N

N

Submarine paleoseismology of the northern Hikurangi
subduction margin of New Zealand as deduced from
Turbidite record since 16 ka

Hugo Pouderoux, Jean-Noél Proust, Geoffroy Lamarche

» To cite this version:

Hugo Pouderoux, Jean-Noél Proust, Geoffroy Lamarche. Submarine paleoseismology of the northern
Hikurangi subduction margin of New Zealand as deduced from Turbidite record since 16 ka. Quater-
nary Science Reviews, 2014, 84, pp.116-131. 10.1016/j.quascirev.2013.11.015 . insu-00934455

HAL Id: insu-00934455
https://insu.hal.science/insu-00934455

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://insu.hal.science/insu-00934455
https://hal.archives-ouvertes.fr

O NoO uhlh W NP

=
o

11

12
13

14

15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40
41

Pouderoux et al. — Submarine paleoseismology of the northern Hikurangi Margin

SUBMARINE PALEOSEISMOLOGY OF THE NORTHERN HIKURANGI SUBDUCTION MARGIN OF NEW
ZEALAND AS DEDUCED FROM TURBIDITE RECORD SINCE 16KA

Hugo Pouderouxl'z'*, Jean-Noél Proust’, Geoffroy Lamarche’

'Géosciences-Rennes, CNRS, Université Rennes1, Campus de Beaulieu, 35042, Rennes cedex, France.
E-mail: h.pouderoux@gmail.com; jean-noel.proust@univ-rennesl.fr

’National Institute of Water and Atmospheric Research (NIWA), Private Bag 14-901, Wellington,
6241, New Zealand. E-mail: g.lamarche@niwa.co.nz

" Present day address: Department of Geoscience, University of Calgary, 2500 University Drive NW,
Calgary, AB T2N 1N4, Canada

KEYWORDS

active margin; Poverty Bay; paleoearthquake; turbidite paleoseismology; synchronous slope failures;
earthquake hazard assessment; peak ground acceleration

ABSTRACT

Paleoseismic studies seek to characterise the signature of pre-historical earthquakes by deriving
guantitative information from the geological record such as the source, magnitude and recurrence of
moderate to large earthquakes. In this study, we provide a ~16,000 yr-long paleo-earthquake record
of the 200 km-long northern Hikurangi Margin, New Zealand, using cm-thick deep-sea turbidites
identified in sediment cores. Cores were collected in strategic locations across the margin within
three distinct morphological re-entrants — the Poverty, Ruatoria and Matakaoa re-entrants. The
turbidite facies vary from muddy to sandy with evidence for rare hyperpycnites interbedded with
hemipelagites and tephra. We use the Oxal probabilistic software to model the age of each turbidite,
using the sedimentation rate of hemipelagite deduced from well-dated tephra layers and
radiocarbon ages measurements on planktonic foraminifera.

Turbidites are correlated from one core to the other using similarity in sedimentary facies,
petrophysical properties and ages. Results show that 46 turbidites are synchronous along the entire
margin. Amongst them 41 are interpreted as originating from the upper continental slope in
response to earthquake-triggered slope failures between 390 +170 to 16,450 310 yr BP. Using well-
established empirical relationships that combine peak ground acceleration, magnitude and location
of earthquakes, we calculate that synchronous slope failures were triggered by the rupture of 3 of
the 26 known active faults in the region, each capable of generating M,, 7.3 to 8.4 earthquakes — two
are crustal reverse faults and one is the subduction interface. The 41 M,, 2 7.3 earthquakes occurred
at an average recurrence interval of ~400 yr over the last ~16,000 yr. Among them, twenty are
interpreted as subduction interface earthquakes that occurred at a median recurrence interval of
~800 yr, with alternating periods of high activity and low return times (305 — 610 yr) and quiescence
periods with high return times (1480 — 2650 yr). Based on turbidite paleoseismology, we propose
that subduction interface earthquakes were of lower magnitude during active periods (M,, > 7.5)
than during quiescence periods (M,, = 8.2).

1. INTRODUCTION

Submarine paleoseismology provides the means to derive reliable information on the spatial
distribution and recurrence of prehistoric earthquakes in the marine environment from the
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sedimentary record. The method has been successfully applied at active margins (Adams, 1990;
Goldfinger et al., 2003; 2007; Huh et al., 2004; Noda et al., 2008; Gracia et al., 2010; McHugh et al.,
2011), in lakes (Strasser et al., 2006; Beck, 2009), and in intraplate domains (St-Onge et al., 2004).
However, identification of earthquakes as the triggering mechanism of turbidites often remains
equivocal despite careful sedimentological characterization (e.g. Gorsline et al., 2000; Nakajima and
Kanai, 2000). Convincing interpretations have been obtained by demonstrating a synchronicity of
trigger over long distances and across distinct sedimentary systems (Goldfinger et al., 2003; 2007;
Gracia et al., 2010). In some cases, correlations with historical and instrumental records of
earthquakes substantiate the interpretations, but in regions where written history does not exceed
200 years like in New Zealand, specific methodologies need to be developed to ascertain the
earthquake origin of turbidites (Pouderoux et al., 2012a; 2012b; Barnes et al., 2013).

The northern Hikurangi subduction margin, east of New Zealand’s North Island contains well-
developed series of Quaternary turbidites (Lewis, 1973, 1980; Lewis et al., 2004; Pouderoux et al.,
2012a). It is characterised by high sediment delivery (Hicks and Shankar, 2003; Hicks et al., 2004), and
intense tectonic activity (Reyners and McGinty, 1999; Doser and Webb, 2003), which makes it an
excellent location for marine turbidite paleoseismology studies. Three large morphological re-
entrants in the margin, the Poverty, Ruatoria and Matakaoa re-entrants (Fig. 1), concentrate gravity
flow sedimentation (Lewis et al., 2004; Joanne et al.,, 2010; Pedley et al.,, 2010) and record a
succession of turbidites emplaced since the Last Glacial Maximum (Pouderoux et al., 2012a). In
Poverty re-entrant, Pouderoux et al. (2012b) demonstrated that most of the turbidites were
triggered by paleo-earthquakes. However, their study focused on two cores recovered from a single
sedimentary system and lacks the margin-scale embrace which may afford the characterisation of
earthquakes of great magnitudes (My > 8) such as those generated along a subduction interface.

The present paper aims at establishing a calendar record of earthquakes that occurred along the
northern Hikurangi Margin for the last ~16,000 yr, at identifying the fault sources and estimating the
magnitude of earthquakes at the origin of the turbidites. To do so, we use sedimentological and
geomoprhological observations, chronostratigraphic correlations and peak ground acceleration
attenuation models.

2. BACKGROUND AND GEOLOGICAL SETTINGS

2.1. Morphological and tectonic settings

The northern Hikurangi Margin (Fig. 1) comprises from east to west the 3500 m-deep Hikurangi
Trough, a narrow sediment-starved accretionary prism, an unstable continental slope and a
continental shelf supplied in sediments by the rivers of the Raukumara Peninsula (Lewis, 1980; Lewis
and Pettinga, 1993; Collot et al.,, 1996). The margin extends northwards into the Kermadec
subduction margin. Inland, west of the peninsula lies the rhyolitic Central Volcanic Region, which is
the main source of geochemically distinct ash layers (tephra) that punctuate the terrestrial and
subagueous Quaternary sedimentary record of the North Island (Lowe et al., 2008). Three
morphological re-entrants scar the continental slope (Fig. 1): (1) the 1500 km? Poverty re-entrant
which formed after successive margin collapses since 1500 500 ka (Pedley et al., 2010); (2) the 3300
km? Ruatoria re-entrant and associated Ruatoria Debris Avalanche formed 170 +40 ka ago (Collot et
al., 2001); and (3) the 1000 km? Matakaoa re-entrant located ~100 km landward of the subduction
margin and resulting from multiple mass transport events deposited between 1300 and 35 ka
(Lamarche et al., 2008a; Joanne et al., 2010). The three re-entrants (thereafter named Poverty,
Ruatoria or Matakaoa for simplicity) include gullies and canyons on the upper slope, mid-slope basins
and trench basins, and represent independent Quaternary sedimentary systems.

The subduction of the Pacific Plate beneath the Australian Plate, at a present rate of 5 cm/yr
(DeMets et al., 1994; Beavan et al., 2002) is resulting in uplifting of the inland axial range of the
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Raukumara Peninsula at an estimated maximum rate of 3 mm/yr (Reyners and McGinty, 1999;
Wilson et al., 2007), and intense seismic activity along the margin (e.g. Webb and Anderson, 1998;
Reyners and McGinty, 1999). Quantitative estimate of the interseismic coupling (Wallace et al., 2004;
2009), seismological studies (Reyners, 1993; 1998), tectonic investigations (Nicol and Wallace, 2009)
and geomorphological characteristics (Collot et al., 1996) all contribute to the interpretation that the
600 km-long Hikurangi Margin divides into three subduction interface segments, namely from south
to north, the Wairarapa, Hawke’s Bay and Raukumara segments. The change from accretion to
erosion-dominated margin, North of Gisborne marks the transition from Hawke’s Bay to Raukumara
segments, where the study area is located. Empirical modelling suggests that rupture of the
Raukumara or Hawke's Bay segment would result in M, 8.2 — 8.4 earthquakes, whereas a
simultaneous rupture of both segments would produce a M,, 8.6 earthquake, and that rupture of the
entire Hikurangi Margin would result in a M,, 8.8 earthquake (Wallace et al., 2009; Stirling et al.,
2012). Northwards, the Kermadec Margin may trigger M,, 2 8.5 earthquakes that can affect the study
area (Power et al., 2011). Seismic reflection surveys on the continental shelf have helped to identify a
series of upper plate active faults (Barnes et al., 2002; Barnes and Nicol, 2004; Lewis et al., 2004; Fig.
1) and empirical relationships suggest some of these faults are capable of generating M,, = 6.5
earthquakes (Stirling et al., 2012; see also SM1).

The instrumental record of earthquakes in New Zealand since 1940 includes 298 earthquakes of M,, >
5 in the study area, with only six of M,, 2 6.5 (http://www.geonet.co.nz, as in December 2011). Two
subduction interface earthquakes of M,, 6.9 — 7.1 were recorded in 1947 in the Poverty Bay area
(Downes et al., 2000; Doser and Webb, 2003), and the 1931 M,, 7.8 Napier upper plate earthquake is
the largest and most damaging historic earthquake recorded in the area (Downes, 1995). Prehistoric
M,, 2 7 earthquakes over the last 9 kyr are evidenced by uplifted marine terraces (Berryman, 1993;
Wilson et al., 2006; 2007), subsided swamps (Cochran et al., 2006) and tsunami deposits (Goff and
Dominey-Howes, 2009). Marine terraces uplifts at Pakarae river mouth and Mahia Peninsula are
thought to be the result of near-shore fault ruptures (Wilson et al., 2007; Litchfield et al., 2010),
namely the Gable End and Lachlan 3 faults (Fig. 1), that might have ruptured coevally. Sudden
subsidence episodes at the origin of swamps flooding in Hawke’s Bay were interpreted as the result
of large offshore earthquakes either from ruptures of the Lachlan 3 fault or the subduction interface
(Fig 1; Cochran et al., 2006). In Poverty, a 18 kyr paleo-earthquake record based on turbidite
deposition reveal a mean return time of ~230 years for moderate to large earthquakes and a 90%
probability of occurrence ranging from 10 to 570 years (Pouderoux et al., 2012b). Probabilistic
seismic hazard assessment suggests that earthquakes in the region with an associated Peak Ground
Acceleration (PGA) of 0.3-0.5 g have a 500-year return time in the coastal area and that earthquakes
with a PGA of 0.8-1.4 g have a 2500 year average return time (Stirling et al., 2012).

2.2. Sedimentation patterns and turbidites deposition

The ubiquitous gravity flow sedimentation of the northern Hikurangi Margin ranges from fine
turbidites deposited on mid-slope basins to margin-scale debris avalanches (Lewis, 1973; Collot et al.,
2001; Lamarche et al., 2008a; Mountjoy and Micallef, 2011; Pouderoux et al., 2012a). Quaternary
sedimentation is characterised by interlayering of turbidites and hemipelagites infilling slope and
trench basins (Lewis, 1980; Lewis and Pettinga, 1993; Lamarche et al., 2008b; Paquet et al., 2011).
Over the last ~18 kyr, accumulation rates in mid-slope basins and in the Hikurangi Trough range from
~15 to ~110 cm/ka (Orpin, 2004; Orpin et al., 2006; Pouderoux et al., 2012a). The Waipaoa and
Waiapu rivers (Fig. 1) provide most of the turbidite material, contributing to an annual sediment
delivery of 70 Mt/yr off the Raukumara Peninsula (Hicks and Shankar, 2003). The present day
sedimentation rate estimated from %°Pb activity decreases from ~1,000 cm/ka on the continental
shelf to ~100 cm/ka in mid-slope basins (Alexander et al., 2010; Kniskern et al., 2010), but forest
clearing during human settlement in New Zealand 500 — 700 yr ago resulted in river sediment fluxes
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110 to 660% greater than during the Holocene interglacial period (McGlone and Wilmshurst, 1999;
Kettner et al., 2007; Paquet et al., 2009).

Turbidites along the northern Hikurangi Margin are recognised as cm-thick fining up sandy to silty
beds rich in volcaniclastic debris, quartz and bioclasts (Pouderoux et al., 2012a; Fig. 2). Few debrites,
characterised by <35 cm-thick chaotic silty-clay beds with sand to pebble size clasts are also
recognised. These two lithotypes alternate with hemipelagites, which consists of 1 — 90 cm-thick
layers of olive-grey silty-clay, and tephra layers, composed of volcaniclastic debris, mainly glass
shards and pumiceous lapilli, and arranged in <10 cm-thick silty beds (Table 1). Boundaries between
lithotypes are usually sharp, except between turbidites tails and hemipelagites.

Turbidites tails and hemipelagites have similar grain-size and texture but differ by their colours, with
hemipelagites being lighter than turbidites. Hemipelagites are better sorted than turbidites, with a
characteristic single grain-size peak < 10 um. The composition of the silty fraction in hemipelagites
explains the colour variations with abundant volcaniclastic debris and low quartz content when
compared to turbidites, which show abundant quartz and low volcaniclastic debris. The differences
are confirmed by 6C and C/N values, with higher 6C and lower C/N in hemipelagites than in
turbidites (Pouderoux et al., 2012b). Erosion at the base of turbidites is considered negligible for
those deposited during the Holocene but common during the Late Pleistocene (Pouderoux et al.,
2012a). Floods and volcanic eruptions may have occasionally triggered turbidity currents in the area
and resulted in the deposition of hyperyncites and primary monomagmatic turbidites (Pouderoux et
al., 2012a). The majority of turbidites contains benthic foraminifers indicative of environments 2150
m, suggesting an upper slope origin of the reworked material. In Poverty, 67 synchronous turbidites
are interpreted as being originated from earthquake-triggered slope failures on the upper
continental slope between 820+190 and 17,730+700 yr BP (Pouderoux et al., 2012b).

3. METHODS

3.1. Sediment core analyses

The present study is based on detailed stratigraphic correlation of sediment cores collected in
Poverty, Ruatoria and Matakaoa (Fig. 1; Table 2). Cores were recovered from strategic locations to
sample turbidites deposition since the Last Glacial Maximum (Proust et al., 2006). Four giant piston
cores, 12 to 20 m long, were collected during the MD152 MATACORE voyage of R.V. Marion-Dufresne
(Proust et al., 2006; 2008) in Poverty and Ruatoria in water depth ranging from 1400 to 3500 m. In
Poverty, MD06-3003 and MD06-3002 targeted two mid-slope basins in water depths of 1390 m and
2300 m respectively. In Ruatoria, MD06-3009 was collected in 2940 m water depth on top of the
Ruatoria Debris Avalanche and ~250 m above main sediment pathways. MD06-3008 was collected in
3520 m water depth in the Hikurangi Trough. Nine short piston cores were acquired onboard R.V.
Tangaroa during research voyages TAN0314 (Carter et al., 2003) and TANO810 (Lamarche et al.,
2008b) in Ruatoria and Matakaoa in water depth ranging from 650 to 3400 m. In Ruatoria, Tan0810-2
and -3 were collected on the upper continental slope in water depth of ca. 1080 m, and Tan0810-6
was retrieved from the floor of the 3400 m-deep Hikurangi Trough. In Matakaoa, Tan0810-9 to -13
were collected within the channel/levee complex of the Matakaoa Turbidite System in water depth
ranging from 1090 to 1260 m (Fig. 1). More specifically, Tan0810-9 and -12 were collected within the
Matakaoa channel, Tan0810-10 on the left hand levee and Tan0810-11 and -13 on the right hand
levee, all less than 2 km away from the channel. Tan0314-8 was collected within the deep-sea fan in
2030 m water depth.

Petrophysical analyses, including continuous gamma density, magnetic susceptibility and P-wave
velocity, were obtained on split cores at 1 cm intervals using a Geotek Multi-Sensor Track. These
measurements tied to the main lithofacies and lithofacies successions proved to be essential for
core-to-core correlation. P-wave velocities tends to be underestimated (1200-1500 m/s) but the
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downcore fluctuations, which were used for core-to-core correlations are similar to those in the
density and magnetic susceptibility measurements as well as facies variations so that they are
considered usable.

3.2. Age model

The stratigraphic framework is based on tephrochronology and AMS *C radiochronology with an
average frequency of 0.7 to 2 ages per meter of core (Pouderoux et al., 2012a). Tephra were
characterised by glass chemistry, mineralogy and their stratigraphic position and tied to the well-
established regional charts of volcanic eruptions to get their precise calibrated ages (Shane, 2000;
Lowe et al., 2008). The cores contain one to six tephra layers correlated to the nine large volcanic
eruptions that occurred in the Central Volcanic Region. Radiocarbon dating was performed on hand-
picked mixed planktonic foraminifers from hemipelagite samples collected 0.7-1.0 cm below
turbidite layers. Raw radiocarbon ages are calibrated using the Oxcal 4.1 software (Bronk Ramsey,
2008) with a regional reservoir age of 395 +57yr (AR= -5 +57yr) calculated from the published East
Cape reservoir ages (Kalish, 1993; Higham and Hogg, 1995). A reservoir age of 800 +110 yr (AR= 400
+110yr) was applied for **C dates between 12,400 and 12,900 **C yr BP, as temporal variations of the
reservoir age were identified during this period (Carter et al., 2008; Sikes et al., 2000).

We derive the age model for each core by interpolating hemipelagite sedimentation rates between
time markers (tephra and '*C ages) according to the P_Sequence deposition model of the Oxcal 4.1
software, following the approach developed by Pouderoux et al. (2012b). The model provides the
68% and 95% probability age ranges (1o and 20) of each turbidite. In the following sections, ages are
reported with 2o uncertainties. The 2o ages are considered reliable for Holocene turbidites as basal
erosion is negligible, but the age may be overestimated during the Late Pleistocene when basal
erosion is likely to have occurred (Pouderoux et al., 2012a).

3.3. Correlation criteria

We use four criteria to correlate turbidites from core to core (see SM2). (1) Tephra layers form
absolute time-lines and robust stratigraphic markers. Their identification in distinct cores constitutes
the first criteria for correlating events across the margin. (2) The estimated age of each turbidite is
used as second criteria to make stratigraphic correlations between two tephra layers. However,
because of the high number of turbidites and their age uncertainties, correlation from on core to
another can be ambiguous at time. (3) We use the similarity in petrophysical properties (gamma
density, magnetic susceptibility and P-wave velocity) and facies as third criteria, and (4) the thickness
of turbidites and hemipelagite as fourth criteria to ascertain the correlations. Petrophysical
properties are good correlation criteria (Patton et al., 2013; Goldfinger et al., 2012; Gracia et al.,
2010) because turbidite coarse grain-size or volcaniclastic compositions typically result in high
densities, magnetic susceptibilities and P-wave velocities and correlate well from core to core (Fig. 2).

3.4. Terminology

In this study, the term “turbidite event” (Tx) refers to a single, well-dated depositional episode under-
and overlain by hemipelagite. Stacked turbidites with no intertwined hemipelagite are considered as
a single depositional event, as only the presence of hemipelagite guarantees the occurrence of
significant time between two successive events. Two turbidites separated by a tephra layer represent
two distinct events as usually tephra settle down within days to months after the volcanic eruptions
(Wiesner et al., 1995).

“Basin events” represent synchronous turbidite events recorded in at least two cores in a single re-
entrant. Basin events are labelled Px in Poverty, Rx in Ruatoria and Mx in Matakaoa, x being the
event sequential number in the re-entrant from the youngest to the oldest.
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Hikurangi “margin events” (Hx) are synchronous basin events recorded in at least two re-entrants
along the northern Hikurangi Margin. The age of a margin event is determined by the intersection of
the age ranges shared by the synchronous basin events. Non-correlative events are called “isolated
events”.

4. RESULTS

4.1. Petrophysical properties of sediments

The downcore variability in gamma density, magnetic susceptibility (MS) and P-wave velocity (V)
depends on sediment lithology and the alternation of hemipelagites, turbidites and tephra (Fig. 2;
Table 3). Hemipelagites usually have constant low density (1.1 to 1.8 g/cm?), MS (10 to 60 Sl) and V,
(1225 to 1775 m/s). Turbidites have systematically higher density (1.2 to 2.2 g/cm?), MS (10 to 120 SI)
and V, (1225 to 1950 m/s) with a decreasing trend from base to top. When preserved, tephra show
values similar to turbidites, but higher than hemipelagites, with characteristic sharp variations at
their base and top boundaries.

The boundary between turbidites and hemipelagites is progressive and difficult to identify using
petrophysical properties alone. Turbidites show generally a progressive decrease while hemipelagites
have stable values. Usually the decreasing trend of turbidite sequence is in good agreement with
grain-size measurements, and coarser beds are noticed by a sharp increase of the density, MS and V,

(Fig. 2).

4.2. Age model and time-lines

Cores in Ruatoria cover a continuous age range from 630 +10 yr BP to 15,360 +70 **C yr, with the
oldest sediments contained in cores MD06-3008 and MDO06-3009 (Pouderoux et al.,, 2012a). In
Matakaoa, cores from the turbidite plain (Tan0810-9 to -13) cover a continuous age range from 630
+10 yr BP to 4,710 40 *C yr. In core Tan0314-8, two basal **C ages complement the tephra
identification of Joanne et al. (2010), and show that the core contains a truncated record from 5,530
+60 yr BP to 13,910 +70 *C year.

Age models provide an age estimate for every single turbidite event (Fig. 3). Overall the average 20
age range is 410 years (13 — 1141) in Ruatoria and 327 years (13 — 970) in Matakaoa, comparable to
the 300 year (25 — 757) 20 age range calculated in Poverty (Pouderoux et al., 2012b). The ages of
turbidite events in Ruatoria and Matakaoa correspond to the ages calculated at each corrected depth
and ranges from 170 +140 to 18,150 +150 yr BP, similar to what was determined in Poverty (820
1190 to 17,730 £700 yr BP). From 0 to 6 kyr, 11 cores (all but MD06-3002 and Tan0314-8) are usable
to correlate turbidite events along the margin, while from 6 to 17 kyr, only five cores provide
potential for turbidite events correlations.

4.3. Core-to-core correlations
4.3.1. At basin scale

In Ruatoria, turbidite events are thick, commonly >10cm, and correlate well from the upper slope to
the top of the debris avalanche and the Hikurangi Trough (Fig. 4; see also SM2 Fig. SM2.01). Cores on
the upper slope (Tan0810-2 and -3) and on the top of the Ruatoria Debris Avalanche (MD06-3009)
contain only basin events whereas the cores in the Hikurangi Trough (MD06-3008 and Tan0810-6)
contain basin events and scattered isolated events. Two of these isolated events are primary
monomagmatic turbidites deposited directly after the Taupo and Waimihia eruptions (Pouderoux et
al., 2012a). We identified 30 basin events in Ruatoria, from 390 +250 to 15,940 +580yr BP. Basin
events younger than 6 ka (R1 to R14) correlate in all five cores, whereas events from 6 to 17 ka (R15
to R30) correlate only in cores MD06-3008 and MD06-3009 (R15 to R30). The mean recurrence
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intervals of these 30 basin events is 520 years. Only MD06-3009 contains material older than ~17 ka
with a recurrence intervals of turbidite events of 97 years. This important difference in return time
suggests that these turbidite events cannot be used as proxy for basin events for the period older
than ~17 kyr.

In Matakaoa, turbidite events are commonly <5cm-thick, and often homogenised in the hemipelagite
background because of severe bioturbation, hence a higher uncertainty in our interpretion of thin
events as isolated or basin events than for Ruatoria and Poverty. We identify 19 basin events (M1 to
M19) deposited in Matakaoa between 170+140 and 16,400+780 yr BP (Fig. 5; see also SM2 Fig.
SM2.02). Basin events younger than 5 ka are only recognised in the turbidite plain (M1 to M9). Cores
Tan0810-9, -10 and -13 mostly record basin events while cores Tan0810-11 and -12 are scattered
with isolated events. Basin event M10 dated at 5,130+290 yr BP is the only event that correlates in
the turbidite plain (Tan0810-10) and the deep-sea fan (Tan0314-8). No other events in the deep-sea
fan correlate with upslope events because of the lack of age overlap in cores. Although this
characterises them as isolated events, they likely represent basin events as the core was collected in
the deep-sea fan at the outlet of the Matakaoa Turbidite System.

4.3.2. At margin-scale

Twenty-eight basin events are synchronous in two or more re-entrants over the last ~16 kyr, and
therefore fulfil the criteria of margin events (Fig. 6; see also SM2 Fig. SM2.03). Ten margin events are
documented in the three re-entrants (H3, H5, H8, H12, H23, H30, H33, H35, H41, and H43; Table 4).
H4 and H6 are identified from correlative basin events in Poverty and Ruatoria but also correlate to
isolated events in Matakaoa. The remaining 16 margin events are only correlative in Poverty and
Ruatoria (H7, H9-11, H13-14, H16, H18-19, H22, H26-28, H31-32, and H34; Table 4). All basin events
in Ruatoria, except for the two youngest R1 and R2 dated at 390 +250 and 790 +£200 yr BP, fulfil the
criteria of margin events. Originally, R1 and R2 were not recognised as margin events since they did
not correlate to basin events in Poverty. However, because R1 and R2 correlate to isolated events in
Matakaoa and because material younger than 820 yr BP was not retrieved in Poverty cores, we
interpret them as margin events as all basin events in Ruatoria are margin events (H1 and H2 in Table
4).

A further 15 basin events in Poverty, dated from 6 to 16 kyr (P24, P26, P30, P33, P38, P40, P49, P57-
61, P63, P65 and P66), correlate to 16 isolated events in core MD06-3008, and are interpreted as
margin events (H15, H17, H20, H21, H24, H25, H29, H36-40, H42 and H44-46; Table 4). That specific
period recorded in Ruatoria only by cores MD06-3008 and MD06-3009 is characterised by an
unknown number of MD06-3008 isolated events not recognised as Ruatoria basin events due to a
lack of data, as core MD06-3009 is located on a topographic high. In addition, during the period 0-6
kyr recorded in all cores, seven basin events not recorded in MD06-3009 (R1-2, R8-9, R11-12 and
R14) fulfil the criteria of margin events. These observations confirm that the 15 correlated basin
events in Poverty with isolated events in MD06-3008 are margin events.

Overall, the margin-scale correlation results in the identification of 46 margin events deposited from
390 £170 to 16,450 £310 yr BP, with an average age uncertainty of ~170 years (ranging from 6 to 400
years; Table 4).

5. DIScuUsSION

5.1. Earthquake’s origin of turbidites

The associations of benthic foraminifers contained in basin and isolated events suggest a shelf edge
origin of the reworked material within 150-200 m of water depth in Ruatoria and Poverty, and 150-
600 m of water depth in Matakaoa (Pouderoux et al., 2012a; 2012b). Isolated events in the trench
interpreted as margin events also rework material from the upper slope, which corroborates that
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turbidity currents originate from the upper slope and suggests a slope failure origin of most gravity
flows. This suggestion is supported by the present day high state of instability of the Hikurangi
Margin’s upper slope associated with gas and fluids (Lewis and Marshall, 1996; Orpin, 2004; Faure et
al., 2006), and high sediment supply during the Holocene (Hicks and Shankar, 2003; Addington et al.,
2007; Lewis et al.,, 2004). At margin-scale, five margin events are interpreted as triggered by
mechanisms other than slope failure: H9, H22, H23 and H28 which contain at least one hyperpycnite,
and H5 which is a primary monomagmatic turbidite. The remaining 41 margin events are related to
synchronous slope failures along the 100 km-long northern Hikurangi Margin and all originated
within 150-600 m of water depth since ~16ka (Table 4; see also SM2 Fig. SM2.03).

Synchronicity of trigger over such wide areas is recognised as the most likely signature of large
earthquakes in other regions of the world (Gracia et al.,, 2010; Goldfinger et al., 2003; 2012),
although storms and tsunami waves may occasionally trigger gravity flows and slope failures (Mulder
et al., 2001; Puig et al., 2004). Repeated storms have occurred along the northern Hikurangi Margin
over the Late Holocene (Page et al., 2010), and are likely to have affected the seafloor by
remobilising surficial sediments of the shelf or to have triggered sediment liquefaction (Lee and
Edwards, 1986; Ma et al., 2010; Goldfinger et al., 2012). Puig et al. (2004) characterized sediment
gravity flows directed down-canyon during storms on the California margin, and Mulder et al. (2001)
described a storm-generated turbidite at 650 m water depth in a canyon head few months after a
large historical storm in the Bay of Biscay. Furthermore, turbidity currents generated during storms
are typically less voluminous and spread over smaller geographic areas than those triggered by
earthquakes (Gorsline et al., 2000; Goldfinger et al., 2007; Blumberg et al., 2008). They also usually
settle in water depth < 1000 m (Puig et al., 2004). The Matakaoa canyon’s head contains a stack of
recent cm-thick turbidites recorded in 650 m water depth, sedimentologically similar to the storm-
induced turbidites found in the Bay of Biscay (Pouderoux, 2012; Pouderoux et al., 2012a). Even if
confirmed along the Hikurangi Margin, these storm-related turbidites are likely to be restricted to
canyon heads and not observed at water depth > 1000 m where we found deep-sea synchronous
turbidites. Tsunami waves may also generate slope failures or turbidity currents directed down-slope
and initiated on the continental shelf (Shanmugam, 2006). The largest historical tsunami affecting
the region produced a run-up of ~10 m north of Gisborne and was triggered by the local M,, 7.1
Gisborne earthquake of 25 March 1947 (Downes et al., 2000; Doser and Webb, 2003). Other tsunami
run-ups of 10 m interpreted as likely generated by local earthquakes appear in the New Zealand
paleo-tsunamis record (Goff and Dominey-Howes, 2009). The tsunami generated by the 23 May 1960
M,, 9.5 Chilean earthquake, the largest earthquake ever recorded worldwide, resulted in a 3 m-high
run-up at Gisborne and 4.5 m in Hawke's Bay (geonet.org.nz). This suggests that tsunamis potentially
able to trigger slope failures are more likely to be generated by local earthquakes, which ground-
shaking is far more likely to trigger slope failures than the tsunamis wave itself.

Earthquakes are therefore the most likely triggering mechanism during the last sea-level highstand
for the generation of synchronous slope failures at the origin of margin events, as inferred in other
active margins (e.g. Noda et al.,, 2008; Gracia et al., 2010; Goldfinger et al., 2012). Storms and
tsunamis are possibly secondary players during the marine trangression. Even if the average
recurrence interval of margin events varies slightly between the Late Holocene highstand (~440 yr
over the last 7.5 kyr) and the Late Pleistocene — Early Holocene marine transgression (~375 yr from
7.5 to 16ka), it is possible that earthquake ground shaking was not the sole triggering mechanism of
synchronous slope failures before 7.5 ka. It is extremely difficult to estimate the impact of storms
and tsunamis waves on slope stability during the marine transgression. Consequently, if the turbidite
record of the northern Hikurangi Margin is considered a good proxy for paleo-earthquakes during the
Late Holocene and provides a calendar of 17 large earthquakes that occurred in the region between
390 +£170 and 7480 £120 yr BP with an average return time of ~440 years, the Late Pleistocene —
Early Holocene part of this record incurs an increased uncertainty. Nevertheless, the turbidite record
during the marine transgression could be use complementary to the Late Holocene highstand to
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constraint the earthquake hazard on the area, knowing that the recurrence intervals may be
underestimated and the hazard overestimated.

5.2. Source and magnitude estimation of paleo-earthquakes

The 9 kyr-long coastal paleo-earthquake record is time correlative to margin events (Fig. 7). The 20
age range of margin events overlies the age of all marine terraces uplifts except one at Pakarae river
mouth and one at Mahia peninsula. These uplifts were interpreted as the result of the rupture of
near-shore Gable End and Lachlan 3 faults (Wilson et al., 2007; Litchfield et al., 2010). Conclusions
are however sometimes equivocal: H4 and H10 are time correlative to the rupture of these two faults
suggesting a simultaneous rupture of the two faults or a rupture of the subduction interface; H1
correlates with uplifts at the Pakarae river mouth and Mahia Peninsula and with a paleo-tsunami.

Over the last 7.5 kyr, ten margin events correlate to the paleo-earthquake record onland. These
margin events are part of a group of 20 particularly large margin events identified over the last 16 ka
(Table 4; see also SM2 Fig. SM2.03), characterized by a ~40 cm-thick turbidite layer deposited on a
topographic high in Ruatoria, ~250 m above the main sediment pathways (core MD06-3009); such
thickness is twice that of turbidites in other cores. They correspond to exceptionally voluminous
turbidity currents triggered simultaneously in the three re-entrants. Such sedimentological evidences
coupled with the systematic correlation with onland record are consistent with a triggering by
subduction earthquakes initiated on the Raukumara segment of the subduction interface.

Slope failure triggering and turbidite deposition depend more on the shaking intensity felt on the
slope than on the magnitude of the earthquake itself. The shaking intensity can be evaluated by
calculating the peak ground acceleration (PGA) (Lee and Edwards, 1986; Douglas, 2000). The PGA
threshold for slope failure and turbidity current generation in conditions similar to the upper slope of
the northern Hikurangi Margin ranges from 0.08 to 0.6 g and more likely from 0.08 to 0.15 g (Lee et
al., 1999; Lykousis et al., 2002; Strasser et al., 2007; Noda et al., 2008; Dan et al., 2009; see also SM3).
By using the PGA empirical attenuation relationships of Cousins et al. (1999) and Si and Midoriwaka
(1999), which are best suited for the region, we estimated the earthquake magnitude (M,,) and the
location of the hypocentre (depth and distance from the upper slope) of paleoearthquakes
responsible for the triggering of upper slope failures. This enabled us to create isomagnitude maps
and to identify areas where an earthquake of a given magnitude and origin has to occur to trigger
synchronous slope failures and turbidity currents (Fig. 8; see also SM3 Fig. SM3). Superposing these
isomagnitude maps over the known active faults (Stirling et al., 2012; Litchfield et al., in press)
provides the means to infer the sources of paleo-earthquakes capable of generating our deep-sea
turbidite record. (Table 5; see also SM3 Fig. SM3).

We disregard using a PGA threshold of 0.15 g for the triggering of turbidity currents as this would
suggests that the 17 Late Holocene margin events were all subduction interface earthquakes, which
is very unlikely (Table 5). A more reasonable PGA threshold between 0.08 and 0.1 g suggests that
these events were associated with ruptures of upper plate faults or the subduction interface, all
capable of generating M,, 2 7.3. This latter interpretation is more consistent with our findings that
only 10 out of these 17 margin events correspond to large subduction interface earthquakes. These
values of PGA are also extremely closed to that determined along the Japan (Noda et al., 2008) and
Algerian margins (Dan et al., 2009).

The 17 margin events provide a meaningful calendar of M,, > 7.3 paleo-earthquakes that have
affected the region between 390 +170 and 7,480 £120 yr BP : 10 subduction interface earthquakes
and 7 upper plate earthquakes (Tables 4 and 5). The results show that only three out of the 26
known active fault sources recognized by Stirling et al. (2012) in the offshore northern Hikurangi
Margin (faults 2, 6 and 7, namely the Raukumara subduction interface segment, Ruatoria South 1 and
Areil Bank; Table 5) are responsible for this deep sea turbidite record.
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5.3. Recurrence intervals of large earthquakes

Our turbidite paleoseismology approach reveals that the recurrence interval (Rl) of M,, 2 7.3
earthquakes ranges from 150 to 1240 years with an average of 440 years during the Late Holocene
(Figs. 9 and 10). Seismological modelling shows that the three active faults identified as the potential
sources of our paleo-earthquakes have an empirical RI of rupture of 1300-1670, 3340, and 720 years
(Table 5; see also SM1; Stirling et al., 2012). Assuming that upper plate faults rupture independently
from the subduction interface (Stirling et al., 2012), the average Rl of fault ruptures would be
comprised between 390 and 460 years, which fits well with the 440 years Rl of margin events. During
the Late Pleistocene — Early Holocene, margin events had an average Rl of 350 years, ranging from a
few years to up to 1100 years, which is in good agreement with the estimated average Rl of fault
ruptures from Stirling et al. (2012).

The Rl of the 10 large margin events triggered by subduction interface earthquakes varies from 370
to 2090 years during the Late Holocene with alternating periods of high and low RI, and an average RI
of ~800 years. A similar pattern is recorded for the Late Pleistocene — Early Holocene period.
Assuming that subduction interface earthquakes are the sole triggering mechanism of these large
margin events over the last 16 kyr, this pattern of Rl suggests two different tectonic regimes with
periods of intense activity separated by periods of relative quiescence (Fig. 9). Such scenarios have
been suggested by Berryman et al. (1989) for the Hikurangi Margin, Patton et al. (2009) for the
Sumatra margin and Goldfinger et al. (2009; 2013) for the Cascadia margin. Active periods exhibit
shorter durations (0.6-3 kyr-long) and drastically shorter Rl (305-610 years) than quiescence ones
(1.5-3.2 kyr-long with RI range of 1480-2650 years). These Rls differ from the predicted 1300-1670
years calculated using seismological modelling by Stirling et al. (2012). The latter Rls are closer to that
observed during periods of quiescence than that during active periods. The Rl and M,, of Stirling et al.
(2012) are maximum values determined from empirical relationships and represent the time needed
for the subduction interface to accumulate enough strain to rupture the full length of the Raukumara
segment. Active seismic periods recorded in the sedimentary record suggest that in a stable tectonic
regime (convergence rate, slip rate, etc...), the deformation and energy released by the subduction
interface may be partitioned with multiple ruptures generating earthquakes less that M,, 8.2 — 8.4.

Isomagnitude maps suggest that a M,, 7.5 — 8 earthquake on the subduction interface segment
would be enough to generate a PGA of 0.08 — 0.1 g on the upper slope and therefore trigger
simultaneous turbidity currents along the northern Hikurangi Margin (see SM3 Fig. SM3). Considering
the constraint given by core MD06-3009 and the presence of turbidites on topographic highs, we
propose that during active periods the Raukumara segment of the subduction interface produced
regular large M,, 7.5 — 8 earthquakes. These earthquakes may not rupture the full length of the
Raukumara segment or release the total accumulated strain. This is in good agreement with the two
inferred moderate subduction interface earthquake Mw 7 and 7.1 which affected the Gisborne
district in 1947 (Doser and Webb, 2003).

6. CONCLUSION

This study presents the first chrono-stratigraphic correlation of deep-sea turbidites along the
northern Hikurangi Margin of New Zealand, from the detailed description and age dating of sixteen
sediment cores collected in the Poverty, Ruatoria and Matakaoa re-entrants. Age models provide a
precise age estimate for every single turbidite deposited since the Last Glacial Maximum. The age of
turbidites ranges from 170 £140 to 18,150 +150 yr BP.

Basin-scale correlations of turbidites result in the identification of 30 basin events (synchronous
turbidites) deposited in Ruatoria between 390 +250 and 15,940 +580yr BP, and 19 basin events
deposited in Matakaoa between 170 +140 and 16,400 £780 yr BP. Previous studies have recognised
73 basin events in Poverty, deposited between 820 £190 and 17,730 700 yr BP.
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Margin-scale correlations result in the identification of 46 margin events (synchronous basin events)
deposited from 390 +170 to 16,450 +310 yr BP, among which four are recognised as catastrophic
floods deposits (hyperpycnites) and one a primary monomagmatic turbidite. The remaining 41
margin events are related to synchronous slope failures along the margin.

Earthquakes are the triggering mechanism of these slope failures during the sea-level highstand, and
are also likely to be the main triggering mechanism during the marine transgression. The turbidite
record of the northern Hikurangi Margin is therefore a good proxy for paleo-earthquakes,
corroborated by the time correlation with onland paleo-earthquake evidences.

The use of empirical relationships evaluating the upper slope stability allows us to estimate
magnitude M,, and location (depth and distance from the upper slope) of paleo-earthquake. The 41
margin events correspond to M,, 2 7.3 earthquakes that have affected the region from 390 £170 to
16,450 +310 yr BP, involving 3 of the 26 known active faults in the region (10%). Recurrence interval
deduced from turbidite chronology is similar to the estimated activity of these three active faults.
Twenty margin events are interpreted as subduction interface earthquakes of M, > 7.5 and up to 8.4
affecting the three re-entrants and able to trigger coeval voluminous turbidity currents together with
onland paleoseismic evidences.

Our study shows that large earthquake of M,, = 7.3 occurring on the northern Hikurangi Margin are
more likely to occur with a Rl of 200+£100 years, while large to great subduction interface
earthquakes of M,, > 7.5 to occur every 550+50 years. Rl of subduction interface earthquakes
suggests alternating periods of intense activity with frequent but smaller earthquakes separated by
periods of relative quiescence characterized by rare but more powerful earthquakes.
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9. FIGURE CAPTIONS

Figure 1 - Morpho-tectonic settings of the northern Hikurangi Margin, New Zealand. Red dots show
sediment cores used in this study. The present day average sediment deliveries of the three
main rivers, which catchments are highlighted in grey shade, are indicated in dark grey (from
Hicks and Shankar et al., 2003). White squares are locations of coastal paleo-earthquakes
evidences in (A) Pakarae river mouth, (B) Mahia Peninsula, and (C) northern Hawke's Bay.
Bold lines indicate the main earthquake sources identified by Stirling et al. (2012) and
Litchfield et al. (in press) (see also SM1 Table SM1). Bold teeth-line indicates the subduction
front. Insert: the Kermadec-Hikurangi margin with the Pacific (PAC) and the Australian (AUS)
plates, the Wairarapa (W), Hawke Bay (HB) and Raukumara (R) regions, and the Central
Volcanic Region (CVR). Dark arrow is relative plate motion at the plate boundary from
Beavan et al. (2002).

Figure 2 - Characterisation of turbidites and hemipelagite from visual (photo), internal structures (X
Ray), Geotek petrophysical properties (gamma density, magnetic susceptibility and P-wave
velocity) and grain size (sand, silt and clay percentage). Peaks in grain size correspond to
peaks in the Geotek; the turbidites’ fining up trend is illustrated by the Geotek
measurements.

Figure 3 - Example of the Oxcal age model from a giant piston core (MD06-3009) and two short
piston cores (Tan0810-2 and -6), showing the sedimentation rate of hemipelagite through
time. The k parameter is used to define the regularity of the sedimentation rate along the
core: the higher the k parameter, the more linear the sedimentation rate and the smaller the
turbidite age uncertainties. Since hemipelagite settles at an assumed roughly constant rate,
the highest k parameter was chosen for each core. All ages are plotted with their 20 age
range.

Figure 4 - Simplified correlation diagram of turbidites between cores in Ruatoria (upper slope,
Ruatoria Debris Avalanche and Hikurangi Trough). Detailed correlations in SM2 Fig. SM2.01.
Dashed lines are tephra. Basin events are labelled Rx. The c. 6 ka boundary (thin black line) is
the average basal boundary of short cores. Black stars on isolated events show events
correlated to basin events in Poverty and indicated unrecognised basin events in Ruatoria
(see text for details). Number on the left of logs are turbidite facies as in Table 1.

Figure 5 - Simplified correlation diagram of turbidites between cores in Matakaoa (channel and
levees in the turbidite plain and fan). Detailed correlations in SM2 Fig. SM2.02. Cores are
arranged upstream to downstream from left to right; see caption and legend in figure 4.

Figure 6 - Example of margin-scale correlation of turbidites using one core from Poverty, two from
Ruatoria and two from Matakaoa. Each re-entrant is c. 100 km apart. Detailed correlations in
SM2 Fig. SM2.03. Turbidites are indicated by basic core log, facies (humber from 1 to 5) and
Geotek petrophysical properties (density and magnetic susceptibility). See legend and
caption in figure 4. Margin events are labelled Hx. The age of tephra layers (purple) is
reported in cal. yr BP.

Figure 7 - Temporal correlation between margin events and onland evidences of paleo-earthquakes
from the Pakarae river mouth (A; Wilson et al., 2006; 2007), Mahia Peninsula (B; Berryman et
al., 1993), and northern Hawke's Bay (C; Cochran et al., 2006), and paleo-tsunamis identified
along the east coast of the North Island East Coast (Goff and Dominey-Howes, 2009). Purple
bands are age range of correlated margin events. Large margin events interpreted as the
record of subduction interface earthquakes are framed in red.
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Figure 8 - Examples of isomagnitude maps defining the area shaken by an earthquake of a given
magnitude, which can trigger synchronous slope failures in the source areas of the turbidites
(blue area in the upper slope). Grey dots show the location of sediment cores. Each map is
generated from an empirical relationship that defines the Peak Ground Acceleration (PGA)
from the magnitude, depth, distance and type of earthquakes (see SM3 for details). Faults
capable of producing earthquake shaking large enough to generate turbidity currents in the
source area are shown in bold red (epicentre shown by red dots) and summarized in Table 5.
Blue dots are epicentres of earthquakes that cannot generated ground-shaking capable of
generating turbidites in the source area. In each map, the isomagnitude M,, 7.5 is shown as
an example of the methodology used to define the Mw 7.5 area. (A) Isomagnitude map built
from the relationship of Cousins et al. (1999), labelled Eq. (1). PGA = 0.08g is reached
simultaneously in the upper slope of Poverty and Ruatoria for a M,, 2 6.5 earthquake located
between both re-entrants. This corresponds to the activity of only two upper plate faults
(red bold lines). See SM3 Fig. SM3 for subduction interface earthquakes isomagnitude maps.
(B) Isomagnitude map built from the relationship of Si and Midoriwaka (1999), labelled Eq.
(2). PGA = 0.1 g is reached simultaneously in the three re-entrants for M,, 2 7.2 earthquakes
located between Poverty and Ruatoria. This corresponds to the rupture of the subduction
interface. No upper plate faults can trigger synchronous slope failures in the three re-
entrants.

Figure 9 - Recurrence intervals (RI) of large paleo-earthquakes at the origin of margin events vs
time. (A) Rl of M, 2 7.3 earthquakes at the origin of the 41 margin events identified over the
last c. 16.5 kyr (grey line). Dots correspond to the average age of the margin event Hx vs the
average time span since the last one. The recurrence intervals of M,, > 7.5 earthquake at the
origin of the 20 large margin events is indicated by dashed blue line. (B) Distribution of Rl of
M,, > 7.5 earthquakes showing an alternation of active periods in light yellow with low Rl and
numerous earthquakes, and quiescence periods in light blue during which larger Rl are noted
(for each period, average Rl are noted in italic and their duration noted in bold).

Figure 10 - Frequency diagrams of paleo-earthquakes during (A) the Late Holocene and (B) the Late
Pleistocene — Early Holocene. The latter is likely to be underestimated due to uncertainties
discussed in the paper. M,, > 7.5 earthquakes correspond to large margin events and M,,
7.3 earthquakes to all margin events (see text for details). Histograms (grey bars) show the
frequency of recurrence interval (RI) within each bin of 100 years, with their statistical
distribution estimated for each centile (black line). The median Rl of each plot is noted in
white for histograms and in black for the statistical distribution (cross).

10.TABLES

Table 1 - Lithotype characteristics of deep-sea sediments along the northern Hikurangi Margin
(summarized from Pouderoux et al., 2012a).

Table 2 — Location and characteristics of sediment cores used in this study. T: gravity flow deposits
(turbidites); H: hemipelagite.

Table 3 — Range of petrophysical properties of hemipelagite and turbidites calculated from the cores.

Table 4 — Margin events (Hx) modelled age deduced from basin events correlation in Poverty,
Ruatoria and Matakaoa.
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Table 5 — Earthquake sources and estimated magnitude deduced from the overlap of isomagnitude
maps (Fig. 8; see also SM3 Fig. SM3) and the known active faults complied by Stirling et al (2012).
Different scenarios are considered according tothe two type of margin events, the three PGA
thresholds for slope failures triggering and the two empirical relationships used to build
isomagnitude maps .
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A - Recurrence interval of earthquakes
at the origin of all margin events (n=41)

B - Recurrence interval of earthquakes
at the origin of largemargin events (n=20)
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A - Recurrence interval of earthquakes
during the Late Holocene

B - Recurrence interval of earthquakes
during the Late Pleistocene - Early Holocene
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. in si Thick Ll . o,
Lithotype Texture Colour Gr.a in size iclness Composition (sand fraction) Depositional process
(microns) (cm)
Hemipelagite Hom()gemsec.l’ heavily Olive-grey <10 0.5->50 cm Volcamc%astlc gra}lns,quartz, Marine sedimentation
bioturbated silty-clay planktonic organisms
. . Volcaniclastic debris (gl . .
Tephra Graded silts Pinkish 10-20 <10 cm orcaniciastic ¢eons (e 438 Airfall volcanic ash
shards and pumiceous lapilli)
SC;;ZO:;C Sel{)tgl_:l:iyewlth Dark olive Quartz, volcaniclastic debris,
Debrite Hop ~ v NA <35cm bivalve and gasteropod shells, Debris flow
particules or deformed erey clasts of laminated silty-clays
stratified lithoclasts y-eay
. . . Volcaniclastic debris, light
L Sandy to silty bas d Dark olive- . y L
Turbidite andy fo st ty base grading Dark olive 10->200 0.5-75 cm minerals, rock fragments, Turbidity current
up to silty-clay grey .
foraminifers, shell fragments
1 Muddy turbidite Thin _S’h lqmlna overlain by Dark olive-grey 10-20 1-40 cm Quartz, foraminifers Very low density turbidity
massive silty-clay current
2 Silt laminae turbidite Int.erbedded, thmnm.g and. Dark olive-grey 10-20 1-40 cm Quartz, volcanoclastic debris Low density wurbidity
fining up clay and silt laminae current
3 Silty turbidites Fining upward clayey silt Dark olive-grey 10-< 100 0.5-55 em Volcan.lc.lastlc d_ebns, quartz, low t.o _medmm density
sequence foraminifers, micas turbidity current
4 Sandy turbidites Sand base grading up to silty- Dark olive-grey 10> 100 1-75 em Quartz, volca.mclasttc debr.ts, rock Medium density turbidity
clay fragments, micas, heavy minerals —current
5 Hyperpcynite Basal reverse graded turbidite Olive-grey 10-< 100 5-45cm Foraminifers, wood fragments, Hyperpcynal flow

quartz, volcaniclastic debris

Table 1



Number of

Cone Longl.tude LatltAude de‘;‘:i:ﬂ) COZ ;I)Cl:gth Composition ngZi:,y’ T.hlckness of gravity-flow deposits (cm)

deg. min. deg. min. T H deposits Min Max Mean s.d.
MD 06-3002 39 7.83 178 40.31 2305 20(12) 75% 25% 100 1.5 22 7.6 4.4
MD 06-3003 39 2.79 178 32.17 1398 12.88 7% 23% 101 1 36 9.8 6.8
MD 06-3008 38 32.12 179 32.04 3520 25.4(19) 75% 25% 89 2 48 16 10.8
MD 06-3009 38 7.02 177 21.69 2940 20 70% 30% 77 1 76 17.9 14.9
TANO0810-2 37 50.973 178 59.201 1078 1.65 60% 40% 8 2 18 8 4.8
TANO0810-3 37 52.691 178 57.289 1090 3.2 22% 78% 6 3 20 10.3 6.6
TAN0810-6 37 48.105 179 37.228 3400 1.8 82% 18% 25 1 18.5 6.1 4.1
TANO0314-8 37 16.088 178 32.29 2034 2.51 63% 37% 20 2 11.5 7 2.9
TAN0810-9 37 24.5876 178 43.108 1180 3.2 12% 88% 5 2 16 6.8 4.8
TANO0810-10 37 2477 178 41.799 1159 22 8% 92% 6 1 8 3 2.5
TANO0810-11 37 26.1094 178 45.8894 1089 2.6 12% 88% 8 1.5 6 3.1 14
TANO0810-12 37 23.382 178 42.851 1255 2.75 11% 89% 8 0.5 6 33 2
TAN0810-13 37 23.55 178 44.054 1167 2.5 7% 93% 4 1 10 3.9 3.7

*: full recovered length; when core deformation is too high, the used core length is given between brackets.
**: total number of turbidite layers identified in the core.

Table 2



Re-entrant Core Core depth Gamma density (g/cm2) Magnetic susceptibility (SI) P-Wave velocity (m/s)
(m) H T H T H T
MD06-3009 2940 14-1.6 14-2 10 - 25 15-100 1300 - 1500 1350 - 1700
Ruatoria MD06-3008 3520 1.1-14 1.2-1.7 10 - 25 15-100 1650 - 1700 1775 - 1950
Tan0810-6 3400 1.7-1.8 1.7-2 10 - 25 15-100 1650 - 1700 1700 - 1800
Tan0810-10to -  1168+82 1.6-1.8 1.6-2 10 10 - 100 1225 - 1425 1400 - 1550
Matakaoa

Tan0314-8 2034 1.8 1.8-2.1 15 15-50 1225 1225 - 1375
Povert MD06-3003 1398 1.8 1.8-2.2 10 10 - 100 1300 1300 - 1500
vy MD06-3002 2305 1.8 18-2.2 60 60 - 120 1400 1400 - 1600

H: hemipelgite; T: turbidites

Table 3



v ol9eL

MARGIN EVENTS

EVENT
name mean age 20 range
H1 387 170
H2 616 26
H3 978 32
H4 1508 13
HS ** 1711 6
H6 2286 130
H7 2935 122
H8 3186 81
H9 ** 3419 11
H10 3438 30
H11 4672 27
H12 5344 2
H13 5525 60
H14 6021 193
H15 6489 135
H16 6644 179
H17 6836 210
H18 7108 159
H19 7480 116
H20 8390 157
H21 8603 262
H22 * 9128 101
H23 * 9505 25
H24 9706 143
H25 10129 103
H26 10129 103
H27 10686 13
H28 * 11340 118
H29 1719 289
H30 12169 291
H31 12518 242
H32 12698 264
H33 13357 238
H34 13487 210
H35 13698 143
H36 13831 187
H37 14661 271
H38 14661 271
H39 14890 295
H40 15004 307
H41 15404 224
H42 15849 388
H43 15983 357
H44 16140 398
H45 16292 295
H46 16446 314

Poverty re-entrant
EVENT CORE EVENT
name __mean age 20 range MD3003 3002
R1 387
R2 789
P1 819 191 Tl R3 1040
P2 1388 132 T2 R4 1566
P3 1699 38 T3 R5 1711
P7 2426 270 T6 R6 2185
P9 2880 212 T8 R7 2935
P11 3060 206 T10 R8 3201
P13 3438 30 TI2 R9 3391
P14 3438 30 TI2 R10 3462
P17 4357 342 TIS R11 4821
P18 5409 137 Ti6 R12 5132
P19 5535 77 T17 R13 5525
P23 6021 193 T22 Tl R14 6072
P24 6489 135 T23 T2 6303
P25 6644 179 T24 T3 RI15 6668
P26 6836 210 T25 T4 6926
P27 7039 228 T26 T5 R16 7221
P28 7480 116 T27 T8 R17 7570
P30 8390 157 T29 T19 8624
P33 8604 263 T32 22
P34 9067 161 T33 T24 R18 9240
P37 9505 25 T36 T27 R19 9617
P38 9706 143 T37 T28
P40 10155 129 T39 131
P42 10169 143 T39 T32 R20 10073
P45 10579 220 T40 T35 R21 10767
P48 11532 310 T41 T39 R22 11256
P49 11659 348 T42 T40 11896
P50 12081 378 T43 T42 R23 12189
P51 12518 242 T44 T43 R24 12481
P52 12698 264 T4s T44 R25 12628
P54 13357 238 T48 T46 R26 13348
P55 13490 213 T49 T47 R27 13377
P56 13736 181 T50 T53 R28 13678
P57 13831 187 T51 TS4
P58 14685 295 Ts56 T55
P59 14685 295 TsS6 T56
P60 14890 295 T58 T57
P61 14993 317 T60 TSS
P62 15549 369 T62 T59 R29 15350
P63 15849 388 T63 T60
P64 15948 393 T64 T60 R30 15935
P65 16140 398 T6S T60
P66 16292 295 T66 T61
P66 16451 319 T67 T62

* ** are margin events related to
Isolated events are in italic grey

phic floods or

Icanism (after F

etal, 2012a)

253
199

278

583

Ruatoria re-entrant

Tl
T2
T3
T4 Tl
TS

T3

T4

Tl
T3
TS
T6
T7

T8

T9-10

TI2
T13

Ti4
TI5

Ti6
T17
TI8

TI9
T20
T21
T22

T24

Tl

T2
T3
T4
TS
T7
T8
T9
T9
TI0
Tl
TI2
T3

CORE
name __mean age 2c range Tan0810-2 Tan0810-3 MD06-3009 MD06-3008 Tan081

Tl
T2
T3

T4

T7

T8
T9

Matakaoa re-entrant

EVENT CORE

name __mean age 2o range _Tan081 Tan0810-10 Tan0810-11 Tan0810-12 Tan0810-13 Tan0314-

M4

M7

M9

M12

Mi13

Mi4

Mi5

M17

Mi18

941 212 T3 T3

1499 188 73
1716 11 T1 T3 T4 T4 T3

2255 245 76
3657 552 T3 T4
5127 289 T6 Tl
9325 750 T4
12290 970 TS
13564 814 T6
14338 594 T7
15016 698 T9
16404 778 T10



All margin events (n=41)

Cousins et al. (1999) - Eq. (1)

Si and Midoriwaka (1999) - Eq. (2)

PGA Faults * RI ** Mw range Faults * RI ** Mw range
0.08 2:6;7 390-460 years 7.3-8.4 2:6;7 390-460 years 7.3-8.4

0.1 2;6 890-1235 years 7.3-8.4 2:6;7 390-460 years 7.3-8.4
0.15 2 1300-1670 years 8.2-8.4 2 1300-1670 years 8.2-8.4

*: Numbers correspond to faults detailed in Table SM1; ** Recurrence intervals calculated for the duration of our turbidite record (16,060 years, from 390 to 16,450 yr BP,

Average recurrence interval deduced from the turbidite record : 400 years

Large margin events (n=20)

Cousins et al. (1999) - Eq. (1)

Si and Midoriwaka (1999) - Eq. (2)

PGA Faults * RI ** Mw range Faults * RI ** Mw range
0.08 2 1300-1670 years 8.2-8.4 2;6 890-1235 years 7.3-8.4

0.1 o o o 2 1300-1670 years 8.2-8.4
0.15 o] o o 2 1300-1670 years 8.2-8.4

*: Numbers correspond to faults detailed in Table SM; ** Recurrence intervals calculated for the duration of our turbidite record (16,060 years, from 390 to 16,450 yr BP)

Average recurrence interval deduced from the turbidite record : 800 years

Table 5



