of mafic magmas). In a similar La/Yb versus 528 

La plot in which samples are sorted by petrographic type, alkali basalts display La/Yb ratios higher than 529 

those of tholeiites (Chauvel et al., 2012, their Figure 6). 530 

4.4. Implications for Marquesas plume heterogeneity and hotspot models 531 

Hotspot models previously proposed for the Marquesas (Duncan et al., 1986; Woodhead, 1992; Desonie 532 

et al., 1993; Castillo et al., 2007) involved melting of a heterogeneous zoned mantle plume and of the 533 

overlying oceanic lithosphere, or interactions between ascending plume-derived melts and this lithosphere. 534 

These models were based on the assumption that the archipelago followed an “Hawaiian-type” temporal 535 

evolution, the main difference being that in the Marquesas shield tholeiitic basalts were less radiogenic in Sr 536 

(closer to DMM and/or HIMU) than the post-shield alkalic lavas (closer to EM end-members). In addition, 537 

some authors used the tholeiitic or alkalic compositions of the basalts (Woodhead, 1992) or even their Sr 538 

isotopic ratios (Castillo et al., 2007) to classify them as shield or post-shield, which led to additional 539 

confusion. 540 
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In the present study and in the Chauvel et al. paper (2012), we used exclusively geological (field 541 

relationships determined from detailed mapping) and chronological (unspiked 
40

K-
40

Ar ages) data to 542 

determine the shield or post-shield position of the samples. Our results show that: (1) there was usually no 543 

temporal gap between shield and post-shield activities at a given island; (2) eruptions occurred 544 

simultaneously in islands distant as much as 100 km one from another; (3) although most shields are 545 

tholeiitic, several of them (Eiao, Tahuata) contain interbedded alkali basaltic and basanitic flows; (4) while 546 

post-shield intermediate and evolved lavas derive usually from alkali basaltic or basanitic magmas, several 547 

post-shield volcanoes are tholeiitic (Hiva Oa, Tahuata, Fatu Hiva); (5) the trace element and isotopic 548 

compositions of shield and post-shield tholeiites display large variations, but the two groups overlap in most 549 

diagrams (Chauvel et al., 2012); and finally (6) the “Ua Huka” and “Fatu Hiva” isotopic groups involve 550 

mixtures of different mantle components, all of them likely located within the plume itself (Chauvel et al., 551 

2012) as also envisioned for Hawaii (Frey et al., 2005; Fekiacova et al., 2007; Garcia et al., 2010; Hanano et 552 

al., 2011). 553 

The Sr and Nd isotopic differences between tholeiitic basalts and alkali basalts/basanites from 554 

Marquesas Islands are shown in Figure 8. This plot shows all the data from the GEOROC database on 555 

basaltic lavas whose major element and isotopic data were available. The sources of alkali basalts and 556 

basanites are generally more enriched than those of the tholeiites at the scale of the archipelago. This is 557 

also true within a given island, although the isotopic contrasts range from huge at Ua Pou to large at 558 

Tahuata, Nuku Hiva, and Motane and small at Eiao and Ua Huka. These contrasts are consistent with the 559 

hypothesis of an extremely heterogeneous character of the Marquesas plume. The nearly contemporaneous 560 

emplacement of tholeiites and alkali basalts with different isotopic compositions in Tahuata (Chauvel et al., 561 

2012) suggests the occurrence of heterogenous mantle domains 10 km or less in diameter, as envisioned 562 

for several other plumes including Hawaii (Marske et al., 2007; Hanano et al., 2010), Mauritius (Paul et al., 563 

2005) and the Galápagos (Gibson et al., 2012). When affected by the same high thermal regime in the 564 

central part of a plume, domains with contrasted lithologies could experience variable degrees of melting, 565 

generating the observed diversity of basaltic magmas. Especially, low-degree melts might sample 566 

preferentially fertile (and isotopically enriched) pyroxenite while the signature of the more depleted peridotitic 567 

source dominates in high-degree melts (Sobolev et al., 2005, 2007; Jackson and Dasgupta, 2008; Day et 568 

al., 2009; Dasgupta et al., 2010; White, 2010; Davis et al., 2011; Herzberg, 2011).  569 

The occurrence of tholeiitic post-shield basalts in several islands is not surprising given the temporal 570 

continuity between the shield and post-shield stages and the usually short period of emplacement of these 571 

post-shield tholeiites (<0.1 Ma in Tahuata, Nuku Hiva and for Ootua basaltic flows in Hiva Oa; 0.2 Ma in Fatu 572 

Hiva, Fig. 5 and Tables 1 and 3). It is likely that during such short time spans the extent of melting of the 573 

plume at depth did not change significantly, while the volcano structure was considerably modified after the 574 

caldera collapse event. Longer post-shield activities might record a decrease of melting and possible 575 

preferential sampling of enriched materials. In the Taiohae inner edifice (Nuku Hiva) where post-shield 576 

activity lasted ca 0.4 Ma (from 4.00 to 3.62 Ma; Maury et al., 2006), a brief tholeiitic episode was followed by 577 

the emplacement of alkali basalts and basanites, and then by that of mugearites, benmoreites and trachytes 578 

derived from an enriched mantle source. A rather similar evolution has been documented in the post-shield 579 

volcanism of Mauna Kea, Hawaii (Frey et al., 1990), where the initial emplacement of tholeiites and alkali 580 
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basalts (basaltic substage) was followed by that of intermediate and evolved lavas (hawaiitic substage). 581 

Finally, the emplacement of the rejuvenated basanitic strombolian cones in Ua Huka after a 1.3 Myr long 582 

quiescence period (Fig. 2) was accompanied by major petrogenetic changes, involving very low melting 583 

degrees of a garnet lherzolite source deeper and isotopically more depleted than that of the older tholeiitic 584 

and alkali basalts (Legendre et al., 2006). 585 

The petrologic and geochemical diversity of Marquesas lavas is rather exceptional given the modest 586 

size of the archipelago, as appreciated since the pioneer works of A. Lacroix (1928) and L.J. Chubb (1930). 587 

It can be related to the “weak” character of the Marquesas plume (McNutt et al., 1989), which produced 588 

“only” 7,700 km
3
 of magma per Myr in the Marquesas (Chauvel et al., 2012), compared to 213,000 km

3
 for 589 

the Big Island of Hawaii (Robinson and Eakins, 2006). Indeed, low degrees of partial melting resulted in the 590 

preservation in the Marquesas basaltic magmas of geochemical features inherited from small-size source 591 

heterogeneities, while high degrees of partial melting and resulting high magma production rate tend to 592 

blend these features. The complex petrogenesis (open-system processes or remelting of mafic precursors) 593 

of post-shield intermediate and evolved lavas contributed further to increase this diversity. 594 

5. Conclusions 595 

The study of 110 Marquesas lavas located on detailed geological maps and dated by the unspiked 
40

K-596 
40

Ar method on separated groundmass allows us to demonstrate that the temporal evolution of the 597 

archipelago is rather different with respect to that of Hawaii and many other hotspot-related chains. There is 598 

usually no temporal gap between shield and post-shield activities in a given island, and rejuvenated 599 

volcanism is uncommon. Although most shields are tholeiitic, several of them (Eiao, Tahuata) contain 600 

interbedded alkali basaltic and basanitic flows. The occurrence of intermediate and evolved lavas is 601 

restricted to the post-shield stage, with one exception (Eiao). Although these lavas are usually associated 602 

with alkali basaltic or basanitic magmas, several post-shield volcanoes are tholeiitic (Hiva Oa, Tahuata, Fatu 603 

Hiva) or include tholeiites (Nuku Hiva). In a given island, the trace element and isotopic compositions of 604 

shield and post-shield tholeiites overlap although both display large variations (Chauvel et al., 2012). 605 

These features are inconsistent with former models (Duncan et al., 1986; Woodhead, 1992; Desonie et 606 

al., 1993; Castillo et al., 2007) that postulated that the Marquesas followed a “Hawaiian-type” evolution. 607 

They are consistent with the hypothesis of an extremely heterogeneous character of the Marquesas plume. 608 

The “weak” character of this plume led to low degrees of partial melting, which in turn resulted in the 609 

preservation in the basaltic magmas of geochemical features inherited from such small-size source 610 

heterogeneities. 611 
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Figure captions 885 

 886 

Fig. 1. Location map of Marquesas Islands. The bathymetry comes from the global altimetry data set of 887 

Smith and Sandwell (1997). The main trend of the Marquesas chain is N40°W. Current Pacific plate motion 888 

is 10.5 cm/yr at N65°W, corresponding to the line shown in white. The names of the southern islands are in 889 

large print. MFZ: Marquesas Fracture Zone. 890 

 891 

Fig. 2. Age versus distance plot for the Marquesas. The distances to the MFZ Ridge (MFZR) along 892 

N65°W trend corresponding to the 10.5 cm/yr motion of the Pacific plate are from Chauvel et al. (2012). The 893 

dashed line starts from the unexplored chain of seamounts located 50 km NW of the MFZR. Shield ages are 894 

denoted by open symbols, post-shield ages by filled symbols and rejuvenated ages by grey symbols. 895 

Sources of unspiked 
40

K-
40

Ar ages on groundmass: Tables 1 and 3 for southern islands; Caroff et al. (1995) 896 

and Maury et al. (2009) for Eiao; Maury et al. (2006) for Nuku Hiva; Legendre et al. (2006) and Blais et al. 897 

(2008) for Ua Huka; Legendre et al. (2005a) and Guille et al. (2010) for Ua Pou. 898 

 899 

Fig. 3. Total-Alkali-Silica (TAS) diagram (Le Bas et al., 1986) for the dated Marquesas lavas. The 900 

dashed line separating the fields of tholeiitic (Thol.) and alkali (Alk.) basalts is from Macdonald and Katsura 901 

(1964). Shield ages are denoted by open symbols, post-shield ages by filled symbols and rejuvenated ages 902 

by grey symbols. Sources of major and trace element analyses: Tables 2 and 4 for southern islands; Caroff 903 

et al. (1995) and Maury et al. (2009) for Eiao; Maury et al. (2006) for Nuku Hiva; Legendre et al. (2006) and 904 

Blais et al. (2008) for Ua Huka; Legendre et al. (2005a) and Guille et al. (2010) for Ua Pou. 905 

 906 

Fig. 4. Sketches of the Marquesas volcanic successions, showing caldera collapse events (red dashed 907 

lines) and simplified distributions of tholeiitic basalts, alkali basalts and basanites, and felsic lavas (trachytes 908 

and phonolites). Intermediate lavas have been omitted for clarity. Vertical scales are arbitrary. Abbreviated 909 

volcano names: Ha: Hane; Hi: Hikitau; Hk: Hakahau; Hn: Hanatetena; Om: Omoa; Oo: Ootua; Pu: Puamau; 910 

Ta: Taaoa; Te: Temetiu; Th: Taiohae; Tk: Tekao; To: Touaouoho; Va: Vaitahu. In Ua Huka, a temporal gap 911 

separates the end of building of the Hane volcano from the rejuvenated volcanic phase which emplaced the 912 

Teepoepo (1.15-0.96 Ma) and Tahoatikikau (0.82-0.76 Ma) basanitic cones. In Tahuata, the horizontal line 913 

below the red dashed line separates the upper from the lower tholeiitic flows of Vaitahu shield. 914 

 915 

Fig. 5. Geological sketch maps of the southern Marquesas islands, simplified from Guille and Maury 916 

(2013) and Maury et al. (2013). The locations of the dated samples are shown by small red crosses 917 

(corresponding ages in Ma from Tables 1 and 3). Most flow dips range from 8 to 12°. See text for 918 

explanations. 919 

 920 

Fig. 6. Plot of unspiked 
40

K-
40

Ar ages against SiO2 for dated samples. Symbols and sources of data as 921 

in Figs. 2 and 3. 922 

 923 

Fig. 7. Plot of La/Yb against La (ppm) for dated samples. Symbols and sources of data as in Fig. 3. 924 
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 925 

Fig. 8. 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd diagram showing the differences between tholeiitic basalts and alkali 926 

basalts/basanites from Marquesas islands. Data from the GEOROC database and Chauvel et al. (2012). 927 

The Fatu Hiva sample plotting away from the main trend (low
143

Nd/
144

Nd) is from Woodhead (1992). 928 

 929 

 Table captions 930 

 931 

Table 1. Unspiked 
40

K-
40

Ar ages measured on groundmass for Hiva Oa lavas. See text for analytical 932 

methods and Fig. 4 for sample locations. SH: shield; PS: post-shield. Mugear.: mugearite; benmor.: 933 

benmoreite. *: ages already given in Chauvel et al. (2012) but without details. 934 

 935 

Table 2. Major and trace element ICP-AES analyses of dated lavas from Hiva Oa. Major element oxides 936 

in wt%, trace elements in ppm. Fe2O3*: total iron as Fe2O3. See text for analytical methods, Table 1 for ages 937 

and Fig. 4 for sample locations. Samples are ranked by order of decreasing ages. SH: shield; PS: post-938 

shield. Thol: tholeiite; haw: hawaiite; mug: mugearite; ben: benmoreite; tra: trachyte. The rare earth element 939 

and Y concentrations of sample HV54 have been modified by supergene alteration involving crystallization 940 

of rhabdophane (Cotten et al., 1995), and therefore this sample has not been plotted in Fig. 6. *: Major 941 

element analyses given in Chauvel et al. (2012) together with ICP-MS trace element analyses. 942 

 943 

Table 3. Unspiked 
40

K-
40

Ar ages measured on groundmass for Motane, Tahuata and Fatu Hiva lavas. 944 

See text for analytical methods and Fig. 4 for sample locations. SH: shield; PS: post-shield. Alk. bas.: alkali 945 

basalt. *: ages already given in Chauvel et al. (2012) but without details. 946 

 947 

Table 4. Major and trace element ICP-AES analyses of dated lavas from Motane, Tahuata and Fatu 948 

Hiva. Major element oxides in wt%, trace elements in ppm. Fe2O3*: total iron as Fe2O3. See text for 949 

analytical methods, Table 3 for ages and Fig. 4 for sample locations. For each island, samples are ranked 950 

by order of decreasing ages. SH: shield; PS: post-shield. Thol: tholeiite; alb: alkali basalt; bas: basanite; 951 

haw: hawaiite; teph: tephriphonolite; tra: trachyte. *: Major element analyses given in Chauvel et al. (2012) 952 

together with ICP-MS trace element analyses. 953 

 954 



Sample & 
Experiment 

 

Occurrence 
& Type 

K (wt%) 

± 1 

Mass  
molten 

(g) 

40
Ar*  

(%) 
40Ar* 

(10
-12

 mol./g)  

± 1  

Weighted mean 
40Ar* (10

-12
mol./g)  

± 1  

Age 
(Ma)  

± 2 
HV107 

7378 
 PS tholeiite 

flow 
 

1.978 ± 0.020 
 

1.43274 
 

36.482 
 

4.935 ± 0.026 
  

7394 Ootua « ………… » 1.64660 49.561 4.925 ± 0.025 4.930 ± 0.018 1.44 ± 0.03 
        
HV88 

7347 
 SH hawaiite 
upper flow 

 
1.695 ± 0.017 

 
1.35898 

 
47.011 

 
4.273 ± 0.022 

  

7361 Puamau « ………… » 1.50413 60.993 4.311 ± 0.022 4.292 ± 0.016 1.46 ± 0.03 
        
HV86 

7308 
 PS hawaiite 

flow 
 

1.501 ± 0.015 
 

1.03777 
 

20.778 
 

4.077 ± 0.023 
  

7324 Ootua « ………… » 1.69426 56.220 3.823 ± 0.020 3.932 ± 0.015 1.51 ± 0.03 
        
HV62 

7323 
 SH tholeiite 

flow 
 

1.507 ± 0.015 
 

1.21717 
 

21.901 
 

4.185 ± 0.023 
  

7339 Puamau « ………… » 1.08625 33.020 4.300 ± 0.023 4.241 ± 0.016 1.62 ± 0.04 
        
HV54 

7548 
PS benmor. 

dyke 
 

2.638 ± 0.026 
 

1.00103 
 

55.652 
 

7.369 ± 0.037 
  

7564 Ootua « ………… » 2.07615 63.800 7.640 ± 0.038 7.500 ± 0.027 1.64 ± 0.03 
        
HV70 

7302 
 SH tholeiite 

flow 
 

1.509 ± 0.015 
 

1.06608 
 

33.920 
 

4.227 ± 0.023 
  

7316 Puamau « ………… » 1.07234 19.444 4.418 ± 0.025 4.315 ± 0.017 1.65 ± 0.04 
        
HV56 

7541 
 PS mugear. 

flow 
 

1.991 ± 0.020 
 

1.13733 
 

16.494 
 

5.993 ± 0.032 
  

7557 Ootua « ………… » 1.17474 30.860 5.981 ± 0.033 5.987 ± 0.023 1.73 ± 0.04 
        
HV65 

7293 
 PS  tholeiite 

flow 
 

1.181 ± 0.012 
 

1.16980 
 

27.526 
 

3.676 ± 0.020 
  

7309 Atuona « …………» 1.27950 21.735 3.715 ± 0.020 3.695 ± 0.014 1.80 ± 0.04 
        
HV81 

7332 
 SH hawaiite 

flow 
 

1.976 ± 0.020 
 

1.08717 
 

18.778 
 

6.232 ± 0.033 
  

7348 Temetiu « ………… » 1.35792 17.642 6.316 ± 0.033 6.275 ± 0.023 1.83 ± 0.04 
        
HV82 

7315 
 SH tholeiite 

flow 
 

1.137 ± 0.011 
 

1.10367 
 

19.184 
 

3.821 ± 0.022 
  

7331 Temetiu « ………… » 1.27970 21.827 3.736 ± 0.021 3.777 ± 0.015 1.91 ± 0.04 
        
HV99 

7472 
SH tholeiite 

dyke 
 

1.869± 0.020 

 
0.56437 

 
36.823 

 
6.539 ± 0.033 

  

7587 Temetiu « ………… » 0.61803 6.398 6.525 ± 0.033 6.533 ± 0.024 2.01 ± 0.04 

        
HV76* 

7301 
 SH tholeiite 

flow 
 

1.254 ± 0.013 
 

1.02679 
 

29.743 
 

4.477 ± 0.025 
  

7320 Temetiu « ………… » 1.12163 24.685 4.338 ± 0.024 4.406 ± 0.017 2.02 ± 0.04 
        
HV11 

7543 
 SH tholeiite 

flow 
 

1.459 ± 0.015 
 

1.38244 
 

33.999 
 

5.325 ± 0.027 
  

7559 Temetiu « ………… » 1.26070 4.831 5.157 ± 0.033 5.258 ± 0.021 2.08 ± 0.04 
        
HV38 

7549 
 SH hawaiite 

flow 
 

1.870 ± 0.019 
 

0.93187 
 

32.635 
 

6.598 ± 0.034 
  

7565 Temetiu « ………… » 0.95534 22.934 6.904 ± 0.036 6.744 ± 0.025 2.08 ± 0.04 
        
HV112 

7379 
 SH hawaiite 

flow 
 

1.824 ± 0.018 
 

1.13791 
 

42.865 
 

6.701 ± 0.035 
 
 

 

7395 Temetiu « ………… » 1.49233 23.887 6.762 ± 0.035 6.731 ± 0.024 2.13 ± 0.05 
        
HV78 

7456 
 SH tholeiite 

flow 
 

1.322 ± 0.013 
 

0.99687 
 

25.760 
 

4.916 ± 0.026 
  

7472 Temetiu « ………… » 1.50904 23.970 4.865 ± 0.025 4.890 ± 0.018 2.13 ± 0.05 
        
HV77 

7325 
 SH hawaiite 

flow 
 

1.848 ± 0.018 
 

1.39336 
 

22.254 
 

7.005 ± 0.037 
  

7340 Temetiu « ………… » 1.04261 35.918 6.934 ± 0.036 6.969 ± 0.026 2.17 ± 0.05 
        
HV84 

7618 
 SH tholeiite 

flow 
 

1.150 ± 0.015 
 

1.03595 
 

27.021 
 

4.456 ± 0.023 
  

7634 Temetiu « ………… » 1.56657 48.619 4.521 ± 0.023   4.489 ± 0.016 2.25 ± 0.05 

Table
Click here to download Table: Table 1 Guillou et al.doc

http://ees.elsevier.com/volgeo/download.aspx?id=236127&guid=0d9989fb-ecdd-4f12-9fa8-eec99b16dde2&scheme=1


        
HV87 

7455 
 SH tholeiite 

flow 
 

1.403 ± 0.014 
 

1.01446 
 

32.032 
 

5.532 ± 0.029 
  

7471 Temetiu « ………… » 1.50142 24.886 5.505 ± 0.028 5.518 ± 0.020 2.27 ± 0.05 
        
HV64* 

7341 
 SH tholeiite 

flow 
 

0.913 ± 0.009 
 

1.23639 
 

24.869 
 

4.046 ± 0.022 
  

7357 Taaoa « ………… » 1.12964 25.818 4.036 ± 0.022 4.041 ± 0.016 2.55 ± 0.05 

 

* Age in Chauvel et al. (2012) but no details. 



Sample HV64* HV87 HV84 HV77 HV78 HV112 HV 38 HV 11 HV76* HV99 HV82 HV81 HV65 HV 56 HV70 HV54 HV62 HV86 HV88 HV107

Volcano Taaoa Temetiu Temetiu Temetiu Temetiu Temetiu Temetiu Temetiu Temetiu Temetiu Temetiu Temetiu Atuona Ootua Puamau Ootua Puamau Ootua Puamau Ootua

type SH thol SH thol SH thol SH haw SH thol SH haw SH haw SH thol SH thol SH thol SH thol SH haw PS thol PS mug SH thol PS ben SH thol PS haw SH haw PS thol

SiO2 46.60 46.20 48.40 48.00 48.00 48.40 48.75 47.10 48.50 47.00 48.60 48.00 46.00 50.70 46.75 54.50 48.40 48.60 48.20 47.60

TiO2 3.55 3.26 3.34 3.52 3.22 3.71 3.72 3.61 3.84 2.99 3.78 3.67 3.65 3.12 4.05 2.17 3.01 3.92 3.69 2.85

Al2O3 13.40 11.50 13.55 14.42 13.60 15.54 15.90 13.80 14.65 12.94 14.15 15.35 13.75 15.83 13.15 16.34 13.25 16.00 14.20 12.35

Fe2O3* 13.00 13.60 12.40 11.88 12.80 11.58 11.60 12.35 12.85 11.70 13.00 11.58 13.15 11.10 12.80 8.45 11.90 11.90 12.20 12.40

MnO 0.15 0.17 0.15 0.16 0.17 0.18 0.15 0.16 0.15 0.15 0.16 0.15 0.16 0.17 0.16 0.18 0.14 0.19 0.16 0.16

MgO 8.00 11.40 8.44 7.18 7.86 4.32 3.55 6.20 5.14 9.20 6.12 4.14 8.85 3.70 8.75 2.36 8.95 4.58 6.85 10.67

CaO 9.00 8.30 8.56 8.60 9.75 9.07 8.00 9.75 9.63 7.95 9.00 8.60 10.28 7.50 9.40 5.52 8.40 9.25 8.58 8.90

Na2O 3.18 2.37 3.18 3.30 2.68 3.32 3.85 2.75 2.91 2.63 2.95 3.16 2.60 4.00 2.70 4.91 2.75 3.27 3.20 2.50

K2O 1.08 1.22 1.33 2.08 1.18 2.08 2.26 1.69 1.49 1.94 1.23 2.27 1.45 2.42 1.63 3.19 1.69 1.77 1.94 1.70

P2O5 0.50 0.41 0.53 0.49 0.38 0.56 0.62 0.48 0.43 0.47 0.47 0.63 0.43 0.66 0.50 0.86 0.42 0.49 0.58 0.41

LOI 1.29 0.86 0.22 0.19 0.43 0.87 1.07 1.56 0.32 2.77 0.32 1.90 -0.39 0.61 -0.05 1.33 0.61 0.28 -0.08 0.08

Total 99.75 99.29 99.92 99.44 100.07 99.63 99.47 99.45 99.91 99.74 99.78 99.45 99.93 99.81 99.84 99.81 99.52 100.25 99.52 99.62

Rb 18.3 28.4 27.5 51.0 26.5 62.0 53.5 42.5 51.5 48.0 17.6 62.0 34.0 61.0 36.5 80.0 35.0 42.5 50.0 42.0

Ba 217 238 282 410 224 412 404 334 278 350 325 465 295 485 345 730 295 375 385 332

Th 3.85 3.55 4.90 5.90 2.90 5.80 6.10 4.60 3.20 4.90 4.10 5.40 3.30 6.20 3.75 7.60 3.50 3.90 5.15 3.65

Nb 41.0 34.0 43.0 44.0 29.5 43.0 49.0 38.5 31.0 36.0 35.0 47.5 33.5 48.0 39.0 63.0 30.5 36.0 44.5 32.0

La 33.0 30.5 38.0 40.5 25.0 42.0 44.0 37.0 30.5 35.5 33.0 47.5 28.0 47.0 32.0 78.0 28.0 38.0 39.5 31.0

Ce 72.0 66.0 83.0 86.0 57.0 88.0 98.0 81.0 65.5 77.0 68.5 100 61.5 102 73.0 154.0 60.0 99.0 88.0 63.0

Sr 599 435 650 682 485 670 660 570 586 479 482 746 637 668 635 780 473 625 626 510

Nd 42.0 36.0 45.0 43.0 33.0 47.0 55.0 45.0 40.0 40.5 44.5 52.0 34.0 56.0 43.0 98.0 36.0 61.0 48.0 35.5

Sm 9.40 8.15 9.90 8.75 7.60 10.1 11.0 9.45 9.05 8.75 10.0 10.6 7.70 11.5 9.35 20.0 8.15 15.9 10.2 7.85

Zr 315 262 352 322 245 342 400 292 278 315 305 375 240 375 315 510 260 297 376 249

Eu 2.97 2.53 3.05 2.66 2.38 2.98 3.43 2.80 2.77 2.60 3.13 3.16 2.40 3.46 2.87 5.80 2.48 5.74 3.17 2.32

Gd 8.60 7.70 8.10 7.90 7.10 9.00 10.7 9.15 8.30 7.80 9.55 9.05 6.80 11.1 9.20 21.50 7.50 23.70 9.45 7.20

Dy 6.65 6.15 6.30 6.20 6.10 7.20 8.10 7.00 7.20 6.15 8.40 7.40 5.55 8.70 6.90 18.40 6.05 24.00 7.55 5.80

Y 32.5 31.0 30.0 31.5 31.0 36.0 41.0 34.5 35.5 30.0 43.0 38.5 27.5 46.0 33.0 116.0 31.5 21.0 38.0 29.0

Er 2.80 2.60 2.40 2.60 2.60 3.00 3.60 3.10 3.00 2.60 3.50 3.20 2.20 4.00 2.90 9.40 2.60 14.50 3.20 2.50

Yb 2.16 2.19 1.92 2.10 2.14 2.50 2.72 2.35 2.54 2.07 3.01 2.69 1.86 3.10 2.09 7.16 2.22 13.70 2.60 2.02

Sc 23.0 23.0 19.5 21.0 25.5 19.0 18.5 24.0 24.0 21.5 23.0 19.3 25.0 15.0 23.0 9.5 23.0 22.0 19.5 22.5

V 300 286 265 295 300 328 314 332 341 256 348 329 352 290 325 128 284 337 314 270

Cr 428 386 335 258 326 49.0 10.0 201 69.0 365 191 17.0 357 7.00 301 2 432 55 207 410

Co 52.0 64.0 52.0 43.0 51.0 44.0 31.0 40.0 39.0 47.0 40.0 32.0 53.0 26.0 51.0 8.0 48.0 37.0 41.0 54.0

Ni 272 404 252 165 226 88.0 39.0 98.0 71.0 215 155 53.0 205 7.00 240 1 280 50 164 320

Q 0.00 0.00 0.00 0.00 1.61 1.15 0.52 1.24 3.64 0.00 3.94 1.90 0.00 1.65 0.00 2.68 0.12 1.63 0.00 0.00

ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

hy 12.74 20.32 16.89 6.62 14.62 7.96 7.45 10.76 9.31 15.98 12.61 8.38 7.01 7.55 12.19 5.23 18.62 9.23 12.70 14.32

ol 2.38 2.96 0.57 5.51 0.00 0.00 0.00 0.00 0.00 2.64 0.00 0.00 6.86 0.00 3.97 0.00 0.00 0.00 1.06 4.87

* In Chauvel et al., 2012

Table
Click here to download Table: Table 2 Guillou et al.xls
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Sample & 
Experiment 

 

Occurrence 
& Type 

K (wt%) 

± 1 

Mass  
molten 

(g) 

40
Ar*  

(%) 
40Ar* 

(10
-12

 mol./g)  

± 1  

Weighted mean 
40Ar* (10

-12 
mol./g)  

± 1  

Age 
(Ma)  

± 2 
MT04* 

8026 
SH tholeiite 

flow 
 

0.656 ± 0.007 
 

1.00089 
 

9.104 
 

1.794 ± 0.013 
  

8042 
 

Motane « …………» 1.00253 5.592 1.825 ± 0.014 1.808 ± 0.010 1.59 ± 0.04 

MT08* 

8027 
SH tholeiite 

flow 
 

1.112 ± 0.011 
 

1.02209 
 

39.698 
 

2.978 ± 0.018 
  

8043 
 

Motane « …………» 2.00172 33.989 2.943 ± 0.015 2.958 ± 0.012 1.53 ± 0.03 

MT11 

8028 
SH alk. bas. 

dyke 
 

1.685 ± 0.017 
 

1.00579 
 

28.565 
 

5.733 ± 0.029 
 
 

 

8044 Motane « …………» 1.00148 20.518 5.745 ± 0.030 5.739 ± 0.021 1.96 ± 0.04 
        

TH8* 

8052 
PS hawaiite 

flow 
 

1.563 ± 0.015 
 

1.00087 
 

36.879 
 

4.712 ± 0.025 
  

8067 Hanatetena « …………. 
» 

1.50091 47.536 4.744 ± 0.024 4.728 ± 0.017 1.74 ± 0.04 

TH35 

7796 
PS tephriph. 

needle 
 

4.383 ± 0.043 
 

0.49301 
 

45.584 
 

13.219 ± 0.068 
  

7812 Vaitahu « …………. 
» 

0.98675 43.218 13.527 ± 0.069 13.523 ± 0.048 1.78 ± 0.04 

TH31* 

7794 
PS tholeiite 

flow 
 

0.631 ± 0.006 
 

1.18672 
 

14.510 
 

2.015 ± 0.013 
  

7810 Hanatetena « ………….. 
» 

1.23815 6.891 1.908 ± 0.015 1.966 ± 0.010 1.80 ± 0.04 

TH14* 

8080 
SH alk. bas. 

flow 
 

0.847 ± 0.009 
 

1.00344 
 

15.206 
 

2.668 ± 0.016 
  

8109 Vaitahu « …………. 
» 

1.00670 19.159 2.648 ± 0.016 2.658 ± 0.011 1.81 ± 0.04 

TH18* 

8068 
SH tholeiite 

flow 
 

1.303 ± 0.013 
 

1.03076 
 

21.981 
 

4.111 ± 0.022 
  

8084 Vaitahu « …………. 
» 

1.00141 30.848 4.107 ± 0.021 4.109 ± 0.015 1.82 ± 0.04 

TH13* 

8069 
SH tholeiite 
upper flow 

 
0.852 ± 0.009 

 
1.00095 

 
17.817 

 
2.775 ± 0.011 

  

8085 Vaitahu « ………….. 
» 

1.00289 16.538 2.783 ± 0.016 2.779 ± 0.011 1.88 ± 0.04 

TH38 

7899 
SH tholeiite 

flow 
 

1.195 ± 0.012 
 

1.09784 
 

41.032 
 

3.849 ± 0.029 
 
 

 

7915 Vaitahu « ………….. 
» 

1.59724 16.812 3.999 ± 0.022 3.944 ± 0.017 1.90 ± 0.04 

TH37 

7795 
SH hawaiite 

flow 
 

1.959 ± 0.020 
 

1.10225 
 

27.170 
 

6.435 ± 0.034 
  

7811 Vaitahu « ………….. 
» 

1.01065 20.584 6.546 ± 0.036 6.487 ± 0.025 1.91 ± 0.04 

TH41 

7910 
SH tholeiite 

flow 
 

0.407 ± 0.004 
 

1.05413 
 

11.485 
 

1.419 ± 0.011 
 
 

 

7926 Vaitahu « ………….. 
» 

1.1609 11.309 1.499 ± 0.012 1.456 ± 0.008 2.06 ± 0.05 

TH39* 

7907 
SH tholeiite 

flow 
 

1.212 ± 0.012 
 

0.93740 
 

33.084 
 

4.448 ± 0.025 
  

7923 Vaitahu « ………….. 
» 

1.72916 25.158 4.418 ± 0.023 4.432 ± 0.017 2.11 ± 0.05 

FH16 

7928 
PS trachyte 

dome 
 

4.043 ± 0.040 
 

0.44685 
 

24.759 
 

7.845 ± 0.048 
  

7944 
 

Touaouoho « …………» 0.60293 70.794 7.782 ± 0.041 7.809 ± 0.031 1.11 ± 0.02 

FH06 

7918 
PS trachyte 

dome 
 

3.719 ± 0.037 
 

0.51412 
 

17.011 
 

7.792 ± 0.051 
  

7932 
 

Omoa « …………» 0.48218 25.537 7.886 ± 0.044 7.845 ± 0.032 1.22 ± 0.03 

FH05 

7938 
PS tholeiite 

flow 
 

0.672 ± 0.007 
 

0.44551 
 

5.529 
 

1.437 ± 0.023 
 
 

 

7954 
 

Omoa « ………… » 0.55791 3.267 1.441 ± 0.018 1.440 ± 0.014 1.23 ± 0.04 

FH11* 

7908 
PS tholeiite 

flow 
 

0.988 ± 0.010 
 

1.30538 
 

7.853 
 

2.155 ± 0.017 
  

7924 
 

Omoa « …………» 1.18210 27.261 2.157 ± 0.013 2.156 ± 0.010 1.26 ± 0.03 

FH18* 

7917 
SH tholeiite 

flow 
 

1.029 ± 0.010 
 

1.16847 
 

20.673 
 

2.468 ± 0.017 
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7933 
 

Touaouoho « …………» 1.0733 25.176 2.378 ± 0.014 2.416 ± 0.011 1.35 ± 0.03 

FH12 

7960 
PS trachyte 

dyke 
 

3.238 ± 0.033 
 

0.59089 
 

23.677 
 

7.859 ± 0.043 
  

7968 
 

Omoa « …………» 0.51453 40.616 7.662 ± 0.042 7.557 ± 0.030 1.38 ± 0.03 

FH01* 

7805 
PS tholeiite 

flow 
 

1.146 ± 0.011 
 

1.17441 
 

18.578 
 

2.747 ± 0.016 
  

7821 
 

Omoa « …………» 1.63045 25.899 2.687 ± 0.016 2.718 ± 0.011 1.37 ± 0.03 

FH30 

8157 
PS tholeiite 

dyke 
 

1.021 ± 0.010 
 

1.05080 
 

12.193 
 

2.515 ± 0.015 
  

8173 Omoa « ………….. 
» 

1.01932 5.904 2.459 ± 0.018 2.491 ± 0.011 1.41 ± 0.03 

FH08 

7806 
SH tholeiite 

flow 
 

0.755 ± 0.008 
 

1.19866 
 

10.197 
 

1.900 ± 0.014 
  

7822 
 

Omoa « …………» 1.09248 11.745 1.838 ± 0.015 1.869 ± 0.010 1.43 ± 0.03 

FH19 

7909 
SH tholeiite 

flow 
 

1.254 ± 0.012 
 

1.14484 
 

12.529 
 

3.128 ± 0.021 
  

7925 
 

Touaouoho « …………» 1.20202 20.824 3.127 ± 0.019 3.127 ± 0.013 1.44 ± 0.03 

FH17* 

7802 
SH tholeiite 

flow 
 

1.187 ± 0.012 
 

1.32097 
 

21.118 
 

3.105 ± 0.017 
  

7818 
 

Touaouoho « …………» 1.42923 11.183 3.001 ± 0.021 3.064 ± 0.013 1.49 ± 0.03 

FH13* 

7801 
SH tholeiite 

flow 
 

1.229 ± 0.012 
 

1.22071 
 

27.683 
 

3.833 ± 0.021 
  

7817 Touaouoho « …………» 1.51566 4.430 3.920 ± 0.032 3.825 ± 0.017 1.81 ± 0.04 
        

 

* age in Chauvel et al. (2012) but no details 



Sample MT11 MT04* MT08* TH39* TH41 TH37 TH38 TH13* TH18* TH14*

Volcano Motane Motane Motane Vaitahu Vaitahu Vaitahu Vaitahu Vaitahu Vaitahu Vaitahu

Type SH alb SH thol SH thol SH thol SH thol SH haw SH thol SH thol SH thol SH alb

SiO2 44.10 47.90 47.90 47.20 45.80 47.00 46.70 47.70 47.70 46.40

TiO2 3.78 4.28 3.78 3.45 4.26 3.56 3.34 4.15 3.44 3.17

Al2O3 13.75 14.65 14.86 12.70 14.70 16.10 11.90 14.70 14.60 13.17

Fe2O3* 12.90 12.93 12.32 12.80 13.30 12.40 12.80 12.35 12.30 12.66

MnO 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.17

MgO 5.96 5.63 5.53 9.20 6.20 5.10 11.00 6.09 6.40 8.37

CaO 11.42 9.87 10.15 9.80 10.70 10.10 10.70 9.95 9.93 9.96

Na2O 2.55 3.05 3.13 2.70 2.30 3.20 2.30 3.09 2.99 3.36

K2O 1.93 0.72 1.27 1.30 0.44 2.21 1.28 0.91 1.55 0.97

P2O5 0.63 0.50 0.52 0.52 0.52 0.60 0.43 0.51 0.46 0.48

LOI 2.53 0.01 0.00 0.40 1.20 0.50 0.00 -0.06 0.28 1.10

Total 99.72 99.70 99.63 100.24 99.59 100.94 100.62 99.67 99.81 99.81

Rb 51.0 11.2 26.0 32.2 4.9 64.2 25.1 11.7 40.5 9.3

Ba 508 215 507 297 226 577 314 240 342 516

Th 7.40 3.10 4.20 4.71 3.50 7.44 4.28 4.30 4.60 6.9

Nb 54.5 38.4 39.0 41.1 38.3 50.9 37.5 44.0 42.0 50

La 53.0 32.0 35.0 39.5 31.4 54.7 34.3 36.0 38.0 49

Ce 108 71.0 76.0 84.6 72.3 112 75.9 77.0 78 96

Sr 822 577 609 574 539 773 552 612 570 618

Nd 55.0 42.5 45.0 45.6 42.3 49.9 38.2 44.0 41.5 45

Sm 11.0 10.0 10.0 9.79 9.92 9.58 8.15 10.05 9.0 8.85

Zr 358 335 310 279 308 323 250 347 280 295
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