
HAL Id: insu-00994407
https://insu.hal.science/insu-00994407

Submitted on 2 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early Paleozoic tectonic evolution of the Xing-Meng
Orogenic Belt: constraints from detrital zircon

geochronology of western Erguna-Xing’an Block, North
China

Pan Zhao, Junqin Fang, Bei Xu, Yan Chen, Michel Faure

To cite this version:
Pan Zhao, Junqin Fang, Bei Xu, Yan Chen, Michel Faure. Early Paleozoic tectonic evolution of
the Xing-Meng Orogenic Belt: constraints from detrital zircon geochronology of western Erguna-
Xing’an Block, North China. Journal of Southeast Asian earth sciences, 2014, 95, pp.136-146.
�10.1016/j.jseaes.2014.04.011�. �insu-00994407�

https://insu.hal.science/insu-00994407
https://hal.archives-ouvertes.fr


Early Paleozoic tectonic evolution of the Xing-Meng Orogenic Belt: constraints from detrital 

zircon geochronology of western Erguna-Xing'an Block, North China 

 

Zhao Pana,b,c,d, Fang Junqina, Xu Beia*, Chen Yanb,c,d, Faure Michelb,c,d 

a Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, 

Peking University, Beijing, 100871, China  

bUniversité d’Orléans, ISTO, UMR 7327, 45071 Orléans, France 

cCNRS/INSU, ISTO, UMR 7327, 45071 Orléans, France 

dBRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France 

*Corresponding author E-mail address: bxu@pku.edu.cn 

 

Abstract 

To better constrain the Early Paleozoic tectonic evolution of the southwestern 

Arigin Sum-Xilinhot-Xing’an Block, we applied detrital zircon U-Pb dating on the 

Ordovician to Devonian sedimentary strata along the southeastern China-Mongolia 

border. Most of the zircons from all five sedimentary samples display fine-scale 

oscillatory growth zoning and Th/U ratios higher than 0.1, indicating a magmatic 

origin. All these five Ordovician-Devonian samples display the similar age 

distribution patterns with age groups at ~440 Ma, ~510 Ma, ~800 Ma, ~950 Ma, with 

some Meso- to Paleo-proterozoic and Neoarchean grains. This age distribution pattern 

is similar to those from adjacent blocks in the southeastern Central Asian Orogenic 

Belt. Taking previous tectonic studies into consideration, bidirectional provenances 
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from the Erguna-Xing’an Block and Baolidao Arc were suggested. 

Consequently, a new model was proposed to highlight the Early Paleozoic 

tectonic evolution of the southern margin of Arigin Sum-Xilinhot-Xing’an Block. The 

collision between Erguna-Kerulen Block and Arigin Sum-Xilinhot-Xing’an Block 

occurred before the Late Cambrian, with Late Cambrian granitic and mafic intrusions 

along both sides of the suture zone. After that, sedimentary basins developed in the 

Erguna-Xing’an Block during the Ordovician-Silurian accompanying with coeval 

magmatic intrusions, which provided provenance for sedimentary basins together with 

the Late Cambrian intrusions. Meanwhile, the northward subduction of the 

Paleo-Asian Ocean beneath the Arigin Sum-Xilinhot-Xing’an Block was from ~490 

Ma to ~420 Ma, producing the Baolidao Arc magmatism along its southern margin, 

which also made contribution for the provenance. The eastward successive closure of 

marine sedimentary basins on the Arigin Sum-Xilinhot-Xing’an Block took place at 

the Early Devonian to the west and Late Devonian to the east, due to the pre-Late 

Devonian collision between the Songliao-Hunshandake Block and the Arigin 

Sum-Xilinhot-Xing’an Block. 

Key words: Xing-Meng Orogenic Belt, Early Paleozoic, detrital zircon, 

Erguna-Xing’an Block, Inner Mongolia 

 

1. Introduction 

The Xing-Meng Orogenic Belt (XMOB), located to the southeast of Central 

Asian Orogenic Belt (CAOB; Fig. 1a), recorded the accretionary history among 



several main blocks, such as North China Craton (NCC), Songliao-Hunshandake 

Block (SHB), Airgin Sum-Xilinhot-Xing’an Block (AXXB) and Erguna Block 

(EB)(Fig. 1a; Wu et al., 2007; Zhou et al., 2011). These blocks experienced 

multi-stage of amalgamation during the Paleozoic. Numerous studies have been 

carried out in the past two decades, however, no consensus about the tectonic 

evolution of XMOB could have been reached (e.g. Xiao et al., 2003; Wu et al., 2011; 

Zhou et al., 2011; Zhang et al., 2012; Xu et al., 2013). The collision between EB and 

AXXB  is considered to be occured before the  Late Cambrian, as orogenic related 

Late Cambrian alkaline granites, granotoids and gabbros were identified from both 

sides of the Xinlin-Xiguitu suture zone, representing a post-collisional setting (Fig. 1a; 

Sorokin et al., 2004; 2011; Wu et al., 2005; 2007; Ge et al., 2005; Wu et al., 2011). 

After that, the new formed Erguna-Xing’an Block (EXB) involved into the Paleozoic 

accretionary process. From the Late Cambrian, the Paleo-Asian Ocean subducted 

beneath the AXXB to the north and the NCC to the south, with two arc magmatic 

belts developed (Liu et al., 2003; Jian et al., 2008; Xu et al., 2013; Zhang et al., 2013). 

High presure metamorphic blueschist was identified from both northern and southern 

belts, with 40Ar-39Ar ages of 383±13 Ma and 453-446 Ma, respectively (Xu et al., 

2001; Tang and Yan, 1993; De Jong et al., 2006). By structural geology and 

sedimentary investigations, two unconformities were described, with the ductilely 

deformed Ondor Sum Group and ophiolitic mélange unconformably overlain by the 

Late Devonian molasse along the northern suture and the Late Silurian molasse along 

the southern one (Tang, 1990; Xu et al., 2013). It means that the amalgamation of 



EXB, SHB and NCC occurred before the end of Devonian, without wide ocean 

existing in between, which confirmed by recent paleomagnetic study (Zhao et al., 

2013) and palaeontological study (Zhou et al., 2010; Xin et al., 2011). However, 

different arguments have been put forward to consider that the final collision occurred 

in the Late Permian based on the geochemistry studies on the Carboniferous-Permian 

magmatic rocks (Chen et al., 2000; Xiao et al., 2003; Zhang et al., 2009). Therefore, 

the tectonic evolution between EXB and SHB is still controversal, especially the 

south margin of EXB. 

In this study, we carried out detrital zircon geochronological investigation on the 

Ordovician-Devonian strata in the northwestern part of the AXXB (Fig. 1), where 

investigations remain rare. Form these new data, we try to decipher the sedimentary 

responses to the collision between the EB and AXXB, and the superposed influence of 

the subsequent collision between EXB and SHB. 

2 Geological setting 

The northeastern China is divided into several blocks, namely Erguna Block, 

Airgin Sum-Xilinhot-Xing’an Block, Songliao-Hunshandake Block and Jiamusi 

Block from north to south (Wu et al., 2007; Xu et al., 2013; Fig. 1a). These blocks 

share the similar Paleo- to Neo-Proterozoic basement, which was revealed by both 

geochronological studies of magmatic massifs and detrital zircon dating of 

metasedimentary rocks (Wang et al., 2001; Wu et al., 2011; Li et al., 2011; Han et al., 

2011; Zhang et al., 2012 and references therein; Wu et al., 2012; Sun et al., 2013a; b; 

Tang et al., 2013). To the west, according to the new tectonic subdivision of Mongolia 



(Tomurtogoo, 2013), the Erguna Block might connect with the Kerulen Block 

(Erguna-Kerulen Block, EKB), the Airgin Sum-Xilinhot-Xing’an Block connected 

with the Totoshan Block at the southmost of Mongolia (Fig. 1a; Wang et al., 2001; Xu 

et al., 2013; Zhou et al., 2013). However, some researchers suspect the existence of 

AXXB  due to the lack of precambrian basement and some Paleozoic zircons 

identified from geochronological studies of the Xilinhot complex (Wu et al., 2007; 

Xue et al., 2009; Chen et al., 2009). In the recent studies, Ge et al. (2011) isolated the 

late Mesoproterozoic supracrustal rocks from the Xilinhot complex, which was 

intruded by ~740 Ma metagabbro, indicating the existence of precambrian basement. 

Meanwhile, Mesoproterozoic granitic gneisses were recently reported from the east of 

Sunidzuoqi with zircon U-Pb age of 1516-1390 Ma, considered as the basement of 

AXXB  (Sun et al., 2013b).  

The study area located along the southeastern part of China-Mongolia border, 

belonging to the northwestern margin of the AXXB, which was separated from the 

northern EKB by the Xinlin-Xiguitu suture zone (XXS)(Fig. 1a). To the south, it was 

separated from Songliao-Hunshandake Block by the Suzuoqi-Xilinhot-Heihe suture 

zone (SXHS), which was thought to be formed during the Late Devonian-Early 

Carboniferous based on the Late Devonian unconformity and Carboniferous 

post-collisional intrusions (Fig. 1; Zhang et al., 2012; Xu et al., 2013).  

The oldest strata of the study area are Ordovician in the age, consisting of 

Lower-Middle Ordovician Wubinaobao and Tongshan formations, Middle Ordovician 

Duobaoshan Formation, and Middle-Upper Ordovician Luohe Formation (Fig. 2). 



Except for the Duobaoshan Formation, which is mainly made of basaltic andesite, the 

other formations are mainly composed of fine-grained clastic sediments. The Silurian 

strata are rare in the study area, only Upper Silurian Woduhe Formation was identified 

from the Narenbaolige and eastern West Ujimqin area (Fig. 2), characterized by Late 

Silurian Tuvaella fauna bearing clsatic rocks and carbonates (Su, 1981; IMBGMR, 

1991; Wang et al., 2009). The well distributed Lower-Middle Devonian Niqiuhe 

Formation (Fig. 1b) mainly consists of clastic rocks from conglomerate to siltstone 

with several limestone interlayers, and displays large differences of sedimentary 

facies from western to eastern part (Fig. 2). It is characterized by its abundant shallow 

marine fauna, such as brachiopoda, bivalve, coral and trilobita (IMBGMR, 1991). The 

Middle-Upper Devonian strata were mainly distributed in the west of West Ujimqin, 

namely Middle-Upper Devonian Tarbaget Formation and Upper Devonian 

Angeryinwula Formation (Fig. 2). Both of these two formations are mainly composed 

of fine-grained clastic rocks (Fig. 2). However, corals and brachiopoda were found in 

the the Tarbaget Formation, while plant fossils were identified in the Angeryinwula 

Formation, indicating a regression related depositional facies transition from shallow 

marine to continental facies (IMBGR, 2007). The Upper Carboniferous-Lower 

Permian Baoligaomiao/Gegenaobao Formation, a ca. 5000 m-thick sequence, 

unconformbly covered the underlying strata. It is composed of conglomerate, coarse 

sandstone and sandstone at the lower part and volcanic and volcano-clastic rocks at 

the upper part. The abundant flora found therein and the geochemical signatures of 

volcanic rocks reveal the continental deposition (IMBGMR, 1991; Li et al., 1996; 



Zhang et al., 2011). The volcanic rocks are coeval or slightly earlier than the Early 

Permian alkaline granite, together, they constitute an Early Permian rift-related 

alkaline magmatic belt (Hong et al., 1994; 1996; Jahn et al., 2009). 

3. Sampling 

Five sandstone-siltstone samples were collected from three localities for detrital 

zircon U-Pb dating. The detailed sampling information is described below. 

Two samples were collected from the northwest of Chaganaobao County (Fig. 

1b). Sample 100716-33 (GPS: 44°32’33” N, 111°47’52” E) is siltstone from ca. 4500 

m-thick Lower-Middle Ordovician Wubinabo Formation (Fig. 2). It is mainly 

composed of dark green siltstone with penetrative schistosity (Fig. 3a), with grey 

sandstone interlayers (Fig. 2). Sample 100826-01 (GPS: 44°30’88” N, 111°57’39” E) 

is red coarse sandstone from the Lower-Middle Devonian Niqiuhe Formation (Fig. 2). 

Following the underlying conglomerate (Fig. 3f), the red coarse sandstone is 

considered as near shore deposition with plenty of lithic grains can be observed (Fig. 

3b).  

Two samples were collected from the northwest of Narenbaolige County (Fig. 

1b). Sample 100719-20 (GPS: 44°56’50” N, 114°20’14” E) was collected from a 

sandstone layer at the bottom of the Middle-Upper Ordovician Luohe Formation (Fig. 

2). It was grayish-green in color with high propotion of basaltic lithics observed in the 

thin section (Fig. 3c), which might come from the underlying Duobaoshan basaltic 

andesite (Fig. 2). Sample 100720-20 (GPS: 45°11’15” N, 114°39’18” E) was 

collected from the lower part of the Lower-Middle Devonian Niqiuhe Formation (Fig. 



2). This sandstone is gray in color with wave bedding and parallel bedding developed. 

Lithic grains, polycrystal and monocrystal quartz constitute the main clastics of this 

sandstone (Fig. 3d). 

Sample 100723-23 (GPS: 45°36’38” N, 116°44’06” E) was collected from the 

Lower-Middle Devonian Niqiuhe Formation in the northwest of West Ujimqin County 

(Fig. 1b). It is yellowish fine-grained sandstone with trilobita and brachiopoda fossils 

found nearby, indicating stable sedimentation and long distance transportation of 

provenance (Fig. 3e). 

4 Analytical procedures 

Zircons were separated using conventional heavy liquid and magnetic techniques 

before handpicking under a binocular microscope at the Langfang Regional 

Geogogical Survey, Hebei Province, China. Handpicked zircons were photographed 

under transmitted and reflected light under optical microscope before 

cathodoluminescence (CL) imaging using a Quanta 200 FEG Scanning Electron 

Microscope in Peking University in order to investigate the internal textures and 

choose potential target sites for U-Pb analyses. Zircon U-Pb dating was carried out 

using an Agilient 7500c ICP-MS instrument coupled with a 193-nm ArF Excimer 

laser with the automatic positioning system at the Key Laboratory of Orogen and 

Crust Evolution, Peking University. Calibrations for zircon analyses were carried out 

using NIST 610 glass as an external standard and Si as internal standard. U-Pb isotope 

fractionation effects were corrected using zircon Plesovice (337 Ma) as external 

standard. Zircon standard 91500 is used as a secondary standard to supervise the 



deviation of age measurement/calculation. Isotopic ratios and element concentrations 

of zircons were calculated using GLITTER (ver. 4.4.2, Macquarie University). 

Concordia ages and diagrams were obtained using Isoplot/Ex (3.0) (Ludwig, 2003). 

The common lead was corrected using LA-ICP-MS Common Lead Correction (ver. 

3.15), followed the method of Andersen (2002). The analytical data are presented on 

U-Pb Concordia diagrams with 2s with 23.15), followed were weighted means at 95% 

confidence levels (Ludwig, 2003). 

5. U-Pb zircon dating results 

5.1 Chaganaobao area 

5.1.1 Lower-Middle Ordovician siltstone (Sample 100716-33) 

    The zircon grains are euhedral to subhedral, ranging from 30-50 μm in width and 

50 to 100μm in length with fine-scale oscillatory growth zoning (Fig. 4a). The Th/U 

ratios range from 0.12 to 1.44, indicating magmatic origin (e.g. Rubatto, 2002; Corfu 

et al., 2003). A total of 75 zircons were analyzed and 12 of them were discarded 

because of high discordance(Supplementary Table 1). The 63 concordant analyses 

yield apparent ages ranging from 440±6 Ma to 2534±12 Ma and fall into three main 

age populations: 440-577 Ma (n=30) with a peak at 491 Ma, 766-956 Ma (n=25) with 

peaks at 827 and 950 Ma, 1019-1598 Ma (n=5) without peak age, respectively (Figs. 

5a and 5b). In addition, one grain yielded an age of 697±8 Ma and two grains yielded 

Archean ages of 2530±12 and 2534±12 Ma (Supplementary Table 1). 

5.1.2 Lower-Middle Devonian Coarse Sandstone (Sample 100826-01) 

The zircon grains are euhedral to subhedral, ranging from 50-150 μm in width 



and 100 to 250 μm in length with well developed oscillatory growth zoning (Fig. 4b). 

The majority of zircons display high Th/U ratios ranging from 0.24 to 1.06, indicative 

of magmatic origin. However, 7 grains show Th/U ratios less than 0.1 (0.08-0.09), 

which may indicate their metamorphic origin (Rubatto, 2002). All of 75 analyses are 

concordant, ranging from 449±7 to 923±16 Ma. Two main age populations are 

defined at 487-527 Ma (n=40) with a peak at 508 Ma, and 536-608 Ma (n=30) with a 

peak at 576 Ma (Figs. 5c and 5d). Meanwhile, five zircons yielded ungrouped ages of 

449, 678, 794, 892 and 923 Ma (Supplementary Table 1; Figs. 5c and 5d).  

5.2 Baiyintuga area 

5.2.1 Middle-Upper Ordovician Siltstone (Sample 100719-20) 

    The majority of zircon grains are subhedral to subrounded, ranging from 30 to 

100 μm in width and 60-200 μm in length (Fig. 4c). Most zircon grains display 

oscillatory growth zoning, with a few showing inherited cores and rims (Fig. 4c). All 

zircons except one (0.03 for #1920-01 with an age of 2081±19 Ma) give high Th/U 

ratios from 0.24 to 1.47, indicating magmatic origin. Amonga totalof 75 analyses, 69 

concordant analyses yielded ages ranging from 428±6Ma Ma to 2092±17 

(Supplementary Table 1; Figs. 5e and 5f), and fell into one main age population at 

428-547 Ma (n=63), with two peaks at 442 Ma and 511 Ma (Figs. 5e and 5f). 

Meanwhile, six zircons yielded ungrouped ages of 753, 940, 1282, 1461, 2081 and 

2092 Ma.  

5.2.2 Lower-Middle Devonian Sandstone (Sample 100720-20) 

    Most of zircon grains are subhedral to subrounded, ranging from 40 to 80 μm in 



width and 50-200 μm in length (Fig. 4d). Most zircon grains display oscillatory 

growth zoning, while a small proportion shows inherited cores and rims (Fig. 4d). 

Except two grains with Th/U ratio less than 0.1, all other zircons show high Th/U 

ratios from 0.11 to 1.09, indicating magmatic origin. Among a total of 75 U-Pb 

analyses, 67 of them are concordant and yielded ages ranging from 453±6 Ma to 

2227±14 Ma (Supplementary Table 1; Figs. 5g and 5h). The grains fall into two main 

age populations at 453-581 Ma (n=49) with two peaks at 459 Ma and 512 Ma, and 

669-917 Ma (n=17) with peak at 794 Ma (Figs. 5g and 5h). In addition, one grain 

yielded ages of 2227±14 Ma.  

5.3 West Ujimqin Lower-Middle Devonian Sandstone (Sample 100723-23) 

The zircon grains are euhedral to subhedral, ranging from 50-100 μm in width 

and 80 to 150 μm in length with oscillatory growth zoning (Fig. 4e). Except one grain 

showing Th/U ratio of 0.04, all other zircons show high Th/U ratios from 0.13 to 0.91, 

indicating magmatic origin. Among a total of 74 analyses, 8 analyses were discarded 

because of high discordance, and one grain (#2325-20 with age of 214±3) was also 

discarded (Supplementary Table 1). The 65 concordant analyses yielded ages ranging 

from 394±6 Ma to 2018±45 Ma (Supplementary Table 1; Figs. 5i and 5j). Broadly, the 

grains fall into three age populations at 394-495 Ma (n=37) with a peak at 435 Ma, 

505-546 Ma (n=15) with peak at 511 Ma, and 778-1078 Ma (n=11) with a small peak 

at 959 Ma, respectively (Fig. 5j). Meanwhile, two zircon yielded ages of 624 and 

2018 Ma (Supplementary Table 1; Figs. 7i and 7j).  

6. Discussion 



6.1. Constraint on the depositional age of studied Ordovician-Devonian strata  

The depositional ages of the investigated Ordovician to Devonian formations 

were determined using association of fossils and regional lithology correlation. Due to 

the poorly preserved fossils (especially for Ordovician strata) and lithological 

variations from region to region, the stratigraphic division of the Ordovician–

Devonian stratain this area is not precise. Our detrital zircon data provide new 

constraint for their age assignment. 

The youngest zircon age of the Lower-Middle Ordovician Wubinaobao 

Formation siltstone is 440±6 Ma, but, defined by just one grain. Consequently, we use 

here the youngest grouped zircon age of 461±6 Ma defind by 14 grains 

(Supplementary Table 1) to constrain the depositional age of the Wubinaobao 

Formation. This age drops into the Middle Ordovician, and is therefore consistent 

with the former fossil constraint (IMBGMR, 1991). For the Middle-Upper Ordovician 

Luohe Formation, the youngest grouped zircon age is 428±6 Ma, constraining the 

depositional age to be younger than the Early Silurian, and is slightly younger than 

the previous assignment (IMBGMR, 1991). The abundant fossils found within the 

Niqiuhe Formation have well constrained its Early-Middle Devonian age, and our 

detrital zircon data from Chaganaobao (449±7 Ma for the youngest zircon age), 

Baiyintuga(453±6 Ma for the youngest zircon age) and West Ujimqin (394±6 Ma for 

the youngest zircon age) are consistent with this age assignment. So, the depositional 

age of the Niqiuhe Formation should be of the Early-Middle Devonian. 

6.2 Provenance of Ordovician and Devonian strata 



The detrital zircon dating results presented above give us new clue to trace the 

provenance of these sediments and decipher the tectonic evolution. All these five 

Ordovician-Devonian samples display similar distributions in zircon age probability 

diagrams, characterized by predominant Early Paleozoic age groups at ~440 Ma and 

~510 Ma, and subordinate Neoproterozoic age groups at ~570 Ma, ~800 Ma and ~950 

Ma, respectively, with only few grains of pre-1.0 Ga (Figs. 5 and 6a). It indicates 

relatively stable provenance for this belt from the Ordovician to the Devonian. 

The most striking feature of zircon age distribution for this study is the 

predominant peak age at ~510 Ma (Fig. 6a). This significant age group was well 

documented from the EKB (Wu et al., 2005; 2012) and AXXB  (Figs. 6b and 6c; Li et 

al., 2010; Han et al., 2011) by geochronological studies of granotoids and clastic rocks, 

which was considered as the orogenic related magmatic event related to the collision 

between the EKB and AXXB (Wu et al., 2005). Furthermore, this age group has also 

been revealed by zircon studies of igneous rocks from northwestern-central Mongolia 

(Fig. 6d; Rojas-Agramonte et al., 2011), central Mongolia (Demoux et al., 2009a), and 

southern Mongolia (Demoux et al., 2009b). Most of the ~510 Ma zircons display 

Th/U ratios higher than 0.1 (Supplementary Table 1), which implies that these zircon 

grains came from the Cambrian magmatic rocks exposed on the EKB, AXXB or/and 

the Mongolian blocks. Moreover, we noticed that 4 zircons from Sample 100826-01 

and 1 zircon from Sample 100723-23 present Th/U ratios less than 0.1 and U-Pb age 

of 497-517 Ma (Supplementary Table 1), showing the same feature with zircons from 

Pan-African events in the northeastern margin of the EKB and AXXB (Zhou et al., 



2011; Zhou and Wilde, 2013).  

The age peak of ~440 Ma may represent the regional Early Paleozoic magmatic 

event. Two Early Paleozoic magmatic events have been documented from nearby 

blocks. After the agglomeration of the EKB and AXXB  at the Cambrian, the Early 

Paleozoic post-collisional magmatic intrusions from ~ 490 to ~ 440 Ma were taken 

place on the newly formed EXB (Wu et al., 2005; Ge et al., 2005; Sorokin et al., 2011; 

Ren et al., 2012; Guo et al., 2013). To the south, the Early Paleozoic Baolidao arc 

magmatism at the southern margin of the AXXB  was dated at 498-415 Ma (Jian et al., 

2008; Xu et al., 2013). These two kinds of magmatic rocks can both be considered as 

provenance regions for this zircon group. Notably, only one zircon from the western 

Chaganaobao Devonian sample (100826-01) presents an age around this age peak, 

with the main age group at 508 Ma (Fig. 6b), indicating the main provenance for the 

Devonian strata here is the EXB. However, the percentage of the Early Paleozoic 

zircon grains increases eastwards (Figs. 6b, 6d and 6e). The easternmost Devonian 

sample from West Ujimqin (100723-23) presents the main age peak at 435 Ma, which 

is most probably from the southern Baolidao magmatic arc. This eastward tendancy 

indicates that the contribution of the Baolidao arc to the provenance of Devonian 

strata increases from west to east. 

The Neoproterozoic peaks (800-1000 Ma) are subordinate in our results (Fig. 5), 

and they can’t be used as an effective provenance indicator because this peak age 

represents the universal basement of nearly all blocks between NCC and Siberia 

Block (SIB). Neoproterozoic alkaline plutons have been identified from the EKB with 



the age of 950-737 Ma (Wu et al., 2011; Tang et al., 2013), which represent an 

extensive environment (Tang et al., 2013). For the eastern Jiamusi Block, genisess and 

granitoids with the age of 913-777 Ma were reported at its western margin (Xie et al., 

2008). This Neoproterozoic basement was also identified from the SHB by detrital 

zircon dating of Late Neoproterozoic-Cambrian metasedimentary rocks (Xu et al., 

2013; Wang et al., 2013). For the AXXB, ca. 900 Ma gensiss were reported along the 

China-Mongolia border (Wang et al., 2001; Zhou et al., 2013). The ca. 950 Ma 

magmatic events were also recorded in the central and southern Mongolia (Kröner et 

al., 2007; Demoux et al., 2009b). To the northern Tuva-Mongolia Block, a magmatism 

of the same age was also reported along the southern margin of SIB (Kuzmichev et al., 

2001; Gladkochub et al., 2007). These universal Neoproterozoic magmatic rocks in 

these blocks correspond to an important global magmatic event, which may be related 

to the assemblage and break-up of Rodinia supercontinent (Li et al., 2008). 

In summary, the presented results above indicate bidirectional provenances from 

the EXB, and the Early Paleozoic Baolidao arc to the south for the 

Ordovician-Devonian deposition. It provides new clue to decipher the tectonic 

evolution of this region. 

6.3 Tectonic implications 

A new model was proposed based on our new geochological data to interpreate 

the Early Paleozoic tectonic evolution of the AXXB with its neighbor blocks.  

The collision between EKB and AXXB occurred before the Late Cambrian, 

followed by Late Cambrian granitic and mafic intrusions (Wu et al., 2005; Ge et al., 



2005; Wu et al., 2011) on both side of Xinlin-Xiguitu suture zone (Fig. 7a). During 

this period, the southern margin of this new formed block was an passive continental 

margin, and separated from the southern SHB by the Paleo-Asian Ocean (Fig. 7a).  

After that, the new welded Erguna-Xing’an Block (EXB) came into a 

epicontinental setting, with Ordovician-Silurian sedimentary basin developed 

accompanied with coeval magmatic intrusions (Fig. 7b; IMBGMR, 1991; Ge et al., 

2007; Sorokin et al., 2004; 2011; Ren et al., 2012; Guo et al., 2013). The Cambrian 

(510-485 Ma) orogenic related granitic and mafic intrusions and subsequent 

Ordovician-Silurian (485-440 Ma) magmatic intrusions provide provenance for the 

basin deposition (Fig. 7b). Ever since the Paleo-Asian Ocean subducted beneath the 

southern margin of the welded EXB, the Baolidao arc formed along this margin from 

~ 490 Ma to ~ 420 Ma, with the peak at ~ 460 Ma (Shi et al., 2005; Jian et al., 2008; 

Xu et al., 2013). The Baolidao arc granitoids intruded into the Xilinhot precambrian 

basement, and extensive thermal metamorphism related to the arc magmatism 

occurred in the precambian basement (Sun et al., 2013b), which also made 

contribution for the provenance of the basin deposition (Fig. 7).  

During the Late Silurian, the magmatic events on the EXB have ceased, and it 

was dominated by the widespread clastic and carbonate deposits without volcanic 

component (Fig. 2). The striking feature of these Upper Silurian strata is the Tuvaella 

funa therein, which can be traced from nearly all the Upper Silurian strata from the 

EXB (Su et al., 1981; IMBGMR, 1991), marking the stablization of this new formed 

block (Fig. 7c; Wang et al., 2009). To the south, the subduction of the Paleo-Asian 



Ocean was still going, but the Baolidao Arc magmatism ceased at the Late Silurian 

(Fig. 7c), represented by ~ 420 Ma high-K granite (Shi et al., 2005; Jian et al., 2008).  

During the Early-Middle Devonian, the marine sedimentary basins on the EXB 

show significant lateral lithological variations from west to east (Fig. 2). At the 

Chaganaobao area, the distinctive red basal conglomerate (Figs. 3f and 7) represents a 

regional unconformity, indicating that the  sedimentary basin might have been closed 

before the Early Devonian in this area. However, to the east, the Early-Middle 

Devonian strata are mainly composed of shallow marine sandstone with abundant of 

shallow marine fossils, indicating that the  marine sedimentary basins still exist. 

These variations indicate an Early-Middle Devonian eastaward regression, revealing 

an eastward successive closure of the marine basin (Fig. 7d). During the Late 

Devonian, due to the collision between the SHB and the EXB, the Late Devonian 

molassic deposition uncomformbly overlied the ophiolitic melange (Xu et al., 2013; 

Fig. 7d). This collision also caused the final closure of the marine sedimentary basins 

on the EXB, as no Late Devonian sediments were found to the west and the plant 

fossils bearing continental Upper Devonian Angeryinwula Formation occurred to the 

east (West Ujimqin area) (IMBGR, 2007; Fig. 7d). After the Late Devonian the EXB 

came into a subaerial setting without sedimentation until the Late Carboniferous 

continental deposition (IMBGMR, 1991). 

7. Conclusions 

(1) The detrital zircon geochronological study of the five Ordovician-Devonian 

samples from Erenhot-West Ujimqin (the southeastern part of the China-Mongolia 



border) display the similar age distribution patterns with age groups at ~440 Ma, ~510 

Ma, ~800 Ma,~950 Ma, some Meso- to Paleo-proterozoic and Neoarchean grains.  

(2) This age distribution display the same patterns with the magmatic periods of 

Erguna-Xing’an Block. Meanwhile, the youngest age group is well consistent with 

the Bolidao Arc magmatism at the southern margin of the Erguna-Xing’an Block. 

Hence, a bidirectional provenances from the Erguna-Xing’an Block and Baolidao 

Arc was proposed. 

(3) All our data constrain two main Early Paleozoic tectonic events of the 

Xing-Meng Orogenic Belt: pre-Late Cambrian collision between Erguna-Kerulen 

Block and Arigin Sum-Xilinhot-Xing’an Block; the Early Paleozoic subduction of 

Paleo-Asian Ocean and pre-Late Devonian collision between Erguna-Xing’an Block 

and Songliao-Hunshandake Block.  

(4) A new model was proposed to highlight this Early Paleozoic tectonic 

evolution. The collision between Erguna-Kerulen Block and Arigin 

Sum-Xilinhot-Xing’an Block occurred before the Late Cambrian, with Late Cambrian 

granitic and mafic intrusions along both sides of the suture zone. After that, 

sedimentary basins developed in the Erguna-Xing’an Block during the 

Ordovician-Silurian accompanying with coeval magmatic intrusions, which provided 

provenance for sedimentary basins together with the Late Cambrian intrusions. 

Meanwhile, the northward subduction of the Paleo-Asian Ocean beneath the Arigin 

Sum-Xilinhot-Xing’an Block was from ~490 Ma to ~420 Ma, producing the Baolidao 

Arc magmatism along its southern margin, which also made contribution for the 



provenance. The eastward successive closure of marine sedimentary basins on the 

Arigin Sum-Xilinhot-Xing’an Block took place at the Early Devonian to the west and 

Late Devonian to the east, due to the pre-Late Devonian collision between the 

Songliao-Hunshandake Block and the Arigin Sum-Xilinhot-Xing’an Block.  
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Figure 1. a. Tectonic sketch map of Northeastern China, modified after Wu et al., 

(2007), Xu et al., (2013) and Tomurtogoo, (2013). b. Geological map of southwestern 

margin of Airgin Sum-Xilinhot-Xing’an Block from Erenhot to Dongwuqi, after 

IMBGMR, (1991). 

 

Figure 2. Stratigraphic column of Ordovician to Devonian strata from Chaganaobao, 

Narenbaolige and West Ujimqin area, showing lithology and sample sites. 

 

Scale of Fig. 3a 

Figure 3. a-e, Field photographs and photomicrographs of dated strata, with number, 

age and lithology at the top; f, basal conglomerate of Lower-Middle Devonian 

Niqiuhe Formation at the Chagenaobao area. 

 

Figure 4. Cathodoluminescence (CL) images of selected detrital zircons from each 

sample. The circles represent U–Pb analytical sites, with ages presented below. 

 

Figure 5. U–Pb concordia and probability diagrams of zircon ages from Ordovician to 

Devonian sandstone and siltstone of this study. The inset figures within each U-Pb 

Concordia diagram show zircon grains with ages of 400-600 Ma. 

 

Figure 6. Comparison of probability plots for the data from southwestern Xing’an 

Block (a; this study), middle Xing’an Block (b; Li et al., 2011), northeastern Xing’an 



Block (c; Han et al., 2011), Mongolia (d; Rojas-Agramonte et al., 2011) and 

Hunshandake Block (e; Xu et al., 2013). 

 

 

Figure 7. Schematic geodynamic evolutionary model of the northwestern margin of 

Airgin Sum-Xilinhot-Xing’an Block and Songliao-Hunshandaka Block. a. The 

collision between Erguna-Kerulen Block and Airgin Sum-Xilinhot-Xing’an Block 

occurred before the Middle Cambrian, followed by ~510-485 Ma post-collisional 

granite. This new formed block separated from the Songliao-Hunshandake Block 

by the Paleo-Asian Ocean. b, Started from the Late Cambrian, The Paleo-Asian 

Ocean subducted beneath the Airgin Sum-Xilinhot-Xing’an Block from the Late 

Cambrian to the Middle Silurian, producing Baolidao Arc at its southern margin. 

Meanwhile, on the new formed Erguna-Xing’an Block, Ordovician-Silurian 

magmatic rocks intruded and extensional sedimentary basins developed. The 

contemporary Baolidao arc magmatic rocks and post-orogenic rocks provided 

provenance for the sedimentary basins. c. Late Silurian Tuvaella fauna bearing 

sediments widespread on the Erguna-Xing’an Block, representing the 

stabilization of this welded block. The Baolidao arc magmatism might ceased 

during this period. d. During the Early-Middle Devonian, this belt underwent 

different evolution from west to east. To the west, the basal conglomerate 

represents the closure of this basin and cease of northward subduction. While to 

the east, shallow marine sediments still exists until the Late Devonian, indicating 



eastward successive closure of the sedimentary basin. As the pre-Late Devonian 

collision between Songliao-Hunshandake Block and Airgin 

Sum-Xilinhot-Xing’an Block, the Upper Devonian molassic sediments 

unconformbly overlies the ophiolitic mélange (Xu et al., 2013). Meanwhile, the 

marine basins on the Erguna-Xing’an Block were closed as no Late Devonian to 

the west and Late Devonian continental facies sediments to the east. 



 

Fig. 1 a. Tectonic sketch map of Northeastern China, modified after Wu et al., (2007), Xu et al., 

(2013) and Tomurtogoo, (2013). b. Geological map of southwestern margin of Airgin 

Sum-Xilinhot-Xing’an Block from Erenhot to Dongwuqi, after IMBGMR, (1991). 



 

Fig. 2 Stratigraphic column of Ordovician to Devonian strata from Chaganaobao, Narenbaolige 

and West Ujimqin area, showing lithology and sample sites. 



 

Fig. 3. a-e, Field photographs and photomicrographs of dated strata, with number, age and 

lithology at the top. f, basal conglomerate of Lower-Middle Devonian Niqiuhe Formation at 

Chagenaobao area. 



 

Fig. 4. Cathodoluminescence (CL) images of selected detrital zircons from each sample. The 

circles represent U–Pb analytical sites, with ages presented below. 



 



Fig. 5. U–Pb concordia and probability diagrams diagrams of zircon ages from Ordovician to 

Devonian sandstone and siltstone of this study. The inset figures within each U-Pb Concordia 

diagram show zircon grains with ages of 400-600 Ma. 



 



Fig. 6. Comparison of probability plots for the data from southwestern Airgin 

Sum-Xilinhot-Xing’an Block (a; this study), middle Airgin Sum-Xilinhot-Xing’an Block (b; Li et al., 

2011), northeastern Airgin Sum-Xilinhot-Xing’an Block (c; Han et al., 2011) and Mongolia (d; 

Rojas-Agramonte et al., 2011). 



 

Fig. 7. Schematic geodynamic evolutionary model of the northwestern margin of Airgin 

Sum-Xilinhot-Xing’an Block and Songliao-Hunshandaka Block. a. The collision between 

Erguna-Kerulen Block and Airgin Sum-Xilinhot-Xing’an Block occurred before the Late Cambrian, 

followed by Late Cambrian granitic and mafic intrusions on the both sides of the Xinlin-Xiguitu 

suture zone (XXS). This new formed block separated from the Songliao-Hunshandake Block by the 

Paleo-Asian Ocean. b, Started from the Late Cambrian, The Paleo-Asian Ocean subducted 

beneath the Airgin Sum-Xilinhot-Xing’an Block from the Late Cambrian to the Middle Silurian, 



producing Baolidao Arc at its southern margin. Meanwhile, on the new formed Erguna-Xing’an 
Block, Ordovician-Silurian magmatic rocks intruded and extensional sedimentary basins 

developed. The contemporary Baolidao arc magmatic rocks and post-orogenic intrusions 

provided provenance for the sedimentary basins. c. Late Silurian Tuvaella fauna bearing 

sediments widespread on the Erguna-Xing’an Block, representing the stabilization of this welded 

block. The Baolidao arc magmatism might ceased during this period. d. During the Early-Middle 

Devonian, this belt underwent different evolution from west to east. To the west, the basal 

conglomerate represents the closure of this basin and cease of northward subduction. While to 

the east, shallow marine sediments still exists until the Late Devonian, indicating eastward 

successive closure of the sedimentary basin. As the pre-Late Devonian collision between 

Songliao-Hunshandake Block and Airgin Sum-Xilinhot-Xing’an Block along the 

Sunidzuoqi-Xilinhot-Heihe suture zone (SXHS), the Upper Devonian molassic sediments 

unconformbly overlies the ophiolitic mélange (Xu et al., 2013). Meanwhile, the marine basins on 

the Erguna-Xing’an Block were closed as no Late Devonian to the west and Late Devonian 

continental facies sediments to the east. 


