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LATE PALEOZOIC PRE- AND SYN-KINEMATIC PLUTONS OF
THE KANGGUER-HUANGSHAN SHEAR ZONE: INFERENCE ON
THE TECTONIC EVOLUTION OF THE EASTERN
CHINESE NORTH TIANSHAN

BO WANG* ", DOMINIQUE CLUZEL**, BOR-MING JAHN*** LIANGSHU SHU*,
YAN CHENS, YAZHONG ZHAT#, YANNICK BRANQUETS, LUC BARBANSON®,
and STANISLAS SIZARET®

ABSTRACT. Permian large-scale transcurrent tectonics and massive magmatism are
prominent features of the Tianshan belt and neighboring regions of the Central Asian
Orogenic Belt. Structural, geochronological and geochemical analyses of Carbonifer-
ous and Permian intrusive rocks associated with the Kangguer—-Huangshan Shear Zone
(eastern Chinese North Tianshan) provide constraints on their tectonic setting and the
tectonic evolution of the Tianshan belt as well. Carboniferous granitic rocks were
emplaced at 338 = 4 Ma and 347 * 2 Ma, respectively, and show geochemical features
typical of the calc-alkaline series. These arc-type granites do not display ductile
deformation, probably because they were completely cooled at the time of shearing
tectonics, and are only offset by brittle strike-slip faults. In contrast, Permian grani-
toids display pervasive ductile tectonic features diagnostic of synkinematic emplace-
ment.

Four gabbro and diorite samples from the East Huangshan intrusive complex
yielded zircon U-Pb ages of 267 to 275 Ma, and a granitic dike is dated at 290 = 1 Ma.
The granitic dike is cut by en-echelon right-lateral strike-slip faults, and the mafic
intrusive complex displays a sigmoidal shape with mylonitic foliation localized at its
margins. Other specific pluton shapes (such as tongue and tadpole-like) and syn-
magmatic deformation can be observed in intrusions of the same age, showing similar
fabrics and kinematics consistent with that of the Kangguer—-Huangshan Shear Zone.
Numerous mafic to felsic dikes occur within and off the shear zone with a dominant
SE-NW orientation and minor varieties in N-S or NNE-SSW directions. One gabbro
dike that intrudes the early Carboniferous granite of the East Kanggurtag area yielded
a magmatic age of 274 * 4 Ma, and contains older zircons (~340 Ma, ~390 Ma, ~450
Ma, and 1.3-2.2 Ga) probably inherited from intruded rocks. The Permian intrusive
rocks have variable chemical compositions suggesting derivation of these rocks from
depleted and undepleted (or enriched) mantle sources with involvement of subduction-
related components. We conclude from our integrated analysis of the geological,
structural, geochemical and geochronological data that the Permian magmatic rocks
were formed in a post-collisional /post-orogenic setting from multiple sources, and
were emplaced under the control of large-scale dextral transcurrent tectonics.

Key words: Late Paleozoic, Permian, Central Asia, Tianshan, Kangguer—Huang-
shan shear zone, post-collision, synkinematic magmatism, transcurrent tectonics

INTRODUCTION

The Permian is a critical period in the building of the Central Asian Orogenic Belt
(CAOB) and its amalgamation with the Tarim-Sino Korean (North China) plates in
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Fig. 1. (A) Simplified tectonic map of eastern Eurasia (modified after Jahn, 2004). Abbreviations for
tectonic units: CAOB, Central Asian Orogenic Belt; EEC, East European Craton; KZN, Kazakhstan; QQ,
Qaidam Qinling. (B) Sketch map of the northern Xinjiang area, NW China, showing tectonic subdivisions of
the Chinese Tianshan and main bounding faults (modified from Wang and others, 2007). Abbreviations:
NTF, North Tianshan Fault; NF, Nalati Fault; MTSZ, Main Tianshan Shear Zone; BF, Baluntai Fault; XXF,
Xingxingxia Fault.

the south and the Siberian Craton in the north (fig. 1A) (Jahn and others, 2000a,
2000b; Jahn, 2004; Kroner and others, 2007; Windley and others, 2007; Xiao and
others, 2009a, 2009b, 2010a). Large volumes of Permian magmatic rocks are spread
throughout the CAOB, and significantly contributed to the Phanerozoic continental
growth by the input of mantle-derived material (Jahn, 2004; Jahn and others, 2009).
The tectonic setting of the magmatic rocks is a key point for deciphering the
geodynamic evolution of the CAOB.

The Tianshan Belt is located in the southernmost part of the CAOB and is
important for the understanding of the welding of Tarim with the CAOB (Charvet and
others, 2007, 2011). The Tianshan belt is generally considered to have formed in
Paleozoic time, but the timing of final amalgamation is variously proposed as (1)
pre-Carboniferous (Xia and others, 2004, 2008), (2) Carboniferous to early Permian
(Coleman, 1989; Allen and others, 1993; Gao and others, 1998, 2009; Chen and others,
1999; Heubeck, 2001; Shu and others, 2000, 2004; Wang and others, 2008a, 2010, 2011;
Hegner and others, 2010; Han and others, 2011), and (3) Permian to Triassic (Xiao
and others, 2004, 2009a, 2009b, 2010a; Zhang and others, 2007).

Itis clear that the controversies focus on the tectonic significance of the Permian
geological events. One way to test different models is to verify the tectonic setting(s) of
the Permian magmatic rocks, which are widely distributed in the Chinese Tianshan
and have been well investigated by previous authors. However, there is still a hot debate
on the tectonic setting of the Permian magmatic rocks, and diverse models include (1)
post-collisional (Li and others, 2006b; Wang and others, 2008b; Tang and others,
2008), (2) continental rifting (Che and others, 1996; Shu and others, 2011), (3) island
arc (Mao and others, 2006), and (4) super mantle plume-related Large Igneous
Province (Xia and others, 2004, 2008; Su and others, 2011). These contrasting



interpretations were proposed for one single region and one single period (Permian),
and cannot all be correct. Further comprehensive studies of Permian magmatic rocks
and their tectonic environment are thus necessary.

In addition, Permian large-scale strike-slip faults or shear zones are a prominent
tectonic feature of the CAOB and play an essential role in the formation of the present
structure of the region (Sengér and others, 1993; Allen and others, 1995; Sengoér and
Natal’in, 1996; Wang and others, 2006a, 2010, 2011; Buslov, 2011). Shear-induced
transtension and/or localized failure favor ascent and emplacement of magma (Lees,
2002; Weinberg and others, 2004) and can be used to interpret magmatic rocks in an
orogenic belt or a post-collisional belt (Liegeois, 1998; Wang and others, 2009;
Litvinovsky and others, 2011). In the Chinese Tianshan, several mega-shear zones
occur sub-parallel to the belt (Yin and Nie, 1996; Shu and others, 1999; Laurent-
Charvet and others, 2002, 2003; Wang and others, 2006a, 2008c, 2010), but only a few
studies have invoked the role of large-scale shear zones in the emplacement of
synkinematic plutons (Wang and others, 2009; Pirajno, 2010; Branquet and others,
2012).

In order to better understand the tectonic setting(s) of the Permian magmatic
rocks and to place more constraints on the tectonic evolution of the Tianshan belt, we
studied the structural features of Permian intrusions within the Kangguer—-Huangshan
shear zone, eastern Chinese North Tianshan. We also present new zircon U-Pb ages
and whole-rock geochemical data for these intrusive rocks. Early Carboniferous
pre-kinematic granitic rocks were also investigated, and previously published data on
Permian intrusive rocks from the Kangguer-Huangshan shear zone are included to
make a comprehensive analysis.

REGIONAL GEOLOGICAL BACKGROUND

The Tianshan Range, extending E-W from the Xinjiang Region (NW China) to
Kyrgyzstan, Tajikistan and Uzbekistan for about 2500 km, is a young mountain belt due
to the intra-continental shortening induced by the Tertiary Indo-Asia collision (Tappon-
nier and Molnar, 1979; Avouac and others, 1993; Shu and others, 2003). It is separated
from the Tarim Basin in the south and the Junggar Basin in the north by two Cenozoic
major fold-and-thrust belts (fig. 1B). The precursor of the present Tianshan is a
Paleozoic accretionary/collisional belt that resulted from multiphase accretion and
amalgamation of various micro-continents and magmatic arcs between the Kazakh,
Junggar and Tarim continents (Coleman, 1989; Allen and others, 1993; Shi and others,
1994; Gao and others, 1998; Shu and others, 2000, 2004; Xiao and others, 2004; Kroner
and others, 2007; Charvet and others, 2007, 2011; Wang and others, 2008a; Han and
others, 2011).

Generally, the Chinese segment of the Tianshan Range, referred to as East
Tianshan, is further divided into eastern and western parts along the Urumqi-Korla
meridian (fig. 1B). Our study focuses mainly on the eastern Chinese Tianshan located
to the south of Tu-Ha Basin (figs. 1 and 2). Tectonically, the Paleozoic Tianshan is
divided into three subunits, namely South Tianshan, Central Tianshan and North
Tianshan (Xiao and others, 1992). The South Tianshan is composed of ophiolitic
mélanges and allochthonous lower Paleozoic sedimentary rocks that are deformed and
locally metamorphosed (Wang and others, 1994, 2008a, 2011; Laurent-Charvet and
others, 2002). The Central Tianshan unit comprises a Precambrian crystalline base-
ment and overlying early Paleozoic arc-type volcanic and volcaniclastic rocks associated
with subduction-related granitoids; both the basement and the magmatic arc-sequence
are intensely deformed and overlain by unconformable Carboniferous marine clastic
sediments (Ma and others, 1997; Shu and others, 2000). The North Tianshan consists
mainly of Late Devonian to Carboniferous calc-alkaline volcanic and volcaniclastic
rocks and associated intrusions developed upon an unknown basement (Charvet and
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others, 2007) (fig. 2). Permian rocks that occur sporadically in the three units are
similar and include bimodal volcanic rocks in the lower part and red beds in the upper
part (Li and others, 2006b; Shu and others, 2011).

The three units are separated from each other along two major faults; the Main
Tianshan Shear Zone (MTSZ; Shu and others, 1999; Laurent-Charvet and others,
2002) and the Xingxingxia Fault (XXF; Charvet and others, 2007) (figs. 1B and 2).
These faults reactivated older suture zones that are recognized as ophiolitic mélanges
and record the pre-Permian accretion of the Central and South Tianshan units with
the Tarim (Ma and others, 1997; Guo and others, 2002; Shu and others, 2004; Charvet
and others, 2007, 2011). The formation of Late Devonian to late Carboniferous
arc-related magmatic rocks in the North Tianshan is related to a southward subduction
of the paleo-Junggar Ocean (Ma and others, 1997; Shu and others, 2000; Charvet and
others, 2007, 2011) or, alternatively, is linked to the northward subduction of an
oceanic basin located in the south of the North Tianshan (Allen and others, 1993; Li
and others, 2002, 2006a).

Tectonic reactivation occurred in Permian to Triassic times along the boundaries
of older units. The MTSZ and XXF and their westward continuations (Nalati Fault and
North Tianshan Fault, fig. 1B) are generally dextral shear zones with local sinistral
components (Shu and others, 1999; Laurent-Charvet and others, 2002, 2003; Wang
and others, 2006a, 2008a, 2008c, 2010). Structural and paleomagnetic studies reveal
that dextral strike-slip motion resulted from post-collisional relative rotation between
continental blocks and accommodated eastward extrusion of the welded Central
Tianshan and Yili-Junggar assemblage along the main shear zones (Wang and others,
2007, 2008c; Choulet and others, 2011).

KANGGUER—HUANGSHAN SHEAR ZONE

Within the North Tianshan unit a mega-shear zone, 5 to 25 km wide and ~600 km
long, occurs along Kangguertag to the west and the Huangshan area to the east (fig. 2).
The Kangguer-Huangshan Shear Zone is mainly occupied by Carboniferous sedimen-
tary and volcanic rocks, including conglomerate, sandstone, graywacke, siltstone,
bioclastic limestone, basaltic and/or andesitic tuff (XJBGMR, 1993). Devonian rocks
only occur to the north of the shear zone and consist of basalt and andesite with minor
rhyolite, dacite, volcanic breccia, tuff and clastic rocks. Lower Permian volcanic rocks
recognized locally in the Kangguertag area unconformably overlie the Carboniferous
sequence and are in turn overlain by middle and upper Permian colored arkose,
interlayered with conglomerate (XJBGMR, 1993).

The Kangguer-Huangshan Shear Zone is characterized by intensive deformation
and very low-grade metamorphism. Several publications have presented detailed
structural analyses of this shear zone (Shu and others, 1999; Xu and others, 2003;
Wang and others, 2008c; Branquet and others, 2012). Carboniferous rocks are affected
by a mylonitic foliation and cleavage that are generally sub-vertical and oriented in a
nearly E-W direction with NEE-SWW and SEE-NWW varieties in the Huangshan and
Kangguertag areas, respectively (fig. 2). Chlorite schist and mica schist occur locally in
the axial part of the Huangshan segment of the shear zone. Predominantly sub-
horizontal stretching and mineral lineation are well developed on foliation surfaces in
connection with transcurrent deformation, and are steeper locally.

The foliation on the northern and southern sides of the shear zone becomes
shallower and dips to the south and north, respectively, to form a positive flower
structure (Xu and others, 2003; Wang and others, 2008c). According to our observa-
tions, the foliation also varies along strike in the axial part of the shear zone. The
foliation is curved and gradually changes in direction and dip as well, where it meets a
pluton or a fold with vertical axis (figs. 2 and 3); in these locations the lineation
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Fig. 3. (A) Satellite image (Google Earth) and (B) structural map of East Huangshan demonstrating
the Permian sigmoidal intrusive complex, shear zone and Carboniferous granitic plutons; see figure 2 for
map location. (C) Cross-section of East Huangshan intrusive complex showing sampling sites.

becomes steeper. These structures correspond to strain localization that is commonly
recognized in shear zones.

Bedding can be recognized according to lithological transition; it is generally cut
by, or transposed into, secondary cleavage or completely erased by mylonitic foliation.
Bedding and early foliation are often tightly folded with sub-vertical or steeply dipping
axes. Principal asymmetric folds as well as macro- and micro-kinematic indicators
suggest a dextral sense of shear (Wang and others, 2008c; Branquet and others, 2012);
whereas minor north-verging (Shu and others, 1999; Laurent-Charvet and others,
2002) or south-verging thrusts (Xu and others, 2003; Wang and others, 2008c), and
local normal faulting can also be observed.

PRE- AND SYNKINEMATIC INTRUSIONS IN THE KANGGUER—HUANGSHAN
SHEAR ZONE AND SAMPLING

Numerous late Paleozoic intrusions crop out in the eastern Chinese North
Tianshan. Available geological maps show that Carboniferous intrusions mainly occur
to the south of the Main Tianshan Shear Zone and to the north of Kangguer—
Huangshan Shear Zone, whilst Permian intrusions of various sizes concentrate within
and around the Kangguer-Huangshan Shear Zone, and also between the Main
Tianshan Shear Zone and the Xingxing Fault (fig. 2). Abundant ore deposits are
associated with the Permian intrusive rocks (Zhou and others, 2004; Han and others,
2006; Mao and others, 2008).

The Carboniferous intrusions consist of fine-grained biotite and/or hornblende
granite, granodiorite, coarse-grained K-feldspar granite, biotite-bearing K-feldspar
granite, and monzogranite (XJBGMR, 1993). They show homogeneous or porphyritic
textures and massive structures, and are only weakly or not deformed. Sharp contacts
between these intrusions and the strongly deformed Carboniferous volcano-sedimen-
tary rocks can be observed. Most Carboniferous intrusions are cross-cut by faults
displaying offsets of several meters to several kilometers (fig. 2). Along these narrow
fault zones, no foliation/lineation and only slickensides and/or fractures can be
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observed, indicating post-magmatic low-temperature brittle deformation. Five Carbon-
iferous granitic rocks from East Huangshan and east of Kangguertag (samples 01HO04A,
B, C, D and 10H32A) were collected for zircon U-Pb dating and geochemical analyses;
see table 1 and figures 2 and 3 for details of sampling locations, descriptions and
summary of analytical results.

The Permian intrusions include mafic-ultramafic, intermediate and felsic plutons,
some displaying several intrusion phases to form a composite intrusive complex.
Specifically the East Huangshan and the western Huangshan mafic-ultramafic plutons
are composed of peridotite and pyroxenite in the inner part, and gabbro and diorite in
the external part (Branquet and others, 2012); in the Kangguertag—Juoluotag area, the
Juoluotag pluton comprises diorite-granodiorite at its margins and granite-adamellite
in the center (Wang and others, 2008c). The Permian intrusions or intrusive com-
plexes outline particular shapes such as tongue-like (Juoluotag pluton), sigmoid
(Huangshan intrusions; fig. 3A), tadpole-shape, hourglass- and flame-like small-scale
intrusions (fig. 2). The tails of these spectacular bodies are generally parallel to the
main foliation of strongly sheared country rocks, indicating synkinematic mega-fabrics
consistent with dextral kinematics. Contact metamorphism is common in the country
rocks in which aluminous mudstone and siltstone have recrystallized into andalusite
and/or pyrophyllite-bearing black schist.

The margins of Permian mafic-ultramafic intrusions are strongly foliated showing
a sub-vertical mylonitic foliation/cleavage associated with shear bands or S-C fabrics,
which indicate a dextral sense of shearing (figs. 4A, 4B, 4C and 4E). In mafic
intrusions, the deformation weakens inward and the shallow-dipping original composi-
tional layering can be recognized (fig. 4D). However, localized shear bands also occur
within the ultramafic and mafic intrusions. Various tectonic features can be distin-
guished such as ductile thrusts, low-angle normal shears and steep right-lateral shear
zones (Branquet and others, 2012). Similar features can be observed in the Kangguertag
(Juoluotag) tongue-shaped granitic complex (fig. 5A), in which quartz ribbons and
biotite aggregates show shape-preferred orientation in external facies (fig. 5B). The
orientation of crystals in the granite is parallel to the cleavage of the country rocks
(black schist) and turns around along the granite border. The internal facies is
characterized by a porphyritic texture with no preferred orientation of crystals. All
these high-temperature ductile fabrics are diagnostic of syn- or late-magmatic crystalli-
zation of the intrusive rocks in a dynamic setting.

Mafic and felsic dikes and some intermediate dikes often cut through the
Carboniferous and Permian intrusions (fig. 5C) as well as their country rocks, and
show a principal orientation of SE-NW, and occasionally N-S and NNE-SSW (fig. 2).
Quartz and/or pegmatite veins are also very common with the same orientation. Four
mafic rocks (samples 10HO7A, 07B, 10H13, 10H21-1) and one granite dike (sample
10H16) were collected from the East Huangshan area (fig. 3; table 1). In addition, one
sample (10H32B) was collected from a melagabbro dike intruding Carboniferous
granite (10H32A) in the Kangguertag area (fig. 2).

ANALYTICAL METHODS

Zircons were extracted from crushed material of eight samples (table 1) by (1)
sieving to keep fractions of 140 to 250 pm, (2) heavy-liquid and magnetic separation,
and (3) handpicking under a binocular microscope. Zircons were then mounted in
epoxy resin and polished. Cathodoluminescence (CL) images of zircons were under-
taken at the State Key Laboratory of Continental Dynamics (Northwest University,
Xi’an) with a Mono CL3+ machine connected with a Quanta 400 FEG scanning
electron microscope (SEM). U-Pb isotopic analyses were conducted on an Agilent
7500s ICP-MS coupled with a New Wave 213 wm laser ablation system at the State Key
Laboratory for Mineral Deposits Research (Nanjing University). In order to trace
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Fig. 4. Field photographs of the East Huangshan mafic complex. (A) Melagabbro enclave within
light-colored gabbro; (B) intrusive contact between light-colored and dark gabbros; (C) mylonitic shear
bands in melagabbro intruded by diorite; (D) compositional layering in light-colored gabbro; (E) granite
dike surrounded by strongly sheared diorite, both are cut and offset by right lateral strike-slip faults.

instrument stability and to control analytical uncertainty, four analyses of internal
standard zircon GJ] (608 = 1.5 Ma; Jackson and others, 2004) and one analysis of
external standard zircon Mud Tank (732 = 5 Ma; Black and others, 2003) were done
for each ten analyses of unknown samples. Laser beam width varied from 30 to 50 um
according to the size of analyzed zircon grains and target domains. Thereafter, U-Pb
isotopic data were treated using the on-line software package GLITTER (ver. 4.4)
(http://www.mq.edu.au/GEMOC). Correction for common lead was carried out
using the Microsoft Excel embedded program ComPbCorr#3 15G by Andersen



Fig. 5. (A) Satellite image (Google Earth) of the tongue-shaped granite pluton and shear zone in the
Kangguertag area; (B) K-feldspar granite from SE side of the tongue-shaped pluton showing shape-preferred
orientation (N135°) of biotite and quartz; (C) field view of the K-feldspar granite of Kanguertag and
intruding mafic dikes with an overall SE-NW orientation.

(2002). Finally, the program ISOPLOT 3.1 (Ludwig, 2001) was applied for age
calculation and plotting of analyses. We use the 2°6Pb /238U apparent ages and errors to
calculate average mean ages because the relatively small amount of 2°7Pb in Phanero-
zoic zircons may lead to low count rates and high analytical uncertainties (Compston
and others, 1992). Uncertainties for individual analyses are quoted at lo and for
weighted mean ages at 20 (with 95% confidence level).

The powders of ten samples were analyzed for whole-rock chemical compositions.
Major elements were determined using X-ray fluorescence (XRF) at the Modern
Analysis Center of Nanjing University; the analytical procedures are similar to those
described by Couture and others (1993). The analytical errors were 0.5 to 3 percent.
Determination of Rare Earths (REE) and other trace elements were conducted on a
HR-ICP-MS (Finnigan Element II) installed at the State Key Laboratory for Mineral
Deposits Research of Nanjing University. The analytical technique was described by
Gao and others (2003). Analytical errors are quoted at 0.7 to 5 percent for REE and
trace elements.

RESULTS

Zircon U-Pb Datings

One porphyritic biotite granite (sample 01H04A) from the north of the East
Huangshan mine has been dated by U-Pb zircon method. Zircons of this sample are
euhedral, showing short prismatic to isometric or rhombic shapes (fig. 6A). Concen-
tric oscillatory zoning is present in CL images of all dated zircons. Fourteen zircons
were analyzed of which three analyses (No. 2, 6, 14) plot away from the Concordia (fig.
6B inset) probably due to partial Pb loss; two other analyses (No. 8, 9) yield consistent
apparent 2°6Pb /238U ages of 378 = 8 Ma and 371 * 14 Ma, respectively (table 2), and
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Fig. 6. Cathodoluminescence photographs and Concordia diagrams of LA-ICP-MS data of zircons from
Carboniferous granites in the eastern Chinese North Tianshan.

thus could be xenocrysts and probably represent an earlier magmatic event. The other
nine analyses plot on Concordia and yield consistent 206pp, /238y ages from 331 Ma to
342 Ma (table 2), and a mean age of 337.5 = 3.8 Ma (MSWD = 0.35) (fig. 6B). This
early Carboniferous age may be considered as the emplacement age of the porphyritic
biotite granite.

Zircons selected from fine-grained K-feldspar granite (sample 10H32A) in the
eastern Kangguertag area are characterized by euhedral, prismatic crystals with length/
width ratios of 1.5 to 2; dense concentric oscillatory zoning as shown in CL images is in
agreement with zircons from felsic rocks (fig. 6C). Inherited cores are suspected in
some zircons (grains 1, 3) but are too small to be dated. Ten analyses plot on the
Concordia and yielded consistent apparent *°°Pb/***U ages ranging from 345 Ma to
351 Ma, and a well defined concordant age at 346.9 = 2.3 (MSWD = 0.19; fig. 6D)
constrains the early Carboniferous intrusion of this K-feldspar granite.

Six Permian intrusive rocks were dated. From the southeastern side of the East
Huangshan mafic-ultramafic intrusive complex, a light-colored gabbro of the marginal
facies (sample 01HO7A) contains zircons with euhedral prismatic, isometric or irregu-
lar shapes. The CL images of these zircons are characterized by dark and widely spaced

11
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Fig. 7. Cathodoluminescence photographs and Concordia diagrams of LA-ICP-MS U-Pb data of
zircons from gabbroic samples of the East Huangshan intrusive complex.

oscillatory zoning (fig. 7A), consistent with a magmatic origin of high-temperature
zircon in mafic rocks (Corfu and others, 2003). Fourteen zircons were analyzed of
which two analyses (No. 9 and 14) yielded discordant ages probably due to lead loss,
and analysis No. 13 plots above the Concordia (fig. 7B). These three analyses are not
considered in the mean age calculation. The other 11 zircons yielded consistent
concordant apparent ages (table 2) and a well defined mean age at 268.2 + 2.1 Ma (fig.
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7B) that may represent the middle Permian crystallization age of the light-colored
gabbro.

The roof pendant melagabbro (sample 01H07B) is intruded by a light-colored
gabbro (01H07A) and contains very few zircons with variable shapes and sizes ranging
from 50 to 150 wm (fig. 7C). Oscillatory zoning can hardly be recognized in CL images
due to intense surface-controlled alteration (Vavra and others, 1996; fig. 7C) that is
probably related to thermal or fluid-assisted overprint. However, striped oscillatory
zoning can be observed in zircons No. 1 and 5, consistent with their gabbroic magmatic
origin. Only thirteen zircons were datable; one zircon (grain No. 7) yielded a
concordant apparent age of ~1500 Ma (table 2), and two other zircons (No. 5 and 12)
yielded nearly concordant ages of 351 to 362 Ma (apparent **°Pb/***U ages table 2).
These zircons probably are xenocrysts derived from old crust, captured during
emplacement of the melagabbro. Three analyses (No. 6, 8 and 10) plot away from the
Concordia; their old apparent 2°’Pb/?°°Pb ages indicate that they are probably
xenocrysts but were strongly overprinted during the magmatism. The remaining seven
zircons yielded consistent apparent ages and a mean age of 274.5 * 3.6 Ma (MSWD =
0.86) (fig. 7D). This can be considered as the early Permian emplacement age of the
melagabbro, and itis ~10 Ma older than the intruding light-colored gabbro.

Fourteen zircons were dated from the pyroxene-diorite (sample 10H13) taken
from the westernmost side of the East Huangshan intrusive complex. Except for two
zircons (No. 5 and 6) showing typical prismatic shapes and concentric oscillatory
zoning with light overgrowth rims, the other samples are lath-shaped, and character-
ized by striped oscillatory zoning (fig. 7E). Zoning-controlled alteration is commonly
observed on the CL images of all analyzed zircons (Vavra and others, 1996). Zircons
No. 5 and 6 yielded ages of 455 to 474 Ma, which are much older than the ages
obtained from the other zircons, and therefore most likely indicate inheritance. One
zircon (No. 7) yielded a discordant apparent age. The other eleven analyses plot on or
close to Concordia, and their apparent ages were used to calculate a mean age of
271.2 * 3.8 Ma (fig. 7F) that constrains the early Permian emplacement of the
pyroxene-diorite.

Sample 10H16 was collected from a granitic dike that crops out in the southwest-
ern side of the East Huangshan intrusive complex; it is cut by right-lateral strike-slip
faults (fig. 4). Twelve zircons were selected for U-Pb analysis; most zircons are
euhedral, prismatic and show concentric oscillatory zoning, and others show rounded
or short prismatic shapes and irregular oscillatory zoning in CL images (fig. 8A). All
dated zircons yielded consistent isotopic ratios that define a concordant early Permian
age of 289.8 = 1.3 Ma (MSWD = 0.73; fig. 8B).

Fourteen zircons were analyzed from a light-colored gabbro that shows magmatic
layering (sample 10H21-1). These zircons are characterized by long prismatic shapes
with high length/width ratios of 1.5 to 4 and typical widely striped oscillatory zoning,
indicative of a mafic magmatic origin (fig. 8C). Except for three zircons (No. 4, 9 and
14; table 2) yielding discordant ages probably due to lead loss, the other eleven
analyses plot on Concordia and provide a well-defined concordant age of 267.0 = 2.1
Ma (MSWD = 0.23; fig. 8D). This middle Permian age is consistent with the age of the
aforementioned light-colored gabbro sample (01H07A).

About 30 zircons were extracted from the dark gabbroic dike (sample 10H32B)
that intrudes the early Carboniferous K-feldspar granite (sample 10H32A). These
zircons are generally small (~100 wm) with low length/width ratios (~1-1.2), and
therefore only 24 zircons could be dated. The results can be subdivided into several
groups. (1) Grain No. A3 shows a light CL image without visible oscillatory zoning (fig.
8E), plots far away from Concordia (fig. 8F), and has an unusually old apparent
207pp, /206pt, age (~4.5 Ga). It is possible that a titanite grain was dated. (2) Three
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zircons from Permian intrusive rocks in the eastern Chinese North Tianshan.
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zircons (No. 6,9 and B2) are characterized by bright CL images with obvious magmatic
zoning (fig. 8E), and yielded old concordant ages of ~1940 Ma, ~1330 Ma and ~2190
Ma, respectively (table 2; figs. 8F and 8G). (3) Zircons No. 5, 8 and 10 have similar CL
images and yielded nearly consistent apparent ages (~430-457 Ma) to form a peak at
~454 Ma on the probability density plot (fig. 8G). Analysis No. 8 plots away from
Concordia (fig. 8H) probably due to thermal alteration of an old inherited zircon as
shown on its CL image (fig. 8E). (4) One group composed of three zircons (No. 2, 4 and
12) is of felsic magmatic origin according to their similarly bright CL images showing
concentric oscillatory zoning, and the analytical results plot on Concordia defining a
mean age at 389.7 = 0.8 Ma (MSWD = 0.17) (fig. 8H). (5) Six zircons (No. Al, A2, A4,
Ab, B0 and B1) show variable CL images, but yielded nearly consistent and concordant
apparent ages except for one grain (No. Bl) that shows possible zoning-controlled
alteration (fig. 8E); the ages of the other five zircons provide a mean age of 345.0 = 5.0
Ma (MSWD = 0.65) (fig. 8H). The zircons in groups 2-5 are inherited grains,
entrained by the mafic magma, but the oldest ones may reflect the existence of
underlying Precambrian continental crust. In addition, the occurrence of Carbonifer-
ous zircons signals the existence of underlying Carboniferous rocks, which is consistent
with the occurrence of arc-related magmatic rocks at ~320 to 380 Ma in the North
Tianshan (fig. 2) (Li and others, 2002, 2006a). (6) Finally, the analytical results for the
remaining eight zircons plot close to Concordia, but one zircon (No. A9) is not
considered because of its discordant apparent age and obviously different CL image
from the other seven zircons. The CL images of these seven zircons show similar
striped or poorly defined concentric oscillatory zoning, reflecting an origin from mafic
magma. Their results define a mean age at 275.3 = 6.3 Ma (MSWD = 2.1) that may
constrain the early Permian age of the gabbro intrusion.

Whole-Rock Geochemistry

Except for the granitic dike in the Huangshan area, all dated samples, including
four mafic rocks of the East Huangshan intrusive complex, one porphyritic biotite
granite and its three duplicate samples, one K-feldspar granite and cross-cutting
gabbroic dike from the Kangguertag area were analyzed for whole-rock geochemical
composition (see figs. 2 and 3 for sampling sites). The results are listed in table 3. All
rocks have low loss on ignition values (LOI < 3.2 wt%), suggesting that they experi-
enced little post-magmatic alteration. Except for the gabbroic dike, most rocks have
high total alkali contents and plot along the calc-alkaline/subalkaline and alkaline
division line (Wilson, 1989; fig. 9).

The Carboniferous granitic rocks are characterized by low Al,O4 (<14 wt%) and
CaO (1.1-2.1 wt%) contents, Mg# values (0.38-0.42) and A/CNK index (0.88-0.93).
They show similarly LREE-enriched and HREE-flat patterns with moderate negative Eu
anomalies (fig. 10A). These features are consistent with those of typical calc-alkaline
magmatic rocks. Depletion in Nb, Ta, Sr and Eu can be recognized on the primitive
mantle-normalized multi-element variation diagram (fig. 10B). The older K-feldspar
granite from the Kangguertag area has lower HREE and total REE contents and more
pronounced Nb and Ta depletion than the younger porphyritic biotite granites of the
Huangshan area (fig. 10).

The Permian mafic rocks have high CaO (8.71-11.27 wt%) contents and Mg#
values (0.56-0.71) (table 3). The dark gabbro shows a LREE-depleted REE pattern that
is similar to N-MORB, but the contents of HREE decrease with increasing atomic
number (fig. 11A). The other four mafic rocks consistently display flat REE patterns
with slight enrichment in LREE, comparable to that of EEMORB, both in bulk REE
content and distribution patterns. Positive Eu anomalies (1.64-1.82) are observed in
the light-colored gabbro (10H07A, 10H21-1; table 3; fig. 11B) and may result from
feldspar accumulation, consistent with the magmatic layering observed in the sample
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TABLE 3

Whole-rock geochemical data for magmatic rocks in the eastern Chinese North Tianshan

Sample No. 01HO04A 01H04B 01HO04c 01H04D 10HO7A 10HO07B 10H13 10H21-1 10H32A  10H32B
Undeformed porpyritic granite Light colored Mela- Pyroxene Light colored K- feldspar Gabbro
gabbro gabbro diorite gabbro granite dike
SiOa(Wt%) 69.7 715 712 70.2 50.1 47.0 52.7 50.1 75.1 48.8
TiO; 0.45 0.38 0.39 0.42 1.01 0.76 0.82 0.59 0.23 1.75
Al O3 14.0 13.9 14.0 14.0 21.0 123 16.3 19.3 123 15.8
FerO3 2.84 2.27 2.56 2.77 5.1 113 7.24 6.35 1.43 11.0
MnO 0.10 0.07 0.09 0.10 0.07 0.16 0.12 0.10 0.06 0.17
MgO 0.92 0.71 0.70 0.75 4.89 12.6 7.46 7.07 0.47 6.44
CaO 2.11 1.48 1.09 1.12 10.5 113 8.71 11.1 0.87 9.63
Na,O 5.20 5.67 5.71 5.66 4.30 1.79 3.55 3.57 4.84 3.95
K,0 3.29 3.48 3.70 3.80 0.21 0.23 0.96 0.31 3.42 0.69
P,05 0.07 0.05 0.05 0.06 0.06 0.01 0.08 0.03 0.01 0.25
LOI 1.58 0.75 1.10 1.13 3.18 2.23 2.60 1.93 0.63 1.68
Total 100.3 100.3 100.7 100.1 100.4 99.8 100.6 100.5 99.5 100.3
A/CNK! 0.88 0.88 0.91 0.91 0.79 0.52 0.72 0.73 0.93 0.64
Mg;ti2 0.42 0.41 0.38 0.37 0.68 0.71 0.69 0.71 0.42 0.56
Li(ppm) 12.3 9.40 10.4 9.20 12.7 12.8 18.7 9.01 9.07
Sc 9.58 6.75 6.27 7.25 21.6 41.8 264 25.1 4.44 37.8
Ti 2524 2116 2048 2270 5286 4146 4560 3128 1355 9928
v 20.1 17.3 14.7 16.6 215 421 168 279 13.4 303
Cr 7.11 4.81 10.1 4.42 124 230 241 119 3.29 115
Mn 640 483 569 650 492 1091 794 642 501 1131
Co 2.04 1.59 1.32 1.46 17.1 39.7 23.0 234 1.53 30.4
Ni 3.34 1.86 4.20 1.34 13.5 39.7 17.9 14.1 1.39 41.2
Cu 2.08 3.31 1.38 1.29 12.5 235 10.7 18.3 3.27 67.5
Zn 583 29.5 389 393 29.2 432 455 283 34.0 52.7
Ga 19.1 16.0 18.0 19.2 16.3 11.2 16.6 142 13.5 18.9
Rb 28.7 315 36.8 40.6 3.93 2.65 19.6 4.16 452 8.23
Sr 126 141 122 125 488 258 338 394 89.9 372
Y 49.9 394 39.3 43.0 13.0 15.8 17.0 11.0 15.6 26.4
Zr 402 326 353 355 63.6 45.1 93.5 46.9 193 145
Nb 11.4 10.1 8.91 9.90 1.97 1.04 2.33 1.12 4.61 4.38
Mo 0.85 1.01 0.81 0.61 0.64 0.36 0.16 0.29 1.87 0.81
Cd 0.05 0.01 0.04 0.03 0.00 0.00 0.00 0.00 0.02 0.11
Sn 3.66 2.27 2.06 2.20 0.85 0.38 0.84 0.90 1.10 1.12
Cs 0.52 0.86 1.00 1.24 0.33 0.28 1.16 0.33 0.49 0.37
Ba 431 432 420 447 61.5 37.7 213 69.3 624 124
La 25.7 19.6 22.6 239 5.18 3.18 8.23 3.60 16.1 9.42
Ce 61.2 40.2 42.6 46.3 123 8.54 18.6 9.10 323 23.7
Pr 8.15 6.33 6.93 7.46 1.78 1.43 2.51 1.32 4.23 3.52
Nd 359 273 29.8 31.8 8.30 7.65 11.3 6.49 16.4 17.1
Sm 8.18 6.17 6.59 7.18 2.13 2.48 2.82 1.77 335 4.65
Eu 1.84 1.48 1.36 1.45 1.21 0.99 1.00 1.16 0.64 1.75
Gd 8.28 6.62 6.54 7.37 2.39 3.08 3.13 2.14 2.80 5.46
Tb 1.27 1.03 1.02 1.13 0.36 0.47 0.46 0.31 0.41 0.82
Dy 9.20 7.51 7.40 8.20 2.54 3.41 3.37 2.36 2.74 5.59
Ho 2.17 1.81 1.72 1.94 0.56 0.80 0.74 0.52 0.62 1.25
Er 6.49 5.30 5.03 5.78 1.54 2.12 2.13 1.42 1.81 3.54
Tm 0.97 0.82 0.77 0.87 0.21 0.30 0.29 0.19 0.27 0.50
Yb 6.59 5.60 5.24 5.90 1.31 1.71 1.93 1.23 1.84 3.01
Lu 1.01 0.82 0.80 0.85 0.20 0.26 0.28 0.18 0.30 0.47
Hf 10.2 8.46 8.90 9.21 1.58 1.37 2.57 1.34 5.00 3.87
Ta 0.97 0.88 0.78 0.85 0.23 0.10 0.22 0.11 0.36 0.39
w 0.87 0.37 0.53 0.55 0.79 0.18 0.33 0.18 0.37 0.21
Pb 5.69 4.04 4.42 4.82 2.49 1.11 4.19 1.46 11.9 2.72
Bi 0.07 0.05 0.03 0.04 0.02 0.02 0.05 0.02 0.03 0.02
Th 422 3.11 2.67 2.82 0.65 0.36 1.49 0.47 3.16 0.60
U 1.84 1.14 1.03 1.14 0.36 0.35 0.54 0.22 1.39 0.40
EuN/Eu*s 0.68 0.71 0.63 0.61 1.64 1.10 1.03 1.82 0.64 1.06
Zr/Nb 352 32.1 39.6 359 323 43.6 40.0 41.8 41.9 33.0
Hf/Ta 10.5 9.6 11.4 10.8 7.0 13.8 11.6 12.3 14.0 10.0
Zr/Hf 39.5 385 39.7 38.6 40.1 33.0 36.4 35.1 38.6 373
(Th/Nb),,4 3.10 2.57 2.51 2.39 2.76 2.90 5.35 3.50 5.75 1.16
Nb/La 0.4 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.5

! A/CNK = (AL,0;)/(CaO+Na,0+K,0) mol%.
2 Mg# = MgO/(MgO+0.505A~ (Fe,O05 A~0.9+FeO)) assuming that FeO equals to 90% of total
Fe- ox1de with FeO and F eQO:f recalculated from measured values.
Eu* = (Smy A~Gd <) 7% N: normalization to Chondrites (Sun and McDonough, 1989).
* n stands for normal17auon to Primitive Mantle (Sun and McDonough, 1989).
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Fig. 9. Geochemical classification diagrams for Carboniferous and Permian intrusive rocks of the
eastern Chinese North Tianshan (after Cox and others, 1979; Wilson, 1989).

10H21-1 (fig. 4D). On the multi-element variation diagrams, depletion of Nb and Ta
and enrichment of Sr to variable degrees appear on otherwise nearly flat patterns (figs.
11C and 11D). Compared with E-MORB, the analyzed mafic rocks are enriched in Rb,
Ba and Th as well. The significance of these geochemical features will be discussed in
the following section.
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DISCUSSION

Tectonic Settings of the Carboniferous and Permian Intrusive Rocks

Available geological maps and previous studies suggest that the Carboniferous
granitoids in the eastern Chinese North Tianshan are associated with volcanic and
volcano-sedimentary rocks (XBGMR, 1993). Most authors consider these magmatic
rocks as arcrelated (Shu and others, 2000, 2004; Li and others, 2002, 2006a; Sun and
others, 2006), whereas, others (Che and others, 1996; Xia and others, 2004, 2008)
argue for a continental rift or intraplate environment on the basis of geochemical
features. Our data from the early Carboniferous (337-346 Ma) porphyritic biotite
granite of the Huangshan area and the K-feldspar granite of the Kangguertag area
reveal Nb and Ta depletion and LILE (Rb, Ba and Th) enrichment (fig. 10), which are
geochemical features of calc-alkaline subduction-related magmatic rocks (McCulloch
and Gamble, 1991). These features are consistent with those of the Carboniferous
mafic and intermediate magmatic rocks in the western Chinese Tianshan (Wang and
others, 2009, 2011; Gao and others, 2011). In addition, convergence-related tectonic
features were predominant in the eastern Chinese North Tianshan during the Carbo-
niferous (Shu and others, 2000; Xiao and others, 2004; Li and others, 2006a; Charvet
and others, 2007, 2011), whereas Carboniferous extensional tectonics were neither
documented by sedimentation, nor observed in the field. Therefore, a magmatic arc
setting is likely for the studied early Carboniferous granites in the eastern Chinese
North Tianshan.

The Permian intrusive rocks show geochemical features that differ obviously from
those of the early Carboniferous granites. Two types of mafic intrusions can be
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recognized, which are: 1) melagabbro and 2) light-colored gabbro, pyroxene diorite
and gabbro dike (figs. 11A and 11C). The melagabbro of the East Huangshan
resembles the troctolite and some gabbros of Xiangshan (NW of the Huangshan area)
(Xiao and others, 2010b) and gabbro of the Haibaotan area (Li and others, 2006b)
(fig. 2). These rocks have total REE abundances of ~0.2 to 2 times those of N-MORB
and show bell-shaped REE patterns (figs. 11A and 12A), that suggest origin from a
source containing phases that retain LREE and HREE, such as orthopyroxene and
garnet (for example, granulite); thus, they probably originated from the melting and
differentiation of deep crustal granulite-facies mafic rocks (Garrido and Bodinier,
1999). The light colored gabbro and diorite of the Huangshan area and gabbroic dike
of the Kangguertag area have bulk REE contents and flat (E-MORB-like) REE patterns
comparable to coeval mafic rocks within or near the Kangguer-Huangshan Shear
Zone, including some gabbros in the Xiangshan area (Xiao and others, 2010b), the
Baishiquan gabbro (Mao and others, 2006), the Qiatekaer diorite and mafic dikes of
Dananhu (Li and others, 2006b) (figs. 11C and 12B). These features suggest an
undepleted mantle source with some possible contribution of the asthenosphere for
these mafic rocks.

In addition, Permian granites and granitic dikes also occur in the eastern Chinese
North Tianshan. Peraluminous granites from Jingerquan (to the east of Huangshan;
fig. 2), South of Huangshan and the Tulagen areas (~60 km to the NE of Jingerquan)
have been already studied (Tang and others, 2008). They show either a pronounced
REE fractionation similar to OIB, or moderately enriched LREE patterns comparable
to E-MORB, and their HREE patterns are all flat, like those of calc-alkaline rocks (fig.
12C). Comparison of the REE abundances and distribution patterns of these granites
with those of the coeval mafic rocks excludes the possibility of crystallization differen-
tiation; instead, such variable REE distribution patterns indicate that these contempo-
raneous granites were derived from different magma sources.

The Permian rocks were previously considered to be subductionrelated (Xiao
and others, 2004; Mao and others, 2006); indeed, Nb and Ta depletion are commonly
observed in both depleted and enriched mafic intrusions of the eastern Chinese North
Tianshan (figs. 11B and 11D) and also in synchronous felsic intrusions (not shown).
Most of these Permian intrusive rocks plot in the fields of volcanic arc granite (VAG) or
volcanic arc basalt (VAB) (figs. 13A and 13B) due to their low Nb and Ti contents and
Th/Hf (0.3-0.6) and Ta/Th (0.1-0.6) ratios (not shown). However, these geochemical
features could also be a result of crustal contamination. For instance, Nb and Ta
depletion are commonly observed in intraplate mafic rocks that experienced signifi-
cant crustal contamination (Xia and others, 2004, 2008). Thus, the moderate Nb and
Ta depletions probably indicate that the Permian intrusive rocks were influenced by a
low-degree crustal contamination. On the other hand, the metasomatized mantle
wedge above a pre-existing (that is Carboniferous) subduction zone may persist for
some time and produce magmatic rocks bearing arc-like features in post-collisional or
intraplate settings (Liegeois, 1998; Wang and others, 2009). In addition, the geochemi-
cal features of the Permian rocks obviously differ from those of typical calc-alkaline
series (that is Carboniferous rocks), and the co-existence of depleted and enriched
mafic-ultramafic intrusive rocks is unusual for a magmatic arc setting. Taking into
account (1) the early Permian extensional tectonics (Li and others, 2006b), (2)
associated intraplate magmatism in the Bogda and Haerlike areas (Shu and others,
2011), and (3) the development of an unconformity between the early Permian and
younger continental volcanic and sedimentary sequences, it seems that a magmatic-arc
setting is not consistent with the overall geological features of the Permian magmatic
rocks in the eastern Chinese Tianshan.

24



1 T ] T T ] ] ] ] | || | T | T
N [ Xiangshan gabbro
[] Haibaotan gabbro
10 - E-MORB [.".1 Xiangshan troctonite —
3 F N-MORB 7
_‘6 = =
S 10 .
O"E S 3
S E : s | 3
%: : ._ e - —= _.hhh““-t-.__\_ Bt ™ ‘ :
o e - T —— ] i
5 @) ]
E L L L L L 1 1 1 1 1 1 1 1 1 L 3
La Ce Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Y¥b Lu
| I ] ] ] ] ] I ] I | I I I ]
- [ Qiatekaer diorite -
B oIB ] Xiangshan gabbro -
» .| Dananhu mafic dikes _|
10 E [ Baishiquan gabbro 3
» " 3
9 L ]
I_U— - -
5
ovE : E
) B = —1 ]
s - e AT SRR S .
g L E-MORB i
& (B)
E 1 1 [l 1 1 1 1 1 1 1 1 1 1 1 1 3
La Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu
1 1 1 1 1 1 ) ] ] L) L) I ) ] | .
B [ Jingerquan granites 7]
- _OIB [-71 South of Huangshan granites
100 = [ Tulagen granites =
) [ o
o N ]
T . ]
°
5
o VE E
- = -
) o ]
2
5 5 ]
o " 8
x
1 -_ 1 1 1 1 1 1 I L [ 1 1 1 1 1 1 3

La Ce Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 12. Chondrite-normalized REE patterns for the Permian mafic and granitic rocks in the eastern
Chinese North Tianshan. Data for Qiatekaer diorite, Dananhu dike and Haibaotan gabbro are from Li and
others (2006b), those for all granites are from Tang and others (2008); data for Baishiquan gabbro are from
Mao and others (2006), and Xiangshan mafic rocks are after Xiao and others (2010b). Normalization values
and reference data for N-MORB, E-MORB and OIB are from Sun and McDonough (1989).
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Fig. 13. (A) Y vs Nb discrimination diagram (after Pearce and others, 1984) for the Carboniferous and
Permian granitic rocks of the eastern Chinese North Tianshan. Reference data for Carboniferous arc-related
granites in the North Tianshan are from Li and others (1998, 2006a); those for Permian granites in the
South Huangshan, Tulagen and Jingerquan areas are after Tang and others (2008); (B) Nb/Y vs Ti/Y
diagram (Pearce, 1982), (C) Ti/1000 vs V plot (after Shervais, 1982) and (D) Nb/Yb vs Th/Yb diagram
(Metcalf and Shervais, 2008) for the Permian mafic rocks within the Kangguer-Huangshan Shear Zone. See
caption of fig. 12 for reference data in (B) that show overlap of different groups of samples.

Significant input of mantle-derived melts is another important feature of Permian
magmatic rocks (figs. 13C and 13D), and this is indicated by the high gy4(t) values
(+5.5 to +7.2) of peraluminous granites (Tang and others, 2008), which show a weak
influence of continental crust-derived melts. Both mafic lower crust and undepleted
mantle were involved in the generation of Permian mafic and ultramafic rocks. A
mantle origin is also inferred from the association of mafic-ultramafic intrusive
complexes with prominent magmatic Ni-Cu ore deposits (Zhou and others, 2004; Han
and others, 2006; Chai and others, 2008; Mao and others, 2008). On the basis of these
features, together with zircon hafnium- and oxygen-isotope data, Su and others (2011)
linked the mafic-ultramafic complexes of the eastern Chinese Tianshan with OIB-type
flood basalts in the SW Tarim Basin (Chen and others, 1997; Zhou and others, 2009)
and further proposed a model of a mantle plume rooted beneath the eastern Chinese
Tianshan and Beishan belts. However, except for consistent mantle sources of mafic-
ultramafic rocks, this model does not include any other geological evidence. Actually,
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the linear distribution of Permian magmatic rocks along an E-W trending belt and the
predominant SE-NW orientation of mafic dikes are not consistent with the general
configuration of a mantle plume.

In summary, the Permian magmatic rocks imply variable sources that comprise
mantle wedge-like, sub-crustal (granulitic) and asthenosphere-like components. Nei-
ther a magmatic arc nor a mantle plume fits with the field and regional geological
evidence. Itis important to keep in mind that geochemical diagrams only discriminate
sources/magma forming processes, but not directly geodynamic/tectonic settings, and
the discrimination of these needs to take into account other geological features
(sedimentary, tectonic et cetera). Thus, a tectonic setting cannot be reliably determined
from the overlapping fields and complicated plot trends (fig. 13) of different rock-
types with the same age (intrusive complex). Instead, such magmatic complexes were
probably produced by a mixture in variable degrees of different sources that co-existed
in a specific region. In this case, any given element depletion or enrichment may have
resulted from different degrees of mixing levels rather than reflecting one single
origin. Despite this complexity, the coexistence and interaction of subduction-related
material, magmas from homogeneous mantle sources, and magma of sub-crustal
origin, are diagnostic of post-collisional magmatism (Liegeois, 1998) and are signifi-
cant features of Permian magmatic activity in the eastern Chinese North Tianshan.
Thus, a post-collisional setting as proposed by some previous authors (Li and others,
2006b; Wang and others, 2009; Shu and others, 2011) fits well with the general
regional tectonic evolution and is a plausible tectonic environment for the Permian
magmatism.

On the other hand, the Permian magmatic rocks with multiple mantle sources
could also be produced in a ridge-subduction system as has recently been proposed for
the latest Carboniferous to early Permian magmatic rocks in the West Junggar (Geng
and others, 2009; Tang and others, 2010, 2012a, 2012b; Ma and others, 2012). Indeed,
a slab window in the ridge-subduction system may provide space for upwelling of deep
mantle, which interacts with the mantle wedge above the subducting slab to form
complex magmas with variable sources. However, if such a model is the case in the
eastern Chinese Tianshan, it means that (1) the subduction of oceanic lithosphere
continued at least up to the end of early Permian, and (2) closure of the oceanic basin
and subsequent collision should have occurred later than early Permian. Nevertheless,
previous studies (Ma and others, 1997; Shu and others, 2000; Han and others, 2004,
2011; Li and others, 2006b; Charvet and others, 2007, 2011) indicate that subduction
tectonics in the eastern Chinese North Tianshan had terminated by the beginning of
the early Permian. This conclusion is based on sedimentary and structural data
including (a) regionally unconformable middle-upper Permian continental and fluvial
deposits, (b) the absence of regional metamorphism or subduction/collision-related
convergent deformation since early Permian, except for localized ductile strike-slip
shear zones. Thus, although ridge subduction could be a potential interpretation for
the production of a wide variety of magmas, it does not fit with the other geological
evidence, and therefore becomes unlikely as an explanation for the tectonic setting of
the Permian magmatism in the eastern Chinese Tianshan.

Synkinematic character of the Permian Intrusive Rocks and Relation to the
Kangguer—Huangshan Shear Zone

The Kangguer—-Huangshan Shear Zone is a regional-scale shear zone that can be
recognized from satellite images and geophysical maps. Intense ductile deformation
has been already described from this mega-shear zone. Although Xu and others (2003)
proposed a coaxial strain regime, most authors consider it as a polyphase shear zone, in
which earlier convergence (Carboniferous to earliest Permian) and later (Permian)
transcurrent tectonics are superimposed (Shu and others, 1999; Laurent-Charvet and
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others, 2002, 2003; Li and others, 2002, 2006b; Wang and others, 2008c). Our
observations and structural analysis suggest that the bulk structure of the Kangguer—
Huangshan Shear Zone resulted from dextral strike-slip shearing during the Permian
(Branquet and others, 2012) with localized thrusting or normal faulting in response to
local transpression or transtension, respectively.

Lithology is a dominating factor in rock deformation and controls the strain
intensity and the ductility of rocks at a given stress and crustal level (corresponding
temperature) (Gapais and others, 2005). In the Kangguer-Huangshan Shear Zone,
“soft” Carboniferous volcano-sedimentary rocks have been strongly sheared, whereas
relatively stronger granitic rocks of early Carboniferous age are free of ductile
deformation and only cross-cut and offset by brittle strike-slip faults. This means that
the deformation observed at the present surface level occurred at relatively low
temperature, which is consistent with the development of greenschist-facies metamor-
phism in slaty country rocks.

In contrast, the Permian intrusive rocks show various strain fabrics, including
mylonitic foliation/lineation in the marginal facies of the East Huangshan mafic-
ultramafic complex, and shape-preferred orientation of quartz and biotite crystals in
the tongue-shaped K-feldspar granite of the Kangguertag area. These fabrics reflect
the rheological behavior of a crystal-bearing magma, suggesting that magma ascent,
emplacement and cooling/crystallization occurred in a regional strain field (Petford,
2003). Considering that the fabrics in the Permian intrusive rocks are consistent with
that of the Kangguer-Huangshan Shear Zone as established by Branquet and others
(2012), it is reasonable to conclude that these fabrics result from syn- and/or late
magmatic deformation and correspond to synkinematic pluton emplacement associ-
ated with regional-scale dextral transcurrent tectonics. It is necessary to point out that
the deformation fabrics in the Permian rocks along the shear zone are distinct from
the structures of a subduction/collisional belt. Thus, the deformation of Permian
rocks cannot be considered as evidence for Permian or post-Permian subduction or
accretionary events.

Apart from structural evidence, geochronological constraints also reveal the
syn-tectonic character of the Permian intrusive rocks. Our zircon age data suggest that
the mafic-ultramafic complex of East Huangshan intruded in the interval 267 to 275
Ma (table 1), and this is consistent with the age of an olivine norite in this complex
(Han and others, 2004). Previous studies provided more age constraints (fig. 2; table 4)
on the Permian intrusive rocks within and off the Kangguer—-Huangshan Shear Zone.
Combined with our new data (table 1), it can be summarized that mafic intrusions
were emplaced during 269 to 287 Ma, the intermediate intrusions were emplaced at
252 to 271 Ma, and the felsic plutons intruded from 260 Ma to 297 Ma. The available
literature reports thermo-chronological results on strongly deformed or synkinematic
plutonic rocks, metamorphosed volcano-sedimentary rocks and associated gold depos-
its along the Kangguertag—Juoloutag and Huangshan-Jingerquan dextral shear zone
(table 5). These data indicate a main phase of ductile shearing from ~290 to ~250 Ma
and subsequent cooling until ~240 to ~230 Ma. Similar thermal events were docu-
mented in the Main Tianshan Shear Zone (Shu and others, 1999; Laurent-Charvet and
others, 2002, 2003) and in the Nalati Fault and North Tianshan Fault of the western
Chinese Tianshan (Yin and Nie, 1996; de Jong and others, 2009; Wang and others,
2010).

These age data clearly show that the intrusion of Permian magmatic rocks and
dextral ductile shearing occurred synchronously. On the other hand, although the age
range of intermediate intrusions seems younger than that of mafic and felsic rocks, no
regular evolution of the different kinds of magmatic rocks can be recognized, and they
show significant overlap both in time and space (fig. 2; table 4). This phenomenon is
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TABLE 4

Summary of published zircon ages of mafic, intermediate and felsic intrusions in the
Kangguer—Huangshan Shear Zone

Location Coordinate Rock type Age (Ma) Reference

Mafic intrusions

Haibaotan Altered gabbro 269.2+3.2 Liand others, 2006b
ringshapedcomplex

Serpentinized troctolite ~ 282~287 Li and others, 2006b

Qiatekartag complex Altered gabbro 277+ 1.6 Li and others, 2006b
Diabase dike intruding ~ 271~280 Li and others, 2006b
granite
Baishiquan Mine Gabbro 281.2+0.9 Mao and others, 2006
East Huangshan Olivine norite 274 +3 Han and others, 2004
Intermediate intrusions
Shuangchagou pluton N42°07°49.8”  Granodiorite 252.4+29  Zhou and others, 2010
E94°52°36.8”

Keziertag pluton N42°07° Fine-grained granodiorite 271.6+ 1.6  Li and others, 2006c
E91°33°

Caixiashan East N42°08’ Quartz diorite 267.8+ 1.6 Ren and others, 2006
E91°54°

Longdong, Kumutag Quartz diorite 261 Li and others, 2007

Felsic intrusions

Dikaner pluton, NE N42°23'09.2"  Porphyritic K-granite 288 +2.5 Zhou and others, 2010

Xiaorequanzi E89°57'03.3"

Baishandong pluton, N42°29'53.5"  Granite 284.5+4.5 Zhou and others, 2010

Baishan Mine E95°56'37.7"

Guandao pluton, NE N42°0920.3"  Granitic porphyry 284.1+5.8 Zhou and others, 2010

Agqishan E90°32'55.8"

Hongshi pluton, NW N42°0920.2"  Granite 282.7+4.2  Zhou and others, 2010

Kangguer E90°48'10.2"

Longdong pluton, West ~ N41°59'02.2"  Monzogranite2 762+2.5 Zhou and others, 2010

Yamansu E93°14'11.4"

Duotoushan pluton, N41°43'47.7"  K-granite 271.7+5.5 Zhou and others, 2010

Caixiashan Mine E91°22'33.7"

Huangshan pluton, S East N42°08'48.0"  K-granite 288+ 17 Zhou and others, 2010

Huangshan E94°39'18.1"

South Huangshan Muscovite granite 259.9+ 1.4 Tang and others, 2008

Tulagen pluton Two mica granite 275.4+ 8.3 Tang and others, 2008

Shalongdong, Kumutag Monzogranite 293+6 Zhang and others, 2006

Weiquan Mine, West of Granite 297+3 Wang and others, 2005

Tuwu

also observed in the western Chinese Tianshan (Wang and others, 2009) and in the
Transbaikal Region of Central Asia (Litvinovsky and others, 2011), and is linked with
multiple-source magmatism. In the Chinese Central and Western Tianshan, Permian
intrusive rocks are located along major strike-slip shear zones and show similar shapes
and synkinematic fabrics (Wang and others, 2009).

Considering that (1) large-scale strike-slip shearing occurred in the Kangguer—
Huangshan zone, (2) there are synchronous Permian magmatic intrusions with
synkinematic ductile deformation, (3) multiple mantle sources with subduction-
inherited and lower crust components are implied, and (4) a post-collisional setting
for the Permian intrusions is likely, we propose that synkinematic plutonism controlled
by a mega-shear zone occurred in a post-collisional environment, as shown by Wang
and others (2009) and Branquet and others (2012). In this model, the Kangguer—
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TABLE 5

Compilation of published geochronological results for the Kangguer—Huangshan Shear Zone

Location Rock Material Method Age (Ma) Reference
Jingerquan Mylonitic granite ~ Whole rock  Rb-Sr 260.5 Yang, 1998 ms
Agqishan Granitic porphyry K-feldspar  Ar-Ar 278.8 2.1 Chen and others, 2005
Kangguertag Muscovite chlorite Muscovite ~ Ar-Ar 283.7 + 2.4 Chen and others, 2005

mylonite

mylonitic quartz ~ Plagioclase ~ Ar-Ar 256.1 £ 4.1

keratophyre
Gold deposits of Gold ore Sericite Ar-Ar 256.9 4.4 Chen and others, 2005
Kangguertag mylonitic quartz ~ Whole rock ~ Ar-Ar 262.2+ 1.5

keratophyre

Phyllonite Whole rock  Ar-Ar 261.5+1.2

mylonitic Whole rock  Ar-Ar 2629+ 14

volcaniclastic rock

granitic mylonite  Whole rock  Ar-Ar 260.1 + 1.8
Gold deposit of Gold-bearing quartz Whole rock  Rb-Sr 282 + 5 Li and others, 1998
Kangguertag fluid inclusion

Gold deposit of  Sulphide Sulphide Sm-Nd 290 + 7 Wang and others, 2006b
Kangguertag Altered andesite  Whole rock Rb-Sr 290+ 5

Jueluotag Amphibolite Amphibole  Ar-Ar 276 Wang and others, 2002
Jueluotag- Tongue-shaped Hornblende Ar-Ar 272-277  Wang and others, 2008c

Kangguertag granite
Biotite Ar-Ar 254-261
K-feldspar  Ar-Ar 226-241
Mylonitic granite =~ K-feldspar ~ Ar-Ar 230-231
Dioritic porphyry ~ Plagioclase ~ Ar-Ar 268 + 3
Granite Biotite Ar-Ar 252 +2

Huangshan Shear Zone provided ascent channels for the mafic/ultramafic to felsic
magmas derived from sources that include depleted and undepleted (or enriched)
mantle, fluids released from an earlier subducted slab and partially melted lower
continental crust. The undepleted or enriched magmas could be generated by
upwelling of deep mantle along a slab window produced by slab break-oft (Wang and
others, 2009; Zhang and others, 2012); or local extreme crustal thinning and astheno-
sphere uplift, without the necessity for a mantle plume, which is not supported by
geological or structural data. This model may also account for the emplacement of
complex magmatic suites controlled by transcurrent tectonics in other regions of
Central Asia (Pirajno, 2010; Litvinovsky and others, 2011; Zhang and others, 2012).

General Implications for Regional Tectonic Fvolution

Our study suggests that the early Carboniferous magmatic rocks in the eastern
Chinese North Tianshan belong to a typical calc-alkaline series and most likely
represent a magmatic arc related to the subduction of the Paleo-Junggar Ocean. The
arc-related magmatism continued up to late Carboniferous and is characterized by
I-type granitoids associated with coeval basalt-andesite-rhyolite volcanic series and
interlayered sedimentary rocks (Ma and others, 1997; Li and others, 2002, 2006a; Wu
and others, 2008; Zhang and others, 2010; Zhou and others, 2010). The occurrence of
this Carboniferous magmatic arc is consistent with the views of previous authors (Shu
and others, 2000; Li and others, 2007, 2011) who mainly considered the regional
convergent and accretionary tectonics.
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In contrast, Permian intrusions show distinct geochemical features that reveal a
significant change of magma sources and tectonic setting as well. Permian tectonics are
characterized by large-scale dextral motion along the Kangguer-Huangshan Shear
Zone and also in the Main Tianshan Shear Zone. Dominant strike-slip shearing and
homogenous mantle sources with involvement of subduction-related components in
the synkinematic magmatic rocks suggest a post-collisional setting during the Permian
period, following the Carboniferous subduction and accretion. The transition from
convergent to transcurrent tectonics probably occurred in the earliest Permian (Wang
and others, 2009; Shu and others, 2011; Zhang and others, 2012). Since the Chinese
Tianshan belt is located in the southernmost part of the CAOB, this tectonic transition
suggests that the building of the CAOB and its final amalgamation with the Tarim
terminated at the Permian-Carboniferous boundary. A regional angular unconformity
and accumulation of middle to upper Permian continental red-beds (Shu and others,
2011) post-date the peak stage (early Permian) of ultramafic and mafic magmatism in
the region, and thus do not support a plume-induced crustal uplift (Xia and others,
2004, 2008; Su and others, 2011).

The nature of the basement in the eastern Chinese North Tianshan is an issue for
discussion since there are no exposed rocks older than Late Devonian. Some authors
have linked the eastern Chinese North Tianshan with the Yili block in the west to
define the Yili-North Tianshan that represents a late Paleozoic arc emplaced upon a
similar Precambrian basement (Wang and others, 2008a; Charvet and others, 2011),
but classically it is considered as an arc terrain with unknown basement (Li and others,
2002; Xiao and others, 2004). Our new age data on the Carboniferous and Permian
intrusive rocks in the Kangguer—Huangshan Shear Zone include inherited early to
mid-Paleozoic zircons (~380-390 Ma, ~450-470 Ma), and Proterozoic zircons as well
(~1.83Ga, 1.6 Ga, 1.9 Ga and 2.2 Ga) (table 1). Although the sources and significance
of these Proterozoic zircons are uncertain, they suggest the existence of old crust
beneath the eastern Chinese North Tianshan. Such old crust is well documented in the
Kyrgyz North Tianshan (Kroner and others, 2013, 2014). Further study is necessary to
determine whether these zircons represent the in-situ crystalline basement of the late
Paleozoic magmatic arc or were simply recycled into the late Paleozoic sediments and
incorporated in Permian granitoids.

CONCLUSIONS

1. Carboniferous granitic rocks in the Huangshan and Kangguertag areas formed
at 338 = 4 Ma and 347 * 2 Ma, respectively. They show porphyritic textures and
massive structures without significant ductile deformation. They belong to a typical
calc-alkaline series and may be related to the late Paleozoic magmatic arc of the
Chinese North Tianshan.

2. Permian intrusive rocks are well developed within or close to the Kangguer—
Huangshan Shear Zone and display synkinematic emplacement features. These Perm-
ian magmatic rocks were emplaced synchronously with the tectonic activity on the
Kangguer-Huangshan Shear Zone.

3. Geochemical data suggest that the Permian magmatic rocks differ from the
Carboniferous arc-related granitic rocks. REE features of the Permian intrusive rocks
indicate that they were derived from either enriched/undepleted or depleted magmas
with involvement of subduction-related components. Such important mantle input in
the Permian magmatic rocks indicates significant crust growth in the Chinese North
Tianshan.

4. It is suggested that the Permian intrusive rocks of the Kangguer—-Huangshan
Shear Zone most likely formed in a post-collisional/orogenic transcurrent setting that
followed Carboniferous subduction and accretion. Owing to their synkinmatic emplace-
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ment features, we suggest that large-scale dextral tectonics probably controlled the
intrusion of the Permian plutons.
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