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Abstract 

Al-doped ZnO particles were obtained by a simple route: soda addition in aqueous cationnic 

solution. The effects of temperature, hydrolysis duration, reagent concentration and time were 

investigated. A non-topotactic reaction mechanism, involving firstly the precipitation of 

various hydroxide compounds depending on the route (low or high pH), followed by the 

dissolution-recrystallization of the hydroxide species into ZnO was demonstrated. The Al 

concentration in the final ZnO nanopowders did not exceed 0.3 at% which correspond to the 

solubility limit of Al in ZnO. The different experimental conditions allow the morphology of 

ZnO particles to be controlled from isotropic nanoparticles of several tens of nanometers, 

platelets of several hundreds of nanometers or agglomerates of needle like particles. 



Introduction 

ZnO has focused much attention for electronic and optoelectronic applications as a large band 

gap material [1-3]. In order to manufacture ZnO-based optoelectronic devices,both n- and p-

type ZnO are needed. It is easy to obtain good conductive n-type ZnO by mono-doping III 

group elements as donors. Al doped n-type ZnO, in particular, exibits high electrical 

conductivity and optical transparency in the visible region. It is a transparent conductive oxide 

which could replace the more expensive indium tin oxide [4-7]. Morever the Al doped ZnO is 

also highly promising as a potential high-temperature thermoelectric material [8-10]. 

Moreover, among inorganic semiconductors, reported morphologies of ZnO are the richest. 

Indeed, a wide variety of ZnO micro/nano-structures including wires, rods, belts, tubes, cages, 

rings or flowers have been synthesized by many methods, such as sol-gel processing, vapor 

deposition, hydrothermal syntesis, thermal decomposition or microwave synthesis [11-16]. 

Precipitation from colloidal solutions is an usual method for producing transition metal oxide 

nanoparticles [17-19]. Two reactions are generally used to describe the precipitation process: 

Hydrolysis and water condensation. Hydrolysis consists in the formation of an insoluble 

hydroxide which can be converted into the oxide compound by heat assisted dehydratation. 

Indeed, in order to obtain ZnO, many studies used a thermal treatment after the precipitation 

step [20-23]. However, the water condensation phenomenom could also appear directly in the 

solution. ZnO precipitation in a solution heated to 80°C has been already reported [24-27]. 

Oliveira et al. [28] have proposed a precipitation under double-jet conditions to produce 

micrometric ZnO particles at room temperature. Moreover, recently, Yang et al. [29] have 

reported the obtention of ZnO at 25°C by adding soda to a Zn sulfate solution. However, in 

many applications ZnO doping is necessary in order to reach the best properties, especially Al 

doping. 



In this study, the influence of different parameters (temperature, hydrolysis duration, reagent 

concentration and time) on the precipitation of Al -doped ZnO was studied as well as the 

reaction mechanisms. 

Materials and methods 

100 ml of cationic solution was obtained by dissolving Zn(NO3)2,6H2O (Aldrich 99.99%) and 

AlCl 3 (Acros 99%) in demineralized water. The concentration of Zn is 0.1M and Al 

concentration corresponds to 2 at% of Zn one. Precipitation was made by the dropwise 

addition of 125ml of NaOH solution at 1 mol/l (NaOH solid from Scharlau (99%)) during 25 

minutes. The precipitate obtained was centrifuged at 4000 rpm during 5 min and washed with 

demineralized water. This step was repeated five times. The solid was finally dried at 80°C. 

The following synthesis parameters were modified:  influence of reactant concentration (0.5M 

and 1M), Zn/OH molar ratio (0.1, 0.2 and 0.6), soda addition time (10 s) and temperature (25 

°C and 60°C). 

The morphologies of ZnO powders were analyzed on a ZEISS Ultra Plus field-emission 

scanning electron microscope (FE-SEM) operated at an acceleration voltage of 2 kV. The 

samples were platinum-coated prior to observation using a GATAN Precision Etching and 

Coating System (PECS™). Transmission electron microscopy samples were prepared by 

adding the powder to n-butanol and the small crystallites in suspension were deposited on a 

holey carbon film, supported by a copper grid. The electron diffraction and the high resolution 

electron microscopy were carried out with a JEOL 2100F electron microscope equipped with 

a tilting and rotating goniometer (200 kV and point resolution of 1.8 Å) and coupled with 

EDX analysis (Oxford). 

 



Powder X-ray diffraction (XRD) patterns were acquired on a Bruker D8-Advance 

diffractometer in Bragg/Brentano geometry using Cu-K radiation and operating at 40kV and 

40 mA at room temperature. Scans were recorded from 5° to 85° (2) with a step of 0.02 and 

a counting time of 1s per step. 

Laser ablation–inductively coupled plasma–mass spectrometer (LA-ICP-MS) analysis was 

made on the samples. An element XR Thermo (Thermo Finnigan) ICP-MS, following the 

procedure described in previous studies [30-32] was used in combination with a VG UV laser 

probe, laser ablation sampling device. Solid samples were prepared as pressed pellets. Powder 

samples of 350 mg were put under a pressure of 8 metric tons, without added binder, to form 

13 mm (diameter) x 1 mm (height) pellets. The repetition rate of the 266 nm wavelength laser 

was fixed to 10 Hz. Calibration took place with a certified artificial glass, NIST-610.  

Measurements were replicated four times to validate the analytical precision of the technique. 

Results and discussion 

When NaOH is added to the zinc solution, as described in the materials and methods section, 

the evolution of pH exhibits both important variations from pH 3 to 6 and then from pH 6.5 to 

10.5. The solid precipitation appears with the first soda addition. The colour of the final solid 

precipitate is white. The final pH is higher than 12. The XRD pattern of the resulting powder 

exhibits all the peaks of ZnO (PDF card 01-070-8070) (Figure 1). However, the peak intensity 

of (002) planes is enhanced compared to the PDF card (01-070-8070). The SEM observations 

show the presence of two kinds of particles (Figure 2A): on the one hand, nanoparticles 

exhibiting an isotropic shape of several tens of nanometers and on the other hand, platelets 

like particles with a size of several hundreds of nanometers and a thickness of several tens of 

nanometers. The (002) peak intensity enhancement could be linked to the presence of these 

platelets in the powder. The analysis of Al concentration leads to a content of 0.1 at% which 

is far less than the initial content of 2 at. %. 



Hydrolysis and water condensation depend on the reactant’s concentrations and on the ratio 

Zn/OH. The influence of Zn concentration was evaluated by increasing the 0.1M initial 

concentration to 0.5 M and 1 M without changing the ratio Zn/OH=0.2 and the initial 

aluminum atomic percent. The XRD pattern of the 1 M sample only exhibits peaks related to 

ZnO (Figure 1). SEM observations still show the presence of the two kinds of particles 

(Figure 2B). However, the number of platelets increases. The analysis of Al concentration 

leads to a content of 0.28 at%. So the increase of the initial Zn concentration leads to an 

increase of the Al content in ZnO powder. This value is close to 0.3 at% which is the limit of 

solubility of Al in ZnO [33, 34]. Moreover, TEM analyzes analysis confirms these results, 

showing homogeneous compositions of the particles (Al concentrations close to 0.3 at %) 

regardless of their morphology. The 0.5M sample presents a similar behavior: XRD pattern 

only exhibits peaks related to ZnO and SEM observations show the presence of the two 

particle morphologies. The comparison of XRD data show that the full width at half 

maximum (FWHM) of all the peaks of the 0.1 M sample is larger than for the two other 

concentrations (Figure 1). This is consistent with SEM images, which show that in this case, 

the proportion of small particles is greater (Figure 2A). Therefore, the increase of the initial 

Zn concentration leads to a coarsening of particles and an increase in the aluminum content 

within the particles. 

In order to observe its influence, the initial Zn/OH ratio (Zn/OH = 0.2) was initially decreased 

to 0.1 with an initial Zn concentration of 1 M. No significant difference was observed (Figure 

3). Afterwards the ratio Zn/OH was increased to 0.6. The final pH was 7.9. In this final case, 

new peaks appeared on the XRD pattern which could be attributed to different phases (Figure 

3) : zinc hydroxide salts structures (PDF-00-24-1460 and PDF 00-052-0627), Al(OH)3 

gibbsite (PDF-00-054-0036) and a Zn-Al hydrotalcite-like structure (PDF 00-057-0528) 

(Figure 3). These phases are layered hydroxides which are closely related to the brucite 



structure [35-37]. The brucite structure is based on CdI2 layers: divalent metal cations occupy 

the centers of OH- octahedra joined by their edges to form infinite layers. The layers are held 

each other by weak intermolecular forces or hydrogen bondings. In this case of a hydrotalcite 

like structure, the substitution of a divalent cation by a trivalent cation in brucite structure 

induces the presence of an interlayer anion in order to conserve the electroneutrality of the 

structure. Gibbsite presents a brucite structure with one third empty octahedral sites, as 

aluminum has an oxidation state of three. The zinc hydroxide nitrate structure is formed by 

brucite layers presenting one quarter empty octahedra. Tetrahedrally coordinated zinc atoms 

are located above and below the empty octahedra. These layered hydroxides can present 

several kinds of crystallographic structures. The first key parameter is the nature of the layers, 

whereas the second one is their stacking, which can generate different polytypes. Moreover, 

XRD patterns exhibit two more small peaks that are not identified at 13.3 and 16.3 

°2Figure 3) These small peaks could be related to another layered hydroxide due to the 

large variety of structures in the family [37]. The high Zn/OH ratio leads to the presence of 

hydroxide in the resulting powder. However, the maximum intensity peaks in XRD is due to 

ZnO. The final Al concentration in the powder is 6 at% which is three times more than the 

initial solution content. It means that all of the aluminum is in different solid phases and that 

Zn has not yet totally precipitated at this pH value. The amphoteric character of Al explains 

the fact that when the pH increases to 12 the Al bearing phases are dissolved and the final 

content of Al is close to the solubility limit of Al in ZnO. This is consistent with dissolution- 

crystallization of preexisting hydroxides in ZnO when the pH increases. 

This is consistent with previous reports as hydroxide compounds have already been proposed 

by several authors as intermediary phases [38-41]. However, the type of anions present in the 

solution as well as the experimental procedure seem to strongly influence the intermediary 

phases. Indeed, Hosono et al. [38], in a non-basic solution route to prepare ZnO, described the 



polymerization of zinc acetate in layered Zn hydroxide acetate which is then hydrolyzed in 

order to obtain ZnO, whereas by adding soda in aqueous Zn acetate solution, Caillaud et al. 

[39] observe the appearance of -Zn(OH)2. Nevertheless, the transformation of a hydroxide 

phase in another hydroxide compound is possible: indeed, Zn hydroxy-nitrate in the presence 

of acetate or in basic medium leads to the formation of -Zn(OH)2 [40, 41]. 

When the soda addition time in our experimental procedure was reduced to 10 seconds 

instead of 25 minutes, the XRD exhibited the presence of ZnO and -Zn(OH)2 phases (Figure 

4). The most intense peaks corresponded to -Zn(OH)2. Moreover, the FWHM of -Zn(OH)2 

was smaller than ZnO one. This could be linked to different particles sizes. This interpretation 

is consistent with the SEM images which show the presence of two kinds of particles (Figure 

5A): well crystallized micrometric particles of -Zn(OH)2 and submicrometric agglomerate of 

needle like particles of ZnO. These experimental conditions lead to a formation of particles in 

a basic solution (final pH>12) whereas in the conventional method crystallization occurs from 

pH = 3 to 12. Yang et al. [29] have also obtained -Zn(OH)2 when they added the cationic 

solution to the soda solution. In order to investigate the relationships between ZnO and -

Zn(OH)2, a part of the slurry was aged 24 hours under vigorous stirring. The resulting XRD 

pattern also exhibited -Zn(OH)2 and ZnO peaks (Figure 4 B). However the relative 

intensities indicate that the presence of ZnO is greater. SEM images still show the well-

defined micrometric particles and submicrometric agglomerates of needle like particles 

(Figure 5B). However, the surfaces of the well-defined micrometric particles appear degraded 

by small holes and the presence of needle like particles is more important which is consistent 

with XRD patterns. In these experimental conditions, the Zn(OH)2 particles are transformed 

slowly into ZnO nanoparticles by a non topotactic reaction, i.e. dissolution-recrystallization. 

The way of mixing the cationic and soda solutions leads to different intermediary phases and 



therefore ZnO nanoparticles with different morphologies and sizes. Even if the final product 

is pure ZnO, the careful selection of the synthesis process is a route to tune the particles size 

and morphology. 

The effect of the Al content was also studied from pure ZnO samples up to 5 at % Al. Pure 

ZnO was obtained at room temperature. In the case of pure ZnO, the powder exhibits a sand 

rose morphology with micrometric size platelets (Figure 6A). With 5 at % of Al, the powder 

morphology was essentially formed by small isotropic particles close to 30 nanometers 

(Figure 6B). The measured aluminum content in the powder only reaches 0.3 atomic percent 

which is the limit of solubility of Al in ZnO [33-34]. The increase of initial aluminum content 

allows increasing the final aluminum content up to the solubility limit and also enables the 

nucleation centers of ZnO to increase leading to a drop in the number of large platelet like 

particles. Indeed, the trivalent aluminum cation precipitates at lower pH than divalent cation 

leading to amorphous aluminum hydroxide which acts as nucleation centers for ZnO when the 

pH reaches higher values [42-44]. 

 

Finally, the effect of temperature was also studied. The experiment was carried out at 60°C. 

The XRD pattern exhibited only the peaks of ZnO (Figure 7). It is worth noting that relative 

intensities of XRD pattern peaks are similar to ZnO PDF card whereas in all the other 

experiments peak intensity of (002) plane are enhanced compared to PDF card. SEM images 

show that this sample is only composed of isotropic nanoparticles of several tens of 

nanometers in size (Figure 8). Therefore, the enhanced peak intensity of (002) plane can be 

correlated to the presence of the platelets in the samples. 

 

Conclusions 



Al-doped ZnO nanoparticles were synthesized with a simple precipitation process. A non-

topotactic reaction mechanism, involving firstly the precipitation of various hydroxide 

compounds depending on the route (low or high pH), followed by the dissolution-

recrystallization of the hydroxide species into ZnO, was demonstrated. When the initial pH is 

low, different Zn hydroxide salts precipitate whereas when the initial pH is high, the 

intermediary hydroxide phase is Zn(OH)2. The Al concentration in the final ZnO 

nanopowders does not exceed 0.3 at% which corresponds to the reported solubility limit of Al 

in ZnO. The different experimental conditions allow the morphology of ZnO particles to be 

controlled from isotropic nanoparticles of several tens of nanometers, platelets of several 

hundreds of nanometers or agglomerates of needle like particles. 
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Figure captions 

 

Figure 1: X-ray diffraction patterns of samples with different initial Zn concentrations. 

 

Figure 2: SEM images of samples with initial concentration of (A) 0.1M and (B) 1M. 

 



 

Figure 3: X-ray diffraction patterns of samples with different Zn/OH ratios 

 

 

Figure 4: X-ray diffraction patterns of samples with (A) fast soda addition and (B) fast soda 
addition followed by 24h ageing. 

 



Figure 5: SEM images of obtained powders with (A) fast soda addition and (B) fast soda 
addition followed by 24h ageing. 

 

 

 

Figure 6: SEM images of (A) pure ZnO and (B) 5 at % Al doped ZnO. 

 



Figure 7: X-ray diffraction pattern of Al doped ZnO synthesized at 60°C. 

 

Figure 8: SEM image of Al doped ZnO synthesized at 60°C. 

 


