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Abstract Proliferation of evapotranspiration (ET) products warrants comparison of these products. The

study objective was to assess uncertainty in ET output from four land surface models (LSMs), Noah, Mosaic,

VIC, and SAC in NLDAS-2, two remote sensing-based products, MODIS and AVHRR, and GRACE-inferred ET

from a water budget with precipitation from PRISM, monitored runoff, and total water storage change

(TWSC) from GRACE satellites. The three cornered hat method, which does not require a priori knowledge

of the true ET value, was used to estimate ET uncertainties. In addition, TWSC or total water storage

anomaly (TWSA) from GRACE was compared with water budget estimates of TWSC from a flux-based

approach or TWSA from a storage-based approach. The analyses were conducted using data from three

regions (humid-arid) in the South Central United States as case studies. Uncertainties in ET are lowest in

LSM ET (�5 mm/mo), moderate in MODIS or AVHRR-based ET (10–15 mm/mo), and highest in GRACE-

inferred ET (20–30 mm/month). There is a trade-off between spatial resolution and uncertainty, with lower

uncertainty in the coarser-resolution LSM ET (�14 km) relative to higher uncertainty in the finer-resolution

(�1–8 km) RS ET. Root-mean-square (RMS) of uncertainties in water budget estimates of TWSC is about half

of RMS of uncertainties in GRACE-derived TWSC for each of the regions. Future ET estimation should

consider a hybrid approach that integrates strengths of LSMs and satellite-based products to constrain

uncertainties.

1. Introduction

Evapotranspiration (ET), the highest outgoing water flux in the hydrological cycle at the global scale, is a pri-

mary determinant of water availability together with precipitation [Long and Singh, 2012a; McCabe and

Wood, 2006; Wang and Dickinson, 2012]. Accurate knowledge of ET is the linchpin to developing a greater

understanding of the water and energy balance of a region. Limited networks of ET monitoring stations

(e.g., weighing lysimeters, energy balance Bowen ratio systems, or eddy covariance (EC) towers) globally

limit quantification of ET across large areas. Satellite remote sensing (RS) provides an unprecedented oppor-

tunity to monitor spatiotemporal variability in ET using two basic approaches: (1) vegetation index-based

data: Leaf Area Index (LAI) or Normalized Difference Vegetation Index (NDVI), and (2) land surface tempera-

ture (LST). Remotely sensed LAI or NDVI are used with surface resistance in the Penman-Monteith equation

to provide global estimates of ET [e.g., Mu et al., 2011; Zhang et al., 2010]. Issues of spatial scale mismatch

between finer vegetation data and coarser meteorological forcing remain unresolved and can result in large

uncertainties in ET retrievals [Yang et al., 2013]. Remotely sensed LST is used in many algorithms to estimate

ET, including the spatial variability models such as SEBAL and triangle models [Bastiaanssen et al., 1998;

Jiang and Islam, 2001], and physically based one-source or two-source models [Anderson et al., 2007a; Long

and Singh, 2012b; Su, 2002]. LST-based models have been used to generate ET for the United States [Ander-

son et al., 2007a, 2007b] and for the world [Vinukollu et al., 2011], but these ET estimates generally cover a

limited time due mostly to cloud cover issues. Estimation of ET using LST requires cloud-free images, which

are sometimes difficult to obtain [e.g., Long and Singh, 2010; Nishida et al., 2003; Yang and Shang, 2013].

Many of these algorithms using LST also require a strong contrast in ET within each image [Long and Singh,

2013], and are mostly applied to irrigated agricultural regions in semiarid areas [e.g., Bastiaanssen et al.,

2005; Tang et al., 2009].

ET at global to grid scales can also be simulated using land surface models (LSMs), e.g., Noah [Ek et al.,

2003], Mosaic [Koster and Suarez, 1994, 1996], Variable Infiltration Capacity (VIC) [Liang et al., 1994],
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Sacramento Soil Moisture Accounting (SAC) [Burnash et al., 1973], and Common Land Model (CLM) [Dai

et al., 2003]. The North American Land Data Assimilation System (NLDAS-2) [Xia et al., 2012a, 2012b] LSMs

(Noah, Mosaic, VIC, and SAC) provide data sets on ET and other fluxes (e.g., runoff and drainage) and state

variables (e.g., soil moisture and temperature) at a resolution of 0.125� (�14 km) across the United States

from 1979 to present. NLDAS-2 improved the accuracy and consistency of surface forcing data and

upgraded the LSM code and parameters from the first phase of NLDAS (NLDAS-1) [Mitchell et al., 2004]. The

Global Land Data Assimilation System (GLDAS) [Ek et al., 2003; Rodell et al., 2004b] provides land surface

states globally at a spatial resolution of 1� (�111 km) and a near-real-time scale, including output of Noah,

Mosaic, VIC, and CLM. Note that the same model (e.g., Noah, VIC) in different data assimilation systems rep-

resents different versions of the codes with different forcing and associated parameters for soils and vegeta-

tion [Long et al., 2013].

Some studies have used Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water stor-

age change (TWSC, dS/dt) to estimate ET as a residual in the water budget equation:

ET 5P–R–dS=dt (1)

where P is precipitation and R is streamflow [Ramillien et al., 2006]. GRACE satellites provide information on

changes in the gravity field which are controlled primarily by variations in water distribution and are used

to derive TWSC at a spatial resolution of �200,000 km2, providing an opportunity to better constrain the

water budget equation. TWSC includes changes in surface water, soil moisture, and groundwater storage

[Tapley et al., 2004].

Water budgets provide a check on the RS products and assess the partitioning of water among different com-

ponents to evaluate water availability. Sheffield et al. [2009] evaluated water budget closure over the Missis-

sippi River basin using various satellite products, including precipitation from Tropical Rainfall Measuring

Mission (TRMM), Multisatellite Precipitation Analysis (TMPA), ET from the Penman-Monteith equation applied

to MODIS LAI data [Mu et al., 2007], and GRACE-derived TWSC. Calculated runoff greatly overestimated moni-

tored runoff because of large positive bias in precipitation [Gao et al., 2010; Sheffield et al., 2009]. Sahoo et al.

[2011] and Pan et al. [2011] developed water budgets over 10 large river basins globally using a range of satel-

lite and/or ground-based monitoring of P, R, ET, and GRACE-derived TWSC; however, large water budget non-

closure errors ranging from 5% to 25% of P were attributed primarily to errors in satellite-derived P and TWSC.

A variety of approaches are used to evaluate ET products, including comparison with ground-based meas-

urements and comparison of multiple LSM ET products. Comparison of RS ET with ground-based ET moni-

toring is complicated because ground-based ET often has energy budget nonclosure of up to 30% [Twine

et al., 2000]. Scale mismatch between satellite or LSM-based pixel resolution (e.g., 1 km for MODIS or �14

km for LSM output) and the footprint of micrometeorological flux measurements (e.g., typically 100 m for

EC towers) makes ground referencing of ET from RS or LSM output difficult [Gao and Long, 2008; McCabe

and Wood, 2006]. ET is also evaluated as a residual of equation (1) (ET5 P – R) at multiyear scales with TWSC

assumed to be negligible. However, this approach cannot be used to evaluate ET at finer temporal scales

(e.g., monthly). Comparison of RS ET from the Penman-Monteith algorithm [Mu et al., 2007], Priestley-Taylor

algorithm [Fisher et al., 2008], and the SEBS model [Su, 2002] with 12 EC towers across the United States

(2003–2006) showed that the Penman-Monteith ET algorithm was biased low relative to the EC values (bias:

�218 W m22), with biases for the Priestley-Taylor algorithm of �26 W m22 and a bias for SEBS of �28 W

m22 [Vinukollu et al., 2011]. Mu et al. [2011] showed that the Penman-Monteith algorithm reproduced daily

ET at 46 EC tower scales globally with a mean absolute percentage difference (MAPD) of �25%. Zhang et al.

[2010] generated a global NDVI-based monthly ET product with a MAPD of �28% relative to 48 EC towers

globally. However, information regarding reliability and uncertainties in LSM or RS-based ET products at

river basin scales and monthly time scales is limited.

The primary objective of this study is to quantify uncertainties in ET from LSMs in NLDAS-2, from RS (i.e.,

MODIS and AVHRR) and from GRACE using the three cornered hat method [TCH, Premoli and Tavella, 1993],

and to evaluate the water budget using LSM, RS, and ground-based monitoring data. TWSC from GRACE

was also compared with water budget estimates of TWSC using monitored P, R, and the different ET prod-

ucts investigated in this study. The TCH method ranks uncertainties in the different ET products without any

a priori knowledge of the true value of ET or input variables.
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We compared two approaches of evaluating consistency between GRACE-derived TWSC or total water stor-

age anomaly (TWSA) and water budget estimates of TWSC or TWSA. The first one is called a flux-based

approach in which different ET is inserted in equation (1) and P-R-ET is compared with GRACE-derived

TWSC. The second one is called a storage-based approach in which detrended integral of P-R-ET is com-

pared with detrended GRACE-derived TWSA (details of the storage-based method are given in section 3.3).

Two different sources of GRACE data were used (i.e., Center for Space Research (CSR) at the University of

Texas at Austin and the Groupe de Recherche de G�eod�esie Spatiale (GRGS) analysis center). The latest

release (RL05) from CSR with marked reductions in errors relative to RL04 [Long et al., 2013] was used. Com-

prehensive comparisons of the various ET products and quantification of their uncertainties should be valu-

able for selection of appropriate ET products for water management and for guiding future research in ET

estimation.

2. Study Regions and Data Sources

2.1. Study Regions

This study was conducted using data for three major river basins with a broad range of climates and land

cover types in the South Central United States (primarily in Texas and surrounding states, Figures 1 and S1).

Variability in climate and land cover in the South Central United States makes it a promising test bed for

evaluating ET products under varying climate and land cover conditions. Climate ranges from humid in the

E [mean annual precipitation, MAP �940 mm, 1895–2012 climatology from PRISM, Daly et al., 2008] com-

posed of the Red, Trinity, Sabine, and Neches River basins (area totaling �272,000 km2), semihumid in the

M (MAP �640 mm) comprising the Brazos, Colorado, Guadalupe, San Antonio, and Lavaca River basins

(�261,000 km2), and semiarid in the W (MAP of the U.S. portion of basin �380 mm) comprising the Rio

Grande and Nueces River basins (�598,000 km2 with 62% in the United States and the remaining in Mex-

ico). Land cover from east to west is characterized by decreasing forestland (E: �24%, W: 11%) and increas-

ing shrubland (E: �13%, W: �64%, supporting information section S1). Coastal river basins totaling nine

Figure 1. Three regions and USGS streamflow gauges in Texas that are used to estimate outflow of the three regions being investigated.
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(Figure 1) were excluded from this analysis because complete streamflow data for calculating outflows are

not available. Partitioning of the South Central United States into the three study regions also considered

the footprint of GRACE signals of �200,000 km2 (�4� 3 4� or 440 km3 440 km) [Longuevergne et al., 2010].

2.2. Data Sources

2.2.1. Precipitation and Streamflow

Different precipitation sources were available to check their consistency and reliability of deriving ET from

GRACE and comparison of water budget estimates of TWSC or TWSA with those from GRACE. Precipitation

for the river basins was derived from three data sets: (1) monthly PRISM precipitation data at 4 km (2.50)

resolution [Daly et al., 2008], (2) NOAA Climate Prediction Center (CPC) 0.25� 3 0.25� (�28 km) daily U.S. uni-

fied precipitation data [Higgins et al., 2000], and (3) TMPA (3B-43) computed at monthly intervals at 0.25� 3

0.25� resolution [Huffman et al., 2007]. Daily NOAA CPC data were aggregated into monthly values. PRISM

data were unavailable for the Mexican part of the Rio Grande basin; therefore, TMPA was used in this

region.

Streamflow data for several gauges at the outlets of the three regions were obtained from the USGS (Table

1). Outflow data of the Rio Grande are obtained from the website (http://www.ibwc.gov/wad/DDQBROWN.

htm). The Rio Grande has much lower outflow at the gauge station in Brownsville, TX (the nearest gauge

station to the Gulf of Mexico) and does not even reach the Gulf of Mexico as a result of a combined effect

of climate impacts (e.g., drought) and human activities (e.g., over appropriation of water) [Wurbs, 2006].

2.2.2. Evapotranspiration

Three different ET products were evaluated in this study, i.e., (1) LSM ET, (2) RS ET, and (3) GRACE-inferred

ET. Four ET outputs from LSMs in NLDAS-2 were used with subscripts indicating the LSMs, including ETNoah,

ETMosaic, ETVIC, and ETSAC. All of the LSMs characterize ET using soil moisture stress impacts on evaporation

from the top layer of the soil profile and vegetation transpiration. For instance, evaporation rates from the

first layer of soil in the Noah model can proceed only at the rate at which the top soil layer can transfer

water upward from below [Chen et al., 1996]. Under extremely wet conditions, evaporation from the soil sur-

face can take place at the potential rate. Vegetation transpiration from the root zone is constrained by: (1)

canopy interception and (2) canopy resistance that is explicitly parameterized by constraints of soil moisture

and the ambient environment, e.g., air temperature, vapor pressure deficit, and solar radiation [Koster and

Suarez, 1994]. These LSMs models have different versions, structures, and associated parameters embedded

in the codes, e.g., the Noah model in NLDAS-2 has four soil layers with spatially invariant thicknesses of 10,

30, 60, and 100 cm. The first three layers form the root zone in nonforested regions, with the fourth layer

included in forest regions. However, the Mosaic model in NLDAS-2 accounts for the subgrid heterogeneity

of vegetation and soil moisture with a tiling approach. Up to 10 tiles can be used in the current configura-

tion of Mosaic. The model has three layers with thicknesses of 10, 30, and 160 cm, and the first two of which

fall within the root zone. Mosaic has a greater ability to transfer water from the deep layer to the surface,

and therefore shows higher ET rates under normal conditions [Long et al., 2013]. More details about these

LSMs in NLDAS-2 can be found inWei et al. [2013] and Xia et al. [2012a, 2012b]. Note that the aim of this

study is not to investigate performance of different LSMs, but to provide objective information on uncer-

tainties in their ET output.

Table 1. USGS Gauges Used at the Outlets of Major River Basins in Texas and Related Information

Major River Basins River Basins Gauge Number Latitude Longitude Drainage Area (km2) Area in Texas (km2)

East Red River 07344370 33�0502200 293�5103400 12,26,301 62,963

Sabine River 08030500 30�1801300 293�4403700 24,162 19,616

Neches River 08041780 30�0902400 294�0605100 25,353 25,751

Trinity River 08067070 (Canal) 29�5704000 294�4803600 45,242 46,418

Middle Brazos River 08116650 29�2005800 295�3405600 117,428 1,11,077

Colorado River 08162500 28�5802600 296�0004400 109,401 1,02,172

San Antonio River and

Guadalupe River

08188800 28�3002000 296�5300400 26,231 26,259

West Nueces River 08211500 27�5205800 297�3703000 43,211 43,276

Rio Grande Rio Grande near Brownsville,

TX and Matamoros, Tamaulipas

25�5504900 297�290400 598,200 Area in United

States: 370,200
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RS ET products include ETMODIS (http://www.ntsg.umt.edu/project/mod16#data-product) and ETAVHRR
(http://www.ntsg.umt.edu/project/et#data-product). ETMODIS, spanning from 2000 to 2012, was derived

from MODIS-based phenological and surface variables (e.g., LAI, fraction of absorbed photosynthetically

active radiation, enhanced vegetation index, surface albedo, and land cover) and a daily meteorological

reanalysis data set (e.g., radiation and air temperature) from NASA’s Global Modeling and Assimilation Office

(GMAO) in combination with the Penman-Monteith equation [Mu et al., 2011]. ETAVHRR, spanning from 1983

to 2006, was derived from NOAA-AVHRR Global Inventory Modeling and Mapping Studies (GIMMS) NDVI,

NCEP/NCAR Reanalysis (NNR) daily surface meteorology, and NASA/Global Energy and Water-cycle Experi-

ment (GEWEX) Surface Radiation Budget Release-3.0 solar radiation in combination with a modified

Penman-Monteith equation [Zhang et al., 2010]. Both ETMODIS and ETAVHRR relate canopy resistance to LAI

[Mu et al., 2011] or NDVI [Zhang et al., 2010] based on the framework proposed by Fisher et al. [2008].

ETAVHRR since 2007 was generated using ETMODIS time series and mean monthly ET ratios (spatially averaged

first) between ETAVHRR and ETMODIS for the overlapping period from 2000 to 2006.

GRACE-inferred ET (six outputs) was derived from water budgets (equation (1)) using P from PRISM, R from

USGS monitoring data, and TWSC from the first-order derivative of GRACE-derived TWSA (see section 3.2).

Regional-scale LSM or RS ET was derived from aggregation of distributed ET values across a basin; however,

GRACE-inferred ET is an integrated value at the regional scale that does not contain detailed information on

spatial distribution of ET.

2.2.3. Total Water Storage Change

GRACE measures TWSA in which the reference is the mean gravity field of a study period. Therefore, GRACE

TWSA depends on the reference related to a time period [Yeh et al., 2006]. TWSC is the time derivative of

TWSA, which is referred specifically to as dS/dt at the monthly scale. GRACE satellite data from CSR and

GRGS analysis centers were used to derive TWSA and TWSC at a monthly scale from January 2003 to Sep-

tember 2012 for the three regions. CSR and GRGS represent two end-members for GRACE processing. CSR

is one of the least constrained solutions [Bettadpur, 2007] and GRGS is one of the most constrained solu-

tions [Bruinsma et al., 2010]. Use of both products provides valuable information on uncertainty in GRACE

TWSA. The latest release of CSR data (RL05) was used in the analysis. Details of the processing are provided

in supporting information section S2. Uncertainties in GRACE-derived TWSA include: (1) inherent uncertainty

in GRACE data and (2) propagation of bias/leakage correction using the additive correction method [Lon-

guevergne et al., 2010] due to uncertainties in a priori soil moisture storage (SMS) changes in GLDAS-1.

Uncertainties in SMS changes were estimated from the standard deviation of SMS changes among four

LSMs (i.e., Noah, Mosaic, VIC, and CLM) in GLDAS-1. All data used in this study are listed in Table 2.

3. Methods

3.1. Three Cornered Hat Method

Traditional methods of evaluating uncertainties in heat fluxes assume errors in input variables (e.g., LST or

NDVI) to be normally distributed. The total uncertainty (standard deviation) in heat fluxes is therefore the

root of the sum of the square of partial derivative of heat fluxes relative to an input variable multiplied by

the uncertainty in the variable [e.g., Marx et al., 2008].

A variety of ET products are available (e.g., RS, LSM, and GRACE); however, the true value of ET is unknown.

Uncertainties in RS or LSM output are often conservatively estimated by evaluating variability among differ-

ent outputs (standard deviation of different outputs), e.g., soil moisture storage from LSMs [e.g., Longue-

vergne et al., 2010; Rodell et al., 2009]. The three cornered hat method (TCH) [Premoli and Tavella, 1993], also

called the Grubb’s estimator [Grubbs, 1948], can be used to estimate relative uncertainties in different prod-

ucts without a priori knowledge of actual ET when at least three different sets of data (e.g., LSM, RS, and

GRACE-inferred ET in this study) are available. The theory of the TCH is described in the following and based

on the assumption that observational errors are normally distributed. A given set of observations obsi con-

sists of two components: the true value, x, and an associated measurement error, ei:

obsi5x1ei (2)

Given a set of three pairs of observations (i, j, k), the difference between observations (i, j) can be written as:
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obsi2obsj5x1ei2ðx1ejÞ5ei2ej (3)

The associated variance of the differences can be written as:

r
2
ij5r

2
ei1r

2
ej22cov ðei ; ejÞ (4)

If errors between estimates of i and j are independent, the cov(ei, ej) equals zero. Finally, the individual var-

iances r2ei may be separated by:

r
2
ei5

1

2
r
2
ij1r

2
ik2r

2
jk

� �

(5)

Because the three observations in the TCH approach could be correlated (e.g., GRACE-inferred ET and

LSMs ET have similar precipitation input), it is important to consider cross correlation among the three

observations (i.e., cov(ei, ej) is not necessarily zero). When considering three signals, the standard devia-

tion of the signal differences provides three equations. If cross correlation (uncorrelated errors) is not

considered, one has only three unknowns that could be solved based on equation (5). If cross correla-

tion is considered, there will be six unknown variables to determine. Tavella and Premoli [1991] pro-

posed to add mathematical characteristics of the covariance matrices, i.e., its positive definiteness that

the determinant is positive, or, in other words, the determined variances should be all positive so as

to solve the problem. This generalization was further developed by Premoli and Tavella [1993] and

Tavella and Premoli [1994]. In this study, we used the TCH approach that considers cross correlation

among observations and does not require that the data sources are entirely independent [Premoli and

Tavella, 1993].

Table 2. Data Sources of Hydrological Fluxes and State Variables Used in This Study

Flux/State

Variables Sources Spatial Resolution Spatial Extent

Temporal

Resolution Time Span References

P 1. PRISM 4 km (�2.50) Contiguous United States

(24� to 50� Latitude;

2125� to 266.5�

Longitude)

Monthly 1890–present Daly et al. [2008]

2. NOAA CPC 0.25� Contiguous United States

(20� to 50� Latitude;

2130� to 255�

Longitude)

Daily: 1948–2006

Real time:

2007–

present

1948–present

3. TRMM 3B43 0.25� Quasi –global (250� to 50�

Latitude; 2180� to 180�

Longitude)

Monthly 1998–present Huffman et al. [2007]

ET 1. MODIS data-based using the

Penman-Monteith approach

1 km, 0.005� , and 0.05� Global (260� to 80� Lati-

tude; 2180� to 180�

Longitude)

Monthly 2000–2012 Mu et al. [2011]

2. NOAA-AVHRR data-based

using the Penman-Monteith

approach

8 km and 1� Global (25� to 53� Latitude;

263� to 89� Longitude)

Monthly 1983–2006,

undergoing

extension to 2011

Zhang et al. [2010]

3. Output of Noah from the

NLDAS-2

0.125� Contiguous United States

(25� to 53� Latitude;

2125� to 67� Longitude)

Hourly/monthly 1979–present NLDAS-2, Xia et al.

[2012a, 2012b]

4. Output of Mosaic from the

NLDAS-2

0.125� Contiguous United States

(25� to 53� Latitude;

2125� to 67� Longitude)

Hourly/monthly 1979–present NLDAS-2, Xia et al.

[2012a, 2012b]

5. Output of VIC from the

NLDAS-2

0.125� Contiguous United States

(25� to 53� Latitude;

2125� to 67� Longitude)

Hourly/monthly 1979–present NLDAS-2, Xia et al.

[2012a, 2012b]

6. Output of SAC from the

NLDAS-2

0.125� Contiguous United States

(25� to 53� Latitude;

2125� to 67� Longitude)

Hourly/monthly 1979–present NLDAS-2, Xia et al.

[2012a, 2012b]

TWS 1. GRACE CSR �20,000 km2 Global Monthly 2003–present Bettadpur [2007]

2. GRACE GRGS �20,000 km2 Global 10 days 2003–present Bruinsma et al. [2010]

R 1. USGS gauges stations Basin integrated United States Daily 2003–present http://waterdata.usgs.

gov/nwis/sw
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3.2. Different Methods of Calculating Total Water Storage Change

ET inferred from GRACE TWSC was estimated using equation (1). As GRACE provides noisy monthly TWSA,

the computation of monthly TWSC to approximate dS/dt is not straightforward and potentially affected

with large noise. Three derivative methods were used to estimate TWSC at a monthly scale (mm/mo) by

computing: (i) the time derivative of TWSA using the simple derivative in equation (6), (ii) the double differ-

ence derivative in equation (7) that includes some light numerical smoothing, or (iii) the smoothed differen-

tiation filter that can be regarded as a low pass differentiation filter [Luo et al., 2004] with a time shift of 1

month:

dS

dt
�

dTWSA

dt
�

TWSAðtÞ2TWSAðt21Þ

Dt
(6)

dS

dt
�

dTWSA

dt
�

TWSAðt11Þ2TWSAðt21Þ

2Dt
(7)

where Dt is the temporal sampling of GRACE TWSA. The two GRACE solutions (CSR and GRGS) times the

three derivative methods resulted in six GRACE-inferred ET estimates. The TCH method was subsequently

applied by selecting one ET estimate from each of these three ET estimates (i.e., output from (1) LSMs, (2)

RS, and (3) GRACE-inferred ET). The analysis results in six GRACE-inferred ET estimates, four LSM ET esti-

mates (Noah, Mosaic, VIC, and SAC in NLDAS-2), and two RS ET products (MODIS and AVHRR) for each of

the three study regions used to evaluate uncertainties in these ET products.

3.3. Water Budget Calculation

In this study, two methods of calculating water budgets were tested. The first is a traditional flux-based

method (equation (1)), in which dS/dt is computed by the three ways introduced in section 3.2. Details of P,

R, and ET at monthly scales (mm/mo) are described in sections 2.2.1 and 2.2.2. The second method is a

storage-based method in equation (8), in which the cumulative sum of P, R, and ET during the study period

is calculated.

SðtÞ2S0ðt0Þ5

ð

t5t

t50

½PðtÞ2RðtÞ2ET ðtÞ�dt (8)

where S(t) or S0(t0) is the total water storage at time t or t0, respectively. LSM and RS ET examined in this

study are inserted in equation (2) in combination with monitored P and R. Note that if P and R are consid-

ered unbiased, any systematic bias in ET will result in a trend in S(t)-S0(t0). The trend of the time series of

S(t)-S0(t0) is subsequently subtracted to derive TWSA for a study period that is compared with detrended

GRACE-derived TWSA.

As the computation of the time derivative of noisy GRACE TWSA tends to amplify the high frequency noise,

it is expected that the flux-based approach would provide ET directly but would be very noisy. Conversely,

the storage-based approach requires temporal integration of fluxes (and ET), and any systematic bias in a

flux would be converted into a trend in terms of storage, which could be adequately evaluated with GRACE.

3.4. Uncertainty Analysis in Water Budget

Uncertainty in water budget estimates of TWSC is quantified by assuming that errors in P, R, and ET are

independent and normally distributed [Rodell et al., 2004a]:

tds=dt5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t
2
PP

21t
2
RR

21t
2
ET ET

2
p

jP2R2ET j
(9)

where t is relative uncertainty for each component (subscripts denote corresponding water components).

Uncertainties in GRACE-derived TWSC were computed from uncertainties in GRACE TWSA for back and for-

ward months added in quadrature. Uncertainties in both water budget estimates of TWSC and GRACE-

derived TWSC are taken as the 95% confidence limits on TWSC, i.e.,6tds/dtTWSC. A flow diagram showing
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uncertainty analysis of the various ET products and comparison of water budget estimates of TWSC or

TWSA with GRACE-based counterparts in this study is given in Figure 2.

4. Results and Discussion

Seasonal cycles of monitored P and R can be helpful for understanding seasonal cycles of ET for the three

study regions being investigated. Details on seasonal cycles of P and a comparison among the three P prod-

ucts are provided in supporting information section S3 and Figure S2. In the following discussion, PRISM P

was used in water budget calculations. TRMM P was only used for the Mexican portion of the west region.

4.1. Comparison of Land Surface Modeling and Remote Sensing Evapotranspiration Products

ET products within the same category (i.e., LSMs or RS) are similar in magnitude but differ markedly

between categories, with values of RS ET generally lower than LSM ET (Figures 3 and 4). Mean annual RS ET

from 2003 to 2011 is 19%, 27%, and 6% lower than LSM ET for the E, M, and W, respectively. Annual ET is

highest for the Mosaic LSM model, and lowest for the MODIS sensor (Table 3). There are also appreciable

differences in monthly and mean monthly ET estimates for the different ET products, with ETMODIS being

lowest and ETVIC being highest during warm seasons (Figures 3, S3, and S4), e.g., for the M region, the larg-

est difference in mean monthly ET estimates is �33 mm in April (ETMODIS< ETVIC, Figure 4), and the largest

difference in monthly ET time series between ETMODIS and ETVIC is up to �50 mm in May 2005 (Figure S3).

Differences in ET estimates from different products are generally larger in warm seasons than in cold sea-

sons, and are larger in more humid regions (M and E) than in semiarid regions (W). RS ET is generally lower

than LSM ET in most cases except under extremely dry conditions (e.g., the 2011 drought, see the grey

background in Figures 3, S3, and S4). Seasonal cycles in ET are highly correlated with periodic variations in

radiative energy in a year (Figure 4). In general, ET estimates from the four LSMs peak in May/June (in the E

and M) or July/August (in the W) and are lowest in December. In May/June, surface net radiation is highest,

maximizing potential ET that is only a function of meteorological variables (e.g., temperature and vapor

pressure deficit) and is determined largely by radiation [Long and Singh, 2010].

ETMODIS is lower than ETAVHRR. Relatively lower magnitudes of ETMODIS than other RS ET products (e.g.,

Priestley-Taylor ET, SEBS ET, International Satellite Cloud Climatology Project ET) were also observed across

10 large river basins globally [Sahoo et al., 2011]. In addition, significant negative bias of RS ET estimates

(lower than the ground-based observations) from the modified Penman-Monteith algorithm [Mu et al.,

2007] was found over 12 EC towers from the FLUXNET global network [Vinukollu et al., 2011]. Relatively

larger magnitudes of ETMosaic than other LSM ET in the cold seasons could be ascribed to greater diffusion

of water from deeper soil layers to the shallow root zone [Mitchell et al., 2004]. Few studies report the con-

trast between LSM ET and RS ET during extremely dry or wet conditions. These differences could be related

to energy balance or water balance constraints. LSMs are based on SVAT schemes, in which actual ET is con-

strained directly by soil moisture simulations in addition to meteorological forcing. In contrast, RS ET is
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TWSA

Simple

derivative

Double
difference
derivative
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(4)
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Storage method
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Figure 2. A flow diagram showing uncertainty analysis of different ET products being investigated and comparison of water budget estimates of TWSC/TWSA with GRACE-derived

TWSC/TWSA. Trapezoids denote data sources, diamonds denote processing, and rectangles denote output. Numbers are the quantities of different products or outputs.
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determined largely by radiation, without explicit soil moisture constraints based on water balance, though

soil moisture effects are implicitly accommodated by LAI or NDVI and atmospheric variables. During

droughts, soil moisture is often greatly depleted and exercises constraints on simulated ET from LSMs; how-

ever, net radiation remains relatively high, thereby resulting in higher actual ET estimates from RS than

from LSM ET and a time lag of decreases in RS ET compared with LSM ET. Decreases in RS ET during the

drought could also be related to depleted soil moisture that is reflected in decreases in LAI/NDVI and

increases in LST. In addition, increases in ET due to irrigation could be reflected in RS ET corresponding to

relatively higher LAI/NDVI for irrigated areas than nonirrigated areas. However, this is not accounted for and

simulated by LSMs.

The RS-based ET products are less responsive to precipitation than those from LSMs, except Mosaic, generally

resulting in a more dampened seasonal cycle than the LSM ET estimates (e.g., coefficients of variation (CV) for

the E region: ETNoah (0.55); ETMosaic (0.39); ETVIC (0.58); ETSAC (0.55); ETMODIS (0.48); ETAVHRR (0.48)). Correlation

coefficients (r) between P and the various ET products at annual and monthly scales indicate that LSM ET is

more highly correlated with P than RS ET, e.g., r between monthly LSM ET and P is �0.75, but r between RS ET

and P is �0.57 in the E (Table 4). This may result from different algorithms, inputs, and assumptions used to

estimate ET. RS-based ET estimates are determined primarily by meteorological factors (e.g., vapor pressure
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deficit and air temperature) and phenological parameters which are physically and mathematically related to

remotely sensed LAI or NDVI. The effect of soil moisture on evaporation from the soil surface and vegetation

transpiration is not explicitly depicted in the ET algorithms, but is assumed to be encapsulated in vegetation

greenness and meteorological variables through a complementary relationship [Fisher et al., 2008; Mu et al.,

2011]. Apparently, meteorological factors and LAI or NDVI are indirectly related to precipitation. In contrast,

LSM ET is parameterized within the SVAT schemes and constrained by the water balance equation. Evapora-

tion from the soil surface in LSMs is explicitly linked to soil moisture content by the soil diffusivity formulation

or fraction of soil moisture saturation in the upper soil layer [Ek et al., 2003]. Surface conductance for vegeta-

tion transpiration explicitly accounts for soil moisture stress, in addition to ambient environmental and pheno-

logical factors. Therefore, the LSM ET estimates tend to be more responsive to soil moisture and consequently

precipitation compared with those from RS-based approaches.

4.2. Uncertainties in ET Products Using the Three Cornered Hat Method

4.2.1. GRACE TWSA and TWSC for the Three Study Regions

ET from GRACE depends largely on reliability of TWSC. TWSA from CSR and GRGS centers are highly corre-

lated (E: 0.96; M: 0.93; and W: 0.87), providing confidence in use of GRACE to derive monthly TWSC. ET was

subsequently inferred using GRACE-derived TWSC and equation (1). GRACE TWSC appears to be noisier and

have lower amplitudes than GRACE TWSA because GRACE TWSA is the primitive integral of TWSC (Figure 5).

The magnitudes of uncertainty in GRACE-derived TWSC (RMS error: E �34 mm/mo, M �28 mm/mo, and W

�20 mm/mo) are amplified compared with those in GRACE-derived TWSA (RMS errors: E �24 mm, M �20

mm, and W �14 mm). The signal-to-noise ratio (STNR), calculated as the standard deviation of the TWSC

time series divided by the standard deviation of the error time series, is highest in the E (4.1), lowest in the

W (2.9), and moderate (3.3) in the M. This means that GRACE signals and consequently the inferred ET could

be more reliable in relatively humid regions than in relatively dry regions.

Table 3. Annual ET Estimates From Four LSMs and Two Satellite ET Products for the East (E), Middle (M), and West (W) Regions Over the

Central South United States, with Showing Annual P from PRISM of the Three Regionsa

Region Year P Noah Mosaic VIC SAC MODIS AVHRR

E 2003 782 704 825 760 663 630 664

2004 1197 777 912 811 752 684 685

2005 673 683 806 724 641 602 700

2006 918 657 740 667 588 539 642

2007 1092 792 978 852 811 726 782

2008 927 708 885 769 701 618 666

2009 1136 763 903 810 731 609 656

2010 799 703 861 747 676 688 742

2011 618 541 578 577 526 460 490

Average 905 703 832 746 677 617 670

ET/P – 0.78 0.92 0.82 0.75 0.68 0.74

M 2003 558 574 639 634 548 445 494

2004 1008 695 829 722 697 522 549

2005 545 608 706 704 619 445 530

2006 571 519 554 557 487 364 473

2007 932 697 841 777 727 574 655

2008 502 537 588 597 540 398 454

2009 664 552 609 607 546 393 447

2010 686 615 711 676 614 521 595

2011 325 358 341 395 359 265 299

Average 643 573 646 630 571 436 500

ET/P – 0.89 1.00 0.98 0.89 0.68 0.78

W 2003 349 352 406 379 347 303 330

2004 565 427 535 421 406 356 369

2005 369 362 424 410 391 301 351

2006 388 314 357 340 321 271 348

2007 514 406 478 436 414 374 438

2008 360 323 383 357 341 287 338

2009 334 318 347 338 321 248 293

2010 417 372 453 403 381 347 405

2011 212 216 216 229 216 181 213

Average 390 343 400 368 349 296 343

ET/P – 0.88 1.03 0.94 0.89 0.76 0.88

aBold rows indicate the ratio of mean annual ET to mean annual precipitation for different regions being studied.
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4.2.2. Uncertainties in Varying ET Products

Uncertainties in ET quantified by the TCH approach are lowest in LSMs (�5 mm/mo in the three river

basins), moderate in RS-based ET products (�10 to �15 mm/mo), and highest in GRACE-inferred ET esti-

mates (W �20 mm/mo to E �30 mm/mo) (Figure 6). Uncertainties in GRACE-inferred ET quantified in this

study have a similar magnitude to those (�26 mm/mo) in Rodell et al. [2004a].

Regarding uncertainties in LSM ET in the E and M regions, ETNoah has the lowest uncertainties (E:�3 mm/mo;

M: �2 mm/mo) and ETVIC has the highest uncertainties (E: �9 mm/mo; M: �7 mm/mo). In the W region, uncer-

tainties in ETNoah and ETMosaic (�6 mm/mo) seem to be higher than those in ETVIC and ETSAC (�4 mm/mo) (Fig-

ure 7). For RS-based ET products in the E and M regions, ETMODIS has higher uncertainties (E:�10.5 mm/mo; M:

�14 mm/mo) than ETAVHRR (E: �10 mm/mo; M: �12 mm/mo), but in the W river basin ETMODIS (�11 mm/mo)

has slightly lower uncertainties than ETAVHRR (�12 mm/mo) (Figure 8). Regarding the GRACE-derived ET esti-

mates, the double difference derivative method results in the lowest uncertainty (�24 mm/mo) compared with

the simple derivative (�28 mm/mo) and smoothed differentiation filter methods (�25) (Figure 9).

These results confirm analyses in section 4.1 that RS ET shows low magnitudes compared with LSM ET output,

resulting in statistically significantly different uncertainties between the two types of ET products. The statisti-

cally higher uncertainty in RS ET is likely because RS ET products are not constrained by the water balance. In

addition, errors in relatively coarse meteorological forcing (e.g., 1� 3 1.25� for the Global Modeling and Assim-

ilation Office (GMAO) data set in ETMODIS) may be amplified at relatively longer time scales (i.e., monthly) and

river basin scales, though ETMODIS and ETAVHRR incorporate remotely sensed LAI or NDVI of high spatial resolu-

tion (� 1 km). ET output from LSMs has the lowest uncertainties but also has relatively coarse spatial resolu-

tion (�14 km). GRACE-inferred ET has the coarsest resolution and the highest uncertainty of all ET products;

therefore, use of GRACE TWSC to infer river basin-scale ET may be problematic and warrants further study.

4.3. Comparison of GRACE and Water Budget Estimates of Total Water Storage Changes

In the following sections, discussion is based on CSR TWSA in the three regions (Figure 5, left), and results

from both CSR and GRGS centers are presented in Tables 5 and 6. GRACE-derived TWSC from the simple

Table 4. Correlation Coefficient Matrixes of Time Series of P and Different ET Products for the East (E), Middle (M), and West (W) Regiona

Region Variable P Noah Mosaic VIC SAC MODIS AVHRR

E P 1.00 0.83 0.75 0.77 0.80 0.57 0.45

Noah 0.32 1.00 0.98 0.98 0.96 0.89 0.82

Mosaic 0.46 0.92 1.00 0.99 0.97 0.92 0.87

VIC 0.31 0.98 0.94 1.00 0.98 0.90 0.81

SAC 0.37 0.97 0.95 0.98 1.00 0.90 0.79

MODIS 0.31 0.97 0.93 0.97 0.96 1.00 0.92

AVHRR 0.27 0.97 0.92 0.97 0.95 0.98 1.00

M P 1.00 0.89 0.89 0.81 0.89 0.85 0.78

Noah 0.58 1.00 1.00 0.98 0.99 0.96 0.93

Mosaic 0.70 0.94 1.00 0.98 0.99 0.96 0.93

VIC 0.51 0.97 0.92 1.00 0.98 0.95 0.95

SAC 0.62 0.98 0.96 0.97 1.00 0.96 0.93

MODIS 0.59 0.94 0.92 0.92 0.93 1.00 0.97

AVHRR 0.53 0.94 0.92 0.94 0.94 0.97 1.00

W P 1.00 0.93 0.94 0.85 0.87 0.91 0.84

Noah 0.86 1.00 0.99 0.97 0.97 0.96 0.87

Mosaic 0.91 0.97 1.00 0.96 0.96 0.96 0.87

VIC 0.75 0.94 0.89 1.00 1.00 0.96 0.92

SAC 0.78 0.97 0.92 0.98 1.00 0.95 0.91

MODIS 0.86 0.89 0.92 0.79 0.82 1.00 0.95

AVHRR 0.77 0.82 0.85 0.72 0.77 0.93 1.00

aThe upper triangular matrixes indicate correlation coefficients at the yearly scale, and lower triangular matrixes indicate correlation

coefficients at the monthly scale.
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derivative method, the double

difference derivative method,

and the smoothed differentiation

filter were compared with water

budget estimates of TWSC for

the three river basins, showing

that the double difference deriva-

tive method results in the highest

correspondence between

GRACE-derived TWSC and water

budget estimates of TWSC. In

section 4.3, only the GRACE-

derived TWSC from the double

difference derivative method

(Figure 5, right) is discussed.

4.3.1. Comparison Among

Regions

Correspondence between GRACE-

derived TWSC and P-R-ET gener-

ally decreases from E to W, with
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Figure 5. Time series of CSR TWSA and TWSC from the double difference derivative method for the east, middle, and west regions. Backgrounds indicate uncertainties in each time

series.
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Water Resources Research 10.1002/2013WR014581

LONG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 12



the mean coefficient of determination (R2) of 0.59 (E), 0.34 (M), and 0.32 (W) (Table 5 and Figures 10, S5, and

S6). Relatively lower R2 in the W river basins may be related to larger uncertainties in ET and P, and lower

signal-to-noise ratio of GRACE-derived TWSC (STNR for W: 2.9) than those in wetter climate (STNR for E: 4.1).

For instance, mean CV among the six ET products over the study period is slightly higher in the W (0.23) than

in the M (0.19) or E (0.19), suggesting that variations among the ET products increase with aridity. Increasing

discrepancy among ET products indicates increasing uncertainties in ET estimates. Furthermore, the density of

NOAA meteorological stations is much lower in the W (1.17/104 km2) than in the M (3.42/104 km2) or E (3.85/

104 km2). Relatively sparse precipitation in west Texas may therefore be responsible for larger uncertainties in

water budget estimates of TWSC. Higher correlation between P and ET in the W than the M and E (Table 4)

indicates that ET in the W tends to be soil moisture-limited. More uncertainties in P would result in higher

uncertainties in ET and therefore in the water budget estimates of TWSC in the W.

Root-mean-square-difference (RMSD) for all ET products is generally higher in the E (�28 mm/mo) and lower

in the W (�18 mm/mo) (Table 5), which may be related to the wetter climate and more extreme precipitation

events (also see the higher ends of Figure 10). Under these extreme conditions, RMSD of TWSC between

GRACE and water budget estimates could increase, thereby resulting in generally larger RMSD in the E. In

addition, more anthropogenic influences (e.g., reservoir regulation and water diversions) would also increase

uncertainties in outflows and con-

sequently water budget calcula-

tions in the E. The lack of

accounting for subsurface flow in

equation (1) could also cause the

relatively larger RMSD in the wet

climate. Unlike the E, the M and

W have relatively lower stream-

flow and are less regulated (see

Figure S7 in supporting informa-

tion), which dampens the magni-

tudes of both RMSD and bias in

water budget estimates of TWSC

compared with GRACE-based

counterparts.

4.3.2. Comparison Between the

Flux-Based and Storage-Based

Methods

GRACE-derived TWSA is more

highly correlated with water
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icant difference between the medians.
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budget estimates of TWSA using the

storage-based method (n5 117, R2:

0.69 for E, 0.70 for M, and 0.49 for

W) than the flux-based method (R2:

0.59 for E, 0.34 for M, and 0.32 for

W) (Tables 5 and 6; Figures 11, S8,

and S9). Improvements in consis-

tency between GRACE-derived

TWSA and water budget estimates

of TWSA are likely due to two fac-

tors: (1) high frequency signals in

GRACE-derived TWSC are amplified

in the flux-based method; and (2)

systematic biases in P, R, ET, and

GRACE-derived TWSA were reduced

by removing the linear trends in

these components in the storage-

based method. RMSD between

TWSA from the storage-based

method and TWSA from GRACE

decreases from the E (�47 mm), M

(�38 mm), and W (�34 mm), similar

to the trend for TWSC (E: �28 mm/

mo; M: �26 mm/mo; W: �18 mm/

mo). Note that high R2 does not necessarily mean low RMSD, e.g., two highly correlated variables distant

from the 1:1 line could show both high R2 and RMSD.

4.3.3. Comparison Among Different Evapotranspiration Products

The RMSD between water budget estimates of TWSC using LSM ET and GRACE-derived TWSC is generally

lower than TWSC using RS-based products for all three regions (Figure 12a). For instance, the RMSD

between water budget estimates of TWSC using LSM ET and GRACE-derived TWSC is �27 mm/mo, but the

RMSD between water budget estimates of TWSC using RS ET (ETMODIS and ETAVHRR) and GRACE-derived

TWSC is �33 and �31 mm/mo in the E, respectively (Table 5). The RMSD between water budget estimates
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Figure 9. Uncertainties in GRACE-inferred ET estimates in all regions using different

methods of calculating TWSC (i.e., simple derivative, double difference derivative, and

smoothed differentiation filter). On each box, the central mark is the median (q2), the

edges of the box are the 25th (q1) and 75th (q3) percentiles, and the whiskers extend to

the most extreme data points (q31 1.5 3 interquartile range (q32 q1) and q12 1.53

interquartile range (q32 q1)) not considered outliers, and outliers are plotted individually.

If the notches of two boxes do not overlap, this indicates a statistically significant differ-

ence between the medians.

Table 5. Statistics of Discrepancies Between GRACE-Derived TWSC (Double Difference Derivative) and P-R-ET at the Monthly Scalea

Region ET Products

RMSD (mm/month) Bias (mm/month) R2 Rp (Pearson) Rk (Kendall)

CSR GRGS CSR GRGS CSR GRGS CSR GRGS CSR GRGS

East ETNoah 27.45 29.66 10.73 10.14 0.64 0.56 0.80 0.75 0.60 0.54

ETMosaic 24.81 27.24 0.34 20.18 0.53 0.43 0.73 0.66 0.52 0.44

ETVIC 27.31 30.77 6.97 6.31 0.67 0.56 0.82 0.75 0.62 0.53

ETSAC 27.61 30.43 12.89 12.41 0.64 0.52 0.80 0.72 0.59 0.51

ETMODIS 32.50 34.52 18.18 17.74 0.53 0.43 0.73 0.66 0.53 0.46

ETAVHRR 30.54 32.40 13.78 13.32 0.55 0.47 0.74 0.69 0.55 0.49

Average 28.37 30.84 10.48 9.96 0.59 0.50 0.77 0.70 0.57 0.49

Middle ETNoah 24.04 24.75 4.89 4.52 0.38 0.33 0.62 0.57 0.40 0.38

ETMosaic 21.54 21.79 21.01 21.32 0.35 0.31 0.59 0.55 0.37 0.34

ETVIC 24.75 26.21 0.05 20.37 0.43 0.35 0.66 0.60 0.43 0.39

ETSAC 23.28 23.89 5.05 4.78 0.38 0.33 0.62 0.57 0.39 0.37

ETMODIS 32.01 31.53 16.51 16.27 0.21 0.20 0.45 0.45 0.25 0.27

ETAVHRR 28.91 28.69 11.16 10.90 0.27 0.26 0.52 0.51 0.30 0.31

Average 25.76 26.14 6.11 5.80 0.34 0.30 0.58 0.54 0.36 0.34

West ETNoah 17.31 18.29 8.29 8.57 0.32 0.34 0.57 0.58 0.39 0.42

ETMosaic 13.22 15.49 3.73 3.97 0.32 0.30 0.56 0.55 0.39 0.38

ETVIC 16.86 18.52 6.11 6.34 0.40 0.33 0.63 0.58 0.42 0.40

ETSAC 17.41 18.24 7.74 8.02 0.39 0.38 0.62 0.62 0.44 0.44

ETMODIS 22.95 22.42 12.50 12.77 0.23 0.33 0.48 0.57 0.30 0.40

ETAVHRR 21.63 20.93 8.64 8.96 0.24 0.33 0.49 0.58 0.32 0.41

Average 18.23 18.98 7.84 8.11 0.32 0.34 0.56 0.58 0.38 0.41

aStatistical significance for the Pearson correlation coefficient is less than 0.001.
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of TWSC using LSM ET and GRACE-derived TWSC is �23 mm/mo for the M, which is much smaller than P-R-

ETMODIS of �32 mm/mo or P-R-ETAVHRR of �29 mm/mo. For the W, the RMSD for LSMs ET is �16 mm/mo,

which is also lower than that for the RS-based ET products of �22 mm/mo. Similar trends in R2 were also

Table 6. Statistics of Discrepancies Between GRACE-Derived TWSA and Integrated P-R-ET Derived From the Storage Method at the Monthly Scalea

Region ET Products

RMSD (mm) R2 Rp (Pearson) Rk (Kendall)

CSR GRGS CSR GRGS CSR GRGS CSR GRGS

East ETNoah 37.97 45.81 0.80 0.72 0.89 0.85 0.72 0.64

ETMosaic 48.84 55.25 0.57 0.45 0.76 0.67 0.56 0.49

ETVIC 44.50 54.39 0.77 0.66 0.88 0.81 0.70 0.62

ETSAC 49.21 56.57 0.66 0.56 0.81 0.75 0.62 0.54

ETMODIS 50.87 55.91 0.65 0.59 0.81 0.77 0.60 0.55

ETAVHRR 50.11 55.17 0.67 0.62 0.82 0.78 0.61 0.57

Average 46.91 53.85 0.69 0.60 0.83 0.77 0.63 0.57

Middle ETNoah 28.91 35.61 0.81 0.72 0.90 0.85 0.71 0.63

ETMosaic 28.55 32.46 0.69 0.59 0.83 0.77 0.60 0.54

ETVIC 28.80 38.77 0.86 0.71 0.93 0.84 0.74 0.63

ETSAC 30.17 35.06 0.77 0.70 0.88 0.83 0.66 0.62

ETMODIS 57.35 56.25 0.49 0.53 0.70 0.73 0.49 0.54

ETAVHRR 52.33 55.18 0.57 0.53 0.75 0.73 0.51 0.52

Average 37.68 42.22 0.70 0.63 0.83 0.79 0.62 0.58

West ETNoah 29.95 26.11 0.54 0.64 0.73 0.80 0.53 0.59

ETMosaic 22.92 26.16 0.40 0.44 0.64 0.67 0.45 0.49

ETVIC 31.04 27.73 0.63 0.67 0.79 0.82 0.58 0.61

ETSAC 31.69 27.87 0.60 0.66 0.78 0.81 0.56 0.60

ETMODIS 41.99 35.07 0.40 0.58 0.63 0.76 0.43 0.57

ETAVHRR 48.88 43.47 0.34 0.46 0.58 0.68 0.38 0.49

Average 34.41 31.07 0.49 0.57 0.69 0.76 0.49 0.56

aStatistical significance for the Pearson correlation coefficient is less than 0.001. Biases here are zero (not shown) because of the comparisons of detrended TWSA from the stor-

age-based method and detrended TWSA observed by GRACE.
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Figure 10. Scatterplots of GRACE-based TWS change from the double difference derivative method and water budget estimates of TWS change using ET from Noah, Mosaic, VIC, and

SAC land surface models in NLDAS-2, and from MODIS-based and AVHRR-based sensor for the east river basins.
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Figure 11. Scatterplots of GRACE TWSA and TWSA from the storage method using ET estimates from Noah, Mosaic, VIC, and SAC in NLDAS-2 and MODIS-based and AVHRR-based ET for

the east region.

Figure 12. RMSD between (a) TWSC or (b) TWSA using water budgets and different ET products and GRACE-derived TWSC from the dou-

ble difference derivative method or TWSA for the east, middle, and west regions in the South Central United States.
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Figure 13. Coefficients of determination between (a) TWSC or (b) TWSA using water budgets and different ET products and GRACE-

derived TWSC from the double difference derivative method or TWSA for the east, middle, and west regions in the South Central United

States.
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Figure 14. Time series of GRACE-derived TWSC from the double difference derivative method and TWSC using water budgets and (a) ETVIC
and (b) ETMODIS for the east region. Blue shading areas represent uncertainties in GRACE-derived TWSC, and red shading areas represent

uncertainties in TWSC using water budgets.
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found, i.e., higher RMSD often corresponds to lower R2 for the same region. For the E, R2 between water

budget estimates of TWSC using LSM ET except ETMosaic and GRACE-derived TWSC is on the order of �0.6;

however, R2 for TWSC using MODIS or AVHRR is on the order of �0.5 (Figure 13a).

Similar contrast in RMSD and R2 between LSM ET and RS ET was also found in the comparison between

GRACE-derived TWSA and water budget estimates of TWSA from the storage-based method. LSM ET, except

ETMosaic, displays lower RMSD and higher R2 than RS ET, especially for the M and W (Figures 12b and 13b).

Furthermore, ETVIC, ETNoah, and ETSAC show higher R2 in all regions than ETMosaic (Tables 5 and 6; Figure 13).

ETAVHRR has a higher R
2 than ETMODIS in the E and M (Tables 5 and 6; Figure 13).

4.3.4. Uncertainties in Water Budget Closure

Uncertainties in water budget estimates of TWSC were estimated from uncertainties in each term in equation

(9). Here relative uncertainty in PRISM P was assumed to be 15% [Jeton et al., 2005] and was prespecified for R

as 5% [Rodell et al., 2004a]. Intercomparison of ETNoah, ETMosaic, ETVIC, and ETSAC from NLDAS was performed

over four quadrants of the United States [Mitchell et al., 2004; Xia et al., 2012b]. There is, however, far less infor-

mation regarding relative uncertainties in LSM ET. Uncertainties in monthly ETMODIS and ETAVHRR were reported

as �25% [Mu et al., 2011] and �28%, respectively [Zhang et al., 2010]. Here uncertainty of ET time series was

estimated from the standard deviations of the six ET products for each month. Finally, uncertainties in GRACE-

derived TWSC and those in water budgets were compared. Comparisons between GRACE-derived TWSC and

water budget estimates of TWSC using ETVIC (highest R
2) or ETMODIS (lowest R

2) for the E are given in Figure 14.

RMS of uncertainties in GRACE-derived TWSC for the E of 34 mm/mo, M of 28 mm/mo, and W of 20 mm/mo

regions are two times those for water budget estimates of TWSC for E of �16 mm/mo, M of �14 mm/mo,

and W of �10 mm/mo. The water budget estimates of TWSC using any ET product (examples for ETVIC and

ETMODIS) are generally within the uncertainties (shaded areas) of GRACE-derived TWSC for the E (Figure 14).

For M and W, the consistency between GRACE-derived and water balance estimates of TWSC is lower as

reflected by lower R2 and discussed in section 4.3.1. In addition, uncertainties in ET quantified from standard

deviations of different ET products for each month may be underestimated because of correlation among

different LSM ET or RS ET products due to similarity in forcing data and algorithms. Therefore, uncertainties

in water budget estimates of TWSC may be larger than inferred from the analysis in this study.

To investigate the influence of basin size on uncertainty in GRACE-derived TWSA, time series of uncertain-

ties in GRACE TWSA for the three study regions, and the entire study region were compared (Figure 15). It is

apparent that as the size of region increases, RMS error of uncertainties in GRACE TWSA decreases (E: �24

mm; M: �20 mm; W: �14 mm; combined river basin: �13 mm). However, the consistency (R2) between

GRACE-derived TWSC and water budget estimate of TWSC for the entire study region did not greatly

improve, with all statistical metrics similar to those for the M region. This is likely because uncertainties in P,

R, and ET increase with the size of the study region.

5. Conclusions

This study shows that uncertainties in ET are lowest (�5 mm/mo) in LSM products, moderate in RS products

(�10–15 mm/mo), and highest in GRACE-inferred estimates (�20–30 mm/mo) using the three cornered hat
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method. There is a tradeoff between spatial resolution and uncertainty, with lower uncertainty for LSM ET

and coarser resolution (�14 km) relative to higher uncertainty and finer resolution (�1–8 km) for RS ET. RS

ET estimation is not constrained by a water balance, showing generally lower magnitudes most of the study

period but higher magnitudes during drought relative to LSM ET. ETNoah has the lowest uncertainty in LSM

ET products, and ETMODIS has higher uncertainty than ETAVHRR in RS ET.

RS ET products have lower magnitudes and are less responsive to precipitation than LSM ET. Mosaic gener-

ated the highest annual ET magnitudes due to the highest ET estimates during cold seasons in all LSMs. In

general, the water budget estimates of TWSC or TWSA appear more consistent with GRACE-derived esti-

mates in humid river basins (R2 �0.6 or 0.7) than in semihumid river basins (R2 �0.3 or 0.7) and arid/semi-

arid basins (R2 �0.3 or 0.5). TWSC or TWSA derived from the water balance and LSM ET are generally closer

to GRACE-derived TWSC or TWSA than those derived from the water balance and RS ET. TWSC or TWSA

using the water balance and ETNoah and ETVIC shows a generally higher correlation, and TWSC or TWSA

using ETMODIS shows the lowest correlation with the GRACE-derived counterpart. Water budget estimates of

TWSC or TWSA using ETMosaic show the lowest correlation with GRACE-derived counterparts in all LSMs.

Improvements are continually being made in each water balance product. For example, NLDAS-2 represents

significant improvements over NLDAS-1 as noted previously. Further improvements could be made by

developing a global hyperresolution (e.g., 1 km) model as suggested by Wood et al. [2011]. However, ‘‘grand

challenges’’ of such an effort include quantification of influences of fine-scale topography and vegetation,

improved representation of land-atmospheric interactions and resulting spatial information on soil moisture

and ET, etc. Satellite-based approaches for ET modeling lack a water-balance constraint and therefore lead

to higher uncertainties than LSM ET, especially during drought. Overestimation in RS ET during drought

would likely result in overestimation of soil moisture depletion and therefore overestimation of the time

required for drought recovery. Similarly, underestimation of RS ET over wet periods would lead to larger

potential for floods. Challenges remain to more effectively incorporate remotely sensed variables into reli-

able ET estimation and land surface modeling.

GRACE data processing is continually being improved. The CSR RL05 solution used in this study has been

shown to result in �40% lower uncertainty relative to the previous version, CSR RL04 [Long et al., 2013].

Results in this study show that uncertainty in GRACE-inferred ET is higher than LSM or RS ET. Spatial resolu-

tion of GRACE TWSA is projected to increase to �50,000 km2 and temporal resolutions to weekly or

biweekly through a more advanced satellite gravimetry system and novel orbital configurations for the

follow-on GRACE satellites (GRACE-FO) to be launched in 2017 [Famiglietti and Rodell, 2013]. Advancements

in GRACE satellites should maximize its value in ET modeling and assessing water budget closure for water

resources management. Comprehensive comparisons of the various ET products and quantification of their

uncertainties should be valuable for selection of appropriate ET products for water management and for

guiding future research in ET estimation.
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