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Abstract 

This paper provides a new environmental, sedimentological and stratigraphic context 

of the Lago Mare deposits from the North Alboran region and clarifies their chronologic 

location with respect to the Messinian Salinity Crisis. We present new 

micropaleontological data (dinoflagellate cysts, calcareous nannoplankton, planktonic 

foraminifers), correlated with field observations and offshore seismic interpretations. We 

show that the Lago Mare event known in three onshore localities (Río Mendelín near 

Malaga, Zorreras near Sorbas, Gafares near Níjar) follows the marine reflooding of the 

Mediterranean Basin which ended the Messinian Salinity Crisis. Chronologically, these 

Lago Mare deposits last from the latest Messinian to the early Zanclean. In fact, the first 

influx of Paratethyan- organisms is revealed by the dinoflagellate cyst record from near 

Malaga within a Gilbert-type fan delta overlying the Messinian Erosional Surface. 

Invading molluscs and/or ostracods may have persisted in lagoonal coastal areas more or 

less affected by discontinuous marine influxes (Sorbas and Níjar). The Malaga area is 

convenient for a paleogeographic and sedimentary reconstruction which shows the 

prevalent forcing of sea level changes during the time-interval 5.600–5.332 Ma at the 

difference of the usually solicited prevalent tectonics. The studied Lago Mare event is the 

third episode resulting in such a paleobiological assemblage in the Mediterranean region 

and corresponds to the final two-way water exchange at high sea level between the 

Mediterranean and the former Paratethys. It documents the onset of the modern marine 

circulation in the Mediterranean after the reflooding ending the Messinian Salinity Crisis. 
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Messinian Salinity Crisis, Post-crisis reflooding.  

 

Highlights: >Dinoflagellate cysts identify the right invasion level by Paratethys waters. 

>Alboran Lago Mare immediately followed the post-Messinian Salinity Crisis marine 

reflooding. > Lago Mare must be discarded in the sense of a unique chronostratigraphic 

unit. 

 

 

1. Introduction 

In the Mediterranean Basin, the term Lago Mare designates a deposit related to the 

Messinian Salinity Crisis
1
 characterized by brackish water environments. Such deposits 

are usually considered to have preceded marine reflooding (Cita and Colombo, 1979), but 

recent researches suggest that they may have coexisted with it (Clauzon et al., 2005; 

Popescu et al., 2009). The biofacies of the Lago Mare deposit is characterized by 

molluscs and/or ostracods and/or dinoflagellate cysts of Paratethyan-type (i.e., of 

brackish affinity; Gignoux, 1950; Ruggieri, 1962; Cita and Colombo, 1979; Bertini et al., 

1995; Orszag-Sperber et al., 2006).     

The Lago Mare has long been considered a unique chronostratigraphic unit overlying 

the Messinian evaporites (Hsü et al., 1973) generated by a rapid flow of low salinity 

waters from the Paratethyan basins (Dacic and Euxinian, i.e. the Black Sea s.l.) into the 

almost completely desiccated Mediterranean Basin (Cita et al., 1978). Consequently, the 

identification of the Lago Mare type biofacies has often been considered useful for a late 

Messinian age. In the last decades, this concept has been contradicted by significant 

                                                 
1
 Messinian Salinity Crisis = MSC; Messinian Erosional Surface = MES. 
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findings. Firstly, a substantial sea level fall affected the Black Sea according to a clear 

erosional surface (Gillet et al., 2007) overlain by clastic material (the so-called „pebbly 

breccia‟: Hsü, 1978). This event has been unambiguously ascribed to the time of the 

MSC because of the latest Messinian age at 5.45 Ma, indicated by calcareous 

nannofossils conjointly with climatostratigraphy, of the sediments which immediately 

overlie the pebbly-breccia (Popescu et al., 2010). The robust datation of this sea-level fall 

prevents any coeval overflow of the Black Sea into the Mediterranean Basin. Moreover, 

the Paratethyan basins appear to have been invaded twice by Mediterranean calcareous 

nannoplankton, often associated with foraminifers and dinoflagellate cysts, within the 

time-interval of the MSC which suggests marine incursions from the Mediterranean Sea 

(Mărunţeanu and Papaianopol, 1995, 1998; Clauzon et al., 2005; Snel et al., 2006; 

Popescu et al., 2009; Suc et al., 2011).  

According to Clauzon et al. (2005) two incursions of Mediterranean marine waters 

entered the Eastern Paratethys during high sea level periods. Simultaneously, two inflows 

of Paratethyan waters entered the Mediterranean. This new concept of two-way water 

exchanges between the Mediterranean and Eastern Paratethys led to the chronological 

distinction between three Lago Mare events (Fig. 1; Clauzon et al., 2005). Lago Mare 1 

(ca. 5.640 – 5.600 Ma; Fig. 1) overlies the peripheral evaporites and is topped by the 

Messinian Erosional Surface
1
 (Clauzon et al., 2005; Popescu et al., 2009) whereas Lago 

Mare 3 (ca. 5.460 – 5.332 Ma; Fig. 1) follows the reflooding of the Mediterranean Basin 

and has been precisely dated by calcareous nannofossils in several places (Clauzon et al., 

2005; Popescu et al., 2007, 2009; Bache et al., 2012). Such episodes correlated with high 

sea levels are supported by the occurrence of fish living in normal marine conditions in 
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Lago Mare deposits from Italy (Carnevale et al., 2006a, b). An intermediate Lago Mare 

episode (Lago Mare 2: ca. 5.500 – 5.460 Ma; Fig. 1) is reported only from deep holes in 

the Mediterranean central basins where it directly overlies the evaporites. It is mainly 

identified by the occurrence of ostracods of the Cyprideis pannonica group (Iaccarino 

and Bossio, 1999) but the biofacies is incompletely known. Its significance remains 

uncertain, usually related to a freshwater input ending the evaporitic phase (Orszag-

Sperber, 2006), which is still unsatisfactorily documented.  

Here we present a revision of a new locality of Lago Mare deposit near Malaga (Fig. 

2), described by Guerra-Merchán et al. (2008, 2010). Detailed biostratigraphic analysis of 

these deposits and of the classical Lago Mare localities near Sorbas (Fig. 2B; Civis et al., 

1979; Roep and Van Harten, 1979) and Níjar (Fig. 2B; Aguirre and Sánchez-Almazo, 

2004; Bassetti et al., 2006) have allowed us to revise the age, depositional environments 

and stratigraphic location with respect to the Messinian Erosional Surface of the 

westernmost Lago Mare deposits around the Mediterranean Sea and to present an up-to-

date geographic distribution of the three types of Lago Mare.  

The conventional Messinian age given to the Lago Mare in the Malaga area led 

Guerra-Merchán et al. (2010) to consider this deposit as sandwiched between two 

erosional surfaces. It was thus crucial to clarify which of these surfaces corresponds to 

the late Messinian sea-level drawdown. Offshore Malaga, the erosion observed 

underneath the Pliocene series was so intense that Messinian units disappear toward the 

land while Pliocene sediments directly overlie the Tortonian series near the coastline 

(Comas et al., 1999: see fig. 8). Therefore, the recognition of the Messinian Erosional 
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Surface in the Malaga sections needed a sea-land correlation (using available offshore 

seismic lines; Fig. 2B) to appear unambiguous. 

 

 

Fig. 1: Chronotratigraphy of the events related to the Messinian Salinity Crisis in the 

peripheral and central Mediterranean basins: deposition of evaporites, subaerial and 

marine erosion, Lago Mare (Bache et al., 2012). Correlations with the 18O curve from 

Site 982 from the benthic foraminifer Cibicidoides kullenbergi (Hodell et al., 2001) on 

which has been established and adjusted the global sea level curve from Miller et al. 

(2011). Relationships with the Eastern Paratethys are indicated by double arrows 

(Clauzon et al., 2005; Popescu et al., 2009). Chronology is from Bache et al. (2012) and 

Manzi et al. (2013). Molluscs: Dr, Dreissenids; L, Lymnocardiids; O, Ostracods; D, 

Dinoflagellate cysts; F, Foraminifers; N, Calcareous nannofossils. 

   

2. Lago Mare deposits in the northern coastline of the Alboran Sea 

 

2.1. The Malaga Basin 

The Malaga Basin (Fig. 2B) is located above two alpine metamorphic nappes of the 

Betic Internal Zones (Torres-Roldán, 1979; Sanz de Galdeano and López-Garrido, 1991) 

above which three successive sedimentary episodes, disrupted by major unconformities, 

took place during the Neogene (López-Garrido and Sanz de Galdeano, 1999). The older 

sedimentary phase, comprising postnappe Oligocene to Early Miocene transgressive units 

(Sanz de Galdeano and López-Garrido, 1991; Serrano et al., 2007), is mostly confined to 

the northern part of the Malaga Basin (Fig. 2B). After the Burdigalian, the basin remained 

emerged until the deposition of shallow marine conglomerates, sands and calcarenites 

attributed to the Tortonian (Sanz de Galdeano and López-Garrido, 1991; Serrano et al., 

2007; Guerra-Merchán et al., 2010). Tortonian deposits are unconformably overlain by 

transgressive Pliocene marine deposits (López-Garrido and Sanz de Galdeano, 1999). 
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These Pliocene deposits are composed of coarse-grained deposits passing laterally to 

blue-grey marls and clays (Sanz de Galdeano and López-Garrido, 1991; López-Garrido 

and Sanz de Galdeano, 1999). According to these authors, the clayey fine-grained 

sediments contain planktonic foraminifera assemblages [Hirsutella (Globorotalia) 

margaritae and Globoconella (Globorotalia) puncticulata] indicating an early or middle 

Pliocene age (Lourens et al., 2004).  

To the North of Malaga (Fig. 2B), the reddish to purplish Lago Mare sediments 

described by Guerra-Merchán et al. (2008, 2010) are exposed near the confluence of the 

Río Mendelín and Río Guadalmedina (Fig. 2C). The Lago Mare biofacies is attested by 

the occurrence of bivalves (Dreissena ex gr. rostriformis, Pachydacna, Pontalmyra, 

Prosodacnomya) and ostracods (Amnicythere sp., Cyprideis agrigentina, Euxinocythere 

sp., Loxoconcha sp., Tyrrhenocythere pontica, etc.) of Paratethyan- type. Very rare well-

preserved specimens of planktonic and benthic foraminifers have been found in the upper 

part of the Lago Mare Unit, nonetheless suggesting a marine influence.  

 

 

Fig. 2: General location maps. 

 A, Studied area; B, Onshore geological sketch of the northern Alboran Sea with 

the studied areas (1, Río Mendelín and El Túnel near Malaga; 2, Zorreras near Sorbas; 

3, Gafares near Níjar). Thick lines point out the seismic profiles shown in Figures 9A and 

9B within the available seismic database used for the 3D reconstruction in Figure 9C; C, 

Location map and geological map of the area northward of Malaga.The geological map 

is from Estévez González and Chamón Cobos (1978). Boxes indicate the studied sections 

(Río Mendelín and El Túnel) with the corresponding figures. 
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According to Guerra-Merchán et al. (2008 and 2010: figs. 2 and 3):  

- An alluvial fan made of conglomerates fills a paleo-valley cut within the 

metamorphic Betic basement during active tectonic uplift and including the part of 

the Lago Mare coarse-grained sediments; 

- subsequently, Lago Mare Unit is affected by intense erosion  linked to tectonic 

activity of the normal fault, suggesting a phase of sedimentary interruption; 

- Zanclean marine sediments onlap this erosional surface.   

The Zanclean Unit is composed of yellowish clays which contain, among other 

foraminifers, Sphaeroidinellopsis spp. and Hirsutella (Globorotalia) margaritae, the 

latter being more common in the upper part (Fig. 3). According to its continuous reverse 

polarity, the Río Mendelín section is placed within the paleomagnetic Chron C3r. At last, 

the Río Mendelín Lago Mare is considered as a transitional unit deposited in a 

transgressive context leading to the Zanclean marine reflooding (Guerra-Merchán et al., 

2010). This assumption is in contradiction with the erosional contact of the Zanclean 

yellowish clays above the Lago Mare deposits (Guerra-Merchán et al., 2010). 

 

 

Fig. 3: The studied Río Mendelín section. A, Photograph of the sampled section; B, Log 

of the section with location of samples 1 to 14 (distance between two successive samples 

is indicated in Table 1); C, Photograph of the marine-continental transition; D, Log of 

the marine-continental transition; E, Zoomed photograph of the continuously sampled 

interval between samples 5 and 6 (samples a–j; distance between two successive 

samples: 10 cm). 

 

2.2. The Sorbas and Níjar basins  
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The Sorbas and Níjar Basins are intramontane basins developed above metamorphic 

nappes of the southern Betics (Fig. 2B; Torres-Roldán, 1979; Sanz de Galdeano and Vera, 

1992). The sedimentary succession of these two Neogene basins has been intensively 

analysed during the last decades, leading to contradictory interpretations about the 

process of the MSC (Ott d‟Estevou and Montenat, 1990; Riding et al., 1991; Rouchy and 

Saint-Martin, 1992; Gautier et al., 1994; Dabrio and Polo, 1995; Krijgsman et al., 2001; 

Fortuin and Krijgsman, 2003; Aguirre and Sánchez-Almazo, 2004; Bassetti et al., 2006; 

Braga et al., 2006; Roveri et al., 2009; Bourillot et al., 2010; Omodéo Salé et al., 2012; 

Clauzon et al., 2009, revised). The sedimentation of the southeastern Betic basins took 

place in the Serravallian-Tortonian (Sanz de Galdeano and Vera, 1992). The lower 

Messinian record consists of a thick succession of coarse- and fine-grained deposits 

subdivided into three members: Azagador, Abad and Cantera (Van de Poel, 1991; Sierro 

et al., 2001; Fortuin and Krijgsman, 2003). The late Messinian series with a thick 

evaporitic sequence (Yesares Member) made up of gypsum and clay alternations in both 

the Sorbas and Níjar basins (Dronkert, 1976) resulting from the first sea-level fall of the 

MSC (Clauzon et al., 1996; CIESM, 2008).  

In the Sorbas Basin, the post-evaporitic sedimentation is also separated from the 

Messinian gypsums by the Messinian Erosional Surface overlain in some places by 

chaotic debris flows with large blocks of reworked gypsum (Clauzon et al., revised). 

Three whitish clayey layers are described within the Zorreras Member (Fig. 4A) which 

overlies calcareous beds containing a coastal fish (Aphanius crassicaudus), above the 

Messinian Erosional Surface and the Yesares evaporitic Member (Ott d‟Estevou and 

Montenat, 1990). These whitish layers contain Paratethyan-type fossils (dreissenids, 
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lymnocardiids, ostracods) with some coastal foraminifers (Civis et al., 1979; Roep and 

Van Harten, 1979; Ott d‟Estevou and Montenat, 1990). They have been thus considered 

as Lago Mare biofacies and attributed to the Messinian (Dabrio and Polo, 1995; Martín-

Suárez et al. 2000; Krijgsman et al., 2001) while an earliest Pliocene age has been 

foreseen by Ott d‟Estevou and Montenat (1990), which is now established by Clauzon et 

al. (2009, revised). 

In the Níjar Basin (Fig. 2B), an erosional surface truncates the evaporitic unit (Fortuin 

and Krijgsman, 2003) and has been referred to the Messinian Erosional Surface (Omodeo 

Salé et al., 2012). Within the overlying Feos Formation, a chaotic unit mostly made of 

reworked gypsum blocks fills the Messinian valley delimited by this erosional surface 

(Omodeo Salé et al., 2012). This chaotic deposit has been first interpreted as a slump 

(Fortuin and Krijgsman, 2003), then as a debris flow ascribed to the post-MSC marine 

reflooding (Bache et al., 2012). At Gafares, several whitish clayey layers are exposed 

within the Feos Formation (Fig. 4B). They contain Paratethyan-type ostracods (Roep and 

Van Harten, 1979; Bassetti et al., 2006), rare coastal foraminifers (Aguirre and Sánchez-

Almazo, 2004) and the same fish species as at Sorbas (Aphanius crassicaudus; de la 

Chapelle and Gaudant, 1987). These Lago Mare deposits have been also ascribed to the 

post-evaporitic Messinian (Roep and Van Harten, 1979; Dabrio and Polo, 1995; 

Krijgsman et al., 2001; Aguirre and Sánchez-Almazo, 2004; Fortuin and Krijgsman, 

2003; Bassetti et al., 2006). However, on the basis of a lateral change and interbed with 

marine deposits, Aguirre and Sánchez-Almazo (2004) suggested that the marine 

reflooding of the Mediterranean Basin took place prior to the “Zanclean deluge” and 

questioned the chronostratigraphic significance of the Lago Mare deposits.  
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For these basins, we will only pay interest to the Lago Mare deposits and bordering 

layers, their stratigraphy having recently been re-visited in detail by Clauzon et al. (2009, 

revised), Roveri et al. (2009), and Omodeo Salé et al. (2012), respectively. 

 

 

Fig. 4: Lago Mare deposits in the region of Almería. A, View of the Zorreras section, near 

Sorbas. B, View of the Gafares section, near Níjar.  W1, W2, W3: whitish clayey layers; 

1, 2, 3: location of the studied sample 

 

3. Materials and methods 

 

3.1. Micropaleontological analyses 

We sampled the concerned sections, to acquire dinoflagellate cysts and/or calcareous 

nannofossils, which were not investigated during previous studies, and thus gives the 

opportunity to improve the characterization of both the age and the environment of the 

Lago Mare deposits:  

- 24 samples at Río Mendelín (Figs. 2C); results from a first sampling (samples 1–

14; Fig. 3B), which provided a diversified calcareous nannoflora plus foraminifers 

and (marine and brackish Paratethyan-type) dinoflagellate cysts, prompted a 

second sampling at higher resolution between samples 5 and 6 (1 m of space 

continuously sampled, 10 cm of thickness per sample: samples a–j; Fig. 3E) which 

is known as the richest interval in all types of organisms (the above mentioned 

microorganisms, plus Paratethyan-type molluscs and ostracods according to 

Guerra-Merchán et al., 2010); 

- 3 samples from the El Túnel locality (Fig. 2C); 
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- 13 samples at Zorreras (3 in the clays underlying the whitish clayey layer W1; 4, 3 

and 3 in the whitish clayey layers W1, W2 and W3, respectively;  Figs. 2B, 4A);  

- 5 samples at Gafares (3, 3 and 2 in the whitish clayey layers W1, W2 and W3, 

respectively; Figs. 2B, 4B).  

For the analysis of dinoflagellate cysts, each sample (50 gram of dry sediment) was 

processed using a standard method (Cour, 1974): cold acid digestion, concentration in 

ZnCl2 (at density 2.0), and sieving at 10 and 20 µm. A 50 µl volume of residue was 

mounted within glycerol between coverslip and microscope slide in order to allow 

rotation of the dinoflagellate cysts. Their identification (at magnification x1000) and 

counting (at magnification x250) of a minimum of 150 specimens per sample were made 

on a light microscope. Detailed observations were performed on a ZEISS Ultra-55 

Scanning Electron Microscope. 

To retain the original sample composition for calcareous nannofossils, smear slides 

were prepared directly from the untreated sediment. The calcareous nannofloral analysis 

was performed using a light polarizing microscope at magnification x1600. The 

nannofloral taxonomic identification followed Perch-Nielsen (1985) and Young (1998).  

Finally, aiming to improve biostratigraphic control, we searched for planktonic 

foraminifers by sieving at 250-150-63 µm (Río Mendelín: samples a to j and 6).  

 

3.2. Onshore-offshore stratigraphic analysis 

In addition to new micropaleontological data, our study aims at an onshore-offshore 

stratigraphic correlation of the late Neogene sedimentary succession of the Malaga area. 
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Onshore, we particularly followed the contact between the substratum (Malaguide 

Complex) and the overlying Neogene sediments. We paid special attention to the 

sedimentary organization of these Neogene deposits.  

Offshore, several stratigraphic analyses were performed on 2D seismic profiles 

acquired in the southern Spanish margin during the last decades (ALB, AS, EAS and 

SHLS cruises; Fig. 2B). These studies highlighted the occurrence of six major sequences 

spanning the Lower Miocene to Quaternary (Jurado and Comas, 1992; Comas et al., 

1999). We re-examined the uppermost units I and II (Messinian and Pliocene to 

Pleistocene; Jurado and Comas, 1992) focusing on their geometry separated by an erosive 

unconformity, called the M reflector (Comas et al., 1992; Chalouan et al., 1997). The M 

reflector (e.g. the Messinian Erosional Surface) has been picked and a paleo-bathymetric 

map of the Messinian erosion has been performed. This paleo-bathymetric map has been 

depth converted using the average water velocity of 1500 m.s-1 and 2000 m.s-1 for the 

Pliocene and Quaternary sediments (Comas et al., 1996).  

 

4. Results  

 

Our micropaleontological analyses concern the three kinds of protists belonging to 

phytoplankton (dinoflagellates, coccoliths) or zooplankton (foraminifers), respectively. 

They are used in onshore-ooffshore correlations. 

 

4.1. Dinoflagellate cysts 
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Dinoflagellate cysts have been identified in six of the thirty-two samples gathered from 

the Lago Mare deposits in the Río Mendelín section (samples a, b, e, f, h, 6; Fig. 5).  

However, no dinoflagellate cysts have been observed in the Zorreras and Gafares 

sections. Among the 26 recorded taxa, 14 are marine species, 12 are brackish of 

Paratethyan-type.  One specimen of Radiosperma corbiferum (marine to brackish 

microorganism) has been recorded in sample b (Fig. 5). In addition, Pediastrum 

(freshwater green alga) has been recorded in samples e, f, h and 6 (Fig. 5). Reworked 

dinoflagellate cysts (mostly from Lower-Middle Miocene) have been found, more 

frequently in samples where freshwater input is indicated by Pediastrum (Fig. 5). 

 

 

Fig. 5: Dinoflagellate cysts recorded in the Río Mendelín section, grouped according to 

their ecological significance. Synthetic diagram shows the relative abundance of the 

groups: 1, marine taxa (white line separates stenohaline species to the left from 

euryhaline taxa to the right); 2, brackish taxa (black line separates Galeacysta etrusca to 

the left from the other taxa to the right); 3, indeterminable plus indeterminate cysts; 4, 

freshwater taxa. Spiniferites spp. are indicated both as marine and brackish taxa. They 

are mostly made of fragments which prohibit a species ascribtion but can be ecologically 

classified according to their morphology.   

Dinoflagellate cysts and other taxa have been grouped into their ecological requirements 

(Londeix et al., 2007; Popescu et al., 2009; Zonneveld et al., 2013), as follows (Fig. 5):  

 marine species: Impagidinium aculeatum, I. patulum, Spiniferites delicatus, S. 

membranaceus, S. mirabilis (stenohaline species: oceanic – outer shelf); 

Achomosphaera andalousiensis, Homotryblium spp., Lingulodinium 

machaerophorum, Nematosphaeropsis labyrinthus, Operculodinium 

centrocarpum, cysts of Pentapharsodinium dalei, Spiniferites bentorii, S. 

bulloideus, S. ramosus, (euryhaline species: inner shelf – coastal – lagoonal); 
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 brackish taxa (Paratethyan-type): Galeacysta etrusca, Impagidinium globosum, 

Millioudodinium punctatum, M. pelagicum, Pyxidinopsis psilata, Pontiadinium 

inequicornutum, P. pecsvaradense, P. obesum, Spiniferites balcanicus, S. bentorii 

oblongus, S. bentorii pannonicus, S. cruciformis, S. maisensis, S. tihanyensis; 

 marine to brackish species: Radiosperma corbiferum; 

 freshwater taxon: Pediastrum sp. 

A synthetic diagram summarizes the relative abundance of the dinoflagellate cysts groups 

(Fig. 5):  

 marine stenohaline species fluctuate between 5.3  and 14.3%, with a maximum in 

sample f, indicating some increase of oceanic water influx; 

 marine euryhaline taxa show a relative abundance between 10 and 34%, with 

maximum in sample h, where cosmopolitan species of Spiniferites (i.e., S. 

ramosus and S. bulloideus) developed; 

 high percentages of Paratethyan-type taxa (53–84%), mostly dominated by 

Galeacysta etrusca (21-28) accompanied by Pontiadinium spp. (3–11%) and 

fragments of Spiniferites spp., the morphology of which allows to refer to 

brackish affinities (2–15%); 

 indeterminable cysts (because of poor preservation) and indeterminate cysts 

(often fragments of cysts) show relative abundance around 4%, except in sample 

h where they reach 10%;  

 Pediastrum, freshwater element, transported by rivers, is scarce (0.9 –4%), 

reaching 4% in sample h. 
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This dinoflagellate cyst assemblage highlights the marine conditions of the Lago Mare 

deposits in the Río Mendelín section. Several well-preserved specimens of Galeacysta 

etrusca are shown in Figure 6. 

 

4.2. Calcareous nannofossils 

A calcareous nannoflora, more or less well-preserved, has been observed in the Lago 

Mare deposits of the Río Mendelín section (Fig. 3B; samples 1, 2, 3, 5, 6, 9 and 10). 

Triquetrorhabdulus rugosus is the only biostratigraphic marker recorded in sample 1 

(Table 1). In samples 5, 6 and 10, the calcareous nannoflora is particularly diversified 

(Table 1) and displays Triquetrorhabdulus rugosus and Ceratolithus acutus (Fig. 7). 

Nannoplankton assemblages include reworked specimens (from Cretaceous to Miocene) 

which are not mentioned in the figures. A calcareous nannoflora has also been found in 

samples 11 to 13, especially in sample 12 where Ceratolithus acutus and 

Triquetrorhabdulus rugosus are also present. In addition, a calcareous nannoflora has 

been found in the three samples gathered from the El Túnel locality (Table 1) and may be 

ascribed to the NN12a nannoplankton subzone based on the occurrence of T. rugosus in 

sample 2 (Fig. 1; Raffi et al., 2006; Melinte-Dobrinescu et al., 2009). 

 

Fig. 6: Photographs of some specimens of Galeacysta etrusca recorded in the Lago Mare 

deposits of the Río Mendelín section: views c, d and f are from sample e; views g and h 

are from sample f; views a, b and e are from sample 6. View a, note the occurrence of a 

cyst of Pediastrum close to G. etrusca. Scale bar: 20 m.   

 

All samples gathered from the three whitish clayey layers of the Zorreras section 

(Sorbas Basin) are barren. However, the three samples from the clays immediately 

underlying the basal whitish clayey layer W1 (Fig. 4A) contain a nannoflora including 
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Ceratolithus acutus and Triquetrorhabdulus rugosus (Table 1) which is thus ascribed to 

the early NN12b nannoplankton subzone (Fig. 1; Raffi et al., 2006; Melinte-Dobrinescu 

et al., 2009). In addition, underlying laminated beds (Fig. 4A) which, in a nearby section, 

yielded remains of the fish Aphanius crassicaudus (a fossil species considered as living 

in costal marine to brackish waters; Gaudant and Ott d‟Estevou, 1985), also contain C. 

acutus and T. rugosus (Clauzon et al., revised). These whitish layers thus deposited later 

than the marine sediments in this area. 

Three samples taken from the lowermost whitish clayey layer W1 of the Gafares 

section (Níjar) are barren. A calcareous nannoflora containing Ceratolithus acutus as 

biostratigraphic marker (Table 1) has been recorded in the second whitish clayey layer 

W2 (sample 1) and can be ascribed to the late NN12b nannoplankton subzone (Fig. 1; 

Raffi et al., 2006; Melinte-Dobrinescu et al., 2009). In the overlying whitish clayey layer 

W3, sample 4 contains some calcareous nannofossils but not biostratigraphic markers 

(Table 1). Twenty seven metres above, Ceratolithus acutus has also been observed in a 

clay layer where Hirsutella (Globorotalia) margaritae was pointed out by Bassetti et al. 

(2006). In this area, the upper whitish layers W2 and W3 were still influenced by marine 

waters.  

 

 

Fig. 7: Photographs of some specimens of Ceratolithus acutus (crossed Nichols) recorded 

in the Lago Mare deposits of the Río Mendelín section: a and b, sample 5; c, sample 6. 

Scale bar: 5 m. 

 

4.3. Planktonic foraminifers 
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Planktonic foraminifers have been recorded in samples a to f and 6 from the Lago 

Mare deposits of the Río Mendelín section (Fig. 3). The foraminiferal assemblage in 

samples a to f shows a poor to diversified marine assemblage composed amongst others 

of Globigerina decoraperta, G. praebulloides, Globigerinita glutinata, 

Globoturborotalita (Globigerina) nepenthes, Neogloboquadrina acostaensis (sinistral 

and dextral coiling) and N. incompta. Only the Globoturborotalita (Globigerina) 

nepenthes species (recorded in samples a and f) has biostratigraphic significance (ranging 

from 11.63 to 4.37 Ma, i.e. from latest Serravallian to mid-Zanclean; Lourens et al., 

2004). 

 

4.4. Onshore-offshore stratigraphic analysis: the occurrence of Gilbert-type fan 

deltas 

At El Túnel locality (Fig. 2C), an erosional surface is particularly well-exposed on the 

metamorphic Betic basement (Fig. 8A–C). This surface is overlain by a steep south-

dipping deltaic complex. The sedimentation starts with somewhat large subrounded 

blocks followed by conglomeratic to sandy foreset beds. These foreset beds are laterally 

replaced by silty-clayey bottomset beds in which the samples were taken (Fig. 8C). This 

sedimentary pattern is characteristic of the subaqueous unit of a Gilbert-type fan delta in 

its proximal part (Clauzon, 1990) as usually observed within the Messinian valleys 

around the Mediterranean Basin (Clauzon et al., 1990; Suc et al., 1992; Bache et al., 

2012) and its appendices, such as the Dacic Basin in the Paratethys (Clauzon et al., 2005; 

Suc et al., 2011; Bache et al., 2012). The marine nature of the Guadalmedina Gilbert-type 

fan delta is attested by a calcareous nannoflora (Table 1), devoid of precise 
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biostratigraphic marker, except Triquetrorhabdulus rugosus (highest occurrence at 5.279 

Ma; Fig. 1; Raffi et al., 2006) obtained in three samples from the bottomset beds at El 

Túnel (Table 1). As a consequence, the clayey sediments exposed at the Río Mendelín 

section might be considered as the basinward extension of the bottomset beds observed at 

El Túnel. However, the Río Mendelín series is also nested within the metamorphic 

basement and begins with conglomeratic to sandy foreset beds which laterally pass to the 

dominantly clayey Lago Mare sediments (Fig. 8D). This secondary prograding 

sedimentary system must hence be regarded as a small size Gilbert-type fan delta 

tributary of the larger Guadalmedina Gilbert-type fan delta. This is in agreement with the 

geological map of the area which suggests two coalescing fans (Fig. 2C; Estévez 

González and Chamón Cobos, 1978). Based on the recognition of NN12a and b 

calcareous nannofloras (in the Río Mendelín and El Túnel sections), the Guadalmedina 

Gilbert-type fan delta is dated from the latest Messinian to earliest Zanclean (Fig. 1), 

consistently with the occurrence of Globoturborotalia (Globigerina) nepenthes in the 

Lago Mare sediments (Río Mendelín). As a consequence, the erosional surface observed 

at El Túnel (Fig. 8A, B) is the MES which can also be followed up to the Río Mendelín 

section (Fig. 8D) and corresponds to the peak of the MSC (Fig. 2C). The Río Mendelín 

section is topped by reddish conglomerates (Fig. 3C, D) which have been ascribed to 

Quaternary (Guerra-Merchán et al., 2010). They are made of rounded pebbles which 

attest to their alluvial origin. They are separated from the underlying bottomset beds 

(yellowish clays) by an almost horizontal (15 cm thick) white marly layer without any 

sign of erosion at its top (Fig. 3C, D). We thus consider that there is no sedimentary gap 

in the succession from the yellowish clays to the reddish conglomerates that we interpret 
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as the topset beds of the Gilbert-type fan delta (i.e. its subaerial unit). The conglomeratic 

topset beds of the Mediterranean Zanclean Gilbert-type fan deltas are commonly red as 

shown in Figure 4 for the Zorreras Member of the Sorbas Basin. We interpret the 

underlying white marly layer (Fig. 3C, D) as the marine-continental transition which, 

with the MES, is one of the morphological features of a Mediterranean Zanclean Gilbert-

type fan delta (for more detail, see: Bache et al., 2012: figure 2). This prograding 

sedimentary filling is the result of the post-MSC marine reflooding of the Mediterranean 

Basin which transformed the Messinian fluvial valleys into marine rias (Clauzon et al., 

1990; Bache et al., 2012). Then, it has then been affected by the Quaternary erosion of 

the Guadalmedina and Mendelín rivers, and does not currently superimpose their 

respective Messinian valleys (Fig. 2C), a current phenomenon described as the 

“aggradation epigenesis” (Clauzon, 1999; Clauzon et al., revised). 

 

 

Fig. 8: The Gilbert-type fan delta of the Guadalmedina River (Malaga). A, Detailed view 

of the Messinian Erosional Surface separating the Gilbert-type fan delta deposits from 

the metamorphic basement. B, Photograph of a part of view C at greater magnification. 

C, View of the proximal part of the Gilbert-type fan delta showing (1) the coarse blocks 

and the conglomeratic to sandy foreset beds overlying the Messinian Erosional Surface 

(MES) and the metaporphic basement, and (2) the sampled bottomset beds. D, 

Panoramic view of the Río Mendelín section 

 

The MES observed at El Túnel can be followed off the Iberian margin on seismic 

profiles (Figs. 2B, 9). Its identification offshore is based on correlations with previous 

seismic stratigraphy studies (Jurado and Comas, 1992; Comas et al., 1999; Martínez del 

Olmo and Comas, 2008) and biostratigraphic analyses from the Alboran A1 and ODP 976 

holes (Fig. 2B; Comas et al., 1999; Serrano et al., 1999; Siesser and de Kaenel, 1999). 
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The MES is characterized by the angular unconformity separating the Miocene from 

Pliocene sediments (Campillo et al., 1992; Alonso et al., 1999; Comas et al., 1999). The 

seismic profile EAS-7, almost perpendicular to the coast and in continuation with the 

Pliocene rias observed onshore (Río Guadalhorce and Río Guadalmedina; Fig. 9C), 

displays southward prograding Pliocene sediments over the angular unconformity (Fig. 

9A). The southward progradation of the Pliocene deposits is marked by the succession of 

downlap terminations on the MES (red arrows in Figure 9A). Analysis of the seismic 

profile EAS-82, perpendicular to EAS-7, displays the sharp geometry of the MES 

reflector and the morphology of a 8 km wide valley filled by Pliocene sediments (Fig. 

9B). Offshore Malaga, the sediments immediately overlying the MES have been dated in 

two wells (ODP Site 976 and the industrial Alboran A1 borehole) on the basis of the 

lowest occurrence of the planktonic foraminifer Hirsutella (Globorotalia) margaritae. 

Such a datation of the post-MSC marine reflooding suffers from an insufficient precision 

because (1) samples of both sections have not been studied at an appropriate resolution, 

and (2) calcareous nannofossils have not been searched out. Moreover, it has recently 

been highlighted that (1) the date of the lowest occurrence of H. (G.) margaritae in the 

Mediterranean is somewhat inconsistent (Fig. 1; Lourens et al., 2004; Clauzon et al., 

revised), and (2) the right biostratigraphic marker of the post-MSC marine reflooding is 

the calcareous nannofossil Ceratolithus acutus which is generally recorded in the 

Mediterranean sections below H. (G.) margaritae. The post-MSC marine reflooding is 

coeval from the basin to the margins, i.e. it occurred in the latest Messinian according to 

our results (those presented here and from many other Mediterranean localities: Melinte-

Dobrinescu et al., 2009; Clauzon et al., 2009, revised). However, aware of a possible 
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confusion, and waiting for new reliable data from the Alboran offshore sections, we will 

use in this paper “Pliocene” to describe the deposits overlying the MES offshore by 

contrast with the underlying “Miocene” ones, consistently with the available literature.       

Using all the seismic profiles indicated in Figure 2B, the MES has systematically been 

picked to reconstruct the paleo-bathymetry of the Messinian valley (Fig. 9C). The 

Messinian valley is followed over tens of kilometers toward the centre of the basin where 

its course and termination have been described by Estrada et al. (2011).  

 

 

Fig. 9: Morphology of the Messinian Erosional Surface in the area of Malaga, from land 

to the Alboran Basin.  A1 and A2, Offshore non interpreted and interpreted seismic profile 

EAS-7, respectively; B1 and B2, Offshore non interpreted and interpreted seismic profile 

EAS-82, respectively; C, Reconstructed paleo-bathymetry of the Messinian Erosional 

Surface, obtained from seismic data interpolation. 

 

5. Discussion 

 

Our results indicate that: (1) the Lago Mare layers were deposited under marine 

conditions; (2) their lowermost part (samples 1–4) may belong to the NN12a 

nannoplankton subzone based on the occurrence of Triquetrorhabdulus rugosus, and (3) 

their upper part (samples 5–12) belongs to the nannoplankton subzone NN12b with 

respect to the co-occurrence of C. acutus and T. rugosus (Fig. 1; Raffi et al., 2006; 

Melinte-Dobrinescu et al., 2009). We will first develop our thought about the origin and 

mode of transport of the Paratethyan-type organisms, before discussing the sedimentary 

specificity of the Río Mendelín Lago Mare and its setting in the context of the Lago Mare 
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biofacies in southern Spain then with respect to their distribution in the whole 

Mediterranean region. 

 

5.1. Origin and mode of transport of the Paratethyan-type organisms.  

These questionings narrowly linked, several times discussed (see for a large review: 

Orszag-Sperber, 2006), need to be re-examined to highlight our results and specify our 

interpretations. We have used „Paratethyan-type‟ for describing the characteristic 

organisms of the Lago Mare biofacies in order to avoid an a priori link to an 

unquestionable origin from the Paratethys. Concerning brackish molluscs, foraminifers 

and ostracods of „marine‟ origin, a doubt has been introduced for a long time on the 

significance of their occurrence in isolated Holocene hyposaline environments, distant 

from the sea, in North Africa (Gasse et al., 1987; Plaziat, 1993). To explain such 

examples, transport by birds was considered which was hence proposed for Lago Mare 

fossils too (see: Orszag-Sperber, 2006, and references therein), making such 

paleoenvironments the host of an endemic life (Bassetti et al., 2006). Transportation by 

birds seems improbable in the case of dinoflagellates because of fragility to oxydation of 

their encysted forms while their motile forms live few hours. According to high number 

of dinoflagellate cyst records before and after the MSC both in the Mediterranean and 

Paratethys, there is no doubt on the occurrence of Galeacysta etrusca in brackish 

Paratethyan environments prior to the Mediterranean Lago Mare sediments (see: Popescu 

et al., 2009, and references therein). If Paratethyan-type organisms were transported by 

birds, how to explain, particularly for Lago Mare 1 and 3, that such events are 

concentrated in a so short time-window (some 300 kyrs, from about 5.640 to 5.332 Ma; 
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Fig. 1) and have been never repeatedly reported in the so deeply investigated past 

environments of the Mediterranean. It is clear that, at the state of our knowledge, the 

easiest way for transportation of so many organisms was a direct but temporary 

connection between the Mediterranean and Paratethys through a marine gateway, the 

location of which may have sifted along time. Concerning the late Messinian and early 

Zanclean, this assumption is strongly supported by geological data through the Balkans 

(Popescu et al., 2009; Bache et al., 2012) and the record of marine organisms 

(foraminifers, coccoliths, dinoflagellates) in the Dacic Basin (Clauzon et al., 2005; Suc et 

al., 2011).          

The Paratethyan-type (usually considered as brackish) dinoflagellate cyst Spiniferites 

cruciformis is reported from a Late Quaternary freshwater lake in northern Greece (Kouli 

et al., 2001). The authors consider that this environment corresponded to the usual 

ecology of this species. We must emphasize that this is an isolated example which 

requires to be confirmed, as this species can adapt to environment changes in developing 

various morphologies. We repeatedly found Spiniferites cruciformis in our analyses 

associated with Galeacysta etrusca, the Paratethyan origin of which and its brackish 

ecology being above re-affirmed.          

As a consequence, we will then consider that the Paratethyan-type organisms 

constituting the Lago Mare biofacies have an actual Paratethyan origin and that their 

transportation into the Mediterranean was forced by water currents, except for the Lago 

Mare 2 event which requires to be studied in more detail. 

 

5.2. Sedimentary context of the Río Mendelín Lago Mare  
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According to Guerra-Merchán et al. (2010), the Pliocene deposits of the northern area 

of Malaga fill a valley cut within the Betic metamorphic basement that we undoubtedly 

ascribe to the peak of the MSC (Fig. 2C). Based on micropaleontological and 

stratigraphic analyses, we have shown that the Lago Mare deposits of the Río Mendelín 

section also belong to the submarine part of a Gilbert-type fan delta, and more precisely 

of a tributary of the Río Guadalmedina. Guerra-Merchán et al. (2008, 2010) indicate an 

erosional truncation, marked by a conglomeratic accumulation, which separates their Pl-1 

Unit (dated as Zanclean) from the underlying Lago Mare Unit, interpreted as late 

Messinian. This truncation is well-observed in Figure 3A and clearly separates the 

yellowish sediments from the underlying reddish ones in Figure 3B.  Because of the 

occurrence of some normal faults in the Lago Mare deposits (see Fig. 3A, B), Guerra-

Merchán et al. (2010) “suggest a phase of sedimentary interruption” to explain the 

unconformity “probably caused by a relative base-level fall, tectonic in origin, before the 

marine Pliocene flooding”. The coastal marine environment that we identified in the Lago 

Mare deposits, and particularly the occurrence of Ceratolithus acutus in these sediments, 

challenge this interpretation, leading us to ascribe deposition of the entire Río Mendelín 

section as a consequence of the marine reflooding ending the MSC. Consequently, these 

channel-like features, separated by an erosional surface, may result from submarine 

gravity instabilities and/or slope processes frequently described along continental margins 

(Brunt et al., 2013; Dakin et al., 2013). They can also be found in deltaic contexts where 

they are usually described as slope channels (Porębski and Steel, 2003). Such features are 

frequent in the clayey deposits within the Mediterranean Zanclean rias (Fig. 10) where 

they may cause impressive erosive truncations outlined by conglomeratic accumulations 
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such as at Saint-Isidore (Var Valley, southern France; Fig. 10A; Clauzon et al., 1990). 

There, channelization was accentuated by the submarine confluence of a tributary 

Gilbert-type fan delta with that of the Var River, maybe in a context of small sea-level 

variations. Such conditions have probably prevailed in the Malaga area just after the 

marine reflooding of the Mediterranean Basin. 

 

 

Fig. 10: Submarine erosional morphologies affecting bottomset and foreset beds of 

Zanclean Gilbert-type fan deltas in Southern France. A, General view of the Saint-Isidore 

quarry (Nice area); B, Saint-Isidore: detail of an erosional contact; C, General view of 

the Pichegu quarry (Arles area). 

 

North of Malaga, the post-MSC marine reflooding in the Río Mendelín and Río 

Guadalmedina rias is evidenced by the development of conglomeratic foreset beds at the 

apex of the Gilbert-type fan delta and the presence of calcareous nannofossils in the 

earliest clayey bottomset beds at El Túnel (Table 1). According to Bache et al. (2012), the 

catastrophic marine reflooding of the Mediterranean Basin caused by the collapse of the 

Gibraltar sill occurred at 5.460 Ma, i.e. in correspondence with the high global sea level 

that Miller et al. (2011) match with the Marine Isotopic Stage TG 11 (Hodell et al., 2001) 

as shown in Figure 1. Then, the occurrence of well-preserved mollusc shells in the Lago 

Mare Unit of the Río Mendelín section suggests an evolution toward more coastal 

conditions with the development of lagoons while marine microorganisms continued to 

contribute to the micropaleontological assemblage. Such evolution is interpreted as 

resulting from a slight fall in global sea level which, in addition, may have caused some 

erosion of the Lago Mare Unit (Fig. 1). After 5.345 Ma (lowest occurrence of 
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Ceratolithus acutus; Fig. 1; Raffi et al., 2006), a sea-level rise may have favoured 

submarine erosion within the bottomset beds. Figure 11 illustrates such a 

paleogeographic and sedimentological evolution, starting from the fluvial erosional phase 

during the peak of the MSC and ending with the deposition of the yellowish clays 

containing Hirsutella (Globorotalia) margaritae. Paleogeographic and sedimentological 

changes that affected the region of Malaga in the latest Miocene and earliest Pliocene 

appear to have been mainly forced by sea-level fluctuations. The effect of tectonics 

mentioned by Guerra-Merchán et al. (2010) on the basis of small-scale normal faults in 

the Lago Mare deposits must be questioned. Considering the rapid succession of the two 

submarine channels, these small-scale, local normal faults can be considered as syn-

sedimentary faulting probably due to overloading with a very limited impact. Offshore 

Malaga, the interpolated map of the MES illustrates the morphology of the junction of the 

Guadalhorce and Guadalmedina Messinian valleys filled by Pliocene prograding 

sediments (Fig. 9C).  

 

 

Fig. 11: Reconstructed paleogeographic and sedimentological evolution of the area 

northward of Malaga during and after the peak of the MSC (see Fig. 1 for the time 

schedule). A, At the time of the Mediterranean desiccation (5.600 Ma) when Río 

Guadalmedina and Río Mendelín cut their valley; B, When the Mediterranean basin was 

reflooded by marine waters transforming the fluvial valleys into marine rias (5.460 Ma), 

allowing the onset of Gilbert-type fan delta progradation; C, During a slight sea-level 

fall at ca. 5.360 Ma leading a bay paleogeography in the Río Mendelín ria with 

occurrence of some lagoons where molluscs of Paratethyan-type developed, the shells of 

which deposited in the bottomset beds; D, During the following sea-level rise (at ca. 

5.350–5.332 Ma) resulting in increased development of Gilbert-type fan deltas and 

clayey bottomset beds affected by submarine erosion. 

 



28 

 

To summarize, our results and interpretations contrast with those of Guerra-Merchán 

et al. (2008, 2010) on the following major items: 

- the significant erosion which impacted the Betic basement was the direct 

consequence of the Mediterranean Sea-level drawdown during the peak of the 

MSC;  

- this erosion is not locally limited but is continuously followed down to the deepest 

Alboran Sea; 

- if the Lago Mare Unit of Río Mendelín really belongs to the latest Messinian, it 

however must be ascribed to the 3
rd

 Lago Mare  event which immediately followed 

the post-MSC marine reflooding of the Mediterranean Basin; 

- the Río Mendelín Lago Mare Unit is a part of a Gilbert-type fan delta where the 

dip of conglomeratic-sandy beds has a sedimentary origin and is not tectonically 

forced; 

- the discontinuity separating the Lago Mare Unit from Pl-1 Unit results from 

submarine gravity instabilities commonly observed in such deltaic systems and 

cannot be considered as expressing the regional tectonic activity. 

In the Sorbas Basin, the marine clays post-dating the MSC and dated in many places 

by Ceratolithus acutus and Triquetrorhabdulus rugosus calcareous nannofossils, either 

comprise the bottomset beds of Gilbert-type fan deltas in their proximal location or the 

basinward extension of these bottomset beds (Clauzon et al., 2009, revised). In some 

localities, such as at Zorreras hill (Fig. 4A), these marine clays are immediately overlain 

by the lower whitish clayey layers (i.e. Lago Mare deposits) of the Zorreras Member 

overlying the marine-continental transition.  
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In the Níjar Basin, specifically at Gafares, the Lago Mare whitish clayey layers belong 

to the Feos Formation (Bassetti et al., 2006) which is the local equivalent of the Zorreras 

Formation in the Sorbas Basin (Fortuin and Krijgsman, 2003). They are part of a 

continental series affected by some repeated marine influxes (Aguirre and Sánchez-

Almazo, 2004; Bassetti et al., 2006; Omodeo Salé et al., 2012). 

Accordingly, the Lago Mare deposits studied in southern Spain clearly belong to the 

post-MSC sedimentary infilling process of fluvial valleys cut during the peak of the 

crisis. Such sedimentary successions refer to Gilbert-type fan deltas (including some 

minor tributary ones) in the proximal areas of the Messinian valleys, which started to 

develop in the latest Messinian and continued during the Zanclean (Fig. 1).  

 

5.3. Biofacies of  Lago Mare deposits in southern Spain 

The Lago Mare deposits of Río Mendelín are characterized by their high biological 

diversity and occurrence of biota having a biostratigraphic and paleoecological 

significance. In addition to the usual occurrence of both Paratethyan molluscs (Dreissena 

ex. gr. rostriformis, Pachydacna, Pontalmyra partschi, Melanopsis narzolina, Theodoxus 

mutinensis, etc.) and ostracods (Amnicythere accicularia, Loxocauda limata, Loxoconcha 

kochi, Tyrrhenocythere pontica, etc.), they contain a rich Paratethyan dinoflagellate cyst 

assemblage (Galeacysta etrusca, Spiniferites cruciformis, S. bentori pannonicus, etc.). 

The presence of calcareous nannofossils and planktonic foraminifers together with 

Paratethyan and marine dinoflagellate cysts suggest a deposition under an influx of 

marine waters. Such an influx must have occurred during a period of high sea level which 

allowed the connection between Mediterranean and Paratethys basins. The co-occurrence 
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of Paratethyian microorganisms living in surface water (dinoflagellates) with ostracods 

and molluscs support this scenario. Indeed, such a fossil assemblage with brackish 

organisms (dinoflagellates, ostracods, molluscs) and marine ones (dinoflagellates, 

foraminifers, coccoliths) has been recorded in several places around the Mediterranean 

from deposits usually ascribed to Lago Mare (Casabianda in Corsica, Eraclea Minoa in 

Sicily, Maccarone in northern Italy, Trilophos in northern Greece, and Intepe in Turkey; 

Fig. 12; see Table 2 for references), to which we must add deposits from the Dacic Basin 

characterized by Paratethyan organisms and affected by Mediterranean water influxes 

(Fig. 12; Table 2). Specific environments (small bays receiving some fluvial input, for 

example) at the interface between brackish and marine conditions must be considered. 

The reject of marine organisms, regarded a priori as reworked, has often masked the 

reality of these biotopes relatively complex to visualize (for a striking example, see: 

Popescu et al., 2007).   

 

 

Fig. 12: Selected localities in the Mediterranean and Eastern Paratethys illustrating the 

three Lago Mare events. The probable gateway between the Aegean Sea and the Eastern 

Paratethys is indicated by a grey double arrow. Localities from West to East (references 

for the Mediterranean localities with Lago Mare biofacies are given in Table 2): 1, Río 

Mendelín; 2, Zorreras; 3, Gafares; 4, Cuevas del Almanzora; 5, Site 978; 6, Monforte, 

Colmenar, Oami; 7, Papiol; 8, Site 124 ; 9, Site 975; 10, Site 372; 11, Théziers; 12, Saint-

Marcel d’Ardèche; 13, Saint-Restitut; 14, Allex; 15, Sioneri; 16, Casabianda; 17, Djebel 

Herageg; 18, Torre Sterpi; 19, Site 653; 20, Site 132; 21, Cava Serredi; 22, Monteglino; 

23, Monticino; 24, Site 974; 25, Pomarance; 26, Eraclea Minoa; 27, Maccarone; 28, 

Capo Rossello; 29, Pasquasia; 30, Ancone; 31, Civitella del Tronto; 32, Vizzini; 33, 

Zinga; 34, Site 374; 35, Kavvadades; 36, Agios Sostis; 37, Turnu Severin; 38, Hinova; 

39, Gabrovačka Reka; 40, Drăcevo; 41, Ţicleni; 42, Trilophos; 43, Badislava; 44, 

Souvala; 45, Skini; 46, Khairetiana; 47, Doiceşti; 48, Bizdidel; 49, Mesi; 50, Site 969; 

51, Faneromeni; 52, Călugăreni; 53, Argova Valley; 54, Valea Vacii; 55, Intepe; 56, Site 

129; 57, Yalakdere; 58, Site 380; 59, Site 376; 60, Site 967; 61, Site 968; 62, Giolou; 63, 

Kerc. 
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The NN12a-b nannoplankton age indicates that this event immediately followed the 

marine reflooding of the Mediterranean Basin and its re-connection with the Paratethys, 

dated around 5.460 Ma (Bache et al., 2012). This event predated the Zanclean Global 

Stratotype Section and Point (GSSP) set at 5.332 Ma (Van Couvering et al., 2000; 

Lourens et al., 2004). In fact, the so-called “Zanclean Deluge” occurred in the latest 

Messinian time. The Lago Mare event recorded in the Malaga area is the third Lago Mare 

event shown in Figure 1. The Río Mendelín Lago Mare correlates with the Arenazzolo 

Unit of Sicily which, there, is separated from the underlying Lago Mare Unit (in fact the 

Lago Mare event 1; Fig. 1) by an angular discordance illustrating a discontinuity 

(Popescu et al., 2009; Bache et al., 2012) that we re-interpret now as the reflooding 

surface rather than the Messinian Erosional Surface, with a maintained sedimentary gap 

of 140 kyrs (5.600 – 5.460 Ma) between the two units. The yellowish clays of Río 

Mendelín correlate with the Sicilian Trubi Formation. The Lago Mare event 3 signals 

momentarily renewed water exchanges between the Mediterranean and the Eastern 

Paratethys after the peak of the MSC  and the marine reflooding of the Mediterranean at 

5.460 Ma (Fig. 1; Clauzon et al., 2005; Popescu et al., 2009; Suc et al., 2011; Bache et 

al., 2012). According to Guerra-Merchán et al. (2010), Paratethyan molluscs are restricted 

to the lower part of the reddish silts and marls in the Río Mendelín section while 

Paratethyan ostracods disappear in its upper part (Fig. 3), probably due to a salinity 

increase. The Hirsutella (Globorotalia) margaritae species, more frequently recorded at 

the base of the overlying yellowish clays (Fig. 3), is referred by Guerra-Merchán et al. 

(2010) to the first common occurrence level of the species which is also dated at 5.080 
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Ma by Lourens et al. (2004). However, this level is significantly oldier than 5.080 Ma 

because of the co-occurrence of H. (G.) margaritae with Ceratolithus acutus and 

Triquetrorhabdulus rugosus (Table 1). An age comprised between 5.345 Ma (lowest 

occurrence of C. acutus) and 5.279 Ma (highest occurrence of T. rugosus) must hence be 

considered for this level at Río Mendelín (Fig. 1; Raffi et al., 2006). H. (G.) margaritae 

may have entered the Mediterranean Basin prior to 5.080 Ma (see also Clauzon et al., 

revised, for the same evidence in the Sorbas Basin further East), consistently with its first 

appearance at 6.080 Ma in the nearby Atlantic Ocean (Lourens et al., 2004) and the 

reflooding age of the Mediterranean Basin proposed at 5.460 by Bache et al. (2012). The 

co-occurrence of brackish (Paratethyan) molluscs and ostracods with marine 

microorganisms (calcareous nannofossils, foraminifers, dinoflagellate cysts) in Lago 

Mare deposits has been questioned (Iaccarino and Bossio, 1999). However it seems 

conceivable to consider that the marine microorganisms (calcareous nannofossils, 

dinoflagellate cysts, foraminifers) plus the Paratethyan-type dinoflagellate cysts were 

deposited in situ in such a coastal open marine environment. After their arrival in the area 

brought by marine currents, the Paratethyan ostracods and molluscs would have become 

established in a small bay with very close coastal lagoons to explain the excellent 

preservation of mollusc shells which did not suffer a fluvial transport. Such an 

environment would have been temporarily invaded by marine waters given the repeated 

occurrences of marine dinoflagellate cysts (Fig. 5), calcareous nannofossils (Table 1) and 

some planktonic foraminifers. 

  The Lago Mare deposits described in the Sorbas and Níjar basins (i.e. the whitish 

clayey layers) are part of dominantly continental complexes, called the Zorreras Member 
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and the Feos Formation, respectively. In the Sorbas Basin, the lower whitish clayey layer 

(W1) overlies marine clays containing Ceratolithus acutus and Triquetrorhabdulus 

rugosus (i.e. of the NN12b nannoplankton subzone) (Clauzon et al., 2009, revised), as 

shown at the Zorreras hill (Fig. 4A; Table 1). In some areas of the Sorbas Basin, the same 

clays underlying the Zorreras Member contain also Hirsutella (Globorotalia) margaritae 

(Clauzon et al., revised). At the Zorreras hill, dinoflagellate cysts and calcareous 

nannofossils have not been recorded. This may suggest that this layer is the marginal 

marine (lagoonal) signature of the Lago Mare, following the marine invasive episode. A 

similar conclusion can be expressed about the Lago Mare deposits exposed in the Níjar 

Basin where dinoflagellate cysts and calcareous nannofossils have not been recorded in 

the lowermost whitish clayey layer. And yet, calcareous nannofossils have been recorded 

at the base of W2 and W3 (Fig. 4B; Table 1), that allows to discard a preservation or 

taphonomic bias between these identical facies. In fact, as proposed by Clauzon et al. 

(2005) and Popescu et al. (2007, 2009), the record of Paratethyan dinoflagellate cysts is 

the actual chronologically well-constrained signature of the Paratethyan water influx (as 

samples a, b, e, f, h and 6 from the Río Mendelín section). The record of Paratethyan 

molluscs and/or ostracods constitutes sometimes a coeval indication of Lago Mare 

conditions (as in the Río Mendelín section) or, more often, as a slightly postponed and 

more continental archive (lagoons) of influx by Paratethyan waters and organisms (see 

also: Aguirre and Sánchez-Almazo, 2004).  

 

5.4. Distribution of Lago Mare deposits in the Mediterranean region 
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This study allows us to complete the listing (Table 2) and distribution map (Fig. 12) of 

the three kinds of Lago Mare deposits (1, 2, and 3; Fig. 1) where the major change 

concerns the chronologic location of these deposits from eastern Andalusia (Lago Mare 

3). Indeed, these Lago Mare deposits were previously reported as belonging to the Lago 

Mare 1 event (Clauzon et al., 2005: fig. 13). Our investigations establish that they are to 

be referred to the Lago Mare 3 event, a result which is in agreement with the previous 

assumptions made at Sorbas by Ott d‟Estevou and Montenat (1990) and Níjar by Aguirre 

and Sánchez-Almazo (2004). A questionment persists for the Lago Mare deposits in the 

Bajo Segura Basin (sites Monforte, Colmenar, and Oami: locality 6 in Figure 12), only 

documented by ostracods, which is considered as laterally equivalent to gypsums (Soria 

et al., 2007, 2008), i.e. to be ascribed to Lago Mare 1 (Fig. 5; Table 2). Here, the 

stratigraphic organisation described by Soria et al. (2007, 2008) is greatly similar to that 

observed near Malaga with, in addition, residual  gypsums, the relationship of which with 

the Lago Mare deposits is unclear all the more so as layers with calcareous nannofossils 

of Zone NN12 are indicated below the gypsums (Soria et al., 2008: figure 2).   

The examination of Figure 12 points out that Lago Mare 3 episode has the largest 

Mediterranean extension to the West (except the enigmatic locality 6, see above), at least 

up to Malaga, especially concentrated along the northern coastlines. Such a geographic 

distribution of the Lago Mare 3 localities is striking. This means that, in the Early 

Pliocene:  

- a significant input of brackish Paratethyan surface waters flowed into the 

Mediterranean Basin, as suggested by Sprovieri et al. (2008), probably through the 
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Balkan Corridor (Fig. 12) proposed by Clauzon et al. (2005), Popescu et al. (2009), 

Suc et al. (2011) and Bache et al. (2012) ;  

- a surface geostrophic current ran along the Northwestern Mediterranean shoreline, as 

suggested by Suc and Drivaliari (1991).       

It can be considered that, fastly after the post-MSC marine reflooding, a marine 

thermohaline circulation almost similar to the present one became established, at least in 

the Western Mediterranean Basin (Poulain et al., 2012). Such a circulation seems to have 

benefited from an active incursion by Paratethyan waters (Sprovieri et al., 2008). Seismic 

and stratigraphic analyses performed on Pliocene to Quaternary sequences (Juan et al., 

2012) showed that since the opening of the Gibraltar Strait, the circulation model of the 

Alboran Sea is quite similar to the present one. After the Zanclean reflooding, 

sedimentation was dominated by contourite deposition locally interrupted by turbiditic 

fans and slope deposits (Juan et al., 2012). A different and less intensive current pattern 

before the peak of the MSC might explain the weakness of the influx of Paratethyan 

surface waters into the Western Mediterranean. The Lago Mare 2 episode appears 

insufficiently documented, especially regarding the contribution of dinoflagellate cysts 

and calcareous nannoplankton. Accordingly, its understanding cannot be considered as 

having been achieved. 

 

6. Conclusion 

Owing to new micropaleontological findings and stratigraphic onshore-offshore 

analysis, we revised in detail the age and depositional environment of Lago Mare 
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deposits for three localities in southern Spain (Malaga, Sorbas and Níjar) and the 

following conclusions were established:  

1) North of Malaga, the Lago Mare exposed along the Río Mendelín results from the 

third episode of invasion of Paratethyan organisms into the Mediterranean, corresponding 

to a two-way water exchange at high sea level between the basins (Lago Mare 3). The 

paleontological interpretations have been enhanced by investigations into the Paratethyan 

and Mediterranean dinoflagellate cysts and calcareous nannofossils. Age constraints have 

been refined by nannofossil biostratigraphy and onshore-offshore identification of the 

Messinian Erosional Surface overlain by a Gilbert-type fan delta. A paleogeographic and 

sedimentary reconstruction of the Malaga area for the time-interval 5.600–5.332 Ma 

shows that a minor fall in sea level facilitated the development of the Lago Mare 

biofacies after the marine reflooding ending the Messinian Salinity Crisis.  

2) In the Sorbas and Níjar basins, the Lago Mare deposits belong to the continental 

sedimentary unit overlying the marine sediments of the Mediterranean reflooding, yet 

still affected by marine incursions at Níjar, i.e. in a more coastal location. They also 

illustrate the Lago Mare 3 episode, but their biofacies lacks Paratethyan dinoflagellate 

cysts.   

3) In addition to their chronostratigraphic distinction, this paleoenvironmental criterion 

separates the Malaga Lago Mare from the Sorbas and Níjar ones. Indeed, only a Lago 

Mare biofacies including Paratethyan dinoflagellate cysts may be considered as the 

precise influx level of Paratethyan waters. In contrast, those Lago Mare biofacies only 

composed of Paratethyan molluscs and/or ostracods must be regarded as the marginal-

marine (lagoonal) signature subsequent to the invasive episode.  
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Our data and resulting conclusions thus evidence a new environmental, sedimentological 

and stratigraphic context for the Lago Mare deposits of the peripheral basins of the 

northern Alboran Sea. 

An up-to-date review of the Lago Mare evidence confirms that three invasive episodes 

occurred within the time-interval 5.700–5.300 Ma and supports the conclusion that the 

concept of a unique chronostratigraphic unit must be abandoned. The geographic 

distribution of Lago Mare 3 suggests that the modern pattern of Mediterranean currents 

took place after the marine reflooding at 5.460 Ma. At last, the petroleum interest of Lago 

Mare 3 is reaffirmed. 
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Table 1: Calcareous nannofossils recorded in the Río Mendelín, El Túnel, Zorreras 

(Sorbas) and Gafares (Níjar) sections. Location of samples in Figure 4. 

 

Table 2: Mediterranean localities with Paratethyan-type organisms corresponding to 

Lago Mare deposits located in Figure 12. 
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Fig. 1: Chronotratigraphy of the events related to the Messinian Salinity Crisis in the 

peripheral and central Mediterranean basins: deposition of evaporites, subaerial and 

marine erosion, Lago Mare (Bache et al., 2012). Correlations with the 18O curve from 

Site 982 from the benthic foraminifer Cibicidoides kullenbergi (Hodell et al., 2001) on 

which has been established and adjusted the global sea level curve from Miller et al. 

(2011). Relationships with the Eastern Paratethys are indicated by double arrows 

(Clauzon et al., 2005; Popescu et al., 2009). Chronology is from Bache et al. (2012) and 

Manzi et al. (2013). Molluscs: Dr, Dreissenids; L, Lymnocardiids; O, Ostracods; D, 

Dinoflagellate cysts; F, Foraminifers; N, Calcareous nannofossils. 
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Fig. 2: General location maps. 

 A, Studied area; B, Onshore geological sketch of the northern Alboran Sea with 

the studied areas (1, Río Mendelín and El Túnel near Malaga; 2, Zorreras near Sorbas; 

3, Gafares near Níjar). Thick lines point out the seismic profiles shown in Figures 9A and 

9B within the available seismic database used for the 3D reconstruction in Figure 9C; C, 

Location map and geological map of the area northward of Malaga.The geological map 

is from Estévez González and Chamón Cobos (1978). Boxes indicate the studied sections 

(Río Mendelín and El Túnel) with the corresponding figures. 
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Fig. 3: The studied Río Mendelín section. A, Photograph of the sampled section; B, Log 

of the section with location of samples 1 to 14 (distance between two successive samples 

is indicated in Table 1); C, Photograph of the marine-continental transition; D, Log of 

the marine-continental transition; E, Zoomed photograph of the continuously sampled 

interval between samples 5 and 6 (samples a–j; distance between two successive 

samples: 10 cm). 
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Fig. 4: Lago Mare deposits in the region of Almería. A, View of the Zorreras section, near 

Sorbas. B, View of the Gafares section, near Níjar.  W1, W2, W3: whitish clayey layers; 

1, 2, 3: location of the studied sample 
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Fig. 5: Dinoflagellate cysts recorded in the Río Mendelín section, grouped according to 

their ecological significance. Synthetic diagram shows the relative abundance of the 

groups: 1, marine taxa (white line separates stenohaline species to the left from 

euryhaline taxa to the right); 2, brackish taxa (black line separates Galeacysta etrusca to 

the left from the other taxa to the right); 3, indeterminable plus indeterminate cysts; 4, 

freshwater taxa. Spiniferites spp. are indicated both as marine and brackish taxa. They 

are mostly made of fragments which prohibit a species ascribtion but can be ecologically 

classified according to their morphology.   
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Fig. 6: Photographs of some specimens of Galeacysta etrusca recorded in the Lago Mare 

deposits of the Río Mendelín section: views c, d and f are from sample e; views g and h 

are from sample f; views a, b and e are from sample 6. View a, note the occurrence of a 

cyst of Pediastrum close to G. etrusca. Scale bar: 20 m.   
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Fig. 7: Photographs of some specimens of Ceratolithus acutus (crossed Nichols) recorded 

in the Lago Mare deposits of the Río Mendelín section: a and b, sample 5; c, sample 6. 

Scale bar: 5 m. 

 

 

 

Fig. 8: The Gilbert-type fan delta of the Guadalmedina River (Malaga). A, Detailed view 

of the Messinian Erosional Surface separating the Gilbert-type fan delta deposits from 

the metamorphic basement. B, Photograph of a part of view C at greater magnification. 

C, View of the proximal part of the Gilbert-type fan delta showing (1) the coarse blocks 

and the conglomeratic to sandy foreset beds overlying the Messinian Erosional Surface 

(MES) and the metaporphic basement, and (2) the sampled bottomset beds. D, 

Panoramic view of the Río Mendelín section 
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Fig. 9: Morphology of the Messinian Erosional Surface in the area of Malaga, from land 

to the Alboran Basin.  A1 and A2, Offshore non interpreted and interpreted seismic profile 

EAS-7, respectively; B1 and B2, Offshore non interpreted and interpreted seismic profile 

EAS-82, respectively; C, Reconstructed paleo-bathymetry of the Messinian Erosional 

Surface, obtained from seismic data interpolation. 
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Fig. 10: Submarine erosional morphologies affecting bottomset and foreset beds of 

Zanclean Gilbert-type fan deltas in Southern France. A, General view of the Saint-Isidore 

quarry (Nice area); B, Saint-Isidore: detail of an erosional contact; C, General view of 

the Pichegu quarry (Arles area). 

 

 

 

 

 



10 

 

 

Fig. 11: Reconstructed paleogeographic and sedimentological evolution of the area 

northward of Malaga during and after the peak of the MSC (see Fig. 1 for the time 

schedule). A, At the time of the Mediterranean desiccation (5.600 Ma) when Río 

Guadalmedina and Río Mendelín cut their valley; B, When the Mediterranean basin was 

reflooded by marine waters transforming the fluvial valleys into marine rias (5.460 Ma), 

allowing the onset of Gilbert-type fan delta progradation; C, During a slight sea-level 

fall at ca. 5.360 Ma leading a bay paleogeography in the Río Mendelín ria with 

occurrence of some lagoons where molluscs of Paratethyan-type developed, the shells of 

which deposited in the bottomset beds; D, During the following sea-level rise (at ca. 

5.350–5.332 Ma) resulting in increased development of Gilbert-type fan deltas and 

clayey bottomset beds affected by submarine erosion. 
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Fig. 12: Selected localities in the Mediterranean and Eastern Paratethys illustrating the 

three Lago Mare events. The probable gateway between the Aegean Sea and the Eastern 

Paratethys is indicated by a grey double arrow. Localities from West to East (references 

for the Mediterranean localities with Lago Mare biofacies are given in Table 2): 1, Río 

Mendelín; 2, Zorreras; 3, Gafares; 4, Cuevas del Almanzora; 5, Site 978; 6, Monforte, 

Colmenar, Oami; 7, Papiol; 8, Site 124 ; 9, Site 975; 10, Site 372; 11, Théziers; 12, Saint-

Marcel d’Ardèche; 13, Saint-Restitut; 14, Allex; 15, Sioneri; 16, Casabianda; 17, Djebel 

Herageg; 18, Torre Sterpi; 19, Site 653; 20, Site 132; 21, Cava Serredi; 22, Monteglino; 

23, Monticino; 24, Site 974; 25, Pomarance; 26, Eraclea Minoa; 27, Maccarone; 28, 

Capo Rossello; 29, Pasquasia; 30, Ancone; 31, Civitella del Tronto; 32, Vizzini; 33, 

Zinga; 34, Site 374; 35, Kavvadades; 36, Agios Sostis; 37, Turnu Severin; 38, Hinova; 

39, Gabrovačka Reka; 40, Drăcevo; 41, Ţicleni; 42, Trilophos; 43, Badislava; 44, 

Souvala; 45, Skini; 46, Khairetiana; 47, Doiceşti; 48, Bizdidel; 49, Mesi; 50, Site 969; 

51, Faneromeni; 52, Călugăreni; 53, Argova Valley; 54, Valea Vacii; 55, Intepe; 56, Site 

129; 57, Yalakdere; 58, Site 380; 59, Site 376; 60, Site 967; 61, Site 968; 62, Giolou; 63, 

Kerc. 
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Table 1: Calcareous nannofossils recorded in the Río Mendelín, El Túnel, Zorreras 

(Sorbas) and Gafares (Níjar) sections. Location of samples in Figure 4. 
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Table 2: Mediterranean localities with Paratethyan-type organisms corresponding to 

Lago Mare deposits located in Figure 12. 


