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Abstract Many physically based hydrological/hydrogeological models used for predicting groundwater

seepage areas, including topography-based index models such as TOPMODEL, rely on the Dupuit assump-

tion. To ensure the sound use of these simplified models, knowledge of the conditions under which they

provide a reasonable approximation is critical. In this study, a Dupuit solution for the seepage length in hill-

slope cross sections is tested against a full-depth solution of saturated groundwater flow. In homogeneous

hillslopes with horizontal impervious base and constant-slope topography, the comparison reveals that the

validity of the Dupuit solution depends not only on the ratio of depth to hillslope length d/L (as might be

expected), but also on the ratio of hydraulic conductivity to recharge K/R and on the topographic slope s.

The validity of the Dupuit solution is shown to be in fact a unique function of another ratio, the ratio of

depth to seepage length d/LS. For d/LS< 0.2, the relative difference between the two solutions is quite small

(<14% for the wide range of parameter values tested), whereas for d/LS> 0.2, it increases dramatically. In

practice, this criterion can be used to test the validity of Dupuit solutions. When d/LS increases beyond that

cutoff, the ratio of seepage length to hillslope length LS/L given by the full-depth solution tends toward a

nonzero asymptotic value. This asymptotic value is shown to be controlled by (and in many cases equal to)

the parameter R/(sK). Generalization of the findings to cases featuring heterogeneity, nonhorizontal impervi-

ous base and variable-slope topography is discussed.

1. Introduction

Groundwater seepage areas (also called saturated areas), formally defined as the intersection between the

water table and the land surface, play a critical role in many hydrological processes such as groundwater

flow, groundwater-surface water interaction, and surface runoff, which all have important environmental

implications [Winter et al., 1998; Sophocleous, 2002]. Different groundwater flow paths converge into these

areas, mixing waters of different properties (chemistry, temperature) that impact both near-stream and in-

stream conditions [Winter, 1999; Dahl et al., 2007]. Being saturated, seepage areas create the conditions for

wetlands to develop [Mitsch and Gosselink, 2007], and control the functioning of riparian areas [Tabacchi

et al., 1998; Jencso et al., 2010]. Soil saturation also prevents any infiltration, so that saturation-excess over-

land flow occurs after rainfall, a major process contributing to flood peak in adjacent streams [Kirkby, 1988].

Seepage areas further constitute surfaces of maximum evaporation and transpiration from the water table

[Salvucci and Entekhabi, 1995; Winter, 1999]; therefore, their spatial extent influences the water balance and

vegetation development. Eventually, erosion processes implied by the seepage of groundwater to the land

surface control channel initiation [Montgomery and Dietrich, 1989]. To address the pressing management

issues related to all these processes, predicting groundwater seepage areas is essential.

The extent of groundwater seepage areas depends on a number of topographic and hydrogeologic factors.

The underlying free-surface groundwater flow process is strongly nonlinear in terms of seepage area varia-

tion [Bear, 1972; Crank, 1984; Forster and Smith, 1988]. Three-dimensional, variably saturated models [e.g.,

Freeze, 1971] can theoretically offer a solution for this problem, but in practice their complexity often pre-

vents their use. Such models require large computing resources even for small-scale problems, and their

parameterization is difficult due to important uncertainties generally associated with the necessary detailed

subsurface properties.

As an alternative, simplified models based on the Dupuit assumption have been developed. In idealized hill-

slopes, the Dupuit assumption even allows the derivation of analytical expressions relating the extent of
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seepage areas to topographic and hydrogeologic factors [O’Loughlin, 1981; Salvucci and Entekhabi, 1995;

Ogden and Watts, 2000; Batelaan and De Smedt, 2004]. Such expressions are highly valuable since they pro-

vide direct insight into the way topographic and hydrogeologic factors control the extent of seepage areas.

In more realistic cases, numerical models based on the Dupuit assumption can be used. Such models have

largely been adopted by the community. They encompass: topography-based index models such as TOP-

MODEL [Beven and Kirkby, 1979; Beven et al., 1995], THALES [Moore and Grayson, 1991; Grayson et al., 1992],

and TOPKAPI [Todini and Ciarapica, 2001]; PLASM [Potter and Gburek, 1987]; the hillslope-storage Boussinesq

model of Troch et al. [2003]; HYDRAT2D [Cohen et al., 2006]; and MODFLOW [McDonald and Harbaugh,

1988] when adopting a single unconfined layer and activating the DRAIN package or the SEEPAGE package

[Batelaan and De Smedt, 2004].

In order to ensure the sound use of such simplified models, knowledge of the conditions under which they

provide a reasonable approximation is critical. The Dupuit assumption consists of a dimensional reduction

of saturated flow. Therefore, a fundamental question is: under which conditions does a Dupuit solution pro-

vide a reasonable approximation of a full-dimensional solution of saturated flow? This paper deals with this

question, which is referred to as the question of validity.

Although the validity of the Dupuit assumption has been extensively studied in regard to flow or water

table prediction in a number of configurations [Bear, 1972; Haitjema, 1987; Chenaf and Chapuis, 2007; Rush-

ton and Youngs, 2010], it has been poorly studied in regard to seepage area prediction using models such

as stated above. Potter and Gburek [1986] addressed this issue explicitly, comparing a Dupuit solution to the

solution given by a variably saturated model in hillslope cross sections. However, although they examined a

number of configurations, they restricted the analysis to a constant-head profile at the downhill boundary,

representing a stream. This boundary condition implies that the impervious base of the modeled hillslope

lies at the level of the streambed, neglecting deeper groundwater flow. This assumption was also adopted

in the comparison of a hillslope-storage Boussinesq model to a variably saturated model [Paniconi et al.,

2003]. Yet, in many cases, the effectively impervious base lies at depth below the streambed [e.g., Forster

and Smith, 1988]. Also, due to catchment symmetry, the downhill boundary below the streambed is a

groundwater divide (Figures 1a and 1b). This study focuses on such cases.

In this study, a Dupuit solution of the seepage length in hillslope cross sections is tested against a full-depth

solution of saturated groundwater flow. The study is conducted for wide ranges of values of topographic

and hydrogeologic parameters. Namely, the effect of the depth to impervious base is carefully investigated.

The limits of the validity of the Dupuit solution are established, and are shown to be controlled by a simple

geometric criterion. Beyond these limits, topographic and hydrogeologic controls are examined and empiri-

cal expressions for the seepage length are given.

2. Methods

2.1. Hillslope Model and Processes

A generic hillslope cross section is considered in which the base as well as both uphill and downhill vertical

boundaries are impervious (Figure 1b): water enters and leaves the groundwater system only across the

water table. This system models half an ideally symmetrical and isolated first-order catchment (Figure 1a);

potential leakage of deep groundwater toward downhill catchments is not considered. A hypothetical

stream, whose geometrical dimensions are neglected, is assumed to drain both direct runoff and ground-

water discharge at the valley bottom, maintaining the hydraulic head at the land surface level. The study

focuses primarily on homogeneous hillslopes with horizontal impervious base and constant-slope topogra-

phy (Figure 1b). More realistic cases featuring heterogeneity, nonhorizontal impervious base, and variable-

slope topography are discussed in section 4.3.

The study deals exclusively with fully saturated groundwater flow; the reference model to which the Dupuit

solution is compared does not include the unsaturated zone. Whereas various phenomena related to the

infiltration process are thus disregarded, this allows for a strict test of the Dupuit assumption (dimensional

reduction of saturated flow). For simplicity, a uniform recharge rate is specified at the water table level

(where the water table is below the land surface). However, the Dupuit assumption has been shown to be

invalid around small recharge areas [Haitjema, 1987]; therefore, cases with highly localized recharge areas

could imply more restrictions than in this study regarding the validity of Dupuit solutions. Finally, the
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system is studied at steady state.

Such a system does not capture

transient behaviors, but is sufficient

to test the core of the Dupuit

assumption. The associated findings

are expected to form a solid and

necessary base for the analysis of

more complete formulations.

The system parameters are: depth

to impervious base below the

streambed d [L], hillslope length L

[L], hydraulic conductivity K [LT21],

available recharge rate R [LT21], and

topographic slope s [-]. The study

focuses on the seepage length LS.

The system is made nondimensional

by using hillslope length L and

recharge rate R as reference quanti-

ties for lengths and velocities,

respectively. Three dimensionless

parameters remain: the ratio of

depth to hillslope length d/L [-], the

ratio of hydraulic conductivity to

recharge K/R [-] and the topographic

slope s [-]. Consistent with this nor-

malization, the ratio of seepage

length to hillslope length LS/L [-] is

studied. In order to study a wide

range of possible environments, the

analysis is carried out for ranges of parameter values covering many orders of magnitude:

1025 � d=L � 102, 100 � K=R � 105, and 1023 � s � 1021.

2.2. Dupuit Solution

Let us assume [after Dupuit, 1863] that the flow lines crossing the vertical section located at x5 LS (upper

point of the seepage area) are horizontal. At this point, the water table becomes confounded with the land

surface topography, so that the hydraulic gradient can be assumed equal to the topographic slope. The

flow across the vertical section at x5 LS is then given by

QLS5

ð

zT LSð Þ

2d LSð Þ

KðLS; zÞ
@zT
@x

LSð Þdz (1)

where zT xð Þ [L] and d xð Þ [L] are the land surface topography and the depth to impervious base at position

x, respectively, and Kðx; zÞ is the hydraulic conductivity at position x; zð Þ (origin of both axes being taken at

the valley bottom as in Figure 1b). Uphill, the recharge flow is given by

QR5R L2LSð Þ (2)

For a global flow conservation, the seepage length must adapt such that QLS becomes equal to QR, thus

leading to an equation for LS. For the case of homogeneous hillslopes with horizontal impervious base and

constant-slope topography, the solution for LS/L is

LS

L
5
12sK

R
d
L

11s2K
R

(3)

LS

zT(x) = sx
z

x
L

d

0

0

(a)

(b)

groundwater

divide

R

K

Figure 1. (a) Schematic top view of a watershed and 3-D view of an ideally symmetri-

cal and isolated first-order catchment. (b) Generic 2-D hillslope, modeling the cross

section of one half of the ideal first-order catchment shown in Figure 1a. The length

of the seepage area, LS, is the main feature analyzed.
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2.3. Full-Depth Solution

Let us denote X the saturated flow region, with boundaries consisting of prescribed zero-flux boundaries

CN, a free surface CF (the water table below the land surface), and a seepage area CS. The full governing

equations of this problem are [Neuman and Witherspoon, 1970]

r � ðK ~rhÞ50 in X (4)

K ~rh �~n50 on CN (5)

K ~rh �~n5Rnz on CF (6)

h5z on CF (7)

h5z on CS (8)

where h [L] is the hydraulic head and~n [-] is the unit vector normal to the surface and oriented outward (nz
being its vertical component). The position of CF and the extension of CS are a priori unknown: these are

part of the solution, both adapting to the topographic and hydrogeologic parameters. Equations (6–8) form

a free surface condition constrained by a land surface. This boundary condition constitutes the source of

the nonlinearity of the system. First, the ‘‘pure’’ free surface condition (combination of equations (6) and (7))

can be shown to give a nonlinear equation in terms of hydraulic head at the free surface [Bear, 1972]. Sec-

ond, the land surface constraint (expressed in equation (8)) sets an upper threshold for the free surface.

A large number of numerical methods and software can solve the above set of equations. Here we use a

locally adaptive finite volume method with a nonlinear solver for determining the free surface position

[Bresciani et al., 2012], implemented in the H2OLAB platform [Erhel et al., 2009]. This method is chosen for its

accuracy and efficiency, which allows a large range of configurations to be explored in a reasonable amount

of time. The mesh consists of a grid of rectangular cells. An adaptive meshing strategy is required to deal

with the geometric parameters (d/L and s) and the result of interest (LS), which vary over many orders of

magnitude require. The adopted strategy consists of refining the grid both horizontally and vertically

toward the valley bottom (x5 0, z5 0), and of adapting the grid steps as well as the convergence criterion

of the free surface iterations as a function of the parameters. The adaptation is made such that the relative

accuracy of the seepage length is similar for all the tested parameter values, while the total number of cells

remains independent of all parameters but d/L. In the vertical direction, the part above z5 0 is discretized

with 100 cells. Below z5 0, the vertical grid step increases with depth following a geometric progression

with common ratio 1.1. In the horizontal direction, the number of cells is kept constant and is equal to
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Figure 2. LS/L as a function of d/L: full-depth and Dupuit solutions. (a) Results for s5 0.1 and different values of K/R. (b) Results for K/

R5 100 and different values of s.
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1000, allowing the achievement of highly accurate results. Representative cases were checked to ensure

that further mesh refinement or stricter convergence criteria had no effect on the results.

3. Results

The Dupuit solution predicts a linear decrease of LS/Lwith d/L (equation (3)). A similar behavior can be observed

in the full-depth solution for relatively small values of d/L, as illustrated in Figures 2a and 2b. In this part of the

curve, although the Dupuit solution systematically underestimates the seepage length, the two solutions show

reasonable agreement. As d/L becomes larger, the Dupuit solution goes to zero. More precisely, LS/L5 0 for d/

L5 R/(sK); beyond that, the solution is not physically acceptable (LS/L< 0, equation (3)). On the other hand, the

full-depth solution rapidly becomes independent of d/L, and tends toward a nonzero asymptotic value.

The results are further illustrated in Figures 3a–3e, which shows head contours in the full-depth solution for

five increasing values of d/L in the case K/R5 100 and s5 0.1. The extent of the seepage area is also

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

−0.15

−0.05

0.05

0.1

−0.15

extent of the seepage area (full-depth solution)

extent of the seepage area (Dupuit solution)

0.002 head contours

∇xh at x=LS

z
/L

0.05 0.1
0

0.05

0.1

0.05 0.1
−0.05

0

0.05

0.1

0.05 0.1
−0.2

−0.1

0

0.05 0.1
−0.1

−0.05

0

0.05

0.1

0.05 0.1

−0.1

−0.05

0

0.05

0.1

x/L

−0.05

0.05

0.1

−0.15

−0.15

full-depth

Dupuit

(a)

(b)

(e)

(c)

(d)

Figure 3. (left) Head contours and (right) horizontal hydraulic gradient profile at x5 LS, for (a) d/L5 0, (b) d/L5 0.05, (c) d/L5 0.1, (d) d/

L5 0.15, and (e) d/L5 0.2. Other parameters are kept constant: K/R5 100 and s5 0.1. In Figures 3d and 3e, the Dupuit solution gives a

negative seepage length, which is not physically acceptable (not reported).
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indicated by a red star and a green dot for the Dupuit and full-depth solutions, respectively, as well as the

vertical profile of the horizontal hydraulic gradient at x5 LS. For relatively small values of d/L (Figures 3a

and 3b), the full-depth solution reveals quite vertical head contours around x5 LS and a horizontal hydraulic

gradient profile almost constant with depth. In this case, the Dupuit solution logically gives a reasonable

result. Figure 3c shows the particular case where d/L5 R/(sK), for which the Dupuit solution gives LS/L5 0.

In this case, the horizontal hydraulic gradient profile decreases significantly with depth, explaining the

important difference between the two solutions. For larger d/L, high curvatures of the head contours can be

observed around x5 LS (Figures 3d and 3e), in which case it is not surprising that the Dupuit solution fails.

The same behavior is observed when varying K/R (Figure 2a) or s (Figure 2b). K/R and s nevertheless modu-

late the results significantly, both in a similar way. For larger K/R or larger s, the following observation can

be made. In the first part of the curve (at relatively small values of d/L), LS/L is smaller and decreases more

rapidly with d/L. At higher values of d/L, the characteristic value of d/L beyond which the full-depth solution

departs from the Dupuit solution is smaller. Thus, the validity of the Dupuit solution is not only controlled

by d/L, but also by K/R and s. Eventually, the asymptotic value reached in the full-depth solution is smaller.

Results for the entire range of parameter values are given in Figures 4a–4c, where the log-log scale was cho-

sen to display the full range of orders of magnitude investigated. The behaviors described above apply for

all the tested parameter values. Moreover, the characteristic value of d/L beyond which the full-depth solu-

tion departs from the Dupuit solution seems to be of the same order as the value of d/L that nullifies the

Dupuit solution, which is known to be R/(sK). This result is important, since it gives a first-order scaling
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criterion for the validity of the Dupuit solution; the Dupuit solution is valid only if d/L << R/(sK). In order to

refine this criterion, the relative difference between the full-depth solution and the Dupuit solution was

plotted as a function of the ratio sKd= RLð Þ (Figures 5a–5c). (Note: in Figure 5, as in the following Figure 6,

values of K/R that always give LS/L � 1 (see Figure 4) are not reported since the limit of accuracy related to

the horizontal grid step was reached.) As expected, the difference is small for small values of sKd= RLð Þ. How-

ever, the figure reveals that the difference is not uniquely determined by sKd= RLð Þ (for this to be true, all

the curves should collapse to a single curve). For sKd= RLð Þ < 0:2, the difference remains smaller than 15%

for the range of parameter values tested; therefore, sKd= RLð Þ < 0:2 could be suggested as a criterion of

validity of the Dupuit solution. However, this criterion is not optimal and cannot be applied outside of the

range of parameters investigated.

4. Discussion

4.1. Geometric Rule

The Dupuit solution assumes a constant head with depth, which makes possible a depth-integrated equa-

tion. Intuitively, this collapse of the vertical dimension should be valid for systems that have much larger

horizontal extent than vertical extent. For systems with a constant-head profile at the downhill boundary, a

Dupuit solution indeed performs better for a small ratio of depth to hillslope length [Potter and Gburek,

1986]. For the system studied here, which features a no-flow downhill boundary, this condition is necessary

but not sufficient; Figures 4a–4c show that the Dupuit solution fails even for small absolute values of d/L.
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Water Resources Research 10.1002/2013WR014284

BRESCIANI ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 7



Nevertheless, another geometric rule can be considered: in general, the Dupuit assumption cannot be

applied to regions where the vertical flow component is significant relative to the horizontal flow compo-

nent. As a rule of thumb, some authors suggest that the Dupuit assumption is invalid at a distance x< 2b

from a vertical flow feature, where b [L] is the saturated thickness [Bear, 1972; Haitjema, 2006]. The Dupuit

solution studied here relies on the validity of the Dupuit assumption at x5 LS. Although the entire seepage

area potentially constitutes a vertical flow feature (since the seepage boundary condition allows discharge

to take place), vertical flow appears only significant close to the downhill boundary (Figure 3b). Thus, the

hypothesis can be made that the validity of the Dupuit assumption is determined by the distance between

the downhill boundary and x5 LS relative to the saturated thickness. The saturated thickness is best meas-

ured below the stream for this purpose, since it is the no-flow downhill boundary that is responsible for the

vertical flow feature (note that for d5 0, there is no vertical flow close to the downhill boundary (Figure

3a)). To test this hypothesis, the relative difference between the full-depth solution and the Dupuit solution

was plotted as a function of the ratio d/LS (Figures 6a–6c). The figure reveals that for d/LS < 0.2, the relative

difference is small, increases linearly with d/LS, and most importantly, is independent of K/R (all the curves

collapse to a single curve for each value of s) and almost independent of s (the values are identical for

s5 0.001 and s5 0.01, but slightly larger for s5 0.1). For d/LS > 0.2, the relative difference becomes a func-

tion of K/R and s and increases dramatically. It seems natural to take this cutoff value (d/LS 5 0.2) as a limit

of the validity of the Dupuit solution. At the cutoff, the relative difference is equal to 10% for s5 0.001 and

s5 0.01, and to 14% for s5 0.1. A slightly larger difference for larger topographical slopes is likely due to a

larger ratio of average saturated thickness to hillslope length.

(a)    s=0.1 (b)    s=0.01

(c)    s=0.001
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Figure 6. Relative difference between the full-depth and the Dupuit solutions, defined by ð LSf gfull2depth2 LSf gDupuitÞ= LSf gfull2depth3100, as a function of the ratio d/LS. Results for different

values of K/R and (a) s5 0.1, (b) s5 0.01, and (c) s5 0.001. The vertical dashed line highlights a cutoff value of the ratio d/LS beyond which the relative difference increases dramatically.

Water Resources Research 10.1002/2013WR014284

BRESCIANI ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 8



The aforementioned rule of thumb

[Bear, 1972; Haitjema, 2006] suggests

that the Dupuit solution should be

valid for d/LS < 0.5. Here, a more

restrictive condition is found (d/LS <

0.2). Although these two conditions are

of the same order, the difference is sig-

nificant since adherence only to the

less restrictive condition would most

often yield a dramatically wrong result

(Figures 6a–6c).

4.2. Topographic and Hydrogeologic

Controls on ‘‘Deep’’ Systems

This section discusses the topographic

and hydrogeologic controls on rela-

tively ‘‘deep’’ systems (d/LS >> 0.2), for

which LS/L has reached an asymptotic

value (as given by the full-depth solu-

tion). First, the fact that the asymptotic

value is nonzero reveals the limited influence of the aquifer depth on the capacity of hillslopes to transfer

recharge (QR would reach its maximum potential value only if LS5 0). Because the capacity to transfer

recharge is classically related to transmissivity, defined as the saturated thickness multiplied by the hydraulic

conductivity, this result might appear counterintuitive. In fact, the concept of transmissivity implicitly assumes

the validity of the Dupuit assumption, which, as shown previously, can be invalid.

The asymptotic value of LS/L, denoted by L1S =L in the following, is smaller for larger values of K/R or s (Fig-

ures 4a–4c). In fact, changes in either K/R or s seem to have identical effects on L1S =L. This suggests that

the single, combined parameter sK/R controls L1S =L. Plotting L1S =L as a function of its inverse, R/(sK), for

independently varying values of K/R and s, confirms this hypothesis (Figure 7). In addition, the

relationship

L1S
L
5

R

sK
(9)

holds for R/(sK)< 0.4. The simplicity of this expression is quite remarkable. Given the nonlinearity of the

equations, and that in ‘‘deep’’ systems the flow field around x5 LS is fundamentally two-dimensional (hori-

zontal and vertical; Figure 3e), an analytical demonstration is not necessarily obvious.

4.3. Generalization to Nonhorizontal Impervious Base, Heterogeneous Hydraulic Conductivity, and

Variable-Slope Topography

In this paper, the analysis was carried out for the basic case of homogeneous hillslope with horizontal

impervious base and constant-slope topography. However, realistic cases can feature nonhorizontal imper-

vious base, heterogeneity, and variable-slope topography. These features can also be accounted for in a

Dupuit solution. In the following, generalization of the above findings to such cases is discussed. A number

of examples are examined (cases A–D), for which the detailed features and the Dupuit solution are indicated

in Table 1 and Table 2, respectively.

4.3.1. Nonhorizontal Impervious Base

As explained above, the validity of the Dupuit assumption depends on the saturated thickness below the

stream. Thus, the criterion of validity must be independent of the topography of the impervious base (as

long as it varies smoothly, such that it does not create any additional, significant vertical flow feature). As an

example, let us consider the particular case of an impervious base parallel to the land surface (case A). In

Figure 8a, the ratio of seepage length to hillslope length is plotted for varying ratio of depth to hillslope

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

R/(sK)

L
S∞
/L

s=0.1; K/R varying

s=0.01; K/R varying

s=0.001; K/R varying

y=x

Figure 7. Asymptotic value L1S =L, obtained for d=L ! 1, as a function of R/(sK) for

values of K/R and s varying independently (graph restricted to the part where all

the studied parameter values overlap). It is seen that all the points collapse to a

single curve, proving that L1S =L is controlled by the single, combined parameter R/

(sK). For R/(sK)< 0.4, the points collapse to the curve y5 x.
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length. In this example, the geometric rule developed earlier (validity of the Dupuit solution for d/LS < 0.2)

applies very well.

In relatively ‘‘deep’’ systems (d/LS >> 0.2), there is virtually no impervious base. In this case, the asymptotic

value L1S =L is controlled by R/(sK), as in the basic case. In the example provided (case A), equation (9) gives

a very good estimation of L1S =L (Figure 8a).

4.3.2. Heterogeneous Hydraulic Conductivity

In heterogeneous cases, the challenge for generalizing the criterion of validity of the Dupuit solution is to

define an effective depth to impervious base. In the basic (homogeneous) case, heterogeneity is in fact

implicit; the concept of a depth to impervious base assumes a sharp interface between a high and a low

hydraulic conductivity value (sufficiently low to be neglected). Thus, in heterogeneous cases, the effective

depth to impervious base could simply be defined as the depth below which the hydraulic conductivity

becomes negligibly low. However, except in ideal cases where the hydraulic conductivity decreases monot-

onously with depth, heterogeneity is generally randomly distributed. The effective depth should then be

the sum of all zones displaying non-negligible hydraulic conductivity. It also seems obvious that different

weights must be given to zones of different values of hydraulic conductivity, since zones of low values

should contribute less to the effective depth than zones of high values. A natural way to define the effective

depth is thus offered by the participation ratio S2 [-] 2 0; 1½ � [Sornette et al., 1993; Le Goc et al., 2010]. This

ratio characterizes the portion of space occupied by the highest values of a field. It compares moments of

different orders, and is mathematically defined as

S25
M1 Uð Þ2

M0 Uð ÞM2 Uð Þ
(10)

where Mk Uð Þ is the kth moment of the field U. In order to obtain an effective depth, S2 is calculated for ver-

tical profiles of the hydraulic conductivity field. The moments are thus given by

Mk Kð Þ5

ð

zT

2d

K zð Þ½ �kdz (11)

The portion of depth that effectively contributes to horizontal flow, noted d� L½ �, can then be defined as

d�5S2d (12)

The criterion of validity of the Dupuit

solution is then suggested to be

d�=Ls < 0:2. For a homogeneous

case, it can be verified that S25 1

and d�5 d.

To illustrate the use of the participa-

tion ratio, let us consider the case of

hillslopes characterized by an expo-

nential decay of the hydraulic

Table 1. Detailed Features of the Hillslope Cases Tested in the Generalization Section (Section 4.3)

Land Surface Topography Geology

Features Dimensionless Parameters Features Dimensionless Parameters

Case A Constant slope s5 0.01 Parallel base K

R
51000

zT xð Þ5sx Homogeneous

Case B Constant slope s5 0.01 Infinite base K0

R
51000

zT xð Þ5sx Exponential decay:

K ~zð Þ5K0exp 2~z=dCð Þ

Case C Concave a5 0.005 Horizontal base K

R
51000

zT xð Þ5ax1 1
2
bx2 bL5 0.01 Homogeneous

Case D Convex a5 0.015 Horizontal base K

R
51000zT xð Þ5ax1 1

2
bx2 bL520.01 Homogeneous

Table 2. Dupuit Solution for the Hillslope Cases Tested in the Generalization Sec-

tion (Section 4.3, Details in Table 1)

Dupuit Solution

Case A
LS

L
512

sK

R

d

L

Case B
LS

L
512

sK

R

dC

L

Cases C and D a
d

L
2

R

K
1

d

L
bL1a21

R

K

� �

LS

L
1
3

2
bLa

LS

L

� �2

1
1

2
bLð Þ2

LS

L

� �3

50a

aThe analytical solution of this equation was taken from http://www.

wolframalpha.com.
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conductivity with depth, a commonly adopted hillslope model [Beven and Kirkby, 1979]. The hydraulic

conductivity is then given by Kð~zÞ5K0exp 2~z=dCð Þ, where K0 is the hydraulic conductivity at the land sur-

face, ~z is the depth measured from the land surface, and dC is a characteristics depth. In that case, it can

be shown that d�52dC . The criterion of validity of the Dupuit solution is then dC/LS < 0.1. In the example

examined (case B), this proves to be a very sensible criterion (Figure 8b).

In order to generalize the results of the relatively ‘‘deep’’ systems to heterogeneous cases, an effective

hydraulic conductivity has to be computed. An extensive literature exists on this topic, which is too com-

plex to be treated here. We refer to Sanchez-Vila et al. [2006] for an overview of the different approaches

to this issue. In the particular case where the hydraulic conductivity decays exponentially with depth, tak-

ing d� ! 1 implies that the hydraulic conductivity field becomes essentially equivalent to a homogene-

ous field of value K0. In this case, L1S =L is simply controlled by R/(sK0), as in the basic case. Figure 8b

shows that in case B, LS/L tends toward R/(sK0), as suggested by equation (9).

d/LS > 0.2

dC/LS > 0.1

d/LS > 0.2
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Figure 8. (a–d) LS/L as a function of d/L (or dC/L in case B) in cases A–D, which are sketched above the graphs (details given in Table 1). Results

reported for the full-depth solution, the Dupuit solution (expected to be invalid in the shaded region defined by d/LS> 0.2), and the empirical

asymptote (equation (9)).
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4.3.3. Variable-Slope Topography

The criterion of validity of the Dupuit solution is not expected to be a function of the land surface topogra-

phy. Examples of concave and convex topographies (cases C and D, respectively) confirm that the devel-

oped criterion applies well (Figures 8c and 8d). These examples moreover demonstrate that in the range of

validity, the Dupuit solution also performs well for variable-slope topographies.

In order to generalize the results of the relatively ‘‘deep’’ systems to cases with variable-slope topography,

the concept of topographic slope has to be generalized. Since in relatively ‘‘deep’’ systems the flow field is

fundamentally two-dimensional (horizontal-vertical), it is expected that the topography all along the seep-

age area influences the result. For this reason, generalization of the parameter s in equation (9) by the aver-

age slope along the seepage area is suggested. The generalized form of equation (9) is then

L1S
L
5

R

h@zT@x iL1S
K

(13)

In cases C and D, this expression gives a very good estimation of L1S =L (Figures 8c and 8d).

5. Conclusion

In this study, a Dupuit solution for seepage area prediction in hillslope cross sections was tested against a

full-depth solution of saturated groundwater flow. Compared to previous works that tackled a similar prob-

lem, the originality of the study primarily lies in the use of a no-flow downhill boundary, which represents

the groundwater divide below the stream. In homogeneous hillslopes with horizontal impervious base and

constant-slope topography, the comparison reveals that the validity of the Dupuit solution depends not

only on the ratio of depth to hillslope length d/L, but also on other parameters of the system such as the

ratio of hydraulic conductivity to recharge K/R and the topographic slope s. Although sKd= RLð Þ � 1 gives a

first-order criterion for the validity of the Dupuit solution, the relative difference between the full-depth

solution and the Dupuit solution is not uniquely determined by the value of sKd= RLð Þ. Instead, the relative

difference is shown to be a unique function of another ratio, the ratio of depth to seepage length d/LS
(except beyond a cutoff value of 0.2, in which case K/R and s also become important). A ratio of d/LS < 0.2

ensures a relative difference smaller than 14% for the wide range of parameter values tested, and is sug-

gested as a criterion of validity for the Dupuit solution. For ratios of d/LS > 0.2, the relative difference

increases dramatically; the vertical flow component at x5 LS cannot be neglected. In practice, since LS is

required to assess this criterion, a Dupuit solution would have to be tested a posteriori. Note that this is cor-

rect since the Dupuit solution is valid up to the cutoff value, and beyond it gives an overestimation of d/LS.

When d/LS increases beyond the cutoff value, the ratio of seepage length to hillslope length LS/L given by the

full-depth solution tends toward a nonzero asymptotic value. Remarkably, this asymptotic value is shown to

be controlled by R/(sK). Moreover, the equality L1S =L5R= sKð Þ holds for R= sKð Þ < 0:4. In other words, the

equality holds for cases where L1S =L < 0:4, which probably encompasses most natural situations.

The findings of this paper are expected to form a solid base for the analysis of more complex systems. Cases

featuring heterogeneity, nonhorizontal impervious base, and variable-slope topography have been dis-

cussed above in some extent, but more examples should be examined. Future research should also explore

the effects of hillslope convergence/divergence, catchment asymmetry, deep groundwater leakage, spa-

tially distributed recharge, and transient behaviors.
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