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Abstract Here we introduce the Minimized Power Geometric (MPG) model which predicts the viscosity
of any polyphase rocks deformed during ductile flow. The volumetric fractions and power law parameters
of the constituting phases are the only model inputs required. The model is based on a minimization of the
mechanical power dissipated in the rock during deformation. In contrast to existing mixing models based
on minimization, we use the Lagrange multipliers method and constraints of strain rate and stress geometric
averaging. This allows us to determine analytical expressions for the polyphase rock viscosity, its power law
parameters, and the partitioning of strain rate and stress between the phases. The power law bulk
behavior is a consequence of our model and not an assumption. Comparison of model results with 15
published experimental data sets on two-phase aggregates shows that the MPG model reproduces
accurately both experimental viscosities and creep parameters, even where large viscosity contrasts are
present. In detail, the ratio between experimental and MPG-predicted viscosities averages 1.6. Deviations
from the experimental values are likely to be due to microstructural processes (strain localization and coeval
other deformation mechanisms) that are neglected by the model. Existing models that are not based on
geometric averaging show a poorer fit with the experimental data. As long as the limitations of the mixing
models are kept in mind, the MPG model offers great potential for applications in structural geology and
numerical modeling.

1. Introduction

Lower crustal and upper mantle rocks are typically polyphase materials that deform in creep regimes. Their
effective viscosities depend on temperature, strain rate, and anisotropy, as well as on composition (rheol-
ogy and amounts of the constituting minerals). The mechanical control of the later factor is strong [Kirby,
1985]. The best natural examples of this interrelation are the ductile shear zones that show strain localiza-
tion due to weakening by metamorphic reactions [Pennacchioni, 1996; Furusho and Kanagawa, 1999; Handy
and Stünitz, 2002; Gueydan et al., 2003; Jolivet et al., 2005; Terry and Heidelbach, 2006; Hobbs et al., 2010; Oliot
et al., 2010; Angiboust et al., 2011; Grasemann and Tschegg, 2012]. Quantifying the viscosity of polyphase
rocks and its changes with metamorphic reactions is therefore of crucial importance for understanding the
strength of the lower crust and upper mantle. It is, though, still an open issue [Bürgmann and Dresen, 2008].

Several laboratory [Jordan, 1987; Tullis et al., 1991; Bloomfield and Covey-Crump, 1993; Bons and Urai, 1994;
Tullis and Wenk, 1994; Dresen et al., 1998; Bruhn et al., 1999; Ji et al., 2001; Jin et al., 2001; Xiao et al., 2002;
Rybacki et al., 2003; Barnhoorn et al., 2005; Dimanov and Dresen, 2005] and numerical [Tullis et al., 1991;
Treagus and Lan, 2000; Madi et al., 2005; Takeda and Griera, 2006; Groome et al., 2006; Jessell et al., 2009;
Dabrowski et al., 2012] experiments on two-phase aggregates have already addressed this issue. They char-
acterized the way the bulk viscosity of a few aggregates changes with their composition. These studies
also improved our understanding of the processes occurring in polyphase rocks during deformation. How-
ever, unlike the diversity of natural rocks, the number of experiments is limited. An accurate experimental
description of all the polyphase rocks is, therefore, not available.

Theoretically, mixing models can be used to estimate the viscosity of any polyphase rock if the amounts
and the mechanical behaviors of its constituting minerals are known. Such models can be classified into
three families: (1) phenomenological models [Voigt, 1928; Reuss, 1929; Tullis et al., 1991; Ji and Zhao, 1993;
Handy, 1994a, 1994b; Ji et al., 2003; Ji, 2004], (2) models based on minimization of the mechanical power
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[Hutchinson, 1976; Zhou, 1995; Jiang et al., 2005], and (3) models derived with the self-consistent approach
[Budiansky, 1965; Hill, 1965; Duva, 1984; Yoon and Chen, 1990; Treagus, 2002; Jiang, 2013].

Applying these models to lower crustal and mantle rocks is, however, not straightforward. They are indeed
either designed only for two-phase materials [Budiansky, 1965; Hill, 1965; Duva, 1984; Yoon and Chen, 1990;
Tullis et al., 1991; Handy, 1994a, 1994b; Treagus, 2002], depend on approximately constrained empirical
parameters [Ji and Zhao, 1993; Ji et al., 2003; Ji, 2004], provide viscosity bounds [Voigt, 1928; Reuss, 1929;
Hutchinson, 1976; Zhou, 1995; Jiang et al., 2005], or require an iteration process [Ji and Zhao, 1993; Zhou,
1995; Ji et al., 2003; Jiang et al., 2005].

In this paper, we present a new mixing model based on constrained minimization of the mechanical power:
the Minimized Power Geometric model (MPG model). This minimization is, for the first time, carried out
analytically with the Lagrange multipliers method. We thus provide a fast and precise way to estimate the
bulk viscosity of any polyphase rock, as well as its bulk creep parameters and the strain rate and stress in its
constituting phases.

The method and the derivation of the MPG model are presented first. The results are then analyzed, and the
estimates of the MPG model are compared with existing laboratory and numerical experiments. Our model
is also compared with existing mixing models in order to assess the ability of all these models to reproduce
the experimental data sets. The limitations and the advantages of our model are finally discussed.

2. Theory and Method of Calculation

This section, which presents the theory and the method used to develop the new mixing model, formalizes
and extends a method introduced in geology by Handy [1990]. Materials considered here are assumed to
have isotropic properties and incompressible behaviors that do not depend on pressure. The derivations
are carried out with the second invariants of the deviatoric strain rate and stress tensors, e and s, which are
hereafter simply called strain rate and stress. The notations used in the paper are presented in the Notation.

2.1. Mechanical Power Dissipated in a Power Law Material
In a viscous material, the viscosity 𝜂 relates strain rate e to stress s:

s = 2𝜂e. (1)

Laboratory experiments suggest that the steady state behavior of creeping minerals and rocks can be
described by a power law equation:

e = Asn exp
(−Q

RT

)
, (2)

where n, Q, A, R, and T stand respectively for the stress exponent, activation energy, preexponential factor,
gas constant, and absolute temperature [Kohlstedt et al., 1995]. The creep parameters n, Q, and A are mate-
rial factors, and A can include the effect of average grain size as well as the water and oxygen fugacities. To
simplify the following derivations, a condensed form of the power law equation is adopted:

e = Bsn, (3)

where

B = A exp
(−Q

RT

)
. (4)

Combining equations (1) and (3), the behavior of a homogeneous power law material can thus be described
by an effective viscosity that depends on either strain rate or stress:

𝜂 = e(1−n)∕n

2B1∕n
= s1−n

2B
. (5)

Viscous creep is accompanied by dissipation of mechanical power [Ranalli, 1995]:

P = 2𝜂e2 = s2

2𝜂
, (6)

The mechanical power dissipated in a homogeneous power law material is then given by substituting
equation (5) into equation (6):

P = e(n+1)∕n

B1∕n
= Bsn+1. (7)
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2.2. Mechanical Power Dissipated in a Polyphase Rock
A polyphase rock is an aggregate of N different phases i with volumetric fractions 𝜙i (the fractions sum up
to 1). Each phase corresponds to all grains of a mineral. For example, the phases constituting granite are
quartz, mica, plagioclase, and alkaline feldspar. In that particular case, N = 4.

In the following, we make three assumptions:

1. The distribution of the different phases constituting the aggregate is homogeneous and isotropic, and
these phases do not present any shape- or crystallographic-preferred orientation. This allows us to
consider constant 𝜙i sets and to avoid theoretical problems related to anisotropic viscosity.

2. The only deformation mechanism is incompressible viscous creep of each phase i, described by a power
law with known parameters ni , Ai and Qi . Even if elastic deformation must be present, the contribution of
elastic strain rate close to steady state is considered to be negligible.

3. All the grains from the same phase i have the same strain rate ei and stress si .

These assumptions have been used more or less implicitly for developing previous mixing models [Handy,
1990; Tullis et al., 1991; Handy, 1994a, 1994b; Ji, 2004; Ji and Zhao, 1993; Ji et al., 2003; Jiang et al., 2005;
Zhou, 1995]. They are also crucial for the development of our model. It must, however, be noted that the
third assumption is very strong because it leads locally to a contradiction with the equations of stress and
strain rate continuity. While ensuring continuity between the grains belonging to the same phase, it does
not respect this principle at the boundary between grains belonging to different phases. The validity and
consequences of these conditions are extensively discussed in section 7.

The bulk viscosity of a polyphase rock �̄� can be calculated in the same way as for homogeneous material, as
the ratio of the bulk stress s̄ over the bulk strain rate ē:

�̄� = s̄
2ē

. (8)

On the one hand, the bulk mechanical power can be expressed with this bulk viscosity according to
equation (6):

P̄ = 2�̄�ē2 = s̄2

2�̄�
. (9)

On the other hand, assumption 2 allows us to calculate the mechanical power dissipated in a polyphase rock
by summing the mechanical power dissipated in each phase Pi weighted by the phase fraction 𝜙i [Handy,
1990] such that

P̄ =
∑

i

𝜙iPi. (10)

Throughout the paper, sums and products are calculated over the N phases when no lower and upper
bounds are specified. Using assumptions 2 and 3, equations (7) and (10) can be combined to express P̄ as a
function of phase strain rates or stresses:

P̄ =
∑

i

𝜙iB
−1∕ni
i e(ni+1)∕ni

i =
∑

i

𝜙iBis
ni+1
i . (11)

In equation (11), the sets of ei and si are unknown. Here we calculate the ei and si that minimize the mechan-
ical power dissipated in the polyphase rock. Minimizing the power dissipated in a polyphase aggregate for
calculating a bulk viscosity has been proposed for the first time by Handy [1994a, 1994b] and applied in
the studies of Zhou [1995] and Jiang et al. [2005]. This amounts to using the principle of least action that
is commonly used in elastic polycrystals studies (see the review by Markov [1999]). It must be emphasized
that the principle of least action has been developed for transition between equilibrium states with conser-
vation of energy and that its application to nonequilibrium process leads to steady state if the relationship
between the driving force (the stress) and the flux (the strain rate) is linear [de Groot and Mazur, 1984].

It is then possible to estimate the bulk viscosity �̄� as follows: once the set of ei (resp. si) that minimizes P̄ is
determined for a given bulk strain rate ē (resp. stress s̄), the mechanical power is calculated with equation
(11) and the effective viscosity of the aggregate is calculated with equation (9).
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2.3. Which Constraint for the Minimization?
The absolute minimum of the mechanical power is zero. This value implies that the phases of a deformed
polyphase rock do not deform. As this is in contradiction to assumption 2, an additional relation between
the phase and bulk strain rates (resp. stresses) is therefore required. Such a relation has to describe the strain
rate (or stress) partitioning between the phases for a given bulk strain rate (resp. stress). This will be used as
a constraint for the minimization. Different types of constraints can be considered.
2.3.1. Homogeneity Constraints
Homogeneous strain rate (ei = ē, 1 ≤ i ≤ N) and homogeneous stress (si = s̄, 1 ≤ i ≤ N) only apply to layered
media loaded along specific directions [Markov, 1999], which correspond to a limited number of cases. In
these cases, the mechanical power cannot be minimized because the ei or the si are fixed. The homogeneity
constraints are therefore not consistent with minimization of the power. They are also unrealistic for most
rocks [Tullis et al., 1991].
2.3.2. Arithmetic Mean Constraints
A simple equation describes the strain rate partitioning in a layered material loaded perpendicular to its
layering. The bulk strain rate is the arithmetic mean of the phase strain rates:∑

i

𝜙iei − ē = 0. (12)

Similarly, loading of a layered material parallel to its layering leads to a simple expression for the stress
partitioning. The bulk stress is the arithmetic mean of the phase stresses:∑

i

𝜙isi − s̄ = 0. (13)

These two types of partitioning, which are in theory only valid for layered materials, have been used as
constraints for minimizing the dissipated power in isotropic materials [Zhou, 1995].

A constraint derived from equation (12) has subsequently been proposed for taking into account strain dis-
tribution at grain size scale [Jiang et al., 2005]. Since the deformation of minor weak phases is controlled by
the stronger phase skeleton, they cannot experience an excessively large strain rate and their strain rates
can be approximated by the bulk strain rate. This amounts to setting ei to ē for the minor weak phases in
equation (12), and the corresponding derivation can therefore be adapted from the one using equation (12).
2.3.3. Geometric Mean Constraints
Following the use of the arithmetic mean of the phase strain rate or stress by Zhou [1995], we here use geo-
metric mean constraints. These are derived from the previous constraints by simply replacing the arithmetic
mean with the geometric mean. The geometric mean of strain rate is expressed by∏

i

e𝜙i
i − ē = 0 (14)

and the geometric mean of stress is expressed by∏
i

s𝜙i
i − s̄ = 0. (15)

There are two reasons to consider geometric averaging as a constraint. The first one is based on a theoretical
argument [Aleksandrov and Aizenberg, 1966; Matthies and Humbert, 1993] that states that a function f which
allows to average a physical property x

x̄ = f−1

(∑
i

𝜙if (xi)

)
, (16)

and its inverse property y = x−1

ȳ = f−1

(∑
i

𝜙if (yi)

)
, (17)

so that

x̄ = x−1
−1
, (18)
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provides an improvement in comparison to the arithmetic and harmonic means. The geometric mean fulfills
this condition. The second reason is empirical and comes from the fact that mixing models based on the
geometric mean provide a good fit with experimental data (see section 6 below).

The constraints (14) and (15) are used below to develop the MPG model. The arithmetic mean constraints
having already been considered together with a numerical approach [Zhou, 1995], they are used here to
develop an analytical version of the mixing models of Zhou [1995], to which the MPG model will be later
compared (see sections 4 and 6.2).

2.4. The Lagrange Multipliers Approach
Previous studies used numerical iterations for minimizing the dissipated mechanical power [Zhou, 1995;
Jiang et al., 2005]. Here we use the Lagrange multipliers method [e.g., Stewart, 2002] outlined here. A
supplementary function L is defined by the mechanical power and the constraint C:

L = P̄ − 𝜆C, (19)

where P̄ is given by equation (11), 𝜆 is the Lagrange multiplier, and C is the chosen constraint given by
equations (12), (13), (14), or (15). The constrained minimum of the mechanical power is found by setting
simultaneously the N + 1 partial derivatives of L (N phase strain rates or stresses and one Lagrange multi-
plier) to zero. Since the stress exponent in power laws is larger or equal to 1, P̄ is convex up. The value found
with the Lagrange multiplier method is therefore a unique minimum.

3. Theoretical Determination of the Mixing Models

For each of the four constraints described in sections 2.3.2 and 2.3.3, one mixing model can be determined.
These four models are referred to as Minimized Power Geometric/Arithmetic strain rate/stress models
(MPGe, MPGs, MPAe, and MPAs models). Geometric or Arithmetic describes the type of mean used in the
constraint, and strain rate or stress describes the quantity used in the constraint. In this section, we detail the
determination of the MPGe model. The determination of the three other models follows the same steps and
is presented in the supporting information. As section 3 mainly contains the derivations, the reader who is
not interested can turn directly to section 4 where the results of theses calculations are provided.

The supplementary function is built by inserting equation (11) and constraint (14) into equation (19):

L
(
… , ei,… , 𝜆

)
=
∑

i

𝜙iB
−1∕ni
i e(ni+1)∕ni

i − 𝜆

(∏
i

e𝜙i
i − ē

)
. (20)

Setting all the partial derivatives of L to zero leads to a system of N equations:

𝜙iB
−1∕ni
i

ni + 1

ni
e1∕ni

i = 𝜙i𝜆e𝜙i−1
i

∏
j≠i

e
𝜙j

j , 1 ≤ i ≤ N, (21)

together with ∏
i

e𝜙i
i = ē. (22)

3.1. Determination of the Strain Rate Partitioning
One phase i is considered (1 ≤ i ≤ N). Equation (21) is first simplified by isolating e1∕ni

i in the left-hand side:

e1∕ni
i = B1∕ni

i

ni

ni + 1
𝜆e𝜙i−1

i

∏
j≠i

e
𝜙j

j . (23)

Equation (23) is then multiplied by ei :

e(ni+1)∕ni
i = B1∕ni

i

ni

ni + 1
𝜆e𝜙i

i

∏
j≠i

e
𝜙j

j ,

= B1∕ni
i

ni

ni + 1
𝜆
∏

i

e𝜙i
i . (24)

and simplified with equation (22):

e(ni+1)∕ni
i = B1∕ni

i

ni

ni + 1
𝜆ē. (25)
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We then introduce the N effective viscosities of the phases calculated for homogeneous strain rate, as in
equation (5):

𝜂i =
ē(1−ni)∕ni

2B1∕ni
i

, (26)

which gives an expression for the Bi:

Bi =
[

ē(1−ni)∕ni

2𝜂i

]ni

. (27)

The introduction of this notation does not imply that homogeneous strain rate is assumed.

Equation (27) is inserted into equation (25):

e(ni+1)∕ni
i =

ni

2(ni + 1)
𝜆

𝜂i
ēē(1−ni)∕ni ,

=
ni

2(ni + 1)
𝜆

𝜂i ē
ē(ni+1)∕ni . (28)

We also introduce a scaled Lagrange multiplier 𝜉:

𝜉 = 𝜆

ē
. (29)

A relation between the N phase strain rates and the bulk strain rate is then found by setting equation (28) to
the power ni∕(ni + 1) and using the definition of the scaled Lagrange multiplier:

ei = ē

(
ni

2(ni + 1)
𝜉

𝜂i

)ni∕(ni+1)

. (30)

Hence, these N equations give the value of the strain rate in each phase of the aggregate.

3.2. Determination of the Scaled Lagrange Multiplier 𝝃
The ei are eliminated from equation (22) by introducing the N equations (30):

ē =
∏

i

ē𝜙i

(
ni

2(ni + 1)
𝜉

𝜂i

)𝜙i ni∕(ni+1)

,

= ē

(
𝜉

2

)∑
i 𝜙i ni∕(ni+1)∏

i

(
ni

𝜂i(ni + 1)

)𝜙i ni∕(ni+1)

. (31)

A new set of parameters is introduced:

ai =
∏

j≠i

(nj + 1). (32)

The powers in equation (31) are then simplified with

𝜙ini

ni + 1
=

𝜙iaini∏
j(nj + 1)

(33)

and ∑
i

𝜙ini

ni + 1
=
∑

i 𝜙iaini∏
i(ni + 1)

. (34)

Equation (31) then becomes

ē = ē

(
𝜉

2

)∑
i 𝜙i ai ni∕

∏
i(ni+1)∏

i

(
ni

𝜂i(ni + 1)

)𝜙i ai ni∕
∏

j(nj+1)

(35)

and the value of the scaled Lagrange multiplier is

𝜉 = 2
∏

i

(
𝜂i

ni + 1

ni

)𝜙i ai ni∕
∑

j 𝜙j aj nj

. (36)
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3.3. Determination of the Bulk Viscosity
The minimum value of the mechanical power is calculated by inserting successively equations (30), (27), and
(36) into equation (11):

P̄ =
∑

i

𝜙iB
−1∕ni
i e(ni+1)∕ni

i ,

=
∑

i

𝜙i2𝜂i ē
(ni−1)∕ni

ni

2(ni + 1)
𝜉

𝜂i
ē(ni+1)∕ni ,

= 2ē2
∏

i

(
𝜂i

ni + 1

ni

)𝜙i ai ni∕
∑

i 𝜙j aj nj∑
i

𝜙ini

ni + 1
. (37)

Combining equations (9) and (37) gives the value of the bulk viscosity for the MPGe model:

�̄� =
∑

i

𝜙ini

ni + 1

∏
i

(
𝜂i

ni + 1

ni

)𝜙i ai ni∕
∑

i 𝜙j aj nj

. (38)

3.4. Determination of the Bulk Creep Parameters
The strain rate and temperature dependency of the bulk viscosity are explicitly stated by introducing
equations (4) and (26) in equation (38):

�̄� =
∑

i

𝜙ini

ni + 1
×
∏

i

(
ē(1−ni)∕ni

2A1∕ni
i

exp
(

Qi

niRT

)
ni + 1

ni

)𝜙i ai ni∕
∑

i 𝜙j aj nj

. (39)

This equation can be simplified into a product of three terms:

�̄� =
[

ē
∑

i 𝜙i ai(1−ni)∕
∑

i 𝜙i ai ni
]
×
[

exp
(

1
RT

∑
i 𝜙iaiQi∑
i 𝜙iaini

)]
×
⎡⎢⎢⎣
∑

i

𝜙ini

ni + 1

∏
i

(
ni + 1

2A1∕ni
i ni

)𝜙i ai ni∕
∑

i 𝜙j aj nj⎤⎥⎥⎦ . (40)

If the bulk behavior obeyed a power law, the bulk effective viscosity could be calculated with equation (5):

�̄� =
[

ē(1−n̄)∕n̄
] [

exp
(

Q̄
n̄RT

)][
1

2Ā1∕n̄

]
, (41)

where n̄, Q̄, and Ā would be the bulk creep parameters.

In equations (40) and (41), the bulk viscosity is split into three factors: a factor with a power of the bulk strain
rate, an Arrhenius-type factor depending on temperature, and a factor containing only material parameters.
The power of the bulk strain rate that appears in the first factor of equation (40) is treated first:∑

i 𝜙iai(1 − ni)∑
i 𝜙iaini

=
1 −

∑
i 𝜙i ai ni∑

i 𝜙i ai∑
i 𝜙i ai ni∑

i 𝜙i ai

. (42)

The first factors of equations (40) and (41) match exactly for

n̄ =
∑

i 𝜙iaini∑
i 𝜙iai

. (43)

Using the definition of the bulk stress exponent that has just been determined, the second factors match for

Q̄ =
∑

i 𝜙iaiQi∑
i 𝜙iai

. (44)

The bulk preexponential factor is calculated by identifying the third factors of equations (40) and (41):

1
2Ā1∕n̄

=
∑

i

𝜙ini

ni + 1

∏
i

(
ni + 1

2A1∕ni
i ni

)𝜙i ai ni∕
∑

i 𝜙j aj nj

. (45)

Introducing the value of the bulk stress exponent, given by equation (43), into equation (45) leads to

Ā =
⎛⎜⎜⎝ 1

2
∑

i
𝜙i ni

ni+1

⎞⎟⎟⎠
n̄∏

i

(
2A1∕ni

i ni

ni + 1

)n̄𝜙i ai ni∕
∑

i 𝜙j aj nj

. (46)
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Table 1. Bulk Viscosity, Phase Strain Rates or Phase Stresses, and Scaled Lagrange Multiplier for the
Four Mixing Models

Phase Strain Rates ei
Mixing Model Bulk Viscosity �̄� a or Phase Stresses si Scaled Lagrange Multiplier 𝜉 b

MPGe
∑

i
𝜙i ni
ni+1

∏
i

(
𝜂i

ni+1
ni

) 𝜙i ai ni∑
i 𝜙j aj nj ē

(
ni

2(ni+1)
𝜉

𝜂i

) ni
ni+1 2

∏
i

(
𝜂i

ni+1
ni

) 𝜙i ai ni∑
i 𝜙j aj nj

MPGs 1∑
i

𝜙i
ni+1

∏
i

(
𝜂i

1
ni+1

) 𝜙i ai∑
i 𝜙j aj s̄

(
2

ni+1
𝜂i
𝜉

) 1
ni+1 2

∏
i

(
𝜂i

1
ni+1

) 𝜙i ai∑
i 𝜙j aj

MPAe
∑

i 𝜙i𝜂i

(
ni

2(ni+1)
𝜉

𝜂i

)ni+1
ē
(

ni
2(ni+1)

𝜉

𝜂i

)ni ∑
i 𝜙i

(
ni

2(ni+1)
𝜉

𝜂i

)ni
= 1

MPAs
⎛⎜⎜⎝
∑

i
𝜙i
𝜂i

(
2

ni + 1
𝜂i
𝜉

) ni+1
ni
⎞⎟⎟⎠
−1

s̄
(

2
ni+1

𝜂i
𝜉

) 1
ni

∑
i 𝜙i

(
2

ni+1
𝜂i
𝜉

) 1
ni = 1

aFor the MPGe and MPAe models, 𝜂i = ē(1−ni)∕ni∕2B1∕ni
i . For the MPGs and MPAs models,

𝜂i = s̄1−ni∕2Bi ; ai =
∏

j≠i(nj + 1).
bThe scaled Lagrange multiplier is the solution of a nonlinear equation for the two MPA models.

Further simplification give the value of the bulk preexponential factor:

Ā =

(∑
i

𝜙ini

ni + 1

)−n̄∏
i

(
ni

ni + 1

)𝜙i ai ni∕
∑

i 𝜙j aj∏
i

A
𝜙i ai∕

∑
i 𝜙j aj

i . (47)

Bulk creep parameters that correspond to a power law and that do not depend on temperature and on bulk
strain rate can be determined for the MPGe model. Thus, if the phases follow a power law behavior, the bulk
behavior defined by the MPGe model is also a power law behavior.

4. Analysis of the Mixing Models

The four mixing models determined in both section 3 (for the MPGe model) and supporting information
(for the MPGs, MPAe, and MPAs models) are analyzed here. This section demonstrates the predictions of
the four models for an anorthite-diopside aggregate in the wet dislocation creep regime. This example has
been chosen because of the large difference in creep parameters and viscosity between anorthite (the weak
phase) and diopside (the strong phase).

4.1. The Equations Defining the Mixing Models
The equations defining the four mixing models are summarized in Table 1. The two MPG models are fully
analytical while the two MPA models are semianalytical. Their scaled Lagrange multipliers are calculated
numerically by solving a nonlinear equation. The solution of this equation is then used for calculating the
bulk viscosity and the strain rate or the stress in the phases.

For the four models, the bulk viscosity appears as a weighted mean of the phase viscosities calculated for
homogeneous strain rate or stress. The type of mean in these equations depends on the constraint: geomet-
ric mean for the MPG models, arithmetic mean for the MPAe model, and harmonic mean for the MPAs model.
The weights are combinations of volumetric fractions, stress exponents, viscosities, and scaled Lagrange
multiplier. Similar combinations appear in the expressions of the phase strain rates and stresses.

The equations in Table 1 are intricate because the stress exponents of the phases are different. They simplify
for a homogeneous stress exponent. This simple case corresponds to a rock in which all the phases deform
by diffusion creep (n = 1). It is also an approximation for a rock in which the phases deform by dislocation
creep with stress exponents close to 3. In such cases, both MPG models predict the same bulk viscosity:

�̄� =
∏

i

𝜂
𝜙i
i , (48)

which is exactly the geometric mean of the viscosities of the phases calculated for a homogeneous strain
rate or a homogeneous stress. The scaled Lagrange multiplier of the MPA models can be calculated ana-
lytically for homogeneous stress exponents. The bulk viscosity defined by the MPAe model is given by the
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generalized mean of the phase viscosities calculated for homogeneous strain rate, with an exponent equal
to −n:

�̄� =
(∑

𝜙i𝜂
−n
i

)−1∕n
. (49)

For the MPAs model, the bulk viscosity is given by the generalized mean of the phase viscosities calculated
for homogeneous stress, with an exponent equal to 1∕n:

�̄� =
(∑

𝜙i𝜂
1∕n
i

)n
. (50)

Equations (49) and (50) simplify to a harmonic and arithmetic mean, respectively, for a polyphase rock
containing phases deforming by diffusion creep.

4.2. The Bulk Viscosity
Figure 1a presents the bulk viscosity of an anorthite-diopside aggregate as a function of its diopside frac-
tion. The predictions of the four mixing models are plotted together. The mixing models show three similar
characteristics. The viscosity calculated for the two end-member compositions is similar to the end-member
viscosity. The viscosity increases while the fraction of diopside increases. The models constrained by stress
partitioning predict larger bulk viscosities than those constrained by strain rate partitioning. The first two
characteristics are expected for any mixing model.

There are, however, major differences between the MPG models and the MPA models. The viscosity curves
calculated with the MPG models have a smooth slope and are almost undistinguishable. The two MPG mod-
els therefore predict bulk viscosities which are very similar. The trend of the curves on Figure 1a is close
to linear. Since the y axis uses a logarithmic scale, this means that the bulk viscosity is close to the one
calculated with a simple geometric mean. The viscosity curves calculated with the MPA models are in con-
trast significantly different from each other (by several orders of magnitude), and the estimates of the MPA
models bound those of the MPG models. The MPAe model leads to the lowest calculated viscosities with a
convex down curve. The predicted bulk viscosity is close to the viscosity of anorthite when the aggregate
contains less than 80% of diopside. It steepens up dramatically for larger diopside fractions. The evolution of
the viscosity curve predicted by the MPAs model shows an opposite behavior.

4.3. The Partitioning of Strain Rate and Stress
The strain rate and stress in anorthite and diopside are presented as functions of the diopside fraction
(Figures 1b and 1c). These curves characterize the partitioning of strain rate and stress predicted by the four
mixing models. Both strain rates and stresses are normalized on the bulk values.

The evolutions of the curves predicted by the four mixing models are similar. For a given aggregate com-
position, the strain rate in anorthite is larger than the bulk strain rate, and the stress is lower than the bulk
stress. Further, the normalized strain rate increases, and the normalized stress decreases while the fraction
of anorthite decreases. For anorthite fractions tending to zero, the limit value of its strain rate and stress
is finite. The evolution of strain rate and stress in diopside is similar. The strain rate curves are translated
at values lower than the bulk one, and the stress curves are translated at values larger than the bulk ones.
This evolution implies that both the weak and the strong phases deform at higher strain rates while the
aggregate gets richer in the strong phase and hence stronger.

However, the way that partitioning is quantified is model dependent. The evolution predicted by the two
MPG models is characterized by a fairly constant slope, and both models predict almost identical parti-
tioning. In contrast, the MPAe model predicts a dramatic increase of the phase strain rates (5 orders of
magnitude for anorthite and 12 orders of magnitude for diopside) and an almost homogeneous stress
close to the bulk value. In contrast, the MPAs model predicts a dramatic increase of the phase stresses and
an almost homogeneous strain rate close to the bulk value. The MPA models therefore behave almost like
models based on homogeneous strain rate or stress, such behaviors being generally unrealistic [Tullis et al.,
1991].

4.4. The Bulk Creep Parameters
The bulk creep parameters of the MPG models determined in section 3 and supporting information are
presented in Table 2. They only depend on the phase creep parameters and fractions and do not vary with
temperature, strain rate, or stress. Thus, an aggregate of power law phases defined by the MPG models also
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Figure 1. Mechanical behavior of anorthite-diopside aggregates as a function of the diopside fraction predicted by
the MPGe (black solid curves), the MPGs (grey solid curves), the MPAe (black dotted curves), and the MPAs (grey dotted
curves) models. (a) Bulk viscosity. (b) Normalized strain rate in the phases (an: anorthite, weak phase, di: diopside, strong
phase). (c) Normalized stress in the phases. (d) Bulk stress exponent. (e) Bulk activation energy. (f ) Bulk preexponential
factor. The phase strain rates and the stresses are normalized on the bulk values. Predictions are calculated for tem-
perature of 1023 K and strain rate of 10−16 s−1. The bulk creep parameters are also calculated at other conditions in
order to show that the bulk creep parameters predicted by the MPA models depend on temperature and strain rate. The
creep parameters of anorthite and diopside correspond to the dislocation creep regime in wet conditions [Dimanov and
Dresen, 2005].

follows a power law. The transmission of this behavior from the phases to the aggregate is not an assump-
tion of the MPG models. Such a transmission has also been recognized in phenomenological mixing models
based on geometric averaging [Tullis et al., 1991; Ji and Zhao, 1993; Ji et al., 2003] and is consequence of the
geometric mean used in the constraints. Essentially speaking, multiplying strain rates, stress, or viscosities
together allows the powers in the phases power laws to be regrouped together, leading to a bulk power law.

The two MPG models give the same bulk stress exponent n̄ and the same bulk activation energy Q̄ (Table 2).
These bulk parameters are calculated as the arithmetic mean of the phase parameters weighted by 𝜙iai .
For homogeneous phase stress exponents, the bulk stress exponent simplifies to the phase stress expo-
nents, and the bulk activation energy simplifies to the arithmetic mean of the values of the separate phases
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Table 2. Bulk Creep Parameters Calculated for the Minimized Power Geometric Models

Mixing Bulk Stress Bulk Activation Bulk Preexponential
Model Exponent n̄ a Energy Q̄ a Factor Ā a
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∏
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∑
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∏
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b ni

∑
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∏
i A𝜙i

i

aai =
∏

j≠i(nj + 1).
bFor homogeneous stress exponent, both MPGe and MPGs models provide the same bulk creep parameters.

(Table 2). As expected from their expressions, the evolution of n̄ and Q̄ with increasing diopside fraction
shows a regular and close to linear increase from the anorthite value to the diopside value (Figures 1d
and 1e).

The bulk preexponential factor Ā of the MPGe and MPGs models are different (Table 2). The ratio between
these expressions lies between 0.25 and 1 (see Appendix A). This implies that the value of Ā corresponding
to the MPGe model is larger than the one corresponding to the MPGs model (Figure 1f ). This also implies
that the bulk viscosity predicted by the MPGe model is always lower than the bulk viscosity predicted by
the MPGs model, as observed on Figure 1a. However, the bulk viscosity predicted by the two MPG models
falls within the same order of magnitude. For homogeneous stress exponents, both MPG models predict
the same bulk preexponential factor: the geometric mean of the phase preexponential factors (Table 2).
In spite of the complexity of the expression which define it, the predicted bulk preexponential factor of
anorthite-diopside aggregates decreases regularly when the diopside fraction increases (Figure 1f ).

In contrast, the bulk creep parameters that correspond to the MPA models cannot be calculated analytically
(see supporting information). Figures 1d–1f show the evolution of these parameters, calculated numerically
for anorthite-diopside aggregates at different conditions of temperature and strain rate. The values of n̄,
Q̄, and Ā predicted by the MPA models depend on temperature and on strain rate. Thus, even if the phases
have a power law behavior, this characteristic is not transmitted to the bulk behavior described by the
MPA models.

5. Comparison With Experiments

The MPGe and MPGs models predict values of the bulk preexponential factor that are almost similar. This is
the only difference between these two models, and it is the reason they predict similar bulk viscosities and
partitioning. Below, these two models are thus referred to as a single MPG model, and only the predictions
of the MPGe model are shown.

In this section, the predictions of the MPG model are compared with the published results of 15 experimen-
tal data sets on two-phase materials. The predictions of the MPG model are calculated with the experimental
end-member viscosities and stress exponents using equation (38). When bulk creep parameters have been
determined experimentally for the aggregates of intermediate compositions, bulk creep parameters are
also calculated using equations (43), (44), and (47). Experiments which have been shown by Ji [2004] not
to fall within the theoretical bounds are not considered here. In the following figures, the experimental
data together with their errors (when reported) are represented by open symbols, and the predictions are
represented by solid curves.

5.1. Enstatite-Forsterite Aggregates
In the experiments carried out by Ji et al. [2001], forsterite is stronger than enstatite, with a viscosity con-
trast lower than 1 order of magnitude (Figure 2a). The same deformation mechanisms were observed in
the phases deformed alone and in the two-phase aggregates. Since the deformation mechanisms do not
change, it is legitimate to calculate the bulk viscosity of the aggregates using the end-member values. The
evolution of the viscosity with increasing forsterite fraction shows a trend close to logarithmic (Figure 2a).
This evolution is complicated by an S-shape trend which has been interpreted as the effect of microstruc-
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Figure 2. (a–d) Bulk viscosity and bulk creep parameters of enstatite-forsterite aggregates as a function of the forsterite
fraction: comparison between the experimental data set of Ji et al. [2001] (open circles) and the MPG model (solid
curves). The experimental S-shape trend is highlighted with a dotted line. Viscosity values corrected for the porosity
[Ji, 2004] are also shown (open squares). The vertical bars correspond to the fitting errors calculated during the
regression of the creep parameters. Bulk strain rate: 10−6 s−1, temperature: 1473–1573 K, confining pressure: 0.1 MPa.

tural changes [Ji et al., 2001]. For low forsterite fractions (lower than 0.4), the structure is weak-phase
supported, whereas for large forsterite fractions (larger than 0.6), it is strong-phase supported. For interme-
diate forsterite contents (0.4–0.6), deformation is controlled by a transitional regime. Even if the MPG model
fits the general trend very well (Figure 2a), it fails to reproduce the S-shape trend. If the experimental vis-
cosity is corrected for the aggregate porosity [Ji, 2004], the S-shape trend is smoothed, which improves the
agreement between the data and the model.

Comparison of both the bulk stress exponent and the bulk activation energy with their predicted coun-
terparts shows that the predicted values fall within the experimental errors of the experimental data
(Figures 2b and 2c). The quality of fit is poorer for the bulk preexponential factor even if the difference
between the experimental and predicted values is lower than 1 order of magnitude (Figure 2d). Note that
the error on the preexponential factor usually does not take into account the regression errors of the stress
exponent and activation energy, on which it also relies. A larger experimental error would then lead to a
better agreement.

5.2. Omphacite-Garnet Aggregates
In the experiments of Jin et al. [2001], omphacite and garnet were deformed by dislocation creep, with
a viscosity difference of 1 order of magnitude (Figure 3a). Since no experiment was conducted for pure
garnet aggregates, the viscosity value for pure garnet was deduced by Jin et al. [2001] using a mixing
model [Tullis et al., 1991]. The experimental data set has a logarithmic trend, even without the data for pure
garnet (Figure 3a). Stress exponents from the literature (omphacite: n = 3.5 [Zhang et al., 2006], garnet:
n = 2.7 [Karato, 1995]) were used to predict the aggregate bulk viscosity. The predictions of the geometric
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Figure 3. (a) Bulk viscosity of omphacite-garnet aggre-
gates as a function of the fraction of garnet: comparison
between the experimental data set of Jin et al. [2001]
(open circles) and the predictions of the MPG model
(solid curve). The viscosity of pure garnet (open square)
is not experimental but has been calculated with the
help of a mixing model [Jin et al., 2001]. Bulk strain rate:
4.6 10−4 s−1, temperature: 1500 K, confining pressure:
3 GPa. (b and c) Viscosity of anorthite-quartz aggregates
as a function of the fraction of quartz under uniaxial
conditions in Figure 3b and triaxial conditions in
Figure 3c: comparison between the experimental data
set of Xiao et al. [2002] (open circles) and the predic-
tions of the MPG model (solid curves). The vertical bars
indicate the experimental dispersion of the viscosity. Uni-
axial experiments: normalized for bulk stress: 10 MPa,
temperature: 1443 and 1523 K, confining pressure:
0.1 MPa. Triaxial experiments: normalized for bulk
stress: 10 MPa, temperature: 1393 K, confining pressure:
300 MPa.

mixing model are in very good agreement with
the experimental data for the whole range of
aggregate compositions.

5.3. Anorthite-Quartz Aggregates
In the experiments of Xiao et al. [2002], anorthite
deformed by grain boundary diffusion creep and
showed similar deformation mechanisms when pure
and when mixed with quartz. Quartz behaved almost
like rigid grains and recorded intense deformation at
its rim with an increase in dislocation densities (uni-
axial experiments) or showed partly dislocation free
grains (triaxial experiments). The viscosity of quartz
was, in the experimental conditions, 2 to 3 orders of
magnitude larger than that of anorthite (Figures 3b
and 3c).

Under uniaxial conditions, the viscosity of the
anorthite-quartz aggregates shows a logarithmic
increase with increasing quartz content (Figure 3b).
Both the trend and the values are well reproduced by
the MPG model. Under triaxial conditions, the MPG
model overestimates systematically the experimental
values by up to half an order of magnitude at maxi-
mum (Figure 3c). The difference of behavior between
the two sets of experiments was interpreted by a
reduced load transfer to the quartz grains through
the weak anorthite matrix at high confining pressure
[Xiao et al., 2002]. However, since no experiment was
carried out on pure quartz under triaxial conditions,
the creep parameters from another experimental
study [Brodie and Rutter, 2000] are used to calculate
the bulk viscosity with the MPG model. If the viscosity
of pure quartz was approximately 1 order of magni-
tude lower than the one calculated with the Brodie
and Rutter [2000] parameters, the match between
the experimental data and the MPG model would
be much better. Such a difference can be expected
if the sample preparation or the experimental setup
are different.

5.4. Anorthite-Diopside Aggregates
Dimanov and Dresen [2005] carried out experiments
on anorthite-diopside aggregates in the diffusion and
dislocation creep regimes in dry and wet conditions.
The mechanical data and the microstructures sug-
gest that anorthite, diopside, and their aggregates
deformed by linear viscous grain boundary diffu-
sion creep at low stress and by power law dislocation
creep at higher stress. At intermediate stress, a mixed
diffusion-dislocation creep regime was observed.
Under the experimental conditions, the viscosity
of diopside was 2 to 3 orders of magnitude greater
than the viscosity of anorthite (Figure 4). For the two
deformation regimes and in both dry and wet condi-
tions, the experimental viscosity increases along an
S-shape trend with increasing diopside fraction. The
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Figure 4. Viscosity of anorthite-diopside aggregates as a function of the fraction of diopside: comparison between the
experimental data set of Dimanov and Dresen [2005] (open circles) and the predictions of the MPG model (solid curves).
(a) Diffusion experiments in dry conditions. (b) Diffusion experiments in wet conditions. (c) Dislocation experiments in
dry conditions. (d) Dislocation experiments in wet conditions. The vertical bars indicate the experimental dispersion
of the viscosity. Recalculated for bulk stress of 10 MPa (diffusion experiments) and 100 MPa (dislocation experiments),
temperature: 1373, 1423, and 1473 K, confining pressure: 300 MPa.

inflection point lies at diopside fractions in the range 0.5–0.75. This evolution suggests a weak-phase sup-
ported microstructure at diopside fractions lower than 0.5 and a strong-phase supported microstructures
at diopside fraction larger than 0.75. This might be due to the contrasting grain size between anor-
thite and diopside in the experiments, which could promote the formation of weak- and strong-phase
supported structures.

Bulk viscosities have been calculated with stress exponents of 1 for both anorthite and diopside in the dif-
fusion creep regime and higher values in the dislocation creep regime (anorthite: n=3, diopside: n=5.5
[Dimanov and Dresen, 2005]). The predicted evolution is logarithmic for the diffusion experiments
(Figures 4a and 4b) and is convex up for the dislocation experiments (Figures 4c and 4d). Thus, even if the
difference between the predicted and the experimental viscosity is generally less than half an order of mag-
nitude, the MPG model fails to reproduce the experimental S-shape trend. More precisely, it overestimates
the viscosity for the diopside fractions of 0.25 and 0.5 and underestimates it for the diopside fraction of 0.75.

The experimental data in the diffusion creep regime are consistent with bulk stress exponents of 1 for
anorthite, diopside, and aggregates of intermediate composition. This is predicted by the MPG model (see
Table 2). In the dislocation creep regime, the experimental and predicted bulk stress exponents are in good
agreement even if the model does not reproduce the smooth S-shape experimental trend (Figure 5a). The
experimental values of the bulk activation energy are well reproduced by the predicted one for the diffu-
sion creep regime and the dry dislocation creep regime (Figure 5b). The agreement is, however, not as good
for the wet dislocation creep regime. For the bulk preexponential factor (Figure 5c), the agreement between
experimental and predicted values varies from very good (wet diffusion creep) to very poor (dislocation
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Figure 5. (a–c) Bulk creep parameters of
anorthite-diopside aggregates as a function of the frac-
tion of diopside: comparison between the experimental
data set of Dimanov and Dresen [2005] (open symbols)
and the predictions of the MPG model (solid curves).
The black (resp. grey) color corresponds to diffusion
(resp. dislocation) creep experiments. Open circles (resp.
squares) correspond to wet (resp. dry) conditions. The
vertical bars correspond to the fitting errors calculated
during the regression of the creep parameters.

creep). Since the stress exponent is regressed first
and the preexponential factor is regressed third, the
decrease in the agreement between experiments and
predictions, from stress exponent to preexponential
factor, might be an artifact of the regression process
of the creep parameters. Small errors in the deter-
mination of the bulk stress exponent and activation
energy might lead to large errors in the determination
of the bulk preexponential factor.

5.5. Halite-Calcite Aggregates
In the experiments of Jordan [1987] and [Bloomfield
and Covey-Crump 1993], calcite is 1 order of mag-
nitude stronger than halite (Figure 6a). Calcite
deformed partly by intracrystalline plasticity with
twinning and partly by cataclasis, whereas halite
deformed by dislocation glide. The experimental vis-
cosities show a logarithmic increase with increasing
calcite fraction. The predictions of the MPG model
have been calculated with stress exponents deter-
mined in other experimental studies (halite: n = 5.3
[Carter et al., 1993], calcite: n = 7.8 [Schmid et al.,
1980]). For both experimental data sets, the values
calculated with the MPG model reproduce the exper-
imental values very well, even if cataclastic flow of
calcite which is not strictly modeled by a power law
was active in the experiments.

5.6. Calcite-Anhydrite Aggregates
In the experiments of Barnhoorn et al. [2005], cal-
cite and anhydrite have viscosities of the same order
of magnitude (Figure 6b). They deformed (sepa-
rately and together) in the dislocation creep regime
with exception of one experiment (70% of anhy-
drite) where anhydrite deformation was controlled
by diffusion creep or grain boundary sliding. The
viscosity measured in a torsion apparatus (used for
these experiments) depends on the stress exponent
of the material. Barnhoorn et al. [2005] suggest that
5 is the most likely value for the stress exponent of
most of the aggregates. In the aggregates having a
calcite-anhydrite ratio of 1:1, their preferred value is
3. The dispersion due to variations of stress exponent
between 1 and 5 is shown, in addition to the exper-
imental viscosity values (Figure 6b). The viscosity of
the aggregate containing 70% of anhydrite is lower
than the viscosity of the two end-members, which is
due to a change in the deformation mechanism of
anhydrite. This data point is therefore not considered
here. The predictions of the MPG model have been

calculated with a stress exponent of 5 for both calcite and anhydrite. Variation of the end-member stress
exponent induces a minor dispersion of the predicted viscosity (grey background on Figure 6b). If the outlier
value is not considered, the predicted values are very similar to the experimental data.

5.7. Octachloropropane-Camphor Aggregates
Octachloropropane (OCP) and camphor are crystalline organic materials that creep at room temperature
and low stress. In the three constant load experiments of Bons and Urai [1994], the viscosity shows the
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Figure 6. (a) Viscosity of halite-calcite aggregates as a function of the fraction of calcite: comparison between the exper-
imental data sets of Jordan [1987] (grey open circles) and Bloomfield and Covey-Crump [1993] (black open circles), on
the one hand, and the predictions of the MPG model (solid curves), on the other hand. The viscosity corresponds to
10% strain for Jordan [1987] experiments and 20% strain for Bloomfield and Covey-Crump [1993] experiments. Bulk strain
rate: 10−5 s−1, temperature: 473 K, confining pressure: 200 MPa. (b) Viscosity of calcite-anhydrite aggregates as a func-
tion of the fraction of anhydrite: comparison between the experimental data set of Barnhoorn et al. [2005] (open circles)
and the predictions of the MPG model (solid curves). The vertical bars indicate the range in viscosity due to variations
of the end-member stress exponents between 1 and 5. The grey background indicates the range in predicted viscosity
due to the variations of the end-member stress exponent. The viscosity corresponds to the peak stress (shear strain of
approximately 0.5). Bulk strain rate: 10−3 s−1, temperature: 1873 K, confining pressure: 300 MPa.

same parallel evolution. It increases regularly over 3 orders of magnitude with increasing camphor fraction
(Figure 7a). Predictions with the MPG model have been calculated with the stress exponents derived from
the stepping load experiments (OCP: n=4.5, camphor: n=3.3). The three predicted viscosity curves are also
parallel and follow the experimental trend. However, the predictions slightly overestimate the experimental
values with a maximum difference of approximately half an order of magnitude.

The bulk stress exponent and bulk constant factor of OCP-camphor aggregates have been determined with
stepping load experiments at constant temperature [Bons and Urai, 1994]. The stress exponent values of the
aggregates of intermediate composition are close to the one of OCP (Figure 7b). Furthermore, the bulk stress
exponent shows a bell-shape evolution with increasing camphor fraction. This increased nonlinearity might
be the effect of grain-scale mechanical interactions between OCP and camphor grains. This is probably why
the predictions of the MPG model fail to reproduce both the experimental values and trend. The experi-
mental bulk constant factor (which includes the preexponential factor and the thermal part of the power
law) decreases regularly with the increasing camphor fraction (Figure 7c). The predicted evolution of the
bulk constant factor reproduces the experimental trend. However, the predictions slightly underestimate
the experimental values, which is consistent with the overestimation of the viscosity (Figure 7a). Because of
the surprising evolution of the bulk stress exponent, the very weak OCP has been suggested to control the
deformation of the aggregate, even at large camphor contents [Bons and Urai, 1994]. This mechanical con-
trol is not in line with the regular experimental evolution of the bulk viscosity (Figure 7a) and bulk constant
factor (Figure 7c) reproduced by the MPG model.

5.8. Ammonia Dihydrate-Water Ice Aggregates
In the experiments of Durham et al. [1993], both ammonia dihydrate (NH3 ⋅ 2H2O) and water ice deformed
by dislocation creep. Water ice was 1 order of magnitude stronger than ammonia dihydrate (Figure 8a).
The viscosity value for pure ammonia dihydrate (open square on Figure 8a) was deduced by Durham
et al. [1993] from the experimental data set with the mixing model of Tullis et al. [1991]. Even without
this model-dependent point, the evolution of bulk viscosity with increasing water ice content is close to
logarithmic. The viscosity predicted by the MPG model are calculated with the stress exponents deter-
mined by Durham et al. [1993]. The predictions of the MPG model slightly overestimate the experimental
data. Another value for the poorly constrained viscosity of pure ammonia dihydrate (which could not be
synthesized) could lead to an even better agreement.
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Figure 7. (a–c) Viscosity and bulk creep parameters of
octachloropropane (OCP)-camphor aggregates as a func-
tion of the fraction of camphor: comparison between the
experimental data set of Bons and Urai [1994] and the
predictions of the MPG model (solid curves). The vertical
bars correspond to the fitting errors calculated during
the regression of the creep parameters. Temperature:
301 K, confining pressure: 0.6 MPa.

5.9. Water Ice-Sodium Sulfate Hydrate
Salt Aggregates
In the experiments of Durham et al. [2005], both water
ice and sodium sulfate hydrate salt (Na2SO4.10H2O,
NS10) deformed in the dislocation creep regime.
NS10 had a viscosity 1 order of magnitude larger than
water ice calculated using the parameters for pure
ice I [Durham and Stern, 2001] (Figure 8b). The predic-
tions of the MPG model, which are calculated with the
end-member viscosities and the stress exponent of
water ice (n = 4 [Durham and Stern, 2001]) and NS10
(n = 5.4 [Durham et al., 2005]), systematically overes-
timate the viscosity of the aggregates by half an order
of magnitude (Figure 8b). Further, the experimental
values have a convex-up trend, whereas the predicted
curve is convex down. Note, however, that the values
for pure ice come from another experimental data set
[Durham and Stern, 2001].

5.10. Matrix-Porphyroblast Numerical Aggregates
Several numerical studies have been published on
the topics of two-phase aggregates. Here we only
consider the study of Groome et al. [2006], since the
other studies either have too little experimental data
[Tullis et al., 1991; Madi et al., 2005], or consider very
simplified geometries [Treagus and Lan, 2000; Takeda
and Griera, 2006], or deal with anisotropic viscosities
that cannot be treated with our approach [Treagus,
2003; Dabrowski et al., 2012].

Groome et al. [2006] studied the mechanical effect of
strong porphyroblasts (dimensionless linear viscos-
ity of 100) growing in a weak matrix (dimensionless
linear viscosity of 1). The numerical experiments
were performed under simple shear boundary condi-
tions. The bulk viscosity of the numerical aggregates
shows a close to logarithmic increase with increas-
ing porphyroblast fraction (Figure 8c). The evolution
predicted by the MPG model is perfectly logarith-
mic, since linear viscous materials are considered (see
equation (48)). The agreement between the numerical
experiment and the predictions is excellent.

6. Comparison With Other Mixing Models

The MPG model makes good predictions of the bulk
viscosity and the bulk creep parameters for the most
of the two-phase experiments. Here a qualitative and

quantitative comparison is made between the MPG model and nine representative mixing models from
the literature.

6.1. Qualitative Comparison
Three classes of models are distinguished.
6.1.1. The Bounding Models
The first class of models provides bounds for the viscosity of a polyphase aggregate. The Reuss lower and
Voigt upper bounds are respectively calculated as the weighted harmonic and arithmetic means of the
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Figure 8. (a) Viscosity of ammonia dihydrate (AD)-water
ice aggregates as a function of the fraction of water
ice: comparison between the experimental data sets
of Durham et al. [1993] (open circles) and the predic-
tions of the MPG model (solid curves). Bulk strain rate:
3.5 10−6 s−1, temperature: 167 K, confining pressure:
50 MPa. (b) Viscosity of water ice-sodium sulfate hydrate
salt (NS10) aggregates as a function of the fraction of
NS10: comparison between the experimental data sets
of Durham and Stern [2001] (open circles) and the pre-
dictions of the geometric mixing models (solid curves).
Bulk strain rate of 3.5 10−5, 3.5 10−6, and 3.5 10−7 s−1,
temperature: 233 K, confining pressure: 50 MPa.
(c) Adimensioned viscosity of numerical aggregates of
strong porphyroblasts embedded in a weak matrix as
a function of the fraction of porphyroblasts: compari-
son between the numerical experiments of Groome et
al. [2006] (open circles) and the predictions of the MPG
model (solid curve).

phase viscosities [Voigt, 1928; Reuss, 1929]. Both are
valid for layered aggregates of linear viscous mate-
rial deformed with special boundary conditions. The
mixing models for “interconnected weak layer” and
“load-bearing framework” microstructures [Handy,
1994a, 1994b] lead to values which are close to these
bounds. Theoretically, the bulk viscosity of any aggre-
gate must lie between the Reuss and Voigt bounds
[Markov, 1999]. Violations of the Reuss lower bound
have, however, been reported [Tullis and Wenk, 1994;
Bruhn et al., 1999]. They are interpreted to be the
result of anisotropies, grain growth inhibition, or
enhanced diffusion along the grain boundaries.

Refined bounds have been proposed for power law
materials [Zhou, 1995]. They are calculated by min-
imizing the power under constraints of arithmetic
strain rate or stress partitioning. These bounds which
were originally calculated numerically have been
revised in this paper and correspond to the semiana-
lytical MPA models (Zhou lower bound: MPAe model,
Zhou upper bound: MPAs model). The analysis of
these models (see section 4.3) reveals that the MPAe
(resp. MPAs) model leads to an almost homogeneous
stress (resp. strain rate) in the aggregate. This suggests
that the Zhou bounds must generally lie close to the
Reuss and Voigt bounds.

The bounding models predict evolutions which are
either convex up or convex down (Figure 9a). A sharp
increase of the viscosity with increasing fraction of
the strong phase is also predicted at approximately
0.2 fraction of the strong phase for the upper bounds
and at approximately 0.8 fraction of the strong phase
for the lower bound. Such predictions are not con-
sistent with either the almost logarithmic evolution
of the viscosity or the S-shape trend which have
been identified in most experimental data sets (see
section 5). However, the lower bounds might pro-
duce good approximations when the microstructures
are weak-phase supported until large fractions of the
strong phase are present.
6.1.2. The Geometric Models
The second class of models is based on a geometric
averaging procedure. The geometric mean (GM
on Figure 9b) is one particular case of the general-
ized mean model [Ji, 2004]. The use of such a mean
has no physical basis. It can, however, be considered
as a good approximation for two-phase aggregates
[Ji, 2004]. It also provides good results for averaging
the elastic properties of aggregates [Matthies and
Humbert, 1993; Mainprice and Humbert, 1994].

Tullis et al. [1991] proposed an empirical mixing
model for aggregates of two power law materials.
This assumes that the bulk behavior also follows a
power law with a bulk stress exponent calculated as
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Figure 9. (a) Bulk viscosity of anorthite-diopside aggregates as a function of the diopside fraction predicted by the MPG
model, the Voigt and Reuss bounds, the Zhou lower and upper bounds, and the self-consistent model for 2-D geome-
try (SCM2) [Treagus, 2002, equation (9)] and for 3-D geometry (SCM3) [Treagus, 2002, equation (22)]. (b) Bulk viscosity
of anorthite-diopside aggregates as a function of the diopside fraction predicted by the Minimized Power Geometric
(MPG) model, the geometric mean (GM), and the first and second Ji models. Predictions are calculated for temperature of
1023 K and strain rate of 10−16 s−1. The creep parameters of anorthite and diopside correspond to the dislocation creep
regime in wet conditions [Dimanov and Dresen, 2005]. Also shown is the viscosity calculated with the creep parameters
determined for aggregates of intermediate composition (open circles). The good fit between the experimental data and
the SCM model is here exceptional (see section 6.2).

the weighted geometric mean of the end-member stress exponents. This model also assumes that the bulk
viscosity at a given temperature is equal to the isoviscous point of the two end-members.

Other power law models based on geometric averaging have also been proposed by Ji and Zhao [1993]
and Ji et al. [2003]. The first Ji model (Ji1 on Figure 9b) assumes a homogeneous stress in the aggregate
and geometric strain rate partitioning, while the second Ji model (Ji2 on Figure 9b) assumes homogeneous
strain rate and geometric stress partitioning. Since neither a homogeneous strain rate nor a homogeneous
stress are generally realistic [Tullis et al., 1991], iterations can be used to find a more accurate model [Ji and
Zhao, 1993; Ji et al., 2003]. Results of this iterative procedure are almost identical to those of the Tullis et al.
[1991] model [Ji and Zhao, 1993; Ji et al., 2003].

All the geometric models predict the same close to logarithmic evolution with very similar viscosities
(Figure 9b). The MPG model belongs to this group.
6.1.3. The Self-Consistent Model
The self-consistent model (SCM) approximates an aggregate of two linear elastic phases as a homogeneous
aggregate made of an ellipsoidal inclusion embedded in a matrix [Budiansky, 1965; Hill, 1965; Jiang, 2013].
This model can also be applied to linear viscous materials [Treagus, 2002]. Amongst all the mixing mod-
els considered here, the SCM is the only one which is based on Newton’s equation of motion. It predicts
an S-shape curve with an inflection point at 0.4 strong phase fraction for 3-D geometry and 0.5 strong
phase fraction for 2-D geometry (Figure 9a). Even if the SCM is not based on a transition between weak- and
strong-phase supported microstructures, it could be a good approximation for such a transition.

Models for nonlinear viscous materials have also been developed using a self-consistent approach [Duva,
1984; Yoon and Chen, 1990]. They are not considered here because they assume that the strong phase of
the aggregate is rigid. This results in unrealistic viscosities for aggregate compositions close to the strong
end-member.

6.2. Quantitative Comparison
The ability of all the 10 models to reproduce the 15 experimental data sets presented in section 5 is assessed
in a quantitative way. For each set of experimental data set and mixing model, two misfits are calculated
(see Appendix B for their definitions). The mean standard deviation misfit, Δ�̄�, estimates the order of mag-
nitude of the absolute misfit between experimental and predicted bulk viscosities. The mean misfit, 𝛿�̄�,
estimates the order of magnitude of the relative misfit between experimental and predicted bulk viscosities.
The smaller the absolute value of the misfits are, the better the fit is. Absolute values of Δ�̄� and 𝛿�̄� of 0.2,
0.4, and 1 indicate that the ratio between the experimental viscosities and the predicted ones is on average
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Table 3. Misfits Between the Experimental and Predicted Viscosity

Experimental Data Set Misfit MPG Reuss Voigt Zhou< Zhou> GM Tullis Ji1 Ji2 SCMl

en-foa Δ�̄� 0.07 0.06 0.18 0.14 0.18 0.09 0.06 0.05 0.09 0.10
N = 10 𝛿�̄� +0.05 −0.02 +0.16 −0.11 +0.17 +0.07 +0.04 +0.01 +0.07 +0.09
omph-grtb Δ�̄� 0.04 0.17 0.17 0.40 0.17 0.04 0.04 0.05 0.04 0.07
N = 4 𝛿�̄� +0.00 −0.16 +0.17 −0.38 +0.17 +0.01 −0.01 −0.03 +0.01 +0.05
an-qtz (uni.)c Δ�̄� 0.11 1.04 1.88 1.04 1.88 0.13 0.11 0.13 0.11 0.50
N = 8 𝛿�̄� +0.01 −0.88 +1.85 −0.88 +1.85 −0.05 +0.01 −0.05 +0.06 −0.02
an-qtz (tri.)c Δ�̄� 0.50 0.17 1.21 0.17 1.14 0.52 0.50 0.52 0.48 0.68
N = 4 𝛿�̄� +0.49 −0.08 +1.20 −0.08 +1.13 +0.51 +0.49 +0.51 +0.47 +0.62
an-di (dry diff.)d Δ�̄� 0.39 0.86 1.36 0.86 1.36 0.39 0.39 0.39 0.39 0.68
N = 6 𝛿�̄� +0.28 −0.67 +1.24 −0.67 +1.24 +0.28 +0.28 +0.28 +0.28 +0.53
an-di (wet diff.)d Δ�̄� 0.27 0.49 0.82 0.49 0.82 0.27 0.27 0.27 0.27 0.38
N = 9 𝛿�̄� +0.18 −0.37 +0.74 −0.37 +0.74 +0.18 +0.18 +0.18 +0.18 +0.31
an-di (dry disl.)d Δ�̄� 0.46 1.58 2.14 1.58 1.03 0.67 0.50 0.67 0.46 1.37
N = 5 𝛿�̄� +0.09 −1.28 +1.92 −1.28 +0.90 +0.49 +0.24 +0.49 −0.01 +1.18
an-di (wet disl.)d Δ�̄� 0.47 1.21 2.08 1.21 0.91 0.68 0.52 0.68 0.45 1.13
N = 9 𝛿�̄� +0.17 −0.84 +1.88 −0.84 +0.78 +0.52 +0.30 +0.52 +0.09 +0.89
ha-cce Δ�̄� 0.02 0.15 0.17 0.32 0.17 0.02 0.04 0.07 0.02 0.03
N = 3 𝛿�̄� +0.01 −0.14 +0.16 −0.29 +0.17 −0.00 +0.03 +0.07 −0.00 +0.02
ha-ccf Δ�̄� 0.05 0.43 0.41 0.77 0.41 0.05 0.06 0.11 0.05 0.09
N = 9 𝛿�̄� −0.00 −0.40 +0.36 −0.68 +0.36 −0.02 +0.04 +0.09 −0.02 +0.06
cc-anhg Δ�̄� 0.02 0.02 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02
N = 3 𝛿�̄� +0.01 −0.01 +0.02 −0.05 +0.02 +0.01 +0.01 +0.01 +0.01 +0.01
OCP-camphorh Δ�̄� 0.21 1.09 1.23 1.09 0.70 0.12 0.17 0.12 0.24 0.54
N = 13 𝛿�̄� +0.18 −1.02 +1.17 −1.02 +0.68 +0.06 +0.14 +0.06 +0.22 +0.34
AD-water icei Δ�̄� 0.05 0.04 0.11 0.21 0.11 0.05 0.05 0.05 0.05 0.07
N = 3 𝛿�̄� +0.04 −0.02 +0.10 −0.18 +0.10 +0.04 +0.04 +0.04 +0.04 +0.06
water ice-NS10j Δ�̄� 0.31 0.17 0.64 0.50 0.64 0.30 0.34 0.38 0.30 0.40
N = 8 𝛿�̄� +0.30 −0.13 +0.61 −0.43 +0.61 +0.29 +0.33 +0.37 +0.29 +0.39
matrix-porph.k Δ�̄� 0.03 0.49 0.64 0.49 0.64 0.03 0.03 0.03 0.03 0.15
N = 15 𝛿�̄� −0.03 −0.37 +0.59 −0.37 +0.59 −0.03 −0.03 −0.03 −0.03 −0.07

average Δ�̄� 0.20 0.53 0.87 0.62 0.68 0.22 0.21 0.23 0.20 0.41
𝛿�̄� +0.12 −0.43 +0.81 −0.51 +0.63 +0.16 +0.14 +0.17 +0.11 +0.30

aEnstatite-forsterite (en-fo) aggregates [Ji et al., 2001].
bOmphacite-garnet (omph-grt) aggregates [Jin et al., 2001].
cAnorthite-quartz (an-qtz) aggregates under uniaxial (uni.) and triaxial conditions (tri.) [Xiao et al., 2002].
dAnorthite-diopside (an-di) aggregates in dry and wet, diffusion (diff.), and dislocation (disl.) creep regimes [Dimanov and Dresen, 2005].
eHalite-calcite (ha-cc) aggregates [Jordan, 1987].
fHalite-calcite (ha-cc) aggregates [Bloomfield and Covey-Crump, 1993].
gCalcite-anhydrite (cc-anh) aggregates [Barnhoorn et al., 2005].
hOCP-camphor aggregates [Bons and Urai, 1994].
iAD-water ice aggregates (AD: ammonium dihydrate) [Durham and Stern, 2001].
jWater ice-NS10 aggregates (NS10: sodium sulfate hydrate salt) [Durham et al., 2005].
kMatrix-porphyroblast aggregate [Groome et al., 2006].
lThe SCM for 3-D geometry is used for all laboratory experiments, and the SCM for 2-D geometry is used for the matrix-porphyroblast experiment of Groome

et al. [2006].

100.2 ≈ 1.6, 100.4 ≈ 2.5, and 101 = 10, respectively. Positive (resp. negative) values of 𝛿�̄� indicate that the
considered mixing model overestimates (resp. underestimates) the experimental viscosity. The values of
the misfits for the 15 experimental data sets and the 10 mixing models are presented in Table 3. Values
of the misfits averaged over the 15 experimental data sets are also given. The separation in three classes
of models is also highlighted by the misfits values.

The bounding models (Reuss, Voigt, Zhou<, and Zhou> models in Table 3) have the largest Δ�̄� values. Their
misfits are larger than 0.4 for more than half of the experimental data sets. Further, values larger than 1
also occur. This means that the bounding models can fail at reproducing the experimental viscosity within
1 order of magnitude. As expected, the lower bounds underestimate the experimental viscosity (average
𝛿�̄� misfit lower than −0.4). Conversely, the upper bounds overestimate the experimental viscosity (aver-
age 𝛿�̄� misfit larger than +0.6). The experimental data sets on anorthite-quartz aggregates under triaxial
conditions [Xiao et al., 2002] and NS10-water ice aggregates [Durham and Stern, 2001] are, in that respect,
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exceptional. The Reuss bound has the lowest Δ�̄� misfit for them. Such an agreement is due to the convex-up
trend of the experimental viscosity (see Figures 3c and 8b), similar to the trend of the Reuss bound. It must
be emphasized that the viscosity of one end-member of these three data sets does not come from the same
experiments as the other viscosities. Therefore, we conclude that the bounding models do not provide a
good fit to the experiments on two-phase aggregates, with a few dubious exceptions.

The geometric models (MPG, GM, Tullis, Ji1, and Ji2 models in Table 3) generally have the lowest Δ�̄� values.
Their misfits are larger than 0.4 for only two experimental data sets and lower than 0.1 for seven experimen-
tal data sets. The 𝛿�̄� is almost always positive which means that this class of models tends to overestimate
the experimental bulk viscosity. For aggregates of linear viscous materials, all the geometric models predict
the same viscosities as indicated by the identical misfit values. All the geometric models have an average Δ�̄�
misfit which is close to 0.2. This means that they reproduce the experimental viscosities very well. The best
fit is achieved for the MPG and the second Ji (Ji2) models.

The SCM has variable Δ�̄� misfits which can be larger than 1. It also overestimates almost systematically the
bulk viscosity. The largest Δ�̄� misfits are calculated for the experiments on anorthite-diopside aggregates in
dislocation creep regime [Dimanov and Dresen, 2005]. Interestingly, these data sets show an S-shape trend
which could be similar to the one predicted by the SCM. In these cases, the large values of both misfits indi-
cate that the predicted S-shape curve has its inflection point at smaller fractions of the strong phase than
the experimental trend. Despite the interesting trend of the bulk viscosity predicted by the SCM model, this
model fails to accurately fit with the experiments on two-phase aggregates.

Finally, note that some experimental data sets are easier to fit than others. The experiments on
end-members having close viscosities are fitted very well by all the models, like, for example, the
calcite-anhydrite experiments [Barnhoorn et al., 2005]. Similarly, there are experiments which are relatively
poorly fitted by all the models, like, for example, anorthite-diopside experiments in dislocation creep regime
[Dimanov and Dresen, 2005]. These experiments have been carried out with end-members having very
different viscosities and also show microstructural complexities. This does not mean, however, that exper-
iments with end-members having very different viscosities are not fitted by the models of the geometric
group and, especially, by the MPG model.

7. Discussion and Conclusions

Since assumptions were necessary to develop the MPG model (see section 2.2), we propose to discuss their
geological validity here in more details. Indeed, if the MPG model appears to be one of the best models for
reproducing accurately experimental data, it comprises some limitations that have to be kept in mind.

7.1. Isotropy and Homogeneity of the Aggregate
The first assumption requires that there exists a scale at which the considered polyphase rock can be consid-
ered as homogeneous. Thus, the scale at which the MPG model is used has therefore to be considered with
caution. It has to be much larger than the grain scale and much smaller than the characteristic length scale
of chemical, mineralogical, and lithological variations.

Isotropy has also been assumed even if most rocks deformed in the ductile field are initially anisotropic or
become anistropic after a minor amount of strain due to the development of a grain shape [Lister and Snoke,
1984; Schmid et al., 1987; Shelley, 1989; Herwegh and Handy, 1998] or lattice [Wilson, 1975; Etchecopar, 1977;
Lister and Price, 1978; Jessell, 1987] preferred orientations. This limitation can be overcome if the scale of the
anisotropy is much larger than the grain scale. Otherwise, since the MPG model lies between the theoretical
Reuss and Voigt bounds, the error is expected to be reasonable.

7.2. Unicity of the Deformation Mechanism
Viscous creep with known creep parameters has been considered as the only deformation mechanism.
First, this assumption simplifies considerably the grain-scale processes that accommodate deformation.
Indeed, the MPG model does not consider any interaction between the phases. Enhanced diffusion along
the grain boundaries [Bruhn et al., 1999], secondary mineral phases [Herwegh et al., 2003], and chemical
reactions between the phases [Sundberg and Cooper, 2008] tend to reduce the bulk viscosity with respect
to the end-member viscosities. The generally good agreement between the predictions of the MPG model
and the experiments indicates that these processes have a reduced impact, at least in the laboratory exper-
iments considered here. Second, the pressure-dependent deformation mechanisms are neglected by the
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MPG model. This simplification can, however, be tested by comparing the stress which is necessary for brit-
tle failure and cataclasis with the stress predicted by the MPG model (in both polyphase rock and phases).
Third, dynamic processes like grain-size reduction and metamorphic reaction are not included. They can,
however, be implemented in a time- or a strain-dependent scheme together with the MPG model. This is
then used to calculate the stress in the grains, and piezometers are used to calculate a consistent grain size.

The creep parameters of the phases which are used as inputs of the MPG model are also a limitation.
Detailed experiments have not been carried out on all the major rock-forming minerals. Even though the
rheological behaviors of quartz, feldspar, pyroxene, olivine, garnet, and calcite are fairly well understood
[Herwegh et al., 2005; Bürgmann and Dresen, 2008; Karato, 2008], other important minerals (phyllosilicates,
amphiboles, and calcsilicates) are poorly constrained. Further, the temperature, strain rate, and stress condi-
tions that are relevant for geological problems require extrapolations of the creep parameters far out of the
range of experimental conditions. Such extrapolations have, however, been suggested to be valid as long as
the deformation mechanisms are similar [Dimanov and Dresen, 2005].

7.3. Physical Formulation of the Model
The third assumption of the MPG models states that all the grains from phase i have the same strain rate
ei and stress si . While ensuring stress and strain rate continuity between the grains belonging to the same
phase, this assumption does not respect the continuity equations at the boundary between grains belong-
ing to different phases. If this is valid for a single ellipsoidal inclusion embedded in an infinite matrix with
a coupled interface [Eshelby, 1957], this is not valid anymore in other cases (e.g., decoupling between the
phases or power law materials). Numerical experiments show that the strain rate and stress fields within
the same phase are heterogeneous, even for very simple geometries [Schmid, 2005; Dabrowski et al., 2012;
Le Pourhiet et al., 2013; Mancktelow, 2013]. In natural rocks, heterogeneous stress fields in porphyroclasts
are highlighted, for example, by core-and-mantle structures [White, 1976], mechanical twinning of leftover
grains [Burkhard, 1993], or myrmekite growth in the compressional quadrants of K feldspar [Simpson and
Wintsch, 1989].

However, it has to be noted that this third assumption has been made, most often implicitly, in previous
papers developing mixing models [Handy, 1990; Tullis et al., 1991; Handy, 1994a, 1994b; Ji, 2004; Ji and Zhao,
1993; Ji et al., 2003; Jiang et al., 2005; Zhou, 1995]. It has always been considered as a reasonable simplifica-
tion up to now. It is clear that the consistency with the continuity equations should be the prerequisite of
any exact mixing model. Such a model is, however, impossible to develop since it would require a perfect
statistical knowledge of the aggregate geometry, which is, unfortunately, impossible in practice [Markov,
1999]. Two types of simplifications have therefore been considered so far.

1. On the one hand, one can assume a simple geometry for which the strain rate and stress fields can be cal-
culated. This is the approach of the Reuss [1929] and Voigt [1928] models in which the different phases
are linked in series and in parallel, respectively. This is also the approach of the self-consistent model
[Budiansky, 1965; Hill, 1965; Jiang, 2013] that assumes that the stress and strain rate distribution corre-
sponds to the one of an elliptical inclusion welded to its matrix. Each of these mixing models is exact only
for a simple given geometry. It constitutes thus an approximation for all other more complex geometries.

2. On the other hand, one can assume simplified strain rate and stress fields that are not necessarily con-
sistent with the continuity of strain rate and stress at grain scale. This means that the local mechanical
constraints are relaxed in such a mixing model. This is the choice we made here in our study, as in several
other previous studies [Handy, 1990; Tullis et al., 1991; Handy, 1994a, 1994b; Ji, 2004; Ji and Zhao, 1993; Ji
et al., 2003; Jiang et al., 2005; Zhou, 1995].

Mixing models are, therefore, approximations. Thus, assessing a mixing model has to be done through a
comparison of its predictions with laboratory and numerical experiments. If the model is able to predict
a reliable bulk strain rate (or stress) for a given experimental bulk stress (or strain rate), it can be used to
describe accurately the bulk behavior of the aggregate, even though it does not describe exactly its local
internal behavior (by assuming a specific geometry or a simplified stress and strain rate field). The compari-
son with experiments carried out in the present study (see sections 5 and 6) shows that our model provides
one of the best fits. Especially, in spite of the local contradiction with the continuity principle, the predic-
tions of the MPG model are in very good agreement with the matrix-porphyroblast numerical experiments
[Groome et al., 2006] that are precisely relying in this principle.
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The reason the MPG model is able to reproduce accurately the experiment data sets while contradicting
at local scale the continuity equation remains unclear. One explanation could be that the constant phase
strain rates and stresses can be viewed as mean values. The geometric partitioning (used in the constrained
minimization) would then allow a relatively good description of the partitioning once the strain rate and
stress is averaged phase by phase. This explanation can be tested by numerical modeling which is able to
track precisely the strain rate and stress fields.

Moreover, we used the principle of least action out of its application range in the case of nonequilibrium
thermodynamics (see section 2.2). This implies that the viscosity calculated with the MPG model does
not necessarily correspond to steady state. Here again, in spite of this assumption, comparison between
the predictions of the MPG model and experimental data shows good agreement. This might indicate
that an aggregate described with the MPG model is close enough to equilibrium (so that nonequilibrium
thermodynamics is not needed) and that our use of the principle of least action is partly valid.

7.4. Advantages of the MPG Model
The MPG model is thus affected by several limitations, and hence, its predictions have to be tested by natural
data. However, these limitations are inherent to all the mixing models. To that extent, the MPG model is as
good as the existing models. However, compared to them, it also has important advantages.

1. The MPG model provides a good fit with the experimental data, even for large viscosity contrasts, as
shown by the ratio of experimental and predicted viscosities (1.6 on average, see section 6.2 and Table 3).
Such a good fit does not occur with the existing models, except for those based on geometric averaging
[Tullis et al., 1991; Ji and Zhao, 1993; Ji et al., 2003; Ji, 2004].

2. Experimental work has shown that creep of most single-mineral aggregates can be described by a power
law. It has also shown that the rocks made with these minerals also follow a power law. The processes
responsible for this transmission are very complex and are not explicitly taken into account in our model.
Instead, the geometric mean constraints are responsible for it. We suggest, therefore, that these con-
straints can be considered as a way to approximate complex microstructural processes occurring in a
polyphase rock in one simple equation. Thus, the bulk power law behavior does not have to be assumed
a priori by the MPG model.

3. The MPG model predicts the partitioning of strain rate and stress in the phases. This has interesting impli-
cations for upscaling the stress estimated by paleopiezometry. For example, stress values deduced from
quartz present together with stronger minerals will underestimate the bulk stress.

4. The MPG model is analytical, which means that computations are straightforward and do not need any
iteration process. It is also possible to apply it to polyphase rocks containing any number of phases with
a power law behavior. Its implementation into numerical models accounting for metamorphic reac-
tions is therefore easy. Since some metamorphic reactions lead to important viscosity changes, such an
implementation would have important consequences on the mechanical behavior of the modeled rocks.

Appendix A: Ratio of the Preexponential Factors of the MPG Models

The ratio of the bulk viscosities predicted by the two MPG models depends mainly on the ratio of the bulk
preexponential factors. In this appendix, we bound this ratio. The ratio between the two bulk preexponen-
tial factors is equal to

R =
Ās

Āe

=

∑
i

𝜙i

ni+1

∏
i(ni + 1)𝜙i ai∕

∑
j 𝜙j aj(∑

i
𝜙i ni

ni+1

)−n̄∏
i

(
ni

ni+1

)𝜙i ai ni∕
∑

j 𝜙j aj
. (A1)

In order to simplify this ratio, we introduce the notation

X =
∑

i

𝜙i

ni + 1
(A2)

and use the following properties:

X =
∑

i 𝜙iai∏
i(ni + 1)

, (A3)
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1 − X =
∑

i

𝜙ini

ni + 1
=
∑

i 𝜙iaini∏
i(ni + 1)

, (A4)

and

n̄ =
∑

i 𝜙iaini∑
i 𝜙iai

= 1 − X
X

. (A5)

The ratio between the bulk preexponential factors can then be simplified:

R =
X
∏

i(ni + 1)𝜙i ai∕
∑

i 𝜙j aj

(1 − X)(X−1)∕X
∏

i

(
ni

ni+1

)𝜙i ai ni∕
∑

i 𝜙j aj
,

= X(1 − X)(1−X)∕X
∏

i

(
ni + 1

nni∕(ni+1)
i

)𝜙i ai(ni+1)∕
∑

i 𝜙j aj

,

=
(

XX (1 − X)(1−X))1∕X∏
i

(
ni + 1

nni∕(ni+1)
i

)1∕X

,

=
⎛⎜⎜⎝XX (1 − X)(1−X)

∏
i

(
ni + 1

nni∕(ni+1)
i

)𝜙i⎞⎟⎟⎠
1∕X

(A6)

In order to remove the powers in equation (A6), we now consider r = ln RX :

r = X ln (X) + (1 − X) ln (1 − X) +
∑

i

𝜙i ln

(
ni + 1

nni∕(ni+1)
i

)
. (A7)

The function H(x) = x ln (x) + (1 − x) ln (1 − x) is introduced. Thus,

r = H (X) +
∑

i

𝜙i ln

(
ni + 1

nni∕(ni+1)
i

)
. (A8)

The indexed variable of the summation in equation (A7) is expended as follows:

ln

(
ni + 1

nni∕(ni+1)
i

)
= ln(ni + 1) −

ni

ni + 1
ln ni,

= − ln

(
1

ni + 1

)
−

ni

ni + 1
ln ni,

= −
ni + 1

ni + 1
ln

(
1

ni + 1

)
−

ni

ni + 1
ln ni,

= − 1
ni + 1

ln
(

1
ni + 1

)
−

ni

ni + 1
ln
(

ni

ni + 1

)
,

= − 1
ni + 1

ln
(

1
ni + 1

)
−
(

1 − 1
ni + 1

)
ln
(

1 − 1
ni + 1

)
,

= −H
(

1
ni + 1

)
. (A9)

Equations (A2), (A8), and (A9) lead to a simple expression of r:

r = H

(∑
i

𝜙i
1

ni + 1

)
−
∑

i

𝜙iH
(

1
ni + 1

)
. (A10)

Since H is a convex-up function,

H

(∑
i

𝜙i
1

ni + 1

)
≤
∑

i

𝜙iH

(
1

ni + 1

)
. (A11)
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Therefore, r ≤ 0 and R is lower than 1. In equation (A10), the values at which H is evaluated lie between 0
and 1. In this range, H is bounded by − ln(2) and 0. This property provides a lower bound for r:

r ≥ − ln(2). (A12)

A lower bound for R is thus 1∕21∕X . Since the minimum stress exponent in rocks is 1, X is lower than 1∕2, and
1∕X is larger than 2. Finally, R is larger than 1/4. The ratio of the bulk preexponential factors corresponding
to the two MPG models lies between 0.25 and 1.

Appendix B: The Misfit Parameters

One experimental data set is characterized by M subsets of experiments conducted under the same temper-
ature and stress/strain rate conditions. In each subset j, there are Nj experiments on aggregates of different
intermediate compositions. The end-member viscosities being always fitted by the models, they are not
taken into account in the calculation of the misfits. The mean standard deviation misfit estimates the order
of magnitude of the absolute misfit between the experimental values �̄�e and the values predicted by the
mixing models �̄�m:

Δ�̄� = 1
M

M∑
j = 1

√√√√ 1
Nj

Nj∑
i = 1

(log �̄�m
i − log �̄�e

i )2. (B1)

This misfit, without the logarithmic scaling, has been used to assess the quality of brittle failure criterion
[Colmeranes and Zoback, 2002; Benz and Schwab, 2008]. The logarithmic scaling is used to put all the misfits
at the same order of magnitude (between 0 and 3). Δ�̄� values of 1 and 2 indicate an absolute difference of
1 and 2 orders of magnitude between the experimental viscosities and the predicted ones. Δ�̄� values of 0.2,
0.4, 0.6, and 0.8 indicate on average a ratio of 100.2 ≈ 1.6, 100.4 ≈ 2.5, 100.6 ≈ 4.0, and 100.8 ≈ 6.3 between
the experimental and predicted viscosity. The mean misfit estimates the order of magnitude of the relative
misfit between the experimental and the predicted values:

𝛿�̄� = 1
M

M∑
j = 1

1
Nj

Nj∑
i = 1

(
log �̄�m

i − log �̄�e
i

)
. (B2)

Positive (resp. negative) values of 𝛿�̄� indicate that the considered mixing model tends to overestimate (resp.
underestimate) the experimental viscosity.

Notation

Term definition and unit.

ai a function of the phase stress exponents.
A preexponential factor, Pa−n s−1.
B product of the preexponential factor and the Arrhenius term in a power law, Pa−n s−1.
C constraint for the minimization, s−1 or Pa.
e second invariant of the deviatoric strain rate tensor, s−1.
i index of the current phase.

L auxiliary function introduced for the Lagrange multiplier method, W m−3.
M number of experiments in the same conditions.
n stress exponent.
N number of phases in the polyphase rock.
P dissipated mechanical power, W m−3.
Q activation energy, J mol−1.
R universal gas constant, J mol−1 K−1.
s second invariant of the deviatoric stress tensor, Pa.

T absolute temperature, K.
𝛿�̄� mean misfit.
Δ�̄� standard deviation misfit.
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𝜂 effective viscosity, Pa s.
𝜆 Lagrange multiplier, Pa or s−1.
𝜉 scaled Lagrange multiplier, Pa s.
𝜙i volumetric fraction of phase i.
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