Supplementary Information

SAMPLES, STANDARDS AND LOCATION

Figure S1: *A*. *Sample location B*. *View of Mt Erebus phonolitic lava lake*

Sample	Location	Whole rock	Occurrence	Remarks
		composition		
DVDP 3-295	Hut Point	Basanite	Drill core/ hyaloclastite	Drill core sample from the Dry Valley Drilling Project (Kyle and Treves, 1974). This sample from DVDP 3 drill core taken on Hut Point Peninsula at depth of 295 m. Olivine and pyroxene phyric, black basanite pillow breccia.
AW82033	Turks Head	Basanite	Palagonite breccia	Mostly disintegrated sand and gravel sized plagioclase-phyric palagonite breccia with angular glassy lava fragments throughout.
97009	Inaccessible Island	Tephriphonolite	Palagonite breccia	Tephriphonolite palagonite breccia sample from SE Inaccessible Island. The deposit is mostly yellow, sand-sized, bedded palagonite breccia with rare scoriaceous lapilli scattered throughout the unit.
97010	Tent Island	Tephriphonolite	Pillow breccia	Black, plagioclase (minor) phyric, pillow lava breccias from the SE side of Tent Island.
97011	Tent Island	Phonolite	Pillow breccia	As above but from SW side of island and likely stratigraphically higher than 97010.
97018	Near Erebus crater	Phonolite	Lava bomb	Erupted on 21 December 1997.

Table S1. Sample sites and lithology (from Eschenbacher, 1998; Oppenheimer et al., 2011)

Table S2. Acquisition parameters at the Fe and S K-edge

Scan Region	Step(eV)	Time(s)
Fe K-edge		
6987-7087	6.25	0.5
7087-7099.5	1.25	2
7099.5-7124.5	0.25	3
7124.5-7200	1.25	0.5
7200-7350	3	0.5
S K-edge		
2400-2460	5	0.5
2460-2500	0.5	1
2500-2560	1	0.5
2560-2675	2	0.5

Table S3. X-ray fluorescence bulk re	ck analyses of	f synthetic standards	in wt%
--------------------------------------	----------------	-----------------------	--------

Standard	Basanite	Tephriphonolite
SiO ₂	42.27	55.28
TiO ₂	4.15	1.16
Al_2O_3	13.51	19.38
$\mathbf{Fe}_{2}\mathbf{O}_{3}^{\mathrm{T}}$	13.45	5.67
MnO	0.19	0.20
MgO	8.61	1.21
CaO	10.85	3.09
Na ₂ O	3.52	7.95
K ₂ O	1.73	4.04
P_2O_5	0.81	0.47
Loss on ignition	-0.51	0.66
Totals	98.58	99.10

Sample	SiO2	TiO2	A1203	FeO	ΜσΟ	CaO	Na20	K20	Total
Sumple	5102	1102	111205	100	ingo	000	nulo	1120	Total
XANSTD_Ba_01_QFM-1	47.99	4.87	14.96	2.67	10.22	12.48	3.63	1.86	98.69
XANSTD_Ba_02_QFM	46.78	4.82	14.69	6.25	10.07	11.74	3.11	1.67	99.12
XANSTD_Ba_03_NNO	44.10	4.57	13.85	10.14	9.76	11.13	3.54	1.74	98.82
XANSTD_Ba_04_NNO+1	42.55	4.45	13.37	13.22	9.26	10.72	3.45	1.68	98.70
XANSTD_TP_01_QFM-1	58.27	1.29	20.46	2.45	1.40	3.28	7.96	4.36	99.47
XANSTD_TP_03_NNO	57.02	1.15	20.18	4.06	1.45	3.31	7.61	4.30	99.22
XANSTD_TP_04_NNO+1	56.07	1.27	19.64	5.88	1.44	3.26	7.52	4.18	99.27
Stdev n = 15									
XANSTD_Ba_01_QFM-1	0.38	0.09	0.16	0.13	0.14	0.17	0.06	0.06	0.57
XANSTD_Ba_02_QFM	0.32	0.10	0.12	0.16	0.12	0.15	0.09	0.07	0.34
XANSTD_Ba_03_NNO	0.36	0.07	0.12	0.27	0.12	0.15	0.08	0.07	0.59
XANSTD_Ba_04_NNO+1	0.33	0.14	0.13	0.26	0.10	0.11	0.09	0.06	0.49
XANSTD_TP_01_QFM-1	0.47	0.04	0.16	0.13	0.09	0.13	0.12	0.12	0.50
XANSTD_TP_03_NNO	0.51	0.05	0.12	0.12	0.06	0.10	0.11	0.13	0.62
XANSTD TP 04 NNO+1	0.37	0.06	0.10	0.21	0.04	0.11	0.46	0.11	0.56

Table S4. EMP analyses of synthetic standards in wt% and associated error.

XANES ANALYTICAL METHODS

Figure S2: A. Pre-edge region fitting. Data point are shown in blue with ± 0.25 eV error bar. Purple lines shows the baseline absorption of the main Fe absorption edge (linear +DHO functions). The red line shows the entire fitting (linear + DHO + 2 Gaussian functions). **B**. Residual misfit as a function of energy. **C**. The green line represents the baseline-subtracted spectrum, the blue line represents the two Gaussians found to reproduce the spectrum best. The red dotted line represents the cumulative area and the blue dot represents the location of the centroid. The quality of the fit of this sample is representative of all fits in this study.

Figure S3: Background-subtracted (linear +DHO functions) spectra for basanite (upper) and tephriphonolite (lower) standard glasses.

Figure S4: Same as figure S4 but comparing the standards $Fe^{3+}/\Sigma Fe$ values of calculated (see method) and measured (from wet chemistry) and the resulting effect on the centroid calibration curve.

Figure S5: Example of pre-edge region of three spectra after alignment correcting instrumental energy drift.

Figure S6: Example of Fe K-edge spectra of a melt inclusion glass with and without contamination from the olivine host.

Figure S7: Time evolution of the sulphur K-edge spectra at a single analysis point from an anorthoclase-hosted melt inclusion showing the progressive oxidation of the sulphur under the beam.

Figure S8: A. Plot of $Fe^{3+}/\Sigma Fe$ ratios determined by calibrating the centroid position using calculated standard's $Fe^{3+}/\Sigma Fe$ values. **B**. Plot of $Fe^{3+}/\Sigma Fe$ ratios determined by calibrating the centroid position using the measured (wet chemistry) standard's $Fe^{3+}/\Sigma Fe$ values. **C**. Plot of the ΔNNO determined by calibrating the centroid position using the standard's ΔNNO values (as imposed by controlled CO₂/CO gas flux in furnace). **D**. Plot of the ΔNNO determined by calibrating the centroid position using the measured (wet chemistry) standard's ΔNNO values. All data are plotted against the calculated entrapment pressures (this study) for each melt inclusion.

	DVDP-	3-295										AW8	2033							
Inclusion	b	С	g	j	q	r	Mean	1σ	G1	G2	G3	а	d	g	h	Mean	1σ	G1	G2	G3
SiO ₂	41.7	39.2	41.1	41.8	41.7	41.5	41.2	1.0	42.8	41.6	41.9	42.4	45.1	45.4	43.0	44.0	1.5	47.4	48.6	48.6
TiO ₂	4.1	4.5	4.1	4.1	4.3	4.1	4.2	0.2	4.0	4.1	4.2	3.6	3.7	3.7	4.3	3.8	0.3	2.8	2.9	2.8
Al ₂ O ₃	14.7	15.4	14.5	14.6	15.0	14.5	14.8	0.3	15.3	15.7	16.1	17.0	16.7	19.6	16.9	17.6	1.4	17.5	17.5	17.8
FeO _T	9.8	12.4	10.5	9.0	9.8	11.2	10.4	1.2	10.7	11.1	11.8	11.9	10.2	9.7	11.6	10.8	1.1	10.2	10.3	10.2
MnO	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.0	0.2	0.2	0.3
MgO	6.1	5.6	5.7	6.0	5.7	6.2	5.9	0.3	5.3	5.2	5.0	4.2	3.5	3.8	4.0	3.9	0.3	2.7	2.6	2.7
Ca0	13.2	10.3	12.7	13.6	13.2	13.4	12.7	1.2	12.2	11.5	11.0	10.0	11.2	8.7	10.7	10.2	1.1	6.3	6.3	6.3
Na ₂ O	3.6	4.1	3.7	3.5	3.6	3.8	3.7	0.2	4.4	4.7	4.8	4.6	4.7	5.3	4.5	4.8	0.4	6.2	6.2	6.3
K ₂ O	1.6	1.9	1.5	1.6	1.6	1.7	1.6	0.1	1.7	1.8	2.0	1.8	1.8	2.0	1.7	1.8	0.1	3.8	3.8	3.8
P ₂ O ₅	1.1	0.9	0.9	1.0	0.9	0.9	0.9	0.1	1.0	1.0	1.1	1.2	1.4	1.4	0.8	1.2	0.3	1.3	1.2	1.1
F (ppm)	1380	1680	1740	1070	1460	1690	1572	325	2070	2200	1350	###	1860	2080	1590	2133	713	2330	2500	3000
S (ppm)	2062	2488	2187	2448	1927	2007	2166	228	325	770	465	###	1390	1085	1575	1330	244	1030	1150	990
Cl (ppm)	890	870	860	610	670	1090	875	175	840	950	1010	750	870	750	450	784	182	820	790	780
Total	96.4	95.0	95.2	95.7	96.3	97.9	95.6		97.8	97.1	98.2	97.0	98.5	99.7	97.5	98.2		98.5	99.6	99.9
	97009)									ç	7010								
Inclusion	97009 a	d	g	j	Me	an 1	σ G	1	G2	G3	b	о 7010 с	d	f	g	Mea	n 10	5		
Inclusion SiO ₂	97009 a 46.9	d 52.0	g) 51.	j .8 51.	Me 5 50	e an 1 0.6 2	σ G	1 .9 5	G2 52.7	G3 52.8	b 53.1	7010 c 52.5	d 53.5	f 53.3	g 53.5	Mea 53.2	n 10 2 0.	5 4		
Inclusion SiO ₂ TiO ₂	97009 a 46.9 1.8	d 52.0 1.8	g) 51. 1.5	j 8 51. 5 2.0	Me 5 50 0 1.	ean 1 0.6 2 .7 0	σ G .1 51 .2 1.	1 .9 5 6 1	G2 52.7 1.4	G3 52.8 1.6	b 53.1 2.0	7010 c 52.5 1.7	d 53.5 2.2	f 53.3 1.9	g 53.5 1.8	Mea 53.2 1.9	n 1 0 2 0. 0.	5 4 2		
Inclusion SiO ₂ TiO ₂ Al ₂ O ₃	97009 a 46.9 1.8 18.2	d 52.0 1.8 19.2	g) 51. 1.: 2 19.	j 8 51. 5 2.0 7 19.	Me 5 50) 1. 4 19	can 1 0.6 2 7 0 0.1 0	o G 2.1 51 0.2 1. 0.6 19	1 .9 5 6 1	G2 52.7 1.4 9.4	G3 52.8 1.6 19.8	b 53.1 2.0 19.1	c 52.5 1.7 19.2	d 53.5 2.2 18.9	f 53.3 1.9 20.0	g 53.5 1.8 19.5	Mea 53.2 1.9 19.3	n 10 2 0. 0. 3 0.	5 4 2 4		
Inclusion SiO2 TiO2 Al2O3 FeOT	97009 a 46.9 1.8 18.2 6.7	d 52.0 1.8 19.2 7.4	g) 51. 1.5 2 19. 6.6	j 8 51. 5 2.0 7 19. 5 7.4	Me 5 50 0 1. 4 19 4 6.	ean 1 0.6 2 0.7 0 0.1 0 .9 0	. o G .1 51 .2 1. .6 19 .4 7.	1 0 .9 5 6 1 .0 1 1 0	G2 52.7 1.4 .9.4 6.9	G3 52.8 1.6 19.8 6.8	b 53.1 2.0 19.1 6.9	c 52.5 1.7 19.2 7.6	d 53.5 2.2 18.9 6.8	f 53.3 1.9 20.0 6.8	g 53.5 1.8 19.5 6.8	Mea 53.2 1.9 19.3 7.0	n 10 2 0. 0. 3 0. 0.	3 4 2 4 3		
Inclusion SiO2 TiO2 Al2O3 FeOT MnO	97009 a 46.9 1.8 18.2 6.7 0.2	d 52.0 1.8 19.2 7.4 0.2	g 0 51. 1.5 2 19. 6.6 0.2	j 8 51. 5 2.0 7 19. 5 7.4 2 0.2	Me 5 50 0 1. 4 19 4 6. 2 0.	ean 1 0.6 2 0.7 0 0.1 0 .9 0 .2 0	σ G 2.1 51 0.2 1. 0.6 19 0.4 7. 0.0 0.	1 0 .9 5 6 .2 .0 1 1 0 2 0	G2 52.7 1.4 .9.4 6.9 0.3	G3 52.8 1.6 19.8 6.8 0.3	b 53.1 2.0 19.1 6.9 0.2	c 52.5 1.7 19.2 7.6 0.2	d 53.5 2.2 18.9 6.8 0.2	f 53.3 1.9 20.0 6.8 0.2	g 53.5 1.8 19.5 6.8 0.2	Mea 53.2 1.9 19.3 7.0 0.2	n 10 2 0. 0. 3 0. 0. 0.	5 4 2 4 3 0		
Inclusion SiO ₂ TiO ₂ Al ₂ O ₃ FeO _T MnO MgO	97009 a 46.9 1.8 18.2 6.7 0.2 1.1	d 52.0 1.8 19.2 7.4 0.2 1.5	g 0 51. 1.5 2 19. 6.6 0.2 1.4	j 8 51. 5 2.0 7 19. 5 7.4 2 0.2 4 1.4	Me 5 50 1 1 4 19 4 6. 2 0. 4 1.	an 1 0.6 2 .7 0 0.1 0 .9 0 .2 0 .3 0	. G	1 0 .9 5 6 .0 1 1 0 2 0 4	G2 52.7 1.4 .9.4 6.9 0.3 1.3	G3 52.8 1.6 19.8 6.8 0.3 1.4	b 53.1 2.0 19.1 6.9 0.2 1.4	c 52.5 1.7 19.2 7.6 0.2 1.2	d 53.5 2.2 18.9 6.8 0.2 1.3	f 53.3 1.9 20.0 6.8 0.2 1.3	g 53.5 1.8 19.5 6.8 0.2 1.3	Mea 53.2 1.9 19.3 7.0 0.2 1.3	n 10 2 0. 3 0. 3 0. 0. 0.	5 4 2 4 3 0 0		
Inclusion SiO2 TiO2 Al2O3 FeOT MnO MgO CaO	97009 a 46.9 1.8 18.2 6.7 0.2 1.1 3.8	d 52.0 1.8 19.2 7.4 0.2 1.5 4.1	g 51. 1.5 2. 19. 6.6 0.2 1.4 4.8	j 8 51. 5 2.0 7 19. 5 7.4 2 0.2 4 1.4 3 3.8	Me 5 500 1 19 4 199 4 6.2 2 0.2 4 1.4 3 4.3	an 1 0.6 2 7 0 0.1 0 9 0 .2 0 .3 0 .1 0	G G 1.1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3.	1 0 .9 5 6 .2 .0 1 1 0 2 0 4 .2 6 .2	G2 52.7 1.4 9.4 6.9 0.3 1.3 3.7	G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7	b 53.1 2.0 19.1 6.9 0.2 1.4 3.6	c 52.5 1.7 19.2 7.6 0.2 1.2 3.9	d 53.5 2.2 18.9 6.8 0.2 1.3 3.7	f 53.3 1.9 20.0 6.8 0.2 1.3 3.5	g 53.5 1.8 19.5 6.8 0.2 1.3 3.3	Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6	n 10 2 0. 0. 3 0. 0. 0. 0. 0.	5 4 2 4 3 0 0 2		
Inclusion SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O	97009 a 46.9 1.8 18.2 6.7 0.2 1.1 3.8 7.1	d 52.0 1.8 19.2 7.4 0.2 1.5 4.1 7.8	g 0 51. 1.5 2 19. 6.6 0.2 1.4 4.8 7.5	j 8 51. 5 2.0 7 19. 6 7.4 2 0.2 4 1.4 3 3.8 5 7.2	Me 55 500 1 19 4 19 4 6. 2 0. 4 1. 3 4. 2 7.	an 1 0.6 2 7 0 0.1 0 9 0 2 0 3 0 1 0 6 0	G G 1.1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3. 0.6 7.	1 0 .9 5 6 .1 1 0 2 0 4 .2 6 .2 6 .2	G2 i2.7 1.4 9.4 6.9 0.3 1.3 3.7 7.8	G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7 8.2	b 53.1 2.0 19.1 6.9 0.2 1.4 3.6 8.2	c 52.5 1.7 19.2 7.6 0.2 1.2 3.9 7.5	d 53.5 2.2 18.9 6.8 0.2 1.3 3.7 7.9	f 53.3 1.9 20.0 6.8 0.2 1.3 3.5 8.1	g 53.5 1.8 19.5 6.8 0.2 1.3 3.3 8.3	Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6 8.0	n 10 2 0. 3 0. 0. 0. 0. 0. 0. 0.	5 4 2 4 3 0 0 2 3		
Inclusion SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O	97009 a 46.9 1.8 18.2 6.7 0.2 1.1 3.8 7.1 4.9	d 52.0 1.8 19.2 7.4 0.2 1.5 4.1 7.8 4.9	g) 511. 1.1. 2. 199. 6.6 0.2 1.4 4.8 7.5 4.7	j 8 51. 5 2.0 7 19. 6 7.4 2 0.2 4 1.4 3 3.8 5 7.2 7 4.9	Me 5 500 1 19 4 19 4 6. 2 0. 4 1. 3 4. 2 7. 4 9	an 1 0.6 2 7 0 0.1 0 9 0 .2 0 .3 0 .1 0 .6 0 .9 0	G G 2.1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3. 0.6 7. 0.4 3. 0.6 7. 0.2 4.	1 0 .9 5 6 1 1 0 2 0 4 1 6 1 9 9	G2 i2.7 1.4 9.4 6.9 0.3 1.3 3.7 7.8 5.1	G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7 8.2 5.0	b 53.1 2.0 19.1 6.9 0.2 1.4 3.6 8.2 5.0	c 52.5 1.7 19.2 7.6 0.2 1.2 3.9 7.5 5.2	d 53.5 2.2 18.9 6.8 0.2 1.3 3.7 7.9 5.1	f 53.3 1.9 20.0 6.8 0.2 1.3 3.5 8.1 5.3	g 53.5 1.8 19.5 6.8 0.2 1.3 3.3 8.3 5.3	Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6 8.0 5.2	n 10 2 0. 3 0. 3 0. 0. 0. 0. 0. 0.	5 4 2 4 3 0 0 2 3 1		
Inclusion SiO2 TiO2 Al2O3 FeOт MnO MgO CaO Na2O K2O P2O5	97009 a 46.9 1.8 18.2 6.7 0.2 1.1 3.8 7.1 4.9 0.4	d 52.0 1.8 19.2 7.4 0.2 1.5 4.1 7.8 4.9 0.7	g) 51. 1.5 2 19. 6.6 0.2 1.4 4.5 7.5 0.6	j 8 51. 5 2.0 7 19. 5 7.4 2 0.2 4 1.4 3 3.8 5 7.2 7 4.9 5 0.4	Me 5 500 1 19 4 19 4 6. 2 0. 4 1. 3 4. 2 7. 2 7. 4 1. 3 4. 2 7. 4 0.	an 1 0.6 2 .7 0 0.1 0 9 0 2 0 3 0 1 0 6 0 9 0 5 0	G G 2.1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3. 0.6 7. 0.4 3. 0.6 7. 0.2 4. 0.1 0.	1 0 .9 5 6 1 0 2 0 4 6 6 9 5 0	G2 52.7 1.4 9.4 6.9 0.3 1.3 3.7 7.8 5.1 0.6	G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7 8.2 5.0 0.5	b 53.1 2.0 19.1 6.9 0.2 1.4 3.6 8.2 5.0 0.9	c 52.5 1.7 19.2 7.6 0.2 1.2 3.9 7.5 5.2 0.8	d 53.5 2.2 18.9 6.8 0.2 1.3 3.7 7.9 5.1 0.8	f 53.3 1.9 20.0 6.8 0.2 1.3 3.5 8.1 5.3 0.8	g 53.5 1.8 19.5 6.8 0.2 1.3 3.3 8.3 5.3 0.8	Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6 8.0 5.2 0.8	n 10 2 0. 3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5 4 2 4 3 0 2 3 1 0		
Inclusion SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O Na2O K2O P2O5 F (ppm)	97009 a 46.9 1.8 18.2 6.7 0.2 1.1 3.8 7.1 4.9 0.4	d 52.0 1.8 19.2 7.4 0.2 1.5 4.1 7.8 4.9 0.7 1410	g) 51. 1.5 2 19. 6.6 0.2 1.4 4.5 7.5 4.7 0.6 0.7 2) 172	j 8 51. 5 2.0 7 19. 5 7.4 2 0.2 4 1.4 3 3.8 5 7.2 7 4.9 5 0.4 20 243	Me 5 50 0 1. 4 19 4 6. 2 0. 4 1. 3 4. 2 7. 0 4. 4 0. 0 1.3	an 1 0.6 2 7 0 0.1 0 9 0 2 0 3 0 1 0 6 0 9 0 5 0 86 8	G G 1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3. 0.6 7. 0.2 4. 0.2 4. 0.1 0. 0.2 4. 0.1 0. 59 19	1 0 .9 5 6 3 .0 1 1 0 2 0 4 3 6 3 9 3 30 1	G2 1.4 9.4 6.9 0.3 1.3 3.7 7.8 5.1 0.6 140	G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7 8.2 5.0 0.5 1590	b 53.1 2.0 19.1 6.9 0.2 1.4 3.6 8.2 5.0 0.9 3670	c 52.5 1.7 19.2 7.6 0.2 1.2 3.9 7.5 5.2 0.8 2770	d 53.5 2.2 18.9 6.8 0.2 1.3 3.7 7.9 5.1 0.8 2320	f 53.3 1.9 20.0 6.8 0.2 1.3 3.5 8.1 5.3 0.8 2230	g 53.5 1.8 19.5 6.8 0.2 1.3 3.3 8.3 5.3 0.8 2600	Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6 8.0 5.2 0.8 2718	n 10 2 0. 3 0. 0. 0. 0. 0. 0. 0. 0. 3 57	5 4 2 4 3 0 2 3 1 0 4		
Inclusion SiO2 TiO2 Al2O3 FeOT MnO CaO CaO Na2O K2O F(ppm) S (ppm)	97009 a 46.9 1.8 18.2 6.7 0.2 1.1 3.8 7.1 4.9 0.4 1290 665	d 52.0 1.8 19.2 7.4 0.2 1.5 4.1 7.8 4.9 0.7 1410 915	g) 51. 1.5 2 19. 6.6 0.2 1.4 4.8 7.5 4.7 0.6 0 172 54	j 8 51. 5 2.0 7 19. 5 7.4 2 0.2 4 1.4 3 3.8 5 7.2 7 4.9 5 0.4 20 243 5 690	Me 5 50 0 1. 4 19 4 6. 2 0. 4 1. 3 4. 2 7. 0 4. 0 1.3 0 6. 0 6.	an 1 0.6 2 7 0 0.1 0 9 0 2 0 3 0 1 0 6 0 9 0 5 0 86 8 71 1	G G 1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3. 0.6 7. 0.2 4. 0.1 0. 0.2 4. 0.1 0. 59 19 31 52	1 0 .9 5 6 1 0 2 0 4 6 7 0 8 9 5 0 30 1	G2 32.7 1.4 9.4 6.9 0.3 1.3 3.7 7.8 5.1 0.6 140 330	G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7 8.2 5.0 0.5 1590 510	b 53.1 2.0 19.1 6.9 0.2 1.4 3.6 8.2 5.0 0.9 3670 755	c 52.5 1.7 19.2 7.6 0.2 1.2 3.9 7.5 5.2 0.8 2770 540	d 53.5 2.2 18.9 6.8 0.2 1.3 3.7 7.9 5.1 0.8 2320 840	f 53.3 1.9 20.0 6.8 0.2 1.3 3.5 8.1 5.3 0.8 2230 345	g 53.5 1.8 19.5 6.8 0.2 1.3 3.3 8.3 5.3 0.8 2600 685	Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6 8.0 5.2 0.8 2714 633	n 10 2 0. 3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5 4 2 4 3 0 2 33 1 0 '4 5		
Inclusion SiO2 TiO2 Al2O3 FeOT MnO GaO CaO Na2O K2O P2O5 F (ppm) Cl (ppm)	97009 a 46.9 1.8 18.2 6.7 0.2 1.1 3.8 7.1 4.9 0.4 1290 665 1800	d 52.0 1.8 19.2 7.4 0.2 1.5 4.1 7.8 4.9 0.7 1410 915 1520	g) 511. 1.5 2. 19. 6.6 0.2 1.4 4.5 7.5 4.7 0.6) 172 54) 141	j 8 51. 5 2.0 7 19. 5 7.4 2 0.2 4 1.4 3 3.8 5 7.2 7 4.9 6 0.4 2 0.4 3 5 690 10 161	Me 5 500 1 19 4 19 4 6. 2 0. 4 1. 3 4. 2 7. 4 0. 4 0. 5 0. 4 0. 5 0. 6 7. 5 0. 6 7. 6 7. 7 0. 6 7. 7 0. 6 7. 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 7 1.3 <t< td=""><td>an 1 0.6 2 .7 0 0.1 0 9 0 .2 0 .3 0 .1 0 .6 0 .9 0 .5 0 .86 8 .71 1 .72 20</td><td>G G 0.1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3. 0.6 7. 0.4 3. 0.6 7. 0.1 0. 0.2 4. 0.1 0. 59 19 31 52 053 15 </td><td>1 0 .9 5 6 1 1 0 2 0 4 1 66 1 7 0 80 1</td><td>G2 .2.7 1.4 9.4 6.9 0.3 1.3 3.7 7.8 5.1 0.6 140 330 480</td><td>G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7 8.2 5.0 0.5 1590 510 1280</td><td>b 53.1 2.0 19.1 6.9 0.2 1.4 3.6 8.2 5.0 0.9 3670 755 1410</td><td>c 52.5 1.7 19.2 7.6 0.2 1.2 3.9 7.5 5.2 0.8 2770 540 1000</td><td>d 53.5 2.2 18.9 6.8 0.2 1.3 3.7 7.9 5.1 0.8 2320 840 1420</td><td>f 53.3 1.9 20.0 6.8 0.2 1.3 3.5 8.1 5.3 0.8 2230 345 1250</td><td>g 53.5 1.8 19.5 6.8 0.2 1.3 3.3 8.3 5.3 0.8 2600 685 1200</td><td>Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6 8.0 5.2 0.8 2718 633 1250</td><td>n 10 2 0. 3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</td><td>5 4 2 4 3 0 0 2 3 1 0 4 4 5 3</td><td></td><td></td></t<>	an 1 0.6 2 .7 0 0.1 0 9 0 .2 0 .3 0 .1 0 .6 0 .9 0 .5 0 .86 8 .71 1 .72 20	G G 0.1 51 0.2 1. 0.6 19 0.4 7. 0.0 0. 0.1 1. 0.4 3. 0.6 7. 0.4 3. 0.6 7. 0.1 0. 0.2 4. 0.1 0. 59 19 31 52 053 15	1 0 .9 5 6 1 1 0 2 0 4 1 66 1 7 0 80 1	G2 .2.7 1.4 9.4 6.9 0.3 1.3 3.7 7.8 5.1 0.6 140 330 480	G3 52.8 1.6 19.8 6.8 0.3 1.4 3.7 8.2 5.0 0.5 1590 510 1280	b 53.1 2.0 19.1 6.9 0.2 1.4 3.6 8.2 5.0 0.9 3670 755 1410	c 52.5 1.7 19.2 7.6 0.2 1.2 3.9 7.5 5.2 0.8 2770 540 1000	d 53.5 2.2 18.9 6.8 0.2 1.3 3.7 7.9 5.1 0.8 2320 840 1420	f 53.3 1.9 20.0 6.8 0.2 1.3 3.5 8.1 5.3 0.8 2230 345 1250	g 53.5 1.8 19.5 6.8 0.2 1.3 3.3 8.3 5.3 0.8 2600 685 1200	Mea 53.2 1.9 19.3 7.0 0.2 1.3 3.6 8.0 5.2 0.8 2718 633 1250	n 10 2 0. 3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5 4 2 4 3 0 0 2 3 1 0 4 4 5 3		

Table S5. Melt inclusion compositions, all data from Eschenbacher, 1998; Oppenheimer et al., (2011).

	97011						97018					
Inclusion	а	b	С	f	Mean	1σ	а	С	е	f	Mean	1σ
SiO ₂	52.9	53.3	52.4	53.8	53.1	0.6	55.3	54.1	56.0	55.1	55.1	0.8
TiO ₂	1.3	1.4	1.3	1.3	1.3	0.1	0.9	1.1	1.0	0.9	1.0	0.1
Al ₂ O ₃	19.6	20.3	19.8	20.5	20.1	0.4	19.5	19.6	20.1	20.3	19.9	0.4
FeOT	5.6	5.3	5.5	5.7	5.5	0.2	5.4	5.4	5.3	5.5	5.4	0.1
MnO	0.3	0.2	0.2	0.3	0.2	0.0	0.3	0.4	0.2	0.2	0.3	0.1
MgO	0.9	0.9	1.0	0.9	0.9	0.0	0.9	0.9	0.8	0.9	0.8	0.0
CaO	3.2	3.0	2.6	2.9	3.0	0.2	1.9	1.9	1.9	1.8	1.9	0.1
Na ₂ O	7.5	8.6	8.1	8.3	8.1	0.5	8.7	8.6	9.0	9.1	8.9	0.2
K20	5.5	5.7	5.3	5.6	5.5	0.2	5.6	5.6	5.6	5.9	5.7	0.2
P ₂ O ₅	0.7	0.8	0.6	0.5	0.7	0.2	0.3	0.3	0.3	0.2	0.3	0.0
F (ppm)	1770	2270	2260	1470	1943	392	2250	1880	2870	1410	2103	616
S (ppm)	420	600	515	670	551	108	225	290	610	350	369	169
Cl (ppm)	1330	1370	1370	1430	1375	41	1320	1530	1630	1390	1468	139
Total	97.9	99.9	97.2	100.0	99.5		99.1	98.0	100.8	100.2	100.5	

MAGNETITE FRACTIONATION AND DIFFERENTIATION

Figure S9: Plot of $Fe^{3+}/\Sigma Fe$ ratios compared to the melt iron content (as FeOt in wt%). The absence of correlation between the iron content and the $Fe^{3+}/\Sigma Fe$ ratios shows that magnetite precipitation is unlikely to exert a strong influence on the melt redox state.

Figure S10: Plot of $Fe^{3+}/\Sigma Fe$ ratios compared to the Mg number, defined as MgO/(MgO + FeO). The Mg number can be used as a proxy for differentiation. The absence of correlation between Mg# and the $Fe^{3+}/\Sigma Fe$ ratios shows that there is no obvious change in redox with differentiation.

POST-ENTRAPPMENT MODIFICATIONS

There are two main processes that bear the potential to modify the composition of melt inclusions. The first one is the diffusion of element between the melt and its host crystal. Of particular importance here is the diffusion of Fe from the melt to the host mineral in the case of olivine-hosted MI (e.g.Danyushevsky *et al.*, (2000)). The second, possibly more important, process is the post-entrapment crystallization of the host on the MI rim. While post-entrapment crystallization in anorthoclase-hosted MI should have little effect on the melt $Fe^{3+}/\Sigma Fe$ ratio, the equivalent for olivine hosted MI would result in oxidation of both Fe and S species in the MI. Considering the complexity in modeling post-entrapment crystallization (PEC), the lack of consensus among authorities in the field and the fact that uncertainty in the

calculated PEC will result in large uncertainty in the re-calculated MI Fe³⁺/ Σ Fe and S⁶⁺/ Σ S ratios we chose not to attempt any correction. Nevertheless we report in table S6 the composition of the host olivine mineral (from Eschenbacher, (1998)) together with estimates of the amount of post-entrapment crystallization (PEC in %), which ranges from 0 to 4.2% and calculated using the *petrolog3* freeware (Danyushevsky and Plechov, 2011). Calculation of PEC were conducted using the Fe³⁺/Fe²⁺ measurement from XANES analyses for each MI. Figure S11 shows that there is no correlation between the calculated amount of PEC and the Fe³⁺/ Σ Fe ratio of the MI, hence demonstrating that the observed redox trend cannot be a reflection of differences in the amount of PEC.

Figure S11: Plot of $Fe^{3+}/\Sigma Fe$ ratio determined by Fe K-edge XANES compared to calculated amount of post-entrapment crystallization (in %) for each melt inclusion. Calculated negative values of PEC are reported as zero. Errors in calculated PEC are unconstrained; errors in $Fe^{3+}/\Sigma Fe$ ratios are discussed bellow.

Table S6. Olivine host compositions from Eschenbacher, (1998) and Oppenheimer et al., (2011) and post-entrapment crystallisation estimate (PEC)

	DVDP-3	3-295				AW82033									97009						
Host	b	С	g	j	q	r	Mean	1σ	а	С	d	g	h	Mean	1σ	а	d	g	j	Mean	1σ
SiO2	39.1	38.5	38.5	40.3	40.0	38.8	39.2	0.8	38.8	38.2	38.4	38.9	37.2	38.3	0.7	30.8	35.7	36.0	34.7	34.3	2.4
FeO	13.1	18.3	14.8	13.2	14.1	13.3	14.4	2.0	22.1	20.5	23.4	19.6	22.8	21.7	1.6	34.1	34.5	32.0	34.2	33.7	1.1
MnO	0.2	0.3	0.2	0.2	0.3	0.2	0.2	0.0	0.3	0.3	0.3	0.2	0.4	0.3	0.1	0.8	1.0	0.8	1.0	0.9	0.1
MgO	46.5	42.0	45.2	46.0	45.3	45.9	45.2	1.6	40.0	39.4	38.8	42.6	39.7	40.1	1.5	26.0	29.1	31.0	28.3	28.6	2.1
CaO	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.0	0.3	0.3	0.4	0.4	0.4	0.3	0.0	0.4	0.5	0.4	0.4	0.4	0.0
Total	99.1	99.3	99.1	100.0	100.1	98.6	99.4	0.6	101.4	98.6	101.2	101.5	100.5	100.7	1.2	92.1	100.8	100.3	98.5	97.9	4.0
Fa	13.6	19.6	15.5	13.9	14.9	14.0	15.2	2.2	23.6	22.6	25.3	20.5	24.4	23.3	1.8	27.0	25.5	24.2	25.7	25.6	1.1
Fo	86.4	80.4	84.5	86.1	85.1	86.0	84.8	2.2	76.4	77.4	74.7	79.5	75.6	76.7	1.8	73.0	74.5	75.8	74.3	74.4	1.1
FeT/Mg	0.16	0.24	0.18	0.16	0.17	0.16	0.18		0.31	0.29	0.34	0.26	0.32	0.30		0.74	0.67	0.58	0.68	0.66	
Mg#	0.86	0.80	0.85	0.86	0.85	0.86	0.85		0.76	0.77	0.75	0.79	0.76	0.77		0.58	0.60	0.63	0.60	0.60	
Kd*	0.08	0.09	0.08	0.09	0.09	80.0	0.08		0.09	0.08	0.10	0.08	0.09	0.09		0.10	0.11	0.10	0.11	0.11	
PEC**	1.11	0.10	0.69	0.75	0.86	2.12	0.94		2.97	2.76	1.42	2.81	1.42	2.28		2.76	2.90	1.91	3.20	2.69	
	97010							97	011												
Host	b	С	d	f	σ	Mea	n 1σ		a	b	0	c	Moan	1 σ							
SiO2	26.0			-	5	mea					C	I	Mean	10							
FeO	30.8	35.7	36.3	36.1	36.6	36.3	3 0.5	3	3.8	35.7	35.8	35.9	35.3	1.0							
	36.8	35.7 33.2	36.3 31.3	36.1 32.1	36.6 31.6	36.3 31.9	3 0.5 9 0.8	3	3.8 3.3	35.7 33.3	35.8 30.0	35.9 33.7	35.3 32.6	1.0 1.7							
MnO	30.8 31.3 1.1	35.7 33.2 1.1	36.3 31.3 1.0	36.1 32.1 1.0	36.6 31.6 1.0	36.3 31.9 1.0	10 3 0.5 9 0.8 0.1	3	3.8 3.3 1.2	35.7 33.3 1.1	35.8 30.0 1.0	35.9 33.7 1.2	35.3 32.6 1.1	1.0 1.7 0.1							
MnO MgO	30.8 31.3 1.1 31.5	35.7 33.2 1.1 29.0	36.3 31.3 1.0 31.6	36.1 32.1 1.0 30.8	36.6 31.6 1.0 31.8	36.3 31.9 1.0 30.9	II IO 3 0.5 9 0.8 0.1 1.1	3 3 2	33.8 33.3 1.2 28.1	35.7 33.3 1.1 29.6	35.8 30.0 1.0 29.9	35.9 33.7 1.2 29.1	35.3 32.6 1.1 29.2	1.0 1.7 0.1 0.8							
MnO MgO CaO	30.8 31.3 1.1 31.5 0.4	35.7 33.2 1.1 29.0 0.4	36.3 31.3 1.0 31.6 0.4	36.1 32.1 1.0 30.8 0.4	36.6 31.6 1.0 31.8 0.4	36.3 31.9 1.0 30.9 0.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 2 2	3.8 3.3 1.2 28.1 0.4	35.7 33.3 1.1 29.6 0.4	35.8 30.0 1.0 29.9 0.4	35.9 33.7 1.2 29.1 0.4	35.3 32.6 1.1 29.2 0.4	1.0 1.7 0.1 0.8 0.0							
MnO MgO CaO Total	36.8 31.3 1.1 31.5 0.4 101.2	35.7 33.2 1.1 29.0 0.4 99.4	36.3 31.3 1.0 31.6 0.4 100.5	36.1 32.1 1.0 30.8 0.4 100.3	36.6 31.6 1.0 31.8 0.4 101.3	36.3 31.9 1.0 30.9 0.4 100.	II 10 3 0.5 9 0.8 0 1.1 9 1.1 9 0.8 9 1.3	3 3 2 2 (9	33.8 33.3 1.2 28.1 0.4 06.7	35.7 33.3 1.1 29.6 0.4 100.2	35.8 30.0 1.0 29.9 0.4 97.1	I 35.9 33.7 1.2 29.1 0.4 100.2	35.3 32.6 1.1 29.2 0.4 98.5	1.0 1.7 0.1 0.8 0.0 1.9							
MnO MgO CaO Total Fa	36.8 31.3 1.1 31.5 0.4 101.2 35.8	35.7 33.2 1.1 29.0 0.4 99.4 39.1	36.3 31.3 1.0 31.6 0.4 100.5 35.7	36.1 32.1 1.0 30.8 0.4 100.3 36.9	36.6 31.6 1.0 31.8 0.4 101.3 35.8	36.3 31.9 1.0 30.9 0.4 100. 36.7	II IO 3 0.5 9 0.8 0 0.1 9 1.1 9 0.0 5 0.8 7 1.5	3 3 2 (9 2	93.8 93.3 1.2 28.1 0.4 96.7 25.6	35.7 33.3 1.1 29.6 0.4 100.2 25.0	35.8 30.0 1.0 29.9 0.4 97.1 23.6	I 35.9 33.7 1.2 29.1 0.4 100.2 25.2	35.3 32.6 1.1 29.2 0.4 98.5 24.8	1.0 1.7 0.1 0.8 0.0 1.9 0.9							
MnO MgO CaO Total Fa Fo	36.8 31.3 1.1 31.5 0.4 101.2 35.8 64.2	35.7 33.2 1.1 29.0 0.4 99.4 39.1 60.9	36.3 31.3 1.0 31.6 0.4 100.5 35.7 64.3	36.1 32.1 1.0 30.8 0.4 100.3 36.9 63.1	36.6 31.6 1.0 31.8 0.4 101.3 35.8 64.2	36.3 31.9 1.0 30.9 0.4 100. 36.7 63.3	II IO 3 0.5 9 0.8 0.1 1.1 9 1.1 9 0.0 5 0.8 7 1.5 3 1.5	3 3 2 (9 2 7	 3.8 3.3 1.2 2.8.1 0.4 0.6.7 2.5.6 24.4 	35.7 33.3 1.1 29.6 0.4 100.2 25.0 75.0	235.8 30.0 1.0 29.9 0.4 97.1 23.6 76.4	I 35.9 33.7 1.2 29.1 0.4 100.2 25.2 74.8	35.3 32.6 1.1 29.2 0.4 98.5 24.8 75.2	1.0 1.7 0.1 0.8 0.0 1.9 0.9 0.9							
MnO MgO CaO Total Fa Fo FeT/Mg	30.8 31.3 1.1 31.5 0.4 101.2 35.8 64.2 0.56	35.7 33.2 1.1 29.0 0.4 99.4 39.1 60.9 0.64	36.3 31.3 1.0 31.6 0.4 100.5 35.7 64.3 0.55	36.1 32.1 1.0 30.8 0.4 100.3 36.9 63.1 0.58	36.6 31.6 1.0 31.8 0.4 101.3 35.8 64.2 0.56	36.3 31.9 1.0 30.9 0.4 100. 36.7 63.3	10 3 0.5 9 0.8 9 1.1 9 1.1 9 0.8 9 1.5 3 1.5 3 1.5	3 3 2 2 (9 9 2 7 7 0	33.8 33.3 1.2 88.1 0.4 66.7 25.6 74.4 0.66	35.7 33.3 1.1 29.6 0.4 100.2 25.0 75.0 0.63	35.8 30.0 1.0 29.9 0.4 97.1 23.6 76.4 0.56	Image: 1 35.9 33.7 1.2 29.1 0.4 100.2 25.2 74.8 0.65	35.3 32.6 1.1 29.2 0.4 98.5 24.8 75.2 0.63	1.0 1.7 0.1 0.8 0.0 1.9 0.9 0.9							
MnO MgO CaO Total Fa Fo FeT/Mg Mg#	36.8 31.3 1.1 31.5 0.4 101.2 35.8 64.2 0.56 0.64	35.7 33.2 1.1 29.0 0.4 99.4 39.1 60.9 0.64 0.61	36.3 31.3 1.0 31.6 0.4 100.5 35.7 64.3 0.55 0.64	36.1 32.1 1.0 30.8 0.4 100.3 36.9 63.1 0.58 0.63	36.6 31.6 1.0 31.8 0.4 101.3 35.8 64.2 0.56 0.64	36.3 31.9 1.0 30.9 0.4 100. 36.7 63.3 0.58	10 3 0.5 9 0.8 0 0.1 9 1.1 0 0.0 5 0.8 7 1.5 3 1.5 3 3	3 3 2 2 (9 2 7 7 0 0 0 0	33.8 33.3 1.2 88.1 0.4 96.7 25.6 4.4 0.66 0.66	35.7 33.3 1.1 29.6 0.4 100.2 25.0 75.0 0.63 0.61	35.8 30.0 1.0 29.9 0.4 97.1 23.6 76.4 0.56 0.64	I 35.9 33.7 1.2 29.1 0.4 100.2 25.2 74.8 0.65 0.61	35.3 32.6 1.1 29.2 0.4 98.5 24.8 75.2 0.63 0.61	1.0 1.7 0.1 0.8 0.0 1.9 0.9 0.9							
MnO MgO CaO Total Fa Fo FeT/Mg Mg# Kd*	36.8 31.3 1.1 31.5 0.4 101.2 35.8 64.2 0.56 0.64 0.09	35.7 33.2 1.1 29.0 0.4 99.4 39.1 60.9 0.64 0.61 0.09	36.3 31.3 1.0 31.6 0.4 100.5 35.7 64.3 0.55 0.64 0.09	36.1 32.1 1.0 30.8 0.4 100.3 36.9 63.1 0.58 0.63 0.09	36.6 31.6 1.0 31.8 0.4 101.3 35.8 64.2 0.56 0.64 0.64	36.3 31.9 1.0 30.9 0.4 100. 36.7 63.3 0.58 0.63	10 3 0.5 9 0.8 9 1.1 9 1.1 9 1.5 10 1.5 10 1.5 10 1.5 10 1.5 10 1.5	3 3 2 2 0 9 9 2 7 7 0 0 0 0 0 0 0 0	33.8 33.3 1.2 88.1 00.4 66.7 75.6 74.4 0.66 0.60 0.09	35.7 33.3 1.1 29.6 0.4 100.2 25.0 75.0 0.63 0.61 0.09	35.8 30.0 1.0 29.9 0.4 97.1 23.6 76.4 0.56 0.64 0.08	Image: 1 35.9 33.7 1.2 29.1 0.4 100.2 25.2 74.8 0.65 0.61 0.08	35.3 32.6 1.1 29.2 0.4 98.5 24.8 75.2 0.63 0.61 0.09	10 1.0 1.7 0.1 0.8 0.0 1.9 0.9 0.9							

* Partition coefficient (Kd) for the Fe/Mg ratio between the olivine and MI it host. **PEC calculated using petrolog3 (Danyushevsky and

Plechov, 2011))

ERROR ANALYSIS

Error on the centroid position for each MI spectra has been fully attributed to the error in the determination of spectra shift correcting for instrumental energy drift. The error associated to this shift has been determined to be 0.03eV as this value represents the maximum difference in energy shift between spectra from similar compositions relative to their reference spectra. The error in determining the centroid by pre-edge region fitting is dwarfed in comparison. Error on the calibration line (fitted by the least-squares method) relating the centroid position relative to Fe³⁺/ Σ Fe was determined using the following standard formulas:

Slope error =
$$\delta_a = \sqrt{\frac{\sum(y_i - ax_i - b)^2}{n-2}} \times \sqrt{\frac{n}{(n\sum x_i^2) - (\sum x_i)^2}}$$

$$Intercept \ error = \delta_b = \sqrt{\frac{\sum (y_i - ax_i - b)^2}{n-2}} \times \sqrt{\frac{\sum x_i^2}{(n \sum x_i^2) - (\sum x_i)^2}}$$

Where *a* is the slope and *b* the intercept. These formulas assume that each y_i point in the calibration has the same error which in our case is correct. The final error on the Fe³⁺/ Σ Fe, following standard methods becomes:

$$\delta_{x} = |x| \sqrt{\left(\frac{\delta_{y} + \delta_{b}}{y - b}\right)^{2} + \left(\frac{\delta_{a}}{a}\right)^{2}}$$

With *x* the Fe³⁺/ Σ Fe ratio and *y* the centroid position in eV. It is to be noted that about 40 to 60% of the final error on the Fe³⁺/ Σ Fe ratio is due to the error on the calibration, which is a systematic error. The error associated with measurement uncertainty can be expressed as:

$$\delta_x = \left|\frac{1}{a}\right| \times \delta_y$$

It is this last error that is reported on all figures.

REFERENCES

- 1. Eschenbacher, A. (1998). Open-system degassing of a fractionating, alkaline magma, Mount Erebus, Ross Island, Antarctica.
- 2. Oppenheimer, C. *et al.* (2011). Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. *Earth Planet. Sci. Lett.* **306**, 261–271
- 3. Danyushevsky, L. V., Della-Pasqua, F. N. & Sokolov, S. (2000). Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. *Contrib Mineral Petrol* **138**, 68–83
- 4. Danyushevsky, L. V. & Plechov, P. (2011). Petrolog3: Integrated software for modeling crystallization processes. *Geochemistry, Geophysics, Geosystems* **12**, n/a–n/a