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ABSTRACT 

The intensive variables in dacitic-rhyodacitic magmas prior to four large Plinian 

eruptions of Santorini Volcano over the last 200 ka (Minoan, Cape Riva, Lower Pumice 2 and 

Lower Pumice 1) were determined by combining crystallization experiments with study of the 

natural products, including the volatile contents of melt inclusions trapped in phenocrysts. 

Phase equilibria of the silicic magmas were determined at pressures of 1, 2 and 4 kbar, 

temperatures of 850-900°C, fluid (H2O+CO2)-saturation, XH2O [= molar H2O/(H2O+CO2)] 

between 0.6 and 1 (melt H2O contents of 2 - 10 wt%), and redox conditions of FMQ or 

NNO+1. Experiments were generally successful in reproducing the phenocryst assemblage of 

the natural products. The phase relationships vary significantly among the investigated 

compositions, revealing a sensitivity to small variations in whole rock compositions. Our 

results show that pre-eruptive storage conditions of the four silicic magmas were all very 

similar. The magmas were stored at T = 850 – 900°C and P ≥ 2 kbar, under moderately 

reduced conditions (NNO = - 0.9 to - 0.1), with melts poor in fluorine (~500-800 ppm) and 

sulphur (≤ 100 ppm), but rich in water and chlorine (5-6 wt%, ca. 2500-3500 ppm, 

respectively). In all cases, melts were slightly undersaturated with respect to H2O, but most 

probably saturated with respect to H2O+Cl ± CO2 and a brine. The Santorini magma 

plumbing system appears to be dominated by a large, long-lived (≥ 200 ka) predominantly-

silicic magma storage region situated at ≥ 8 km depth, from which crystal-poor melt batches 

were extracted during the largest caldera-forming eruptions of the volcanic system. 
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INTRODUCTION 

It has been increasingly recognized that dramatic changes in magma storage conditions can 

occur over very short periods of time at a single volcano. This was shown at, for example, Mt. 

St Helens and Mt. Vesuvius, where magma storage depths vary over timescales of several 

hundreds of years (e.g., between the Pompeii and Pollena eruptions at Mt. Vesuvius; Scaillet 

et al., 2008) to a few years (between the Wn and We events at Mt. St Helens; Gardner et al., 

1995; Blundy et al., 2008; Rutherford & Devine, 2008). These variations of magma ponding 

level may be attributed to differences in the volatile content and buoyancy of ascending 

magmas. They might also be related to changes in stress imposed on the crustal plumbing 

system by the overlying edifice (e.g., Pinel & Jaupart, 2003; Pinel et al., 2010), following 

either caldera formation (Ventura et al., 1999) or volcano spreading (Borgia et al., 2005). It is 

remarkable indeed that, for these two volcanic systems, the largest and fastest pressure drops 

recorded by the magmas coincide with the partial destruction of the edifice subsequent to a 

major explosive eruption. Strain relaxation in the upper crust resulting from a decrease of 

edifice load could allow accumulation of magmas at shallower depths (Ventura et al., 1999). 

Variations of magma storage conditions have also been correlated with changes in eruptive 

dynamics at Mt. Pelée, Mt. Vesuvius and Tenerife (e.g., Martel et al., 1998; Scaillet et al., 

2008; Andújar & Scaillet, 2012a; Andújar & Scaillet, 2012b). For instance, Andújar & 

Scaillet (2012b) showed that the explosive-effusive style of phonolitic magmas correlates 

with the amount of volatiles, the degree of water-undersaturation and the depth of magma 

storage, the explosive character generally increasing with pressure, depth and dissolved water 

content. Determining magma storage conditions over time is thus crucial to understanding 

volcano behaviour, and may significantly contribute to the evaluation of volcanic hazards 

during periods of unrest. 



Santorini volcano (South Aegean Arc, Greece), which has recently shown signs of 

seismic and geodetic unrest (2011-2012; e.g., Newman et al., 2012), is an ideal target for 

unraveling these potential relationships, as its history is marked by recurrent large-scale 

Plinian eruptions (ca. every 20-30 ka). Some of these eruptions triggered caldera collapses, 

alternating with edifice construction and minor interplinian eruptions (Fig. 1). This study 

focuses on the silicic products of the four major Plinian eruptions of Santorini that have 

occurred over the last 200 ka (Fig. 1): the Lower Pumice 1, Lower Pumice 2, Cape Riva and 

Minoan eruptions. Magmas of Lower Pumice 1, Lower Pumice 2 and Minoan were 

dominantly rhyodacitic, and that of Cape Riva was dacitic. In order to define precisely the P, 

T, fO2 and volatile (H2O, CO2, Cl, F, S) pre-eruptive storage conditions of these magmas, we 

carried out phase equilibrium crystallization experiments coupled with a petrological and 

geochemical study of the natural products. We present the stability fields of the phases for 

each eruption over the T-P-fO2-XH2O conditions explored: T = 850-900°C, P = 1, 2 and 4 

kbar, fO2 = FMQ and NNO+1, and XH2O [= moles of H2O/ (H2O+CO2)] between 1 (i.e., 

H2O-saturated) and 0.6 (H2O-undersaturated). The phase assemblages, abundances and 

compositions of the experimental and natural products are compared, and their implications 

for pre-eruptive conditions and for our understanding of the Santorini plumbing system are 

discussed. 

 

GEOLOGICAL BACKGROUND 

Eruptive history 

Volcanism at Santorini began ca. 650 ka and subsequently involved two major 

explosive cycles between ~360 and ~3.6 ka that formed the bulk of the volcanic deposits 

(Druitt et al., 1999). Twelve major Plinian eruptions occurred during the two cycles, with 

ejected volumes ranging from a few km
3
 to several tens of km

3
. The first explosive cycle 



(360-172 ka) included five major Plinian eruptions, while the second cycle (172-3.6 ka) 

included seven (Fig. 1). The average time interval between these main eruptions was about 20 

to 30 ka. Interplinian activity between the main explosive eruptions involved extrusive edifice 

construction and minor (subplinian or less) explosive activity (Huijsmans & Barton, 1986; 

Druitt et al., 1999; Vespa et al., 2006). All Santorini magmas belong to the calc-alkaline 

series, and range compositionally from basalt to rhyodacite; no rhyolite has been documented 

onland at Santorini except in the oldest (Akrotiri) sequences. Deposits of the major Plinian 

eruptions are compositionally zoned, but can be subdivided into those that are dominantly 

andesitic and those that are dominantly silicic (Druitt et al., 1999). The dominantly silicic 

eruptions occur at the end of each cycle (Fig. 1). 

The second cycle terminated with the Bronze-Age Minoan eruption (3.6 ka). Since 

then, effusive activity has constructed a ~3 km
3
 dacitic lava shield on the floor of the Minoan 

caldera (Kameni Islands, 197 BC to AD 1950; Pyle & Elliott, 2006; Fig. 1). Since 1950, and 

until recently, activity on the Kameni islands has been characterized by the emission of low-

temperature (< 100°C) fumarolic gases. However, between January 2011 and March 2012, 

increases of seismic activity, water temperature and CO2 levels (e.g., ISMOSAV website; 

Papazachos et al., 2012), were accompanied by inflation of the northern part of the caldera 

(Newman et al., 2012; Parks et al., 2012). This has been attributed to the intrusion of 10–20 

million m
3
 of magma at about 4.4 km depth during this period (Parks et al., 2012). 

 

The four dominantly-silicic Plinian eruptions studied in this paper 

The Lower Pumice 1 (LP1) and Lower Pumice 2 (LP2) eruptions terminated the first 

explosive cycle of Santorini (Fig 1). They have been dated at 184 and 172 ka, respectively, by 

correlation with deep-sea ash layers (V-3 and V-1, respectively; Keller et al., 2000; Schwarz, 

2000); for LP1 this is consistent with the previously published K-Ar age of 203 ± 24 ka 



(Druitt et al., 1999). The LP1 eruption began with a Plinian phase, generating a pumice fall 

deposit up to 5 m thick. This was followed by discharge of pyroclastic flows, which laid down 

lithic lag breccia and ignimbrite up to 14 m thick. The products of LP1 are mainly 

rhyodacitic, but the eruption ended with the venting of a smaller quantity of andesite (Druitt et 

al., 1999). LP2 directly overlies LP1, separated by a palaeosol. The LP2 eruption began with 

a Plinian phase that laid down a pumice fall deposit up to 25 m thick. This was followed by 

pyroclastic flows and caldera collapse („caldera 1‟; Fig. 1). The products of LP2 are uniformly 

rhyodacitic apart for the Plinian deposit, which also contains scoria of basaltic to andesitic 

composition (Druitt et al., 1999; Gertisser et al., 2009). 

The second explosive cycle culminated with the Cape Riva (CR) and Minoan eruptions (Fig. 

1). The dacitic CR eruption began with a Plinian phase, the pumice fall deposit of which is 

compositionally zoned, with subordinate andesitic and banded pumices in its upper half. At 

the end of the Plinian phase, the eruption column collapsed yielding a welded ignimbrite. The 

eruption then escalated violently; pyroclastic flows were discharged all over the islands and a 

caldera collapsed („caldera 3‟, collapse of the Skaros-Therasia edifice; Druitt & Francaviglia, 

1992). The eruption has been dated at 22 ka (Wulf et al., 2002; Fabbro et al., 2013). The 

Minoan eruption (3.6 ka) began with a Plinian phase (phase 1). The pumice fall deposit 

contains a predominant rhyodacitic component and two andesitic components, whose 

abundances increasing up sequence: (1) cauliform andesitic enclaves and (2) a 

microphenocryst-rich andesitic pumice (Druitt et al., 1999; Druitt, 2014). Subsequent access 

of sea water to the vent initiated violent phreatomagmatic explosions and the emplacement of 

base surge deposits (phase 2) overlain by massive tuff (phase 3) which are interpreted as the 

products of low temperature (≤ 300°C), three-phase (solid, liquid, gas) pyroclastic flows 

(Sparks & Wilson, 1990). During the last phase of the eruption (phase 4), hot (300-350°C) 

pyroclastic flows were discharged and a caldera collapsed („caldera 4‟, Fig. 1). 



 

PREVIOUS CONSTRAINTS ON THE PRE-ERUPTIVE CONDITIONS 

Pre-eruptive magma storage conditions have been determined previously for the Minoan and 

the Lower Pumice 2 eruptions. Experimental constraints exist only for the Minoan eruption 

(Cottrell et al., 1999). No such constraints exist so far for the Cape Riva and Lower Pumice 1 

eruptions. 

 

Minoan rhyodacite pre-eruptive constraints 

Using coexisting ilmenite-magnetite pairs, Sigurdsson et al. (1990) estimated a pre-eruptive 

temperature for the Minoan rhyodacitic magma of 850°C and an oxygen fugacity (fO2) of 10
-

13
, close to the Ni-NiO (NNO) buffer. More recent studies have confirmed this first estimate: 

Druitt et al. (2012) found a temperature of 853 ± 12°C (Stormer, 1983; Anderson & Lindsley, 

1985) while Cottrell et al. (1999) report a slightly higher temperature, 885 ± 7°C at an fO2 of 

10
-11.7 ± 0.2

 (i.e., ~ NNO+0.5; Stormer, 1983; Anderson & Lindsley, 1988). 

Pre-eruptive Minoan volatiles contents were determined by analysis of melt inclusions 

(MI) in plagioclase phenocrysts (Devine et al., 1984; Sigurdsson et al., 1990; Gardner et al., 

1996; Cottrell et al., 1999; Michaud et al., 2000). These studies yield water contents ranging 

from 3.5 to 6.5 wt%. No data exist for CO2 content. Chlorine is the most abundant volatile 

phase after water, with contents of 2800-3200 ppm (Devine et al., 1984; Cottrell et al., 1999; 

Michaud et al., 2000) whilst sulphur contents do not exceed 100 ppm (Sigurdsson et al., 

1990; Cottrell et al., 1999; Michaud et al., 2000). Cottrell et al. (1999) reported fluorine and 

boron contents of 685-910 ppm and 16-25 ppm, respectively. 

According to Sigurdsson et al. (1990), the water pressure of the rhyodacite magma prior to 

the Minoan eruption was 1.5–2.5 kbar. The magma was probably water-undersaturated with a 

total pressure in the range 2.5 to 5 kbar, indicating a reservoir at 8 to 15 km depth. 



Cottrell et al. (1999) conducted exclusively water-saturated phase equilibria experiments on 

Minoan rhyodacite pumice at temperatures ranging from 800 to 975°C, pressure varying from 

50 MPa to 250 MPa, and redox conditions near the NNO buffer. According to these authors, 

the Minoan rhyodacite was first stored at pressures of > 200 MPa and T~ 825°C, then, a few 

months prior to eruption, it moved to a shallower ~ 50 MPa storage region where it reached a 

higher temperature (885°C), owing to mafic magma input. On the basis of their hypothesis, 

the Minoan rhyodacite would have contained ~ 3 wt% H2O in the shallow reservoir, and ~ 6 

wt% H2O in the deeper one. 

 

Lower Pumice 2 pre-eruptive constraints 

Based on a study of natural rocks, Gertisser at al. (2009) determined a pre-eruptive Fe-Ti 

temperature of LP2 rhyodacitic magma of 831 ± 12°C and an oxygen fugacity of fO2 = 10
-13.7 

± 0.2
 (thermometer of Andersen et al., 1993), which is slightly above the FMQ (Fayalite-

Magnetite-Quartz) oxygen buffer. The H2O content of some glass inclusions was determined 

by FTIR spectroscopy, yielding pre-eruptive melt water contents of ~ 4.5 wt. %. No CO2 was 

detected in any of the analysed glass inclusions, suggesting that there is less than 50 ppm 

(FTIR detection limit) of dissolved CO2. The average chlorine content of the inclusion and 

interstitial glasses are similar (2490 ± 530 ppm and 2630 ± 210 ppm, respectively), suggesting 

that chlorine had insufficient time to degas during eruption (Gertisser et al., 2009). In 

contrast, part of the sulphur was degassed during eruption, since glass inclusion sulphur 

content (140 ± 50 ppm) is higher than that of the interstitial glass (80 ± 20 ppm). Finally, 

Gertisser at al. (2009) determined a pre-eruptive storage pressure of 4.3 kbar (i.e., ~ 16 km 

depth assuming a crustal density of 2.7 g/cm
3
), based on the Al content of scarce amphibole 

phenocrysts in the rhyodacitic pumice (using the aluminium-in-hornblende geobarometer of 

Johnson & Rutherford, 1989). 



 

SAMPLES SELECTION AND EXPERIMENTAL TECHNIQUES 

Sampling strategy, starting material composition and preparation 

For each eruption, we collected pumice clasts from the base of the Plinian fall deposit, which 

represents the first eruption phase. This strategy allowed us: 1/ to ensure that only the purest 

silicic component was sampled (avoiding mixed components generally located in the upper 

levels of the pumice fall) and, 2/ to ascertain the storage conditions at the top of the reservoir. 

The selected natural silicic components of the four eruptions have broadly similar major 

elements compositions (Table 1): rhyodacites for the Minoan, LP2 and LP1 eruptions („dry‟ 

SiO2 = 68.7-70.6 wt%) and dacite for the Cape Riva („dry‟ SiO2 = 66.9 wt%). They share an 

identical mineral assemblage, in which plagioclase and orthopyroxene (the most abundant 

phases) are accompanied by clinopyroxene, ilmenite, magnetite, apatite and pyrrhotite 

(commonly as inclusions in pyroxenes). We did not observe any amphibole, although this 

phase has been reported to occur at trace levels in both the Minoan and the LP2 products 

(Cottrell et al., 1999; Gertisser et al., 2009). The LP1 and LP2 pumices are crystal-poor (1-3 

wt% and 6-8 wt%, respectively), while the CR and Minoan pumices have crystallinities 

higher than 10 wt% (~ 20 and 10-15 wt%, respectively; Electronic Appendix 6). 

The whole rocks were crushed in an agate mortar and about 10 g of the resulting powders 

were melted twice, to ensure homogenization, at 1400°C and 1 atm. for 3-4 hours in a Pt 

crucible opened to air, then quenched. The dry glass thus obtained was analysed by electron 

microprobe (Cameca SX 50, BRGM-ISTO, Orléans) with a sample current of 6 nA, an 

acceleration voltage of 15 kV and a defocused beam (5-6 m). It was found to be similar to 

that of the whole-rock composition, except for a small depletion (< 0.8 wt%, Table 1) in Na2O 

content. The glass was then reduced to powder and used as starting material for the 

experiments. 



 

Choice of experimental conditions and general experimental strategy 

The choice of experimental P, T, XH2O, fO2 conditions was guided both by our study of the 

natural samples and by the results of previous investigations (e.g., Cottrell et al., 1999; 

Gertisser et al., 2009). Our analyses of natural ilmenite-magnetite pairs indicate pre-eruptive 

temperatures ranging from ca. 850°C to 900°C (Table 2 & Fig. 2). The formulation of 

Ghiorso & Evans (2008) gives higher temperatures (+9 - 13°C) and lower fO2 (up to 0.5 log 

fO2) than those obtained using the calculation scheme of Stormer (1983) with the algorithm of 

Andersen & Lindsley (1985) (ILMAT software, Lepage, 2003). Hereafter, we will refer to the 

temperatures and oxygen fugacities calculated from Stormer (1983) and Andersen & Lindsley 

(1985) because their formulation gives the best agreement with data from phase equilibria 

experiments within the 850–900°C temperature range (Fig. 13 in Blundy & Cashman, 2008). 

Pre-eruptive temperatures are: 853 ± 7°C for the Minoan rhyodacite, 879 ± 15°C for the Cape 

Riva dacite, 856 ± 16°C for the Lower Pumice 2 rhyodacite and 869 ± 20°C for the Lower 

Pumice 1 rhyodacite. Redox conditions are close to FMQ (i.e., NNO-0.7) for CR, LP2 and 

LP1 (mean log fO2 = -12.92 to -13.45), while the Minoan oxides record more oxidizing 

conditions, close to NNO. This fO2 jump of almost one log unit from the pre-Minoan magmas 

to Minoan magma is a remarkable feature of Santorini‟s recent magmatic evolution (Fig. 2). 

Our T-fO2 estimates are consistent with those of Sigurdsson et al. (1990) and Gertisser et al. 

(2009) for the Minoan and LP2, respectively (Fig. 2). We thus performed experiments at 

850°C and 900°C with redox conditions close to FMQ (experiments #1 to 4) and close to 

NNO+1 (experiments #5 and 6; Table 3). We explored a wide range of H2O and CO2 

contents, with XH2O [= molar H2O/(H2O+CO2)] ranging from 1 (i.e., H2O-saturated) to 0.6 

(i.e., H2O-undersaturated). Our study thus complements previous similar work by Cottrell et 

al (1999), who investigated H2O-saturated conditions only. The investigated pressures were 4, 

2 and 1 kbar according to the previous literature constraints (see section above). 



Because of their comparable chemical compositions (Table 1) and their similar pre-

eruption magmatic temperatures (850-900°C) at any investigated P-T-fO2, we systematically 

ran the four compositions together for each experiment, so as to minimize experimental errors 

in P, T, and fO2, and to produce an internally consistent database. This approach ensured that 

any differences in phase relationships or in phase compositions between the different starting 

compositions observed at the same P-T-fO2 conditions, are most probably related to bulk 

compositional effects (see below). 

 

Charge preparation and experimental equipment 

Known amounts of CO2 (added as silver oxalate), distilled H2O, and ~30 mg of silicate 

powder were loaded into Au capsules (15 mm length, 2.5 mm internal diameter and 0.2 mm 

wall thickness), as described elsewhere (e.g., Scaillet et al., 1995; Martel et al., 1998; Di 

Carlo et al., 2010). All charges were H2O+CO2 fluid-saturated. The bulk volatile content 

(H2O+CO2) was maintained at 9-10 wt%, and the initial fluid/silicate weight ratio at ~ 0.1 

(i.e., the H2O+CO2 mass was 3 mg for 30 mg of glass powder). Five different XH2O values 

were explored for each composition (i.e., eruption), which led to five capsules per 

composition for each experiment (except for experiments #5 and #6; Table 3). 

Crystallization experiments were performed at ISTO (Orléans) with an Internally-Heated 

Pressure Vessel (IHPV) oriented vertically and equipped with a molybdenum furnace. The 

pressurizing medium was a mixture of Ar and H2, the Ar/H2 ratio of which was fixed by 

sequential loading at room temperature, so as to reach the desired target fO2 (Scaillet et al., 

1992, 1995). One or two redox sensors capsules were run with the experimental charges in 

order to determine a posteriori the fO2 prevailing during each experiment. The sensor 

consisted of two pellets of hand-pressed Co-Pd-CoO (for FMQ buffered experiments) or Ni-

Pd-NiO (NNO experiments) powder loaded with ~3 l of distilled water into Au capsules and 



lined with ZrO2 powder to prevent contamination from the capsule (Taylor et al., 1992; 

Pownceby & O‟Neill, 1994). 

Pressure was recorded by a transducer calibrated against a Heise–Bourdon tube gauge 

(uncertainty ± 20 bars), while temperature was recorded by two S-type thermocouples. The 

overall temperature uncertainty is ± 5 °C (Scaillet et al., 1992; Schmidt et al., 1995). 

Runs were terminated by switching off the power supply, and subsequent drop quench. Upon 

quenching, the sample holder fell immediately into the coldest part of the vessel (~50°C), 

producing a total pressure increase of ~ 40 bars. Run durations varied between 5 to 7 days 

(Table 3). After each experiment, the capsules were first weighted to check for leaks and 

opened. For each charge about one half of the run product was mounted in epoxy resin and 

polished. 

 

ANALYTICAL TECHNIQUES AND CONDITIONS 

Run Products 

A total of 91 charges were first analysed by scanning electron microscopy (JEOL WINSET 

JSM 6400, ISTO Orléans) for preliminary textural analysis and phase identification; BSE 

images were acquired with a current of 7 nA and an acceleration voltage of 20 kV. 

Experimental glasses, minerals and solid sensors were then analysed by electron microprobe 

(Cameca SX 50 BRGM-CNRS-University of Orléans shared facility, and Cameca SX100 of 

the „Laboratoire Magmas et Volcans‟, Université Blaise Pascal, Clermont-Ferrand, France). 

Glasses and crystals were analysed with a sample current of 6 nA and an acceleration voltage 

of 15 kV, counting time of 10 s on peak and background for all elements; Na and K were 

analysed first and a ZAF correction was applied. The beam size was 5 to 10 m for glass 

analyses, whereas it was focused for mineral analyses. Interstitial glasses were analysed 

together with dacitic and rhyolitic glass internal standards (Pinatubo 1991 eruption; Scaillet & 



Evans, 1999) containing 0, 2, 4 and 6 wt% H2O as determined by Karl Fischer titration. These 

standards were used in order to correct the electron microprobe analyses for Na migration 

under the beam and to estimate the amount of water dissolved in the interstitial glass using a 

modification of the by-difference method (Table 3; Devine et al., 1995; Scaillet et al., 1995). 

Owing to their small grain size, microprobe analyses of the experimental Fe-Ti oxides free 

from contamination from interstitial glass were difficult to obtain; most of them were 

recalculated assuming a SiO2 content (wt%) near zero. Yet, in several charges, Fe-Ti oxides 

could not be analysed because they were smaller than the electron microprobe beam size (< 2 

m), and the glass contamination was too high to allow approximate correction using SiO2 

content. 

Analytical conditions for Co-Pd-CoO and Ni-Pd-NiO sensors analyses were 20 kV – 20 nA, 

10 s on each peak and 5 s on the background, the standards used during acquisition were Co 

or Ni-Pd-FeS-Au.  

The intrinsic fH2 prevailing during each experiment was calculated from the dissociation 

reaction of water using the fO2 retrieved from the sensor, as given by the composition of the 

metallic alloys (Taylor et al., 1992), the fugacity of pure water (fH2O°) as given by Burnham 

et al. (1969), and the water dissociation constant of Robie et al. (1978). The fO2-fH2 values 

calculated in this way correspond to those of water-saturated charges. Then, the fO2 of each 

water under-saturated charge was determined using the method of Scaillet & Evans (1999), in 

which the XH2O of the charge is taken as a proxy for the prevailing fH2O (the term fH2O° is 

replaced by XH2O*fH2O°) (see also Di Carlo et al., 2010; Andújar & Scaillet, 2012a; Table 

3). Such an approach calculates maximum fO2 for each corresponding charge. An fO2 

decrease of 0.4 log units occurs when XH2O decreases from 1 to 0.6, that is, redox conditions 

become slightly more reduced in water-undersaturated capsules (Table 3). Altogether, we 

estimate that reported fO2 are accurate within ± 0.3 log units. 



 

Analysis of natural products 

Natural phase compositions and proportions are given in Electronic Appendices 5 and 6 

(available for downloading from http://www.petrology.oxfordjournals.org). Major element 

compositions for the Minoan phenocrysts and glasses come from T. Druitt (unpublished data); 

it was completed for volatile measurements of the melt inclusions in the present study. Crystal 

and glass compositions for CR, LP2 and LP1 eruptions are from this study. 

Plagioclase and pyroxene crystals were extracted from pumice clasts of CR, LP2 and LP1 and 

embedded in epoxy resin so as to expose the (010) face of plagioclase crystals and the (100) 

or (010) faces of pyroxene crystals. Then, they were polished and coated with carbon for 

SEM imagery and electron microprobe analysis.  

Major elements, chlorine, fluorine and sulphur were analysed in interstitial glasses and 

phencocryst-hosted melt inclusions using a Cameca SX 100 electron microprobe 

(“Laboratoire et Magmas et Volcans”, Clermont-Ferrand, France) with a 15 kV accelerating 

voltage. Major elements analyses were performed using a defocused electron beam (5 - 20 m 

diameter depending on melt inclusion size), a sample current of 2 - 8 nA and 10s counting 

time on-peak. Na, K and Si were analysed first. 

Analyses of F, S, P and Cl were performed at 30 or 80 nA with a 5 to 20 µm defocused beam 

depending again on the melt inclusion size. Cl, S and P were analysed on a Large PET crystal, 

while F was analysed simultaneously on three TAP crystals allowing low detection limits. In 

order to minimize volatile loss, each analysis of a single point was divided into five iterative 

sequences separated by beam blanking with the Faraday cup (Moune et al., 2007). Thus, the 

total on-peak acquisition time was 25s for P, 50s for Cl and S and 300s for F. Detection limits 

for Cl, F and S were respectively: ~80 ppm, 200 ppm and 50 ppm. Measured contents of 
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fluorine and in particular sulphur are generally close to, or lower than, the detection limit 

(Electronic Appendix 5a). 

In order to obtain high-precision mineral analyses, measurements were performed using a 15 

kV accelerating voltage, a focused beam and currents of 30 nA and 50 nA for plagioclase and 

pyroxenes, respectively. Despite relatively high current values, no sodium loss was observed. 

Fe-Ti oxides were analysed with a focused beam at 15 nA and 15 kV. 

H2O, CO2, Cl, F and S concentrations of melt inclusions were determined by 

Secondary Ion Mass Spectrometry (Cameca IMS 1280, CRPG, Nancy, France) using a Cs
+
 

primary beam projected onto a 10 µm diameter spot in Köhler mode with a 4-5 nA intensity. 

The electron gun was used with a HV adjusted by limiting the H
-
 emission below 1000 cps. 

The positive secondary ions were measured at a mass resolution of 8000 in order to get a full 

separation of 
16

OH
-
 and 

17
O

-
 with a 30 ± 10 eV energy filtering and by peak switching in ion 

counting mode. The acquisition cycles included the mass 11.8 for the background, 
12

C, 
17

O, 

16
OH, 

19
F, 

18
O and 

29
Si, 

30
Si, 

32
S, 

35
Cl. For each measurement, the sample was pre-sputtered 

for 1 minute, the beam position and the magnetic field checked automatically, and 12 cycles 

were acquired for 9 minutes. The CO2, H2O, F, S, and Cl concentrations were calculated using 

the C
-
/Si

-
, OH

-
/Si

-
, F

-
/Si

-
, S

-
/Si

-
and Cl

-
/Si

-
 ratios, respectively, with the relative useful yield 

relative to Si being determined on MPI-DING, natural and experimental glasses: StHs6/80-G 

(andesite; Jochum et al., 2006), Ke-12 (rhyolite from Kenya; Mosbah et al., 1991) and 

BT2 628-5, -6 and -7 (Bishop Tuff rhyolites synthetized by B. Scaillet, H2O and CO2 FTIR 

measurements performed by A. Cadoux). In spite of careful cleaning and polishing of the 

crystals aiming at removing carbon coat, SIMS carbon signal pointed out contamination 

which made our C
-
/Si

-
 data unworkable. H2O, Cl, F and S contents from SIMS measurements 

are reported in Table 4. There is close agreement between the Cl, F and S contents measured 

by EMP (Electronic Appendix 5a) and those measured by SIMS. 



 

EXPERIMENTAL PHASE EQUILIBRIA 

General observations 

Experimental conditions and phases proportions are reported in Table 3. Phase proportions 

were calculated for each charge by mass balance using major element compositions of 

experimental glasses and crystals (Electronic Appendices 1 to 4, available for downloading 

from http://www.petrology.oxfordjournals.org). Run products include glass, amphibole, 

clinopyroxene, plagioclase, orthopyroxene, ilmenite, magnetite and vesicles with sizes and 

proportions varying with XH2O, or with melt water content which, as estimated with the by-

difference method, ranges from 2.5 up to 9.8 wt%. The presence of vesicles in almost all 

charges is taken as evidence of fluid saturation. Crystals have euhedral to sub-euhedral 

shapes: in most charges their size is smaller than 20 m, the larger crystals (up to 150 m 

length) occurring generally in H2O-saturated (XH2O = 1) charges. Crystallinity varies from 0 

to 58 wt%, depending on XH2O. Plagioclase is the most abundant mineral phase at XH2O = 

0.7-0.6, with mass proportions varying from trace amounts up to 47 wt% at XH2O = 0.6. 

Orthopyroxene is generally the second most abundant phase (up to 10 wt% at XH2O = 0.6), 

being sometimes superseded by amphibole, the abundance of which reaches up to 14 wt% at 

XH2O = 0.9. Glass, amphibole, clinopyroxene and Fe-Ti oxides are the dominant phases at 

H2O-saturation (XH2O = 1), whilst plagioclase and orthopyroxene occur at drier conditions, 

except at 1 kbar-NNO+1 where both minerals occur at H2O-saturation (Table 3). At 900°C 

and H2O-saturation, clinopyroxene is the liquidus phase at 2 and 4 kbar, except for the LP2 

rhyodacite, the liquidus phase of which is orthopyroxene. In contrast, at 850°C and H2O-

saturation, amphibole is the dominant phase for Minoan, Cape Riva and LP2 compositions, at 

both 2 and 4 kbar and at FMQ and NNO+1, clinopyroxene being even absent in Cape Riva 

indicating that clinopyroxene and amphibole are in a reaction relationship as temperature 
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decreases in the water-rich part of the phase diagrams. For the LP1 rhyodacite clinopyroxene 

crystallized first in all the experiments, suggesting the amphibole stability field lies at 

temperatures lower than 850°C over the investigated pressure and fO2 range. Above-liquidus 

charges were only produced in experiments at 900°C, and under water-rich conditions. 

Fe-Ti oxides are mostly < 3 m in size, which makes them very difficult to identify 

and analyze. Magnetite was not identified in any charge of the FMQ experiments (Table 3): 

although it cannot be ruled out that trace amounts may have been overlooked, we believe that 

the lack of magnetite more likely reflects the moderately reduced conditions imposed in our 

experiments. In contrast, magnetite was identified in the NNO+1 experiments, but no ilmenite 

was found, probably because of the relatively oxidizing conditions. 

In the LP2 rhyodacite, clinopyroxene was not detected in any of the run products, 

whereas orthopyroxene was present in most of the LP2 charges. In contrast, clinopyroxene 

was an almost ubiquitous phase in the LP1 run products and orthopyroxene crystallized only 

at 2 kbar-850°C-FMQ and at XH2O ≤ 0.7 (Table 3). This is a remarkable feature considering 

the very similar bulk rock compositions of LP1 and LP2 (Table 1). It can be noticed that when 

both pyroxenes crystallize, their respective fields of stability generally overlap very little (e.g., 

Figs. 3b and 4). Orthopyroxene and plagioclase both crystallized at H2O-saturation at 1 kbar-

850°C and NNO+1. At this pressure, no clinopyroxene was detected except in the LP1 

rhyodacite, which crystallized clinopyroxene at H2O-saturation, as observed at 2 and 4 kbar 

(Table 3). 

 

Phase relationships 

Phase boundaries (Figs. 3-6) were first drawn on the basis of phase assemblages of run 

products and subsequently refined using phase proportions (Table 3). For each composition, 

phase equilibrium diagrams are shown at constant pressure (2 and 4 kbar) and fO2 (FMQ) as a 



function of XH2O and of temperature (°C). For the Minoan, a phase diagram of pressure 

versus XH2O at 850°C and fO2 = NNO+1 is also presented (Fig. 3c). For the four 

compositions, the effect of increasing pressure from 2 to 4 kbar is to displace each mineral-in 

curve towards lower temperature and lower XH2O. Similarly, the main effect of an increase of 

fO2 from FMQ to NNO+1 is the replacement of ilmenite by magnetite (Table 3). 

 

Minoan rhyodacite 

At 2 and 4 kbar (Fig. 3), clinopyroxene is the liquidus phase crystallizing near 900°C at XH2O 

= 1 (i.e., H2Omelt > 6 wt%). Clinopyroxene reacts out at temperatures below 850°C at H2O-

saturation, and at slightly higher temperatures as H2Omelt decreases (Fig. 3a). It is 

accompanied by amphibole at temperatures lower than ca. 875°C and H2Omelt > 5 wt%. At 2 

kbar, the stability field of amphibole is restricted to XH2O = 0.9-1, while at 4 kbar it extends 

towards lower XH2O (= 0.7). At 850°C and 4 kbar, the abundance of amphibole is higher at 

XH2O = 0.9 (6.6 wt%) than at H2O-saturation (2.2 wt%). Orthopyroxene occupies essentially 

the dry portion of the phase diagram: the back bending of its stability curve at low 

temperatures, at both 2 and 4 kbar, is inferred from previous detailed experimental work on 

similar intermediate to silicic magmas (Scaillet & Evans, 1999; Dall‟Agnol et al., 1999; 

Klimm et al., 2003; Costa et al., 2004). At 2 kbar, both clinopyroxene and orthopyroxene 

coexist in several charges at 850°C and 900°C (Fig. 3). We did not observe these minerals 

together at 4 kbar (orthopyroxene is absent in the experiments at 900°C), yet, based on the 2 

kbar observations, a narrow co-existence domain is suggested on the corresponding phase 

diagram between 875 and 850 °C and XH2O = 0.7-0.8. At 2 and 4 kbar, plagioclase requires 

less than 4.5 wt% H2Omelt to crystallize at 900°C, and about 5.2-6.3 wt% H2Omelt at 850°C 

(including at NNO+1, Fig. 3c).  



Ilmenite is only stable at temperatures lower than 900°C at both 2 and 4 kbar in the FMQ 

experiments (Table 3). Magnetite is present in all the run products of 850°C-NNO+1 

experiments, both at 2 and 1 kbar, in the XH2O range explored (= 0.8 to 1). 

At 850°C, 2 kbar and XH2O = 0.8-1, the main effect of a higher fO2 (NNO+1) on phase 

equilibria of the Minoan rhyodacite is to expand the stability field of amphibole to XH2O ≤ 

0.8, in addition to the replacement of ilmenite by magnetite (see experiments #2 and #5; Table 

3). 

A partial isothermal(850°C)-polybaric section shows that at 1 kbar - 850°C - NNO+1, 

plagioclase and orthopyroxene occur at water-saturated conditions along with amphibole (~ 3 

wt% H2Omelt) (Fig. 3c), clinopyroxene being absent. At this temperature, clinopyroxene is not 

stable below 1.5 kbar at H2O-saturation. 

 

Cape Riva dacite 

The phase equilibria of the Cape Riva (Fig. 4) broadly resemble those of the Minoan, except 

that the T-XH2O coordinates of any liquidus curve are different. At H2O-saturation (XH2O = 

1), clinopyroxene is the liquidus phase, crystallizing slightly above 900°C. In contrast, at 

850°C and H2O-saturation, only amphibole (± ilmenite) is found at either 2 or 4 kbar. As 

stated previously, this indicates that clinopyroxene and amphibole are in a reaction 

relationship as temperature decreases. At 2 kbar, the clinopyroxene stability field is restricted 

to temperatures of > 850°C, as well as to higher H2Omelt (> ~6 wt%), being replaced by both 

orthopyroxene and plagioclase as H2Omelt decreases. At 4 kbar, the clinopyroxene stability 

field extends towards lower H2Omelt, but is not stable at 850°C. The field of amphibole 

extends towards lower XH2O (= 0.6) at 4 kbar than at 2 kbar (= 0.8), though these XH2O 

correspond to essentially the same H2Omelt values (6 wt%). As observed for the Minoan at 4 

kbar-850°C, amphibole abundance reaches its maximum (up to 14 wt% at 850°C - 2 kbar) at 



XH2O = 0.9, and not at H2O-saturation. Whatever the pressure and temperature, plagioclase in 

Cape Riva magma appears before orthopyroxene. Plagioclase is the most abundant phase, 

with mass proportions increasing with decreasing XH2O up to 47 wt% at 850°C - 2 kbar and 

XH2O = 0.6. Ilmenite is almost ubiquitous over the P-T-XH2O conditions explored, appearing 

after clinopyroxene or amphibole, depending on XH2O.  

 

Lower Pumice 2 rhyodacite  

Except for the location of the plagioclase stability curve, which remains broadly the same 

(plagioclase being the dominant phase in the water–poor part of the diagrams), the phase 

equilibria of the Lower Pumice 2 rhyodacite (Fig. 5) differ significantly from those of the 

Minoan and Cape Riva magmas, in particular in the lack of clinopyroxene. 

At 2 kbar – 900°C, ilmenite is the liquidus phase, crystallizing slightly below H2O-saturation, 

while it is replaced by amphibole at lower temperatures. In contrast to the Minoan and Cape 

Riva, orthopyroxene always crystallizes before plagioclase, whatever the pressure and 

temperature, and it is stable even at H2O-saturation at 850°C (Fig. 5 and Table 3). 

At 4 kbar, the ilmenite curve is significantly shifted toward lower temperatures as compared 

to the 2 kbar field. Orthopyroxene is the liquidus phase up to XH2O = 0.9, but is replaced by 

amphibole at higher H2Omelt values (> 5 wt%) and lower temperatures (< ca. 875°C). 

Amphibole is not stable at 900°C, as also observed at 2 kbar. 

At 2 kbar-850°C and H2O-saturation, increasing fO2 from FMQ to NNO+1.8 makes 

orthopyroxene unstable (Table 3). At 1 kbar-850°C-NNO+1.7, both plagioclase and 

orthopyroxene occur at H2O-saturation (i.e., H2Omelt = 3.4 wt%, Table 3). 

 

Lower Pumice 1 rhyodacite 



At 2 and 4 kbar (Fig. 6), clinopyroxene is the liquidus phase stable almost all over the 

explored P-T-XH2O conditions. At 4 kbar, its stability field is slightly smaller than at 2 kbar; 

the upper limit being displaced to XH2O < 1 at 900°C, and the lower limit being moved to 

temperatures > 850°C at XH2O < 0.7 (Fig. 6). The plagioclase stability field is similar to that 

of the Minoan, CR and LP2 phase diagrams. Amphibole was not detected in any of the run 

products but, by analogy with the other three compositions, is inferred to crystallize at T < 

850°C. Ilmenite is ubiquitous at 2 kbar, while at 4 kbar it is stable only below 900°C. Low-Ca 

pyroxene (pigeonite) was identified at T = 850°C and XH2O ≤ 0.8, at 2 and 4 kbar in the 

FMQ experiments. At 1 kbar – 850°C –NNO+1.7, LP1 rhyodacite crystallizes plagioclase at 

H2O-saturation (H2Omelt = 3.2 wt%, Table 3) as in the three other compositions. 

 

EXPERIMENTAL PHASE COMPOSITIONS 

General observations 

The following features are common to the four eruptions (Figs. 7 to 14): 

(1) The experimental glasses show systematic compositional variations with increased 

crystallization: at fixed P-T-fO2, decreasing XH2O (i.e., H2Omelt) produces an increase 

in SiO2 and K2O contents, and a decrease in Al2O3, FeO, MgO and CaO (Figs. 7 to 

10). 

(2) The melts produced at 900°C are less SiO2- and K2O-rich than those produced at 

850°C. Similarly, at a fixed temperature, the melts produced at higher pressure are less 

SiO2- and K2O-rich than those produced at lower pressure, owing to the increasing 

water solubility with increasing pressure and lower crystallinity of the run products. 

At fixed P and T, the effect of increasing fO2 from FMQ to NNO+1 is to produce 

melts richer in SiO2 and K2O (Figs. 7 to 10) and products richer in crystals (Figs. 11a, 

12a, 13a, 14a).  



(3) The melt H2O content at saturation is similar for all compositions, varying between 3-

4 wt% at 1 kbar, 6-8 wt% at 2 kbar, up to 9-10 wt% at 4 kbar, in agreement with 

solubility constraints of H2O for silicic magmas (e.g., Newmann & Lowenstern, 2002) 

(4) Crystallinity increases with decreasing XH2O (Figs. 11a, 12a, 13a, 14a) 

(5) Mineral compositions vary with intensive parameters (Figs. 11 to 14). The 

compositions of ferro-magnesian minerals (pyroxenes, amphiboles, Fe-Ti oxides) are 

strongly affected by fO2 variations, while plagioclase composition is sensitive to 

temperature and H2Omelt. 

 

Minoan rhyodacite 

Interstitial glass 

In all analysed charges, the experimental Minoan glasses are homogeneous within analytical 

uncertainty (Electronic Appendix 1a). They have compositions ranging from rhyodacitic to 

rhyolitic (SiO2 = 71.5-76.8 wt%), depending on the experimental parameters (T-P-fO2-XH2O; 

Fig. 7) as stated above. The glass water content (H2Omelt) decreases with decreasing pressure: 

at H2O-saturation (XH2O = 1), it is estimated to be 7-8 wt% at 4 kbar-FMQ and 850-900°C 

(Table 3), close to 6 wt% at 2 kbar and 850-900°C (both at FMQ and NNO+1), and decreases 

to 3 wt% at 1 kbar – 850°C – NNO+1.7. 

 

Plagioclase 

The plagioclase compositions given in Electronic Appendix 1b are average analyses, selected 

on the basis of a total close to 100 wt% and on the correctness of the structural formula. The 

anorthite contents (An) range between An24 and An42. At fixed P and fO2, the anorthite 

content generally decreases with falling XH2O (i.e., H2Omelt) and increases with increasing 

temperature from 850°C to 900°C (Fig. 11b). The effect of temperature and H2Omelt on 



plagioclase composition is more important than that of the pressure, as also observed for the 

interstitial glass compositions (Fig. 7). 

 

Orthopyroxene 

Though corrected for glass contamination, a number of analyses of experimental Minoan 

orthopyroxenes (Electronic Appendix 1c) still contain some Al2O3 (up to 2.7 wt%), due to the 

very small size of the crystals (< 5 m), particularly in charges with XH2O < 0.8. The 

wollastonite component ranges from 3 to 12 %; it tends to increase with XH2O (reaching 

pigeonite-like composition for XH2O < 0.8), variations with other experimental parameters 

being less apparent (Fig. 5c). However, the FeO*/MgO ratio (where FeO* is total Fe as FeO) 

is lower for the orthopyroxenes produced at fO2 = NNO+1 than for those crystallized under 

more reduced FMQ conditions (Fig. 11d). 

 

Clinopyroxene 

The wollastonite component of experimental Minoan clinopyroxenes (Electronic Appendix 

1d) ranges from 29 to 47 %. At 900°C, the wollastonite contents are lower (29- 41%) than at 

850°C (41-47%; Fig. 11e), being also positively correlated with H2Omelt. Increasing fO2 

induces lower FeO*/MgO ratios (Fig. 11f), as also observed in orthopyroxene. 

 

Amphibole 

Amphibole crystallized in the Minoan charges (Electronic Appendix 1e) exclusively at 850°C, 

at 1, 2 and 4 kbar and fO2 = FMQ and NNO+1, but was not found at XH2O lower than 0.8. 

The Mg# [Mg/(Mg+Fe)*100] values reflect the effects both of H2Omelt content and fO2: they 

tend to decrease progressively with decreasing XH2O and are higher at fO2 = NNO+1 (Mg# = 



65-72%) than at fO2 = FMQ (Mg# = 64-54%; Fig. 11h). The effect of pressure on amphibole 

composition is moderate. 

 

Fe-Ti oxides 

Fe–Ti oxides were observed exclusively in experiments performed at 850°C. FMQ runs 

crystallized only ilmenite while NNO+1 runs crystallized only magnetite (Table 3). The mole 

fraction of ilmenite (X Ilm) calculated from Stormer (1983) is 0.95-0.96 and the mole fraction 

of ulvöspinel (X Usp) for the magnetite is in the range 0.17-0.23 (Fig. 11g). X Ilm and X Usp 

both increase slightly with decreasing XH2O. 

 

Cape Riva dacite 

Interstitial glass 

Compositions of interstitial glasses in the Cape Riva run products (Electronic Appendix 2a) 

are rhyodacitic to rhyolitic (SiO2 = 68-76 wt%; Fig. 8). The glass water content decreases 

with decreasing pressure: at H2O-saturation, it is estimated to be in the range 8.7-9.6 wt% at 4 

kbar-FMQ and 850-900°C, and close to 7 wt% at 2 kbar and 850-900°C (both at FMQ and 

NNO+1), decreasing to 3.6 wt % at 1 kbar – 850°C – NNO+1.7 (Table 3). 

 

Plagioclase 

The anorthite contents of the experimental Cape Riva plagioclases range between An22 and 

An39 (Electronic Appendix 2b). At fixed P- fO2, the anorthite component generally decreases 

with falling XH2O (i.e., H2Omelt), and increases with increasing temperature from 850°C to 

900°C (Fig. 12b). 

 

Orthopyroxene 



The wollastonite component of the experimental Cape Riva orthopyroxenes ranges between 3 

to 22 % (Electronic Appendix 2c). From Figure 12c, no clear relationship can be established 

with XH2O or any other experimental parameters. At fO2 = FMQ, the FeO*/MgO ratio is 

higher for the orthopyroxenes produced at 850°C (1.7-3.0) than at 900°C (1.3-2.1) and, at 

fixed T, FeO*/MgO ratio is slightly higher at 2 kbar than at 4 kbar (Fig. 6d). Finally, the 

NNO+1 experiment produced the orthopyroxene with the lowest FeO*/MgO (= 0.65) and the 

lowest wollastonite content (Figs. 12c and 12d). 

 

Clinopyroxene 

With the Cape Riva dacitic magma, clinopyroxene (Electronic Appendix 2d) was produced 

exclusively in experiments performed at 900°C-FMQ in the pressure and XH2O range 

explored (Table 3). For the same XH2O (= 0.9-0.8), clinopyroxenes crystallized at 2 kbar have 

lower wollastonite contents (Wo38-41) and higher FeO*/MgO ratios (1.05-1.12) than those 

crystallized at 4 kbar (Wo41-42 and FeO*/MgO =0.85-0.94; Figs. 12e and 12f). The 

wollastonite content increases with XH2O up to 0.9 (Fig. 12e). 

 

Amphibole 

As in the Minoan rhyodacite, Cape Riva experimental amphibole (Electronic Appendix 2e) 

crystallized exclusively at 850°C, and is stable down to XH2O = 0.7 (H2Omelt = 5.8 wt%) at 4 

kbar-FMQ (Table 3). The Mg# of the amphibole is affected by the H2Omelt content and 

pressure, but more importantly by the fO2: it tends to decrease progressively with decreasing 

XH2O, whilst it displays slightly higher values at lower pressure and significantly higher 

values in oxidizing conditions (NNO+1: Mg# = 69-73%) compared to relatively reduced 

conditions (at FMQ: Mg# = 54-44%; Fig. 12h). 

 



Fe-Ti oxides 

Fe–Ti oxides were produced in the Cape Riva magma in all experiments (Electronic 

Appendix 2f). The X Ilm of ilmenite (FMQ runs) is 0.93-0.98 and the X Usp for the magnetite 

(NNO+1 runs) is 0.19-0.20 (Fig. 12g). 

 

Lower Pumice 2 rhyodacite 

Interstitial glass 

The composition of interstitial glasses in the LP2 experiments (Electronic Appendix 3a) is 

rhyodacitic to rhyolitic (SiO2 = 69-75 wt%), depending on T-P-fO2-XH2O conditions (Fig. 9). 

The glass water content decreases with decreasing pressure: at H2O-saturation, it is in the 

range 8.4-9.6 wt% at 4 kbar-FMQ and 850-900°C, and about 5.6 to 8.0 wt % at 2 kbar and 

850-900°C (both at FMQ and NNO+1), and it decreases to 3.4 wt% at 1 kbar – 850°C – 

NNO+1 (Table 3). 

 

Plagioclase 

The anorthite content of the experimental LP2 plagioclases ranges between An26 and An44 

(Electronic Appendix 3b). At fixed P, it generally falls with decreasing XH2O (i.e., H2Omelt) 

and increases with increasing temperature from 850°C to 900°C (Fig. 13b). 

 

Orthopyroxene 

The wollastonite component of the orthopyroxenes (Electronic Appendix 3c) ranges from 3 to 

6 %. It tends to increase with decreasing XH2O and pressure (Fig. 13c). At fO2 = FMQ, the 

FeO*/MgO ratio is higher for those orthopyroxenes produced at 850°C (~1.4-2.6) than at 

900°C (~1.1-2.0) and, at 900°C, the FeO*/MgO ratio is higher at P = 2 kbar than at P = 4 

kbar. There is not significant effect of pressure at 850°C (Fig. 13d). Finally, the NNO+1 



experiment produced the orthopyroxene with the lowest FeO*/MgO (= 0.66) at H2O-

saturation (Fig. 13d). 

 

Amphibole 

As in the Minoan and Cape Riva compositions, LP2 experimental amphibole (Electronic 

Appendix 3e) crystallizes only at 850°C, and is stable down to XH2O = 0.8 (i.e., H2Omelt = 6.3 

wt%) at 4 kbar-FMQ (Table 3). At H2O-saturation, the Mg# of the amphibole is significantly 

higher at NNO+1 (Mg# = 71-74) than at FMQ (Mg# = 53-60; Fig. 13f). The effect of 

decreasing H2Omelt content in lowering the Mg# can be seen at 4 kbar-FMQ (Fig. 13f). 

 

Fe-Ti oxides 

Fe–Ti oxides were produced in all our LP2 experiments (Electronic Appendix 3f). Ilmenite 

and magnetite have X Ilm (0.94-0.97) and X Usp (0.18-0.20), similar to those of the Fe–Ti 

oxides of the Minoan rhyodacite and Cape Riva dacite (Fig. 13e). 

 

Lower Pumice 1 rhyodacite 

Interstitial glass 

The compositions of the LP1 experimental glasses are reported in Electronic Appendix 4a. 

They are rhyodacitic to rhyolitic (SiO2 = 69.7-73.5 wt%), depending on T-P-fO2-XH2O 

conditions (Fig. 10). The glass water content decreases with decreasing pressure: at H2O-

saturation, it is estimated to be in the range 8-10 wt% at 4 kbar-FMQ and 850-900°C, and 

close to 7 wt% at 2 kbar and 850-900°C (both at FMQ and NNO+1), and it decreases to 3.2 

wt % at 1 kbar – 850°C – NNO+1 (Table 3). 

 

Plagioclase 



The LP1 experimental plagioclases (Electronic Appendix 4b) display significantly lower 

anorthite contents (An14-26) in comparison with those produced with the other three magmas 

under the same experimental conditions (An22-44). The anorthite content generally decreases 

with falling XH2O (i.e., H2Omelt) and increases with increasing temperature from 850°C to 

900°C (Fig. 14b). 

 

Pigeonite 

Low-Ca pyroxene was rare among the LP1 experimental products and difficult to analyse. 

The average compositions are given in Electronic Appendix 4c. Pigeonite compositions were 

found at 2 and 4 kbar-850°C-FMQ. The wollastonite contents range between 11 and 25 % and 

tend to increase with decreasing XH2O (Fig. 14c). At fixed XH2O, pyroxenes formed at 2 

kbar show higher wollastonite content (Wo14-23) and lower FeO*/MgO ratio (2.4-2.6) than 

those formed at 4 kbar (Wo11-15; FeO*/MgO = 2.7-2.9; Figs. 14c and 14d). 

 

Clinopyroxene 

Clinopyroxene (Wo31-46En30-40Fs15-38) is a ubiquitous phase in the experimental products of 

LP1 rhyodacite (Table 3, Electronic Appendix 4d). As observed for the other three magmas, 

clinopyroxene crystallizing at the lowest temperature and pressure has lower wollastonite 

contents (Wo < 39%) and higher FeO*/MgO ratios (= 1.2-2.1; Figs. 14e and 14f). 

Clinopyroxenes from the NNO+1 runs present the highest Wo content (45-46 %) at H2O-

saturation (Fig. 14e). The Wo content is positively correlated with XH2O, except at 850°C – 4 

kbar. 

 

Fe-Ti oxides 



Fe–Ti oxides are also ubiquitous phases in all experiments with the LP1 rhyodacite 

(Electronic Appendix 4f). X Ilm of ilmenite (0.95-0.97; FMQ runs) and X Usp of the 

magnetite (0.17-0.19; NNO+1 runs; Fig. 14g) are similar to those of the oxides produced with 

the other rhyodacites. 

 

PHASE COMPOSITIONS IN THE NATURAL PRODUCTS 

Mineral compositions 

Both plagioclase and pyroxene phenocrysts in pyroclasts from the four eruptions display 

complex zoning patterns. For the purpose of this study, we focused our attention on the rim 

compositions of the phenocrysts as they are assumed to be in equilibrium with the pre-

eruption melt. Plagioclase rims have an average composition ranging from An35 to An42 

(Minoan: An39±1, Cape Riva: An38±1, Lower Pumice 2: An35±4, Lower Pumice 1: An42±3; 

Electronic appendix 5b) in agreement with the values reported by Druitt et al. (1999). A 

bytownite rim (An87) belonging to a sieve-textured euhedral xenocryst was analysed in the 

LP1 rhyodacite (Electronic appendix 5b). The four eruptions also have similar orthopyroxene 

and clinopyroxene rim compositions: Wo3En50-57Fs41-47 and Wo40-43En36-39Fs19-23, respectively. 

The same observations can be made for ilmenite-magnetite compositions (X Ilm ~0.9 and X 

Usp = 0.4-0.5; Electronic appendix 5b). 

 

Compositions of melts inclusions and interstitial glasses 

Interstitial glasses and phenocrysts-hosted melt inclusions (in plagioclase, ortho- and 

clinopyroxene) have very similar compositions in terms of major and volatile elements 

(Electronic appendix 5a, Table 4). The glass compositions are rhyodacitic for the Cape Riva 

dacite and the Lower Pumices 1 and 2 (SiO2 = 69.3-71.0 wt% for interstitial glasses and 70.0-

71.4 wt% for melt inclusions), and rhyolitic for the Minoan (SiO2 = 73.8 wt% for interstitial 



glasses and 72.1 wt% for melt inclusions). Both interstitial glasses and melt inclusions are 

chlorine rich: ~ 2700 ppm and 2800 ppm in average, respectively, for Cape Riva, Lower 

Pumice 2 and Lower Pumice 1, and 2900 ppm (interstitial glass) up to 3500 ppm (melt 

inclusions) in average for the Minoan. Fluorine and sulphur are minor species, with contents 

in the range 500-800 ppm and 50-100 ppm, respectively. These values are comparable to the 

earlier data of Devine et al. (1984), Sigurdsson et al. (1990), Cottrell et al. (1999) and 

Michaud et al. (2000) for the Minoan eruption, and are also close to the values reported by 

Gertisser et al. (2009) for Lower Pumice 2, except for S contents, for which they report higher 

values, notably in MI (140 ± 50 ppm). It is to note that the S contents of the MI that we 

measured both by EMP (41 ± 12 ppm; Electronic Appendix 5a) and SIMS (50 ± 2 ppm; Table 

4) are in agreement. Thus, LP2 melt inclusions are probably heterogeneous with respect to 

sulphur. 

For the four eruptions, water contents of melt inclusions are mostly in the range 3-6 wt%. 

There is no significant difference of water content according to their location within a single 

crystal, nor between plagioclases and pyroxenes (Table 4). The few melt inclusions with 

water contents lower than 3 wt% most probably leaked (e.g., Lowenstern, 1995). 

 

DISCUSSION ABOUT PHASE EQUILIBRIA 

Attainment of equilibrium conditions during the experiments 

Our experimental strategy is well known for favouring crystal nucleation in alumino-silicate 

glasses (Clemens & Wall, 1981; 1986; Pichavant, 1987) and the attainment of crystal-liquid 

equilibrium on laboratory time-scales (Pichavant et al., 2007). Previous work, in particular on 

haplogranite compositions (equivalent to high-silica rhyolites), has shown that the use of fine-

grained dry glass as starting material promotes crystal nucleation, leading to the production of 

equant textures in crystal-bearing charges. Attainment of equilibrium in silica-rich liquids 



using such a procedure has been rigorously demonstrated by performing reversals (e.g., 

Pichavant, 1987), which have shown that, within experimental error, such a protocol does not 

lead to any mislocation of liquidus curves specific to each mineral. Our compositions are 

significantly less silicic than haplogranite, and our study has focused primarily on near-

liquidus conditions, in keeping with the crystal-poor character of the studied Santorini 

magmas (ca. 2 to 20 wt%). Both factors (less silicic and crystal-poor) imply that melt 

viscosity, and hence component diffusivities, are significantly lower than in the high-silica 

rhyolites for which crystal-liquid equilibrium has been demonstrated. This in turn suggests 

that crystal nucleation and growth should not have been a problem in our study. In support of 

this statement is the following additional evidence: (1) early work performed on andesite-

dacite compositions (Martel et al., 1999) has shown that, when not drop-quenched, such 

compositions end up producing abundant quench minerals. This observation shows that the 

activation energy for crystal nucleation in intermediate to silicic hydrous magma is 

surmountable; (2) the crystal abundance varies regularly and smoothly as functions of T and 

H2Omelt, suggesting that this parameter is tightly controlled by intensive variables and not 

affected by crystal nucleation kinetics; (3) the phase boundary curve shapes are as expected 

from first-order thermodynamic considerations: in particular, the freezing-point depression 

effect of water on plagioclase stability is manifest in the four phase diagrams; (4) the 

amphibole stability curves, although differing between the four compositions studied, are 

similar to those from previous experimental and theoretical studies (Rutherford et al., 1985; 

Gardner et al., 1995; Ghiorso, 1997; Scaillet & Evans, 1999; Dall‟Agnol et al., 1999; Martel 

et al., 1999; Bogaerts et al., 2006). The stronger depression of liquidus temperature of oxide 

phases (ilmenite) relative to plagioclase as pressure increases has been also previously 

documented by Sisson and Grove (1993). The smooth variation of phase compositions with 

variations of intensive parameters (Figs. 8 to 15) also supports a close approximation to 



equilibrium conditions. We conclude that the phase diagrams define the equilibrium topology 

for each magma composition immediately prior to eruption. Differences in phase relationships 

between the four magmas are attributed to subtle variations in bulk chemistry, as discussed 

further below. 

 

Comparison with previous phase equilibria 

Previously, the phase relationships of the Minoan rhyodacitic magma have been determined 

exclusively under water-saturated conditions (Cottrell et al., 1999); this constitutes one of the 

main differences with our experimental approach in which we explored both water-saturated 

and water-undersaturated conditions. At 1 kbar-850°C-NNO+1, Cottrell et al. (1999) 

predicted amphibole occurrence along with plagioclase, pyroxene and Fe-Ti oxides, which is 

in agreement with our findings except for the occurrence of clinopyroxene (Fig. 3c, Table 3). 

Differences between the two data sets appear at 2 kbar-850°C-NNO+1 and include 

orthopyroxene and plagioclase, which are not found at H2O-saturation in our study (Table 3). 

As extensively discussed by Pichavant et al. (2007), these features may be related to the 

different experimental procedures employed in each study: use of gently crushed pumice 

(Cottrell et al., 1999) versus use of dry glass material (this study), the former allowing 

metastable persistence of pre-existing crystals (especially if large phenocrysts, and/or phases 

having slow melting kinetics, such as tectosilicates, are initially present). Apart from the 

Cottrell et al. (1999) work, there is no other experimental study available on rhyodacite 

compositions sensu stricto. 

For the dacitic magma of Cape Riva, which is the least silicic of the four Santorini 

compositions, a comparison can be made with that of the Pinatubo dacite, which has 65.5 

wt% SiO2 (Scaillet & Evans, 1999). Such a comparison reveals the same general topological 

arrangement between amphibole, orthopyroxene and plagioclase, the latter being displaced 



down-temperature by more than 50°C (at comparable H2Omelt) in Cape Riva, a result of the 

lower bulk CaO content relative to Pinatubo dacite (3.00 vs. 4.82 wt%). Despite the higher 

CaO content of the Pinatubo magma, clinopyroxene is restricted to very dry conditions in this 

composition at 2 kbar, while it appears on the liquidus in Cape Riva. Gardner et al. (1995) 

reported similar findings on the Wn dacite from Mt. St Helens, which has a composition very 

close to that of Cape Riva, except for a lower Fe/Mg ratio. Although the experimental 

coverage of Gardner et al. (1995) does not allow a detailed comparison with our 2-4 kbar 

phase relationships, the main feature of interest is the lack of clinopyroxene in the Wn dacite, 

despite the bulk rock having a higher CaO content compared to Cape Riva (3.8 vs. 3.0 wt%). 

The latter fact illustrates that, although clearly an essential component for clinopyroxene 

crystallization in magmas, the absolute abundance of CaO does not simply correlate with the 

stability field of clinopyroxene (i.e., the more CaO, the larger the stability field of 

clinopyroxene). One obvious reason is that clinopyroxene is in competition with other Ca-

bearing minerals, in particular plagioclase and amphibole. 

One critical difference between the above rocks is their FeO/MgO content, which is 

lower in the Wn and Pinatubo dacites than in Cape Riva. We tentatively suggest that, in 

addition to CaO, such a ratio exerts a control on the stability field of pyroxenes in hydrous 

intermediate to silicic magmas, calcic pyroxenes being favored by higher FeO/MgO ratios, 

everything else being equal. This parameter is not the only one affecting pyroxene stability, 

however. Experiments at higher pressures on the Pinatubo dacite (Prouteau & Scaillet, 2003) 

have shown that, as pressure increases, clinopyroxene progressively replaces orthopyroxene 

as the main pyroxene on the liquidus. The same is observed on Cape Riva, in which the 

orthopyroxene stability field shrinks considerably when going from 2 to 4 kbar (Fig. 4), but 

also on the other compositions, which crystallize both pyroxenes (Minoan and LP1). 

Expansion of the clinopyroxene stability field (relative to orthopyroxene) at higher pressure 



goes along with that of amphibole, both being accompanied by the decreased stability of 

plagioclase. This suggests that water complexation with melt components affects more the 

melt precursor species of plagioclase than those leading to amphibole/clinopyroxene 

crystallization. The fact that orthopyroxene stability increases with decreasing pressure in 

intermediate to silicic magmas is reminiscent of the expansion of the stability field of olivine 

(relative to clinopyroxene) documented at low pressure in basalt (e.g., Di Carlo et al., 2006). 

In the more felsic magmas olivine is replaced by orthopyroxene by virtue of the higher 

prevailing silica activity. Altogether (and to a first order), provided that compositional effects 

have been well circumvented, this suggests that occurrence of orthopyroxene in place of 

clinopyroxene is an indication of low pressure magma equilibration conditions, as 

exemplified by the case of the Minoan (Fig. 3c). 

 

Comparison of phase relationships between Santorini magmas 

The above comparisons illustrate how subtle compositional factors may affect phase 

relationships of magmas of similar compositions (e.g., rhyodacites) in a rather complex way. 

Comparison between the four Santorini compositions serves to illustrate this sensitivity, with 

the advantage that the phase equilibria were determined using the same procedure and 

synthesis conditions. Taking into account that our P-T-fO2-XH2O experimental conditions 

were rigorously the same for all four magmas, observed differences can only be attributed to 

compositional differences between the starting products (Table 1).  

Except for the LP2 rhyodacite in which clinopyroxene did not crystallize, the main 

mineral phases present in the natural rocks were reproduced experimentally for the four 

compositions. However, their phase relationships show marked differences (Figs. 3 to 6). 

Such significant topological differences were not anticipated, in particular between the 

Minoan and LP2 which are very similar, both petrologically and geochemically (Druitt et al., 



1999). This is illustrated on Figures 15A and 15B, which compare the equilibrium curves of 

each phase in the four compositions used in this work. Clearly, both plagioclase and 

amphibole liquidus curves are similar in shape and T-XH2O coordinates, while curves for 

pyroxenes and ilmenite differ from each other more markedly. Differences in the location of 

the ilmenite stability field may be attributed primarily to variations in FeO and TiO2 contents 

(see Table 1): the Minoan composition has the lowest FeO (2.85 wt%) and TiO2 (0.45 wt%) 

contents and displays the smallest ilmenite stability field (Fig. 15), whereas in the Cape Riva 

composition, which has the highest FeO (4.35 wt%) and TiO2 (0.68 wt%) contents, the 

ilmenite stability field extends over all (at 2 kbar, Fig. 15A) or almost all (at 4 kbar, Fig. 15B) 

the phase diagram. Plagioclase systematics can be easily correlated with the variation in bulk 

CaO content, higher CaO producing higher plagioclase saturation temperatures at fixed 

H2Omelt (or XH2O). The amphibole stability field also follows a similar rationale, its stability 

increasing with bulk CaO content (Figs. 15A and 15B). LP1 has the most extended 

clinopyroxene stability field both at 2 and 4 kbar (Figs. 15A and 15B), and this appears to be 

correlated with its higher FeO/MgO ratio (4.48) and lower CaO content (2.03 wt%) than those 

of the Minoan and Cape Riva, the clinopyroxene fields of which are smaller. The lack of 

clinopyroxene in LP2 is a case in point. The fact that this mineral has not been identified in 

both 2 and 4 kbar runs makes it difficult to propose phase overlooking as a possible 

explanation and strongly suggests instead that this is an intrinsic feature of LP2 phase 

equilibria (leaving aside nucleation problems as discussed previously). LP2 has the second 

highest FeO/MgO (4.24) after LP1 (FeO/MgO = 4.48), and a slightly higher CaO content 

(2.30 wt%, comparable to the Minoan; Table 1), which could favor clinopyroxene 

crystallization. The fact that this is not observed suggests that another compositional factor 

plays a role. Indeed, the stability fields of pyroxenes cannot be related in any simple way to 

the variation of a given major oxide. Instead, pyroxene stabilities result from the complex 



interplay of several elements in particular Ca, Fe, Mg, Na and H2O, or parameters such as 

pressure or fO2, the individual and additive effects of which remain to be unraveled. It is 

remarkable that LP1, despite having the lowest CaO content of all of the four magmas, is the 

one in which clinopyroxene displays the largest stability field at either 2 or 4 kbar. This goes 

along with the smallest inferred stability field for amphibole (and plagioclase), both features 

indicating that amphibole and clinopyroxene are fundamentally in a reaction relationship as 

previously observed in silicic magmas (e.g., Dall‟Agnol et al., 1999). 

In summary, the systematics revealed by the four phase diagrams show that the 

variations of stability fields of alumino-silicate minerals (plagioclase and amphibole) in 

broadly chemically similar magmas can be reasonably explained with the use of simple melt 

“descriptors”, such as bulk CaO content in the present case. Conversely, it appears that 

silicate phases lacking aluminium as an essential component (pyroxenes) have stability fields 

that vary in a complex, and so far unpredictable, way, underlining the need for a more detailed 

knowledge of the atomic structures of hydrous natural multicomponent silicate melts. 

 

CONSTRAINTS ON PRE-ERUPTIVE CONDITIONS 

Phase equilibrium constraints 

The phase relationships discussed above can be now used to set constraints on pre-eruption 

conditions, using the fact that the mineral assemblage Plg-Opx-Cpx-Fe-Ti oxide is common 

to the four compositions. First order constraints on temperature are provided by the fact that 

clinopyroxene reacts out generally below 850°C regardless of pressure and water content 

(Figs. 3-4), except in LP1 in which it is stable down to 800°C (Fig. 6). Clinopyroxene is 

replaced below 850-800°C by either amphibole (in water-rich conditions) or plagioclase 

(water-poor conditions). Orthopyroxene is generally not stable at H2O-saturation in the 

pressure range 2-4 kbar: hence its occurrence indicates water-undersaturated conditions with 



XH2O < 0.9, corresponding to H2Omelt generally lower than 6 wt% (Figs. 3-6), except for LP2 

where water-saturation cannot be excluded using this sole criteria. Similarly, the lack of 

amphibole in the phenocryst assemblage of the four compositions points either to a pre-

eruptive temperature higher than ca. 875°C or to H2Omelt lower than 6 wt% (Figs. 3-6). The 

use of topological arguments alone provides no basis for a pressure estimate, which is 

equivalent to saying that there is no particular problem in reproducing the canonical phase 

assemblage at either 2 or 4 kbar. 

Further insight can be gained by combining phase relationships with temperature 

constraints obtained from Fe-Ti oxides (Table 2), the different estimates of each rock being 

represented on Figs. 3-6 as grey bands. In all cases, upper and lower bounds on H2Omelt are 

provided by plagioclase precipitation and its coexistence with pyroxenes, respectively. We 

first carry out such an analysis at 2 kbar, a possible long standing reservoir pressure for felsic 

eruptions as shown by Cottrell et al. (1999). For the Minoan magma, the H2Omelt is in the 

range 5.2-6.3 wt% for a pre-eruptive temperature of 850°C (Fig. 3a), which fits well with melt 

inclusion analyses of this study (H2Omelt = 4.0-5.8 wt%; Table 4) and those of Cottrell et al. 

(1999) (H2Omelt = 3.5-6.5 wt%). The Cape Riva magma has a higher Fe-Ti oxide temperature, 

a slightly larger Plg stability field, and a restricted Cpx-Opx coexistence domain, which all 

combine to set an H2Omelt value centered at 6.1 wt% (Fig. 4a). For the LP2 magma, the 

H2Omelt cannot be higher than approximately 6 wt% at 865°C, which also agrees both with our 

SIMS measurements (H2Omelt = 3.2-5.3 wt%; Table 4) and the FTIR measurements of 

Gertisser et al. (2009) (H2Omelt = 4.5 wt%). The occurrence of clinopyroxene in LP2 pumices 

may be, to a first approximation, explained as resulting from admixing of crystals from 

invading mafic magmas, which also provided calcic plagioclase and olivine (Gertisser et al., 

2009). Finally, LP1 requires an H2Omelt of about 5 wt% at 865°C, which is best constrained by 

the stability field of orthopyroxene. Increasing pressure to 4 kbar does not significantly 



change the above figures except for Cape Riva, which would require somewhat drier 

conditions, around 2.6 wt% H2Omelt (Fig. 4b). Therefore, if stored at 2 kbar, Santorini silicic 

magmas seem to achieve dissolved water contents in the range 4-6 wt% prior to eruption, pre-

eruptive temperatures falling in a rather small temperature interval, 850-900°C. 

While the natural mineral assemblages are broadly reproduced in the conditions 

explored, the absence of magnetite (which co-exists with ilmenite in the natural rocks) in the 

FMQ run products indicates that experiments were more reduced than the natural system. 

Conversely, the absence of ilmenite in the NNO+1 charges illustrates that the natural system 

is less oxidizing. It is concluded that the pre-eruptive redox states of the magmas lay between 

around FMQ and NNO+1, in agreement with Fe-Ti oxide constraints discussed earlier (Fig. 2, 

Table 2). 

 

Melt inclusion constraints 

The water contents measured in the melt inclusions (Table 4) indicate minimum trapping 

pressures (calculated from Newman & Lowenstern, 2002) ranging from 1.0 to 2.4 kbar for the 

four eruptions (considering the average and the highest H2O for each eruption; Table 5): 1.3-

2.0 kbar for the Minoan, 1.6-2.4 kbar for the Cape Riva, 1.0-1.7 kbar for the LP2 and, 1.3-2.2 

kbar for the LP1. As some of the melt inclusions may have lost water, the highest values are 

probably the most meaningful (e.g., Lowenstern, 1995; Wallace, 2005). Chlorine contents, 

mostly between 2300 and 3500 ppm, are among the highest contents reported in the literature 

for silicic arc magmas (e.g., Lowenstern, 1995, Webster, 1997a; Wallace, 2005). It is 

noteworthy that such contents are similar to those found for Cl saturation (i.e., brine 

saturation) in many experimental investigations of silicic liquids at 2 kbar (i.e., 2600-3000 

ppm; Webster & Holloway, 1988; Malinin et al., 1989; Metrich & Rutherford, 1992; Webster, 

1992a, 1992b, 1997b). On a diagram of chlorine (ppm) versus H2O (wt%) (Fig. 16), the 



Santorini data show that whatever the amount of dissolved water in the trapped melt, chlorine 

remains approximately constant, illustrating the contrasted behavior between chlorine and 

water (e.g., Webster, 1997a; Lowenstern, 2000). Melt inclusion data mainly fall on or above 

the H2O-Cl (brine) saturation curve of the haplogranitic melts at 2 kbar (Webster, 1997a, 

1997b), the offset being likely due to slightly higher Cl solubility of the Fe-natural melts as 

opposed to those Fe-free synthetics used in most experiments. This supports our assumption 

of considering the highest H2O values as representative, i.e., the maximum H2O-saturation 

pressure estimates of 1.7-2.4 kbar rather than 1.0-1.6 kbar (Table 5). Such a Cl-H2O pattern 

suggests that magmas could have been saturated with both a hydrosaline liquid (brine) and a 

H2O-Cl vapor prior to eruption (Fig. 16). In contrast to Cl, fluorine contents (~500-800 ppm) 

are comparable to those found in other silicic arc magmas (e.g., Lowenstern, 1995). Our 

unpublished data indicate that fluorine strongly partitions into apatite (DF
apatite/melt

 = 35-44, 

while DCl
apatite/melt

 = 2.8-3.6; A. Cadoux et al., in preparation) which agrees very well with 

experimental results for felsic melts at 2 kbar and 900-924°C, saturated in brine (DF
apatite/melt

 = 

11-44 and DCl
apatite/melt

 = 1.0-4.5; Webster et al., 2009). 

The low sulphur contents are common in silicic magmas in general. Because of strong 

temperature dependence of S solubility (e.g., Carroll & Webster, 1994; Scaillet et al., 2003), 

low temperature magmas like dacite and rhyolite have very low dissolved S (< 200 ppm and 

often < 60 ppm; Lowenstern, 1995). However, Santorini melts appear particularly depleted in 

sulphur when compared to the compositionally similar Krakatau dacite and rhyodacite 

magmas (Fig. 17a). The S contents of Santorini melts are comparable to silica-richer melts 

such as Pinatubo (SiO2 ~76 wt%) or Katmai (SiO2 ~77 wt%; Fig. 17a). It has been 

demonstrated that the maximum amount of S that can be dissolved in a silicate melt is 

controlled by saturation of the melt with a sulfide and/or a sulfate phase (e.g., Carroll and 

Rutherford, 1987; Luhr, 1990; Scaillet et al., 1998; Clemente et al., 2004), which is the case 



for our Santorini silicic magmas, in which pyrrhotite globules are found in inclusions in 

pyroxenes and/or Fe-Ti oxides. The presence of this sulfide phase also provides additional 

evidence for the moderately reduced state of the system (e.g., Scaillet et al., 1998; Clemente 

et al., 2004). This reduced character may be at least partly at the origin of the very low 

sulphur contents in Santorini dacite and rhyodacites (Fig. 17c). It is unclear, however, if the 

low content of sulphur results from its degassing prior to melt inclusion entrapment, from 

sulphide disposal (i.e., settling) at early stages of magma fractionation, or from an 

intrinsically sulphur-poor system (i.e., sulphur-poor source), or from a combination of any of 

these mechanisms. 

 

Comparison between natural and experimental phases compositions 

Minoan rhyodacite 

The natural bulk crystallinity and the composition of the interstitial glass are similar to those 

produced in the rhyodacite at a temperature of 850°C and a H2Omelt of about 5-6 wt% (0.7 < 

XH2O < 1; Figs. 7 and 11a) at either 2 kbar (FMQ and NNO+1) or 4 kbar - FMQ. The natural 

clinopyroxene composition is also reproduced in these three experiments for XH2O = 0.9-1.0 

(Figs. 11e and 11f). The composition of the orthopyroxene is clearly not reproduced at a 

pressure of 4 kbar (Figs. 5c and 5d). Significantly, the compositions of the dominant phases in 

the natural product, plagioclase and orthopyroxene, are best reproduced at 850°C - 2 kbar – 

FMQ and H2Omelt = 6.3 wt% (XH2O = 0.9; Figs. 11b to 11d). These temperature and water 

values are consistent with the temperature estimated from natural Fe-Ti oxides (Fig. 2; Table 

2) and H2O content measured in the melt inclusions (both in pyroxene and plagioclase, Table 

4), respectively. The bulk crystallinity and phase proportions of the corresponding charge (9.7 

wt%, Gl = 90.3, Plg = 6.9, Opx = 1.9, Cpx = 0.4, Ilm = 0.5 wt%; Table 3) are in close 

agreement with the natural product (10-15 wt%, Gl = 85.4, Plg = 11.2, Opx = 1.9, Cpx = 0.8, 



Ilm = 0.4 wt%; Electronic Appendix 6). The mineral assemblage in the FMQ and NNO+1.8 

runs (either ilmenite or magnetite, respectively), confirms that the fO2 of the natural system 

lies between the two fO2 explored, as also inferred from natural co-existing ilmenite and 

magnetite pairs (NNO-0.1; Fig. 2). Thus, combining natural and experimental constraints, we 

conclude that the pre-eruptive storage conditions of the Minoan rhyodacitic magma are: P ≥ 2 

kbar, T = 853 ± 7°C, H2Omelt = 5-6 wt%, Cl ~ 3500 ppm, F ~ 800 ppm, S ~100 ppm and fO2 = 

10
-12.82 ± 0.19

 (NNO-0.1). 

 

Cape Riva dacite 

Bulk crystallinity and interstitial glass compositions can be reproduced at 850°C, FMQ, 2 and 

4 kbar and XH2O ~0.9, as well as at 900°C, 2 kbar, FMQ for XH2O = 0.7-0.8 (Figs. 8 and 

12a). The run products of the 900°C - 4 kbar experiment reached neither the crystallinity nor 

the glass compositions of the natural pyroclast. The fact that clinopyroxene did not crystallize 

in any of the runs performed at T = 850°C (Table 3) indicates that the pre-eruptive 

temperature was > 850°C, which is in agreement with the temperature estimates from natural 

sample (879-909°C; Table 2). The natural clinopyroxene composition was reproduced in the 

runs performed at 900°C, 2 kbar, FMQ, XH2O ~0.9 (Figs. 12e and 12f). Similarly, plagioclase 

composition is best reproduced at 900°C, 2 kbar, FMQ for XH2O ~0.8 (H2Omelt = 6.1 wt%). 

The same observation can be made for orthopyroxene in terms of FeO*/MgO ratio, although 

it does not match in terms of wollastonite content (Figs. 12c and 12d). Although there is no 

exact match, ilmenite composition is close to the natural one at 900°C, 2 kbar, FMQ at XH2O 

= 0.8-0.9. As at XH2O = 0.9, plagioclase and orthopyroxene are lacking in the mineral 

assemblage: hence XH2O conditions were lower than 0.9 and higher than 0.7 (no Cpx at 

XH2O = 0.7), which corresponds to H2Omelt comprised between 6.7 and 4.4 wt% (Table 3). 

This is consistent with melt inclusions data, as the majority has H2Omelt varying between 4.1 



and 6.6 wt% (total average of ~5 wt%; Table 4). The absence of magnetite, which co-exists 

with ilmenite in the natural sample, reflects slightly more oxidizing conditions in the natural 

system as determined with ilmenite-magnetite pairs (log fO2 =-12.92 ± 0.35; i.e., NNO-0.7). 

Both natural and experimental products indicate that pre-eruptive storage conditions of the 

Cape Riva dacite magma are: P ≥ 2 kbar, T = 879 ± 15°C, H2Omelt =5-6 wt%, Cl ~ 2800 ppm, 

F ~ 800 ppm, S ~100 ppm and fO2 = 10
-12.92 ± 0.35

 (NNO-0.7). 

Lower Pumice 2 rhyodacite 

Bulk crystallinity and interstitial glass compositions can be both reproduced over most of the 

P-T-XH2O explored, except in the NNO+1 runs. The composition of the main phase in the 

natural assemblage, plagioclase, is reproduced at 850°C both at 2 and 4 kbar for XH2O ~ 0.7-

0.8 (i.e., ~ 5.5 wt% H2Omelt at 2 kbar and 4.6-5.1 wt% at 4 kbar; Table 3) but also at 900°C 

both at 2 and 4 kbar for lower XH2O ~ 0.6-0.7 (i.e., ~ 3.5 wt% H2Omelt at 2 kbar and 3.0 wt% 

at 4 kbar). However, at 900°C-2 kbar and XH2O ~ 0.6-0.7, the crystallinity is too high in 

comparison with the natural one (respectively 14-18 wt% and 6-8 wt%; Table 3, Electronic 

appendix 6) excluding these as pre-eruptive conditions. The orthopyroxene composition is 

better reproduced in the 850°C (at 2 kbar and 4 kbar) runs at H2O saturation (XH2O = 1), than 

in the 900°C - 4 kbar run. The ilmenite composition is close to the natural one at 850°C, 

FMQ, at 2 and 4 kbar. These observations agree with a pre-eruptive temperature of about 

850°C, which is consistent with the 856 ± 16°C temperature estimated from the natural Fe-Ti 

oxides pairs (Table 2). Both 2 kbar and 4 kbar can be considered as potential pre-eruptive 

pressures. However, in the considered XH2O range (= 0.8-1.0) the main mineral assemblage 

and crystallinity at 4 kbar do not match: at XH2O = 0.8, the assemblage has 2.7 wt% 

amphibole whereas it occurs rarely in the natural rock. At 2 kbar and XH2O = 0.8, the bulk 

crystallinity (22.4 wt%) is significantly higher than the natural sample (6-8 wt%) while, at 



H2O saturation, the assemblage (3.3 wt% crystals) comprises 1.6 wt% amphibole, unlike the 

natural assemblage. In spite of lack of data at XH2O = 0.9 (leakage of capsule), we can infer 

by extrapolation that the natural assemblage is produced at 850°C - 2 kbar - FMQ and XH2O 

~ 0.9 which corresponds to 5.5 < H2Omelt < 8.0 wt%. This is broadly consistent with the 

highest measured H2O content of 5.34 ± 0.54 wt% in melt inclusions (Table 4) which leads to 

a minimum pressure of 1.7 kbar (Table 5). Together with H2O-Cl solubility constraints (Fig. 

16), these data strongly support a 2 kbar, rather than 4 kbar, storage pressure. Thus, one may 

consider that the melt inclusions with H2O < ~4.5 wt% (considering the error of the by-

difference method of ±1 wt%) most likely underwent post-entrapment leakage. Although 

phase equilibrium experiments did not yield an exact natural mineral assemblage (absence of 

Cpx, discussed before), the composition of the main phases (glass, Plg and Opx) has been 

reproduced. Combining natural and experimental constraints, we thus conclude that the pre-

eruptive storage conditions of the LP2 rhyodacitic magma are: P ≥ 2 kbar, T = 856 ± 16°C, 

H2Omelt ~5-6 wt%, Cl ~ 2800 ppm, F ~ 800 ppm, S ~50 ppm and fO2 = FMQ (10
-13.45 ± 0.37

; i.e., 

NNO-0.8). 

 

Lower Pumice 1 rhyodacite 

Both bulk crystallinity and interstitial glass compositions for LP1 are generally best 

reproduced in the products from experiments performed at T = 900°C in the XH2O range = 

0.8-1.0, at either 2 or 4 kbar. However, plagioclase did not crystallize at 4 kbar. It formed at 2 

kbar but for lower XH2O < 0.8 and overall, the composition of the experimental plagioclase is 

significantly less calcic (An < 28%) than the natural one in LP1 (An = 42%; Fig. 14b), and 

also less than the experimental plagioclases produced in the three other compositions (Figs. 

11b, 12b, 13b), reflecting the higher Na and K contents of the starting bulk rock (Table 1). 

Orthopyroxene, the second most important phase of the natural rock, was not formed either; 



instead, pigeonite crystallized in the 850°C - FMQ runs. This demonstrates that the 

orthopyroxene and the An42 plagioclase cannot be in equilibrium with the LP1 rhyodacite. 

This is also supported by mass balance calculations which suggest that orthopyroxene and 

plagioclase are xenocrysts (Electronic Appendix 6). These latter have been most probably 

included in a LP1 clinopyroxene- and oxides-bearing silicic magma during a mixing event 

with a less evolved plagioclase- and orthopyroxene-bearing magma. The mixed system was 

not equilibrated at the time of eruption. 

Despite this event, which prevents accurate experimental reconstruction of the pre-eruptive 

phase equilibria, one may still consider the constraints gained from the LP1 natural rhyodacite 

and its comparison with the products of the three other silicic eruptions, which show broadly 

similar phase assemblages and compositions. The minimum pressure estimates from melt 

inclusions are in the range 1.3-2.2 kbar (Table 5), pre-eruptive temperature and fO2 are 

estimated to be 869 ± 20°C and ~ FMQ (10
-13.30 ± 0.59 

= NNO-0.9, Table 2) and volatiles 

contents are very close to the Minoan, Cape Riva and Lower Pumice 2: maximum H2Omelt ~ 

6.3 wt% (mean H2Omelt = 4.5 ± 0.4 wt%), Cl ~ 2800 ppm, F ~ 900 ppm, S ~100 ppm (Table 

4). 

 

ON AMPHIBOLE OCCURRENCE AND ITS IMPLICATIONS 

Minoan rhyodacite 

Phenocrystic amphibole is absent in the Minoan rhyodacite. However, Cottrell et al. (1999) 

suggested that amphibole should have crystallized on the basis of: (1) the high amount of 

water in the Minoan glass inclusions (up to 6.5 wt%), and (2) previous experimental works on 

compositions similar to the Minoan rhyodacite which produced amphibole (e.g., Mount St 

Helens silicic rocks; Rutherford et al., 1985; Gardner et al., 1995). 



The working hypothesis of those authors was thus that, if amphibole had crystallized at one 

time, its absence in the erupted rocks was due to a major change in the storage conditions 

prior to eruption. Cottrell et al. (1999) proposed a two stage equilibration model for the 

Minoan rhyodacitic magma. It was first stored at pressures > 2 kbar and T~ 825°C with ca. 6 

wt% H2Omelt; it then moved to a shallower ~ 0.5 kbar storage region with ca. 3 wt% H2Omelt 

and a slightly higher temperature (885°C), owing to mafic magma input, during which 

amphibole phenocrysts reacted out. 

Our phase equilibrium results show that such a change in storage conditions is not required to 

explain the absence of amphibole, for the following reasons:  

(1) Cottrell et al. (1999) based their experiments and interpretations on the assumption 

that the Minoan magma was water-saturated, which our new, mixed-volatile 

experiments do not support. Amphibole can be absent at 2 kbar and 850°C in a 

water-rich magma such as the Minoan if the magma is slightly water-

undersaturated (XH2O ~0.9). 

(2) They analysed melt inclusions in the cores (An49-63) of plagioclase phenocrysts, 

but none in the rims (An39±2). Their model predicts that those in the rims should 

contain no more than 2.5-3.0 wt% H2O (the saturation values at 0.5 kbar). 

However, we have analysed inclusions from both cores and rims (Table 4a) and 

find that both fall in the range 4-6 wt%, without any systematic difference. The 

rim inclusions commonly lie in deep re-entrants in the cores, where they are 

surrounded by thin shells of rim composition plagioclase. Water contents of melt 

inclusions in the rims (up to 4.65 wt%; Table 4a) are much higher than predicted 

by the model of Cottrell et al. (1999). 

(3) They reported the occurrence of rare iron-rich hornblende inclusions hosted by 

orthopyroxene grains, and used this as evidence that amphibole had been 



previously stable in the magma at 2 kbar, but had reacted out when the magma 

moved to the last 0.5 kbar storage zone. While this is possible, we note that 

amphibole occurs abundantly in a suite of crystal-rich pumices that were co-

erupted with the main rhyodacitic magma at the start of the Minoan eruption 

(Druitt et al., 1999). They represent parts of a highly crystalline intrusion that was 

partly pushed out by the ascending rhyodacite, with mingling between the two 

magmas (Druitt, 2014). Both the amphibole and host orthopyroxenes reported by 

Cottrell at al (1999) are compositionally very similar to those in the crystal-rich 

pumices (Fig. 18), raising the possibility that the orthopyroxene and its inclusion 

were introduced by syn-eruptive mingling into the rhyodacite, and have no bearing 

on the P-T-X evolution of the rhyodacite. It is notable that the crystal-rich magma 

appears to have been stored at a similar depth as the rhyodacite since the 

amphibole composition of the crystal-rich pumice yields pressure of 1.9 ± 0.5 kbar 

(Ridolfi et al., 2010). 

In the present paper we argue that the phenocryst rim compositions, rim-hosted melt inclusion 

volatile contents, and the absence of phenocrystic amphibole in the Minoan rhyodacite form a 

sound basis for establishing a unique set of pre-eruptive conditions. 

 

Lower Pumice 2 rhyodacite 

Gertisser et al. (2009) reported rare amphibole as part of the crystal cargo of the LP2 

rhyodacite, occurring either as phenocrysts, groundmass microlites or as crystals within melt 

inclusions. The authors used Al-in-hornblende geobarometry to estimate the depth of the 

storage region of the LP2 magma on the basis of: 

(1) The presence of rare quartz in the LP2 pumices 



(2) Assuming that the amphibole phenocrysts grew in equilibrium with quartz and the 

other phases in the LP2 rhyodacitic magma. 

Amphibole phenocrysts of the LP2 pumices are described by Gertisser et al. (2009) as 

generally unzoned, containing 10.4 ± 0.1 wt% Al2O3 (n=4), and yield a pressure of 4.3 ± 0.1 

kbar, using the aluminium-in-hornblende geobarometer of Johnson and Rutherford (1989). 

This corresponds to a depth of about 16 km, assuming a crustal density of 2.7 g/cm
3
. 

However, the LP2 magma clearly lacks the buffering assemblage needed for a proper use of 

the Al-in-hornblende barometer as calibrated by Johnson & Rutherford (1989). Hence this 

geobarometer cannot be used to infer the pre-eruptive magma storage pressure of the LP2 

rhyodacite. Application of the more recent model of Ridolfi et al. (2010) yields a lower 

pressure of 2.5 ± 0.6 kbar, a temperature of 931 ± 22°C and a H2Omelt content of 5.5 ± 0.8 

wt%. Calculated pressure and melt H2O content concur with our estimate of pre-eruptive 

conditions (P ≥ 2 kbar, H2Omelt ~5-6 wt%). However, the calculated crystallization 

temperature is high compared to our estimated value of 856 ± 16°C. This may reflect that the 

amphibole crystals are antecrysts derived from less evolved magmas with higher 

crystallization temperatures. The low Si content of the amphibole crystals (SiO2 = 42 wt%; 

Gertisser et al., 2009) compared to amphiboles of our experiments (SiO2 = 44-47 wt%, 

Electronic Appendix 3d) is consistent with such an interpretation. 

 

SANTORINI MAGMA PLUMBING SYSTEM AND ITS EVOLUTION 

Silicic magma storage regions 

Our results show that the silicic magmas discharged during four large Plinian 

eruptions of Santorini were stored under similar conditions immediately prior to eruption. 

Considering a 2 kbar storage pressure and a crustal density of 2640 kg.m
-3 

(Konstantinou, 

2010), the top of the silicic magma storage regions is located at 7.7 km depth (i.e., in the 



upper crust; Fig. 19). This storage pressure for silicic magmas is in agreement with recent 

phase equilibrium experiments on Santorini mafic and intermediate magmas, showing that 

andesitic magmas fractionate to dacite and rhyodacite at about 2 kbar (Andújar et al., 2012; 

Cadoux et al., 2013). Andesite comes from a deeper (~15 km) mafic storage region (Fig. 19), 

where basalts fractionate to basaltic andesite (55 to 58 wt% SiO2) with 2-3 wt% H2O at 1040-

1000°C, 4 kbar and fO2 = FMQ-0.5 (Andújar et al., 2012; Cadoux et al., 2013). Interestingly, 

even if it has to be further constrained, a similar scenario has been proposed for the earliest 

(~650 ka) rhyolitic magmas (early centres of Akrotiri, South of Thera Island, Fig. 1). Indeed, 

according to Mortazavi & Sparks (2004), Akrotiri differentiated mafic magma intruded into 

porphyritic silicic magma at depths of 7–10 km (water contents of the mafic magmas are 

estimated to have been > 4 wt% at water pressures of ≥ 1.8 kbar at temperatures of 

approximately 950–1000°C).  

The similar P-T-volatile storage conditions, the closely spaced eruptive vents (Druitt et 

al., 1999) along with the large volumes (up to 30-60 km
3
 DRE; Pyle, 1990; Sigurdsson et al., 

1990; Druitt et al., 1999; Sigurdsson et al., 2006) of the silicic magmas discharged during the 

four large Plinian eruptions, suggest that they come from the same, presumably very large, 

reservoir. This hypothesis implies that this latter would have been sustained since at least 184 

ka (the age of the Lower Pumice 1 eruption; Fig. 1), which is in agreement with recent 

thermal modelling (Gelman et al., 2013), that shows that an upper crustal reservoir can 

remain above its solidus for more than 100 ka when fed by magma fluxes typical of large 

magmatic provinces (i.e., < 0.005-0.008 km
3
/year). 

This ≥ 7.7 km reservoir depth beneath the caldera is close to that inferred for the 1650 AD 

rhyolite reservoir of the Kolumbo seamount, 6.5 km NE of Santorini (along the NE-SW 

trending Santorini-Kolumbo volcano-tectonic line; Fig. 19). The latter would be located 

around 6.8 km depth according to petrological, tomographic and stress field constraints 



(Dimitriadis et al., 2010; Konstantinou & Yeh, 2012; Cantner et al., 2014). P- and S-wave 

tomographic images suggest that the current magma storage region is a small discrete 

reservoir, ca. 3 km diameter (Fig. 19; Dimitriadis et al., 2010; Konstantinou & Yeh, 2012). 

 

Size and shape of the silicic magma storage region 

Currently, there is no such geophysical evidence supporting the existence of a large storage 

region at ≥ 7.7 km beneath the Santorini caldera. However, this depth is comparable with that 

of emplacement of some granitoids of the Aegean Arc, such as the Miocene Tinos and 

Mykonos plutons emplaced at 10–12 km and at 5-10 km depth, respectively (e.g., Altherr et 

al., 1982; Buick, 1991; Lucas, 1999; de Saint-Blanquat et al., 2011) The total thicknesses of 

these plutons are approximately 1–2 km and 2-3 km, respectively, with volumes of 10-80 km
3
 

and ~ 150 km
3
, respectively (Denèle et al., 2011; de Saint-Blanquat et al., 2011). 

Reconstruction of the 3D shape of plutons from various tectonic settings has shown that the 

majority are tabular, wedge- or funnel-shaped (Scaillet et al., 1995; McCaffrey & Petford, 

1997; Cruden, 1998; Vigneresse et al., 1999; Petford et al., 2000; Scaillet & Searle, 2006). On 

the basis of the positive correlation, evidenced by de Saint Blanquat et al. (2011), between 

pluton (s. l.) volume and the duration of its construction, we may infer that the final volume of 

the Santorini silicic storage region after 200 ka of growth might be in the range of 50-500 

km
3
, depending on the time-averaged construction rate, between ca. 0.001 and 0.01 km

3
/yr, 

respectively (see Fig. 4 in de Saint-Blanquat et al., 2011). As the estimated magma volume 

discharged during the last large silicic Minoan eruption is up to 60 km
3
 DRE (Sigurdsson et 

al., 2006), the storage region volume should be larger than 60 km
3
. If we assume a tabular-

shaped silicic storage region with an area of 65 km
2 

(corresponding to the caldera area), its 

thickness could be comprised between 0.9 and 7.7 km (considering a volume of the storage 

region comprised between 60 and 500 km
3
, respectively). 



The volume of erupted Minoan magma could represent almost the totality (if the storage 

region is ≥ 60 km
3
) to only 6% of the total volume of the storage region. 

 

Pre-eruptive magma storage variations 

 Although magma storage conditions for the large silicic Plinian events do not appear 

to have changed since about 200 ka, some evidence suggests that they may have been 

different during the periods separating each of these Plinian eruptions. Interplinian phases at 

Santorini are characterized by effusive and minor explosive activity up to subplinian in 

intensity (Druitt et al., 1999; Vespa et al., 2006) and the products range from basalt to dacite 

in composition. Petrological studies of the post-Minoan, intra-caldera, Kameni dacitic lavas 

(197 BC to AD 1950) suggest that they were stored in a shallower region at a pressure of 

approximately 1 kbar (2-4 km in depth; Huijsmans, 1985; Barton & Hujismans, 1986; Martin, 

2005). This has supported the idea that the recent inflation of the caldera ground, the source of 

which has been estimated to be at 4.4 km depth (Newman et al, 2012; Parks et al., 2012), was 

due to magma intrusion. Therefore, even if pre-eruptive constraints are lacking for the oldest 

interplinian phases, it cannot be ruled out that variations in magma storage conditions of 

Santorini, such as those documented at Mt. St Helens and Vesuvius volcanoes (Gardner et al., 

1995; Rutherford & Devine, 2008; Scaillet et al., 2008) have occurred in the past. 

 

CONCLUSIONS 

The systematic geochemical trends displayed by both experimental glass and minerals 

and their coherent variation with experimental variables (Figs. 7 to 14) show that conditions 

close to equilibrium were attained in our experiments. They were also broadly successful in 

reproducing the natural phase assemblages. Hence, the latter also approached equilibrium 

conditions prior to eruption (except Lower Pumice 1). Phase relationships show marked 



differences between eruptions, in spite of their similar whole-rock compositions, due to the 

sensitivity of phase equilibria to small variations (< 1 wt%) in major element composition. 

This demonstrates how application of a phase diagram for a particular silicic magma might 

incorrectly predict phenocryst assemblages for another silicic magma. This point has also 

been made for phonolites (Scaillet et al., 2008; Andújar & Scaillet, 2012a), stressing the need 

for a case-by-case approach, whenever a precise estimate of pre-eruptive conditions is the 

chief objective of the experimental study. 

Our results show that storage conditions prevailing before the four silicic Plinian eruptions of 

Santorini were similar and can be summarized as follows: 

- T = 850°C – 900°C 

- Moderately reduced conditions (NNO = - 0.9 to - 0.1) 

- Water-rich melts (~ 5-6 wt%) 

- Sulphur depleted melts (≤ 100 ppm; buffered by pyrrhotite) 

- Fluorine contents ~ 800 ppm, typical of silicic arc magmas 

- Chlorine-rich melts (mostly between 2300 and 3500 ppm)  

- Melts slightly undersaturated with respect to H2O, but most probably saturated 

with respect to H2O+Cl (± CO2) and a hydrosaline liquid. 

- Storage pressure of 2 kbar or slightly more, but less than 4 kbar 

- Reservoir roof depth at ≥ 7.7 km. 

The Minoan silicic magma slightly differs from the Cape Riva and Lower Pumices by: 

- Its slightly lower pre-eruptive temperature (consistent with its higher bulk dry 

SiO2; Tables 1 and 2) 

- Its less reduced state (NNO = - 0.1) 

- Its higher chlorine content (3500 ppm in average, with maximum values > 4000 

ppm) 



We propose that Santorini magma plumbing system is dominated by a large, long-lived (≥ 

200 ka) dominantly-silicic storage region at about 8 km depth (feeding the major Plinian 

eruptions; this study), which is maintained by mafic injections from a mafic reservoir at about 

15 km depth (Andújar et al., 2012; Fig. 19).  

Finally, the fact that Santorini silicic melts may have high enough dissolved Cl to be saturated 

in hydrosaline liquid has significant implications for the Cl degassing budget which will be 

treated in a separate article. 
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FIGURE CAPTIONS 

 

Figure 1. a. The sequence of the 12 major explosive eruptions of Santorini divided into two 

cycles (modified from Druitt et al., 1999). White: dominantly silicic eruption, grey: 

dominantly andesitic eruption, black: interplinian eruption. b. Simplified geological map 

(slightly modified from Gertisser et al., 2009). 



 

Figure 2. Oxygen fugacity (log fO2) versus temperature (°C) calculated from Fe-Ti oxides 

from silicic pumices of the Minoan, Cape Riva, Lower Pumice 2 and Lower Pumice 1 

eruptions (calculations performed with Stormer, 1983, and Andersen & Lindsley, 1985). All 

the ilmenite and magnetite pairs used for calculation are in equilibrium, according to their 

Mg/Mn ratios (Bacon & Hirschmann, 1988). They are touching and non-touching pairs 

included in the same pyroxene crystal or, touching pair in the groundmass. Previously 

published T - fO2 estimates for the Minoan (Sigurdsson et al., 1990; Cottrell et al., 1999) and 

the LP2 (Gertisser et al., 2009) eruptions are also shown. The FMQ and NNO oxygen 

fugacity curves were calculated for 2 and 4 kbar using Frost (1991). 



 



Figure 3. Isobaric phase relationships of the Minoan rhyodacite at (a) 2 and (b) 4 kbar and 

FMQ as a function of XH2O of the coexisting fluid phase and of temperature (°C). Curves are 

labeled with mineral names lying inside their stability fields. Plg = plagioclase, Opx = 

orthopyroxene, Cpx = clinopyroxene, Pig = pigeonite, A = amphibole, Ilm = ilmenite. Each 

black circle represents an experimental charge. Dark blue numbers: by-difference H2Omelt 

values in wt% (Table 3). Smaller italic black numbers are charge crystallinity in wt% (Table 

3). Light grey dashed-lines indicate the anorthite content (%) of the experimental plagioclases 

(Electronic Appendix 1b). Grey band: pre-eruptive temperature range inferred from natural 

Fe-Ti oxides (Table 2). 3c. Phase relationships at NNO+1 and 850°C as a function of XH2O 

of the coexisting fluid phase and of pressure (kbar). 



 

Figure 4. Isobaric phase relationships of the Cape Riva dacite at (a) 2 and (b) 4 kbar and 

FMQ as a function of XH2O of the coexisting fluid phase and of temperature (°C). Same 

legend as Figure 3. 



 

Figure 5. Isobaric phase relationships of the Lower Pumice 2 rhyodacite at (a) 2 and (b) 4 

kbar and FMQ as a function of XH2O of the coexisting fluid phase and of temperature (°C). 

Same legend as Figure 3. 



 

Figure 6. Isobaric phase relationships of the Lower Pumice 1 rhyodacite at (a) 2 and (b) 4 

kbar and FMQ as a function of XH2O of the coexisting fluid phase and of temperature (°C). 

Same legend as Figure 3.  



 

Figure 7. Experimental glass compositions of the Minoan rhyodacite as a function of XH2O. 

The grey band is the composition of the natural interstitial glass and the vertical bar in the 

bottom left corner is the average standard deviation (wt%) for the experimental glasses. 

Symbols: squares and diamonds are for 850°C and 900°C runs, respectively. Fill colour: 

white = 4 kbar, grey = 2 kbar and black = 1 kbar. White cross within the symbol indicates 

NNO+1 runs, no white cross means FMQ runs. 



 

Figure 8. Experimental glasses composition of the Cape Riva dacite as a function of XH2O. 

Same legend as Figure 7. 



 

Figure 9. Experimental glasses composition of the Lower Pumice 2 rhyodacite as a function 

of XH2O. Same legend as Figure 7. 



 

Figure 10. Experimental glasses composition of the Lower Pumice 1 rhyodacite as a function 

of XH2O. Same legend as Figure 7. 



 

Figure 11. Crystallinity and mineral compositions of the Minoan rhyodacite as a function of 

XH2O. The composition of the natural phase is reported as a grey band or a black straight 

line. 



 

Figure 12. Crystallinity and mineral compositions of the Cape Riva dacite as a function of 

XH2O. Same legend as Figure 11. 



 

Figure 13. Crystallinity and mineral compositions of the Lower Pumice 2 rhyodacite as a 

function of XH2O. Same legend as Figure 11. 



 

Figure 14. Crystallinity and mineral compositions of the Lower Pumice 1 rhyodacite as a 

function of XH2O. Same legend as Figure 11. 



 

Figure 15. Comparison of each mineral phase equilibria curve for the four compositions at 

the same experimental conditions. A. at 2 kbar - FMQ, B. at 4 kbar - FMQ. Values of melt 

“descriptors” discussed in the text (FeO, TiO2, CaO, FeO/MgO, Na2O) are reported. 



 

Figure 16. Chlorine (ppm) versus H2O (wt%) contents dissolved in melt inclusions of 

plagioclase and pyroxene phenocrysts from the Minoan, Cape Riva, Lower Pumice 2 and 

Lower Pumice 1 silicic magmas. They are compared with melt inclusions of other silicic arc 

magmas from Augustine and Katmai volcanoes (Alaska; Hildtreth, 1983; Westrich et al., 

1991; Hammer et al., 2002; Roman et al., 2006), Krakatau (Indonesia, Mandeville et al., 

1996) and Pinatubo (Philippines, Gerlach et al., 1996). D and RD refer to the whole-rock 

composition: D = dacite, RD = rhyodacite. 

The Cl-H2O solubility curves at 0.5 and 2 kbar are taken from experimental data of Webster 

(1997b) for haplogranite liquids at 800 to 860°C. They suggest a trapping pressure equal or 

higher than 2 kbar. Vapor plus hydrosaline liquid exsolve at the point of intersection, i.e., the 

sharp break in curves slope (e.g., Webster, 2004). 

 

 



 

Figure 17. Sulphur contents (ppm) of melt inclusions plotted against (a) dry SiO2 (wt%), (b) 

pre-eruptive temperature (°C), (c) NNO as indicator of redox state. Data sources for 

Santorini in Electronic Appendix 5a, for other volcanoes: same sources as in Fig.16 plus 

Scaillet & Evans (1999) for NNO of Pinatubo dacite. 



 

Figure 18. Amphibole compositions for the Minoan rhyodacite. (a) Altot versus Mg#, (b) 

Mg# versus Na+K (per formula unit, on the basis of 23 oxygen). Experimental compositions 

are compared with the compositions of rare amphibole crystals found in the natural 

rhyodacite, as well as with those found in the Minoan crystal-rich pumices (data from Cottrell 

et al., 1999 and Druitt unpublished data, respectively). 



 

Figure 19. Schematic interpretative illustration of the Santorini-Kolumbo magma plumbing 

system along a SW–NE cross-section from the Santorini caldera towards the Kolumbo 

seamount. Illustration based on the results obtained in this work, as well as recent 

volcanological, petrological and geophysical studies (see text). P-waves velocity variations 

beneath Kolumbo along with the hypocenter distribution (2002-2005 earthquakes) used in the 

tomography procedure of Dimitriadis et al. (2010) is shown. The seismicity is anti-correlated 

with the presence of the low-velocity areas, similar to what has been observed in other 

volcanic systems (e.g., De Natale et al., 2004). Sources for rheological limits and properties: 

Karagianni & Papazachos (2007), Endrun et al. (2008), Konstantinou (2010). White dashed 



ellipse represents the location of the negative velocity perturbation according to S-waves, 

which are believed to be more consistent than the location inferred from P-waves with 

petrological constraints (Konstantinou & Yeh, 2012). 

There are at least four main magma storage regions beneath the Santorini-Kolumbo volcanic 

system: a mafic reservoir at 15 km depth (at the boundary between upper- and lower-crust; 

Andújar et al., 2012; Cadoux et al., 2013), a large dominantly-silicic reservoir at 8 km depth, 

a discrete smaller rhyolitic reservoir at ca. 7 km depth beneath Kolumbo (Dimitriadis et al., 

2010; Cantner et al., 2014) and a shallower one at 2-4 km depth beneath the caldera (Parks et 

al., 2012 and references therein). 

B = basalt, BA = basaltic andesite, A = Andesite, D = dacite, RD = rhyodacite, R = rhyolite. 



TABLE CAPTIONS 

 

Table 1. Whole rock and average double-fusion dry glass compositions of the four samples used as starting materials 

  
            

MINOAN CAPE RIVA LOWER PUMICE 2 LOWER PUMICE 1 

Sample S82-30 Whole Rock 
Dry Glass (double 

fusion) 
Sample S09-62 Whole Rock 

Dry Glass (double 

fusion) 
Sample S09-23 Whole Rock 

Dry Glass (double 

fusion) 
Sample S09-17 Whole Rock 

Dry Glass (double 

fusion) 

n 

 

22 n 

 

25 n 

 

24 n 

 

25 

wt. % 

 
  wt. % 

 
  wt. % 

 
  wt. % 

  SiO2 70.58 71.24 (26) SiO2 66.88 67.58 (31) SiO2 68.90 69.77 (29) SiO2 68.70 69.19 (32) 

TiO2 0.46 0.45 (4) TiO2 0.68 0.68 (4) TiO2 0.49 0.54 (7) TiO2 0.50 0.53 (5) 

Al2O3 14.64 14.87 (15) Al2O3 15.15 15.43 (16) Al2O3 15.41 15.29 (19) Al2O3 14.84 15.23 (17) 

Fe2O3tot 

 

  Fe2O3tot 4.82   Fe2O3tot 3.57   Fe2O3tot 3.59 

 FeOtot 3.05 2.85 (18) FeOtot 

 

4.35 (22) FeOtot 

 

3.43 (16) FeOtot 

 

3.27 (20) 

FeO (Fe2+) n.a.   FeO (Fe2+) 2.50   FeO (Fe2+) 1.91   FeO (Fe2+) 2.14 

 MnO 0.08 0.08 (5) MnO 0.15 0.13 (6) MnO 0.12 0.10 (6) MnO 0.12 0.10 (5) 

MgO 0.66 0.73 (5) MgO 1.05 1.09 (4) MgO 0.74 0.81 (4) MgO 0.70 0.73 (5) 

CaO 2.36 2.34 (14) CaO 3.07 3.00 (9) CaO 2.41 2.30 (13) CaO 2.11 2.03 (8) 

Na2O 5.08 4.24 (8) Na2O 5.32 4.90 (14) Na2O 4.83 4.37 (13) Na2O 5.69 5.23 (17) 

K2O 3.00 3.08 (11) K2O 2.51 2.61 (8) K2O 3.11 3.24 (9) K2O 3.41 3.54 (10) 

P2O5 0.08 0.13 (4) P2O5 0.19 0.23 (4) P2O5 0.15 0.17 (2) P2O5 0.11 0.14 (4) 

  

    

 

    

 

  

   
H2O

+
 n.a   H2O

+
 2.84   H2O

+
 4.62   H2O

+
 3.71 

 
H2O

-
 n.a   H2O

-
 0.33   H2O

-
 0.7   H2O

-
 0.58 

 Stot n.a   Stot 0.05   Stot 0.06   Stot 0.03 

 CO2tot n.a   CO2tot 0.08   CO2tot 0.08   CO2tot 0.06 

 L.O.I 2.12   L.O.I 3.54   L.O.I 5.91   L.O.I 5.62 

 Original Sum 99.99 98.40 Original Sum 99.48 97.77 Original Sum 98.85 98.11 Original Sum 99.70 97.36 

  
    

 
    

 
  

   ppm 

 

  ppm 

 

  ppm 

 

  ppm 

  Cl n.a.   Cl 4380   Cl 4920   Cl n.a. 

 Li n.a.   Li 18.6   Li 10.2   Li 13.9 

 B n.a.   B 15   B 14   B 19   

            L.O.I.: Loss On Ignition. 

          n : number of dry glass analyses. 

         Numbers in parentheses indicate one standard deviation of n analyses in terms of smallest units cited 

     n.a.: not analysed 

           
Table 1. Whole rock and average double-fusion dry glass compositions of the four samples 

used as starting materials. All compositions have been recalculated to 100 wt% on a 

anhydrous basis. Except for the Minoan (XRF, Nottingham, UK), whole rock major element 

analyses were all performed at the SARM-CRPG (Nancy, France) by ICP-OES. FeO (Fe
2+

) 

content was determined by wet chemistry, H2O
+ 

with Karl Fisher potentiometric titration, 



H2O
- 
by gravimetry, CO2tot and Stot were measured with a Leco SC 144DR. Chlorine content 

was determined by wet precipitation- ferrithiocyanate spectrophotometry. Boron was 

measured using a Varian Cary 50 absorptiometry Spectrophotometer and Lithium by Atomic 

absorption spectroscopy. Dry glasses were analysed with a Cameca SX50 electron 

microprobe (ISTO-BRGM, France). 

 

Table 2. Mean pre-eruptive temperatures and oxygen fugacities 
     

           Minoan Cape Riva Lower Pumice 2 Lower Pumice 1 

Fe-Ti Oxides T (°C) ± 1SD log fO2 ± 1SD T (°C) ± 1SD log fO2 ± 1SD T (°C) ± 1SD log fO2 ± 1SD T (°C) ± 1SD log fO2 ± 1SD 

Andersen & Lindsley (1985) 853 ± 7 -12.82 ± 0.19 879 ± 15 -12.92 ± 0.35 856 ± 16 -13.45 ± 0.37 869 ± 20 -13.30 ± 0.59 

Ghiorso & Evans (2008) 866 ± 9 -12.86 ± 0.07 891 ± 17 -12.49 ± 0.10 866 ± 17 -13.59 ± 0.10 878 ± 22 -13.65 ± 0.24 

         P solubility (apatite-melt) 
        Harrison & Watson (1984) 807   909   897   878   

 

Table 2. Mean pre-eruptive temperatures and oxygen fugacities. Temperature estimates from 

Fe-Ti oxides and P solubility are mostly consistent, showing that the less evolved Cape Riva 

magma is the hotter one. The calculation scheme of Ghiorso & Evans (2008) systematically 

leads to higher temperatures (+9 to 13°C) and lower fO2 (up to 0.5 log fO2) than Andersen & 

Lindsley (1985) but the two techniques agree within one standard deviation. 

 



Table 3. Phase equilibria experiments: conditions, run products and phase proportions 

  

        
Charge # 

Starting 

material 
log fO2

1
 XH2O

2
 H2Omelt

3
 (wt%) Run products and phase proportions (wt%)

4
 ∑r

2
 

Crystallinity 

(wt%) 

        Experiment # 1: Pt = 2022 ±15 bar, PH2 = 5.8 bar (target: FMQ buffer), T = 902 ±6°C, run duration 164.8 hours 

  

        Sensor Co-Pd 

 
-12.29 (FMQ + 0.2) 

     LP2 I           dry glass -12.29 1 5.6 Gl only 

  LP2 II          " -12.38 0.9 5.2 Gl (99.0), Opx (0.8), Ilm (0.1) 1.43 1.0 

LP2 III         " -12.49 0.8 4.4 Gl (90.6), Plg (7.4), Opx (1.7), Ilm (0.3) 0.49 9.4 

LP2 IV          " -12.60 0.7 3.7 Gl (86.2), Plg (10.1), Opx (3.3), Ilm (0.3) 0.68 13.8 

LP2 V           " -12.74 0.6 3.3 Gl (81.9), Plg (14.0), Opx (3.8), Ilm (0.1) 0.63 18.1 

        LP1 VI          " -12.29 1 7.1 Gl (98.1), Cpx (1.6), Ilm (0.3) 0.84 1.9 

LP1 VII         " -12.38 0.9 6.0 Gl (96.7), Cpx (2.9), Ilm (0.4) 1.10 3.3 

LP1 VIII        " -12.49 0.8 4.3 Gl (96.3), Cpx (3.3), Ilm (0.4) 1.50 3.7 

LP1 IX          " -12.60 0.7 4.2 Gl (92.8), Cpx (4.3), Plg (2.3), Ilm (0.5) 1.55 7.2 

LP1 X           " -12.74 0.6 4.1 Gl (85.2), Plg (8.6), Cpx (5.6), Ilm (0.6) 2.64 14.8 

        Min XI           " -12.29 1 6.3 Gl only 

  Min XII          " -12.38 0.9 5.8 Gl (97), Cpx (3) 1.54 3.0 

Min XIII         " -12.49 0.8 4.5 Gl (97.3),Cpx (2.2), Plg (0.5) 1.50 2.7 

Min XIV          " -12.60 0.7 3.9 Gl (91.5), Plg (6.5), Opx (2.9), Cpx (traces) 1.22 8.5 

Min XV           " -12.74 0.6 3.5 Gl (83.4), Plg (13.2), Opx (4.3), Cpx (traces) 0.91 16.6 

        CR XVI          " -12.29 1 7.7 Gl (96.5), Cpx (3.1), Ilm (0.3) 3.95 3.5 

CR XVII         " -12.38 0.9 6.7 Gl (95.3), Cpx (4.0), Ilm (0.7) 2.20 4.7 

CR XVIII        " -12.49 0.8 6.1 Gl (88.7), Plg (5.5), Cpx (2.8), Opx (2.4), Ilm (0.7) 1.843 11.3 

CR XIX          " -12.60 0.7 4.4 Gl (75.5), Plg (16.9), Opx (6.8), Ilm(0.9) 1.48 24.5 

CR XX           " -12.74 0.6 4.2 Gl (66.4), Plg (24.5), Opx (8.2), Ilm(0.9) 0.87 33.6 

        Experiment # 2: Pt = 2004 ±12 bar, PH2 = 6 bar (target: FMQ buffer), T = 850 ±1°C, run duration 212.1 hours 

  

        Sensor Co-Pd 

 
-13.30 (FMQ + 0.1) 

     LP2 I           dry glass -13.30 1 8.0 Gl (96.7), Amph (1.6), Opx (1.2), Ilm (0.6) 2.61 3.3 

LP2 II          " -13.39 0.9 no data (leaking capsule) 

   LP2 III         " -13.49 0.8 5.5 Gl (77.6), Plg (16.8), Opx (4.9), Ilm (0.7) 0.45 22.4 

LP2 IV          " -13.61 0.7 5.2 Gl (67.9), Plg (25.4), Opx (6.1), Ilm (0.6) 0.40 32.1 

LP2 V           " -13.74 0.6 4.6 Gl (60.9), Plg (31.2), Opx (7.2), Ilm (0.6) 0.30 39.1 

        LP1 VI          " -13.30 1 6.8 Gl (95.0), Cpx (4.3), Ilm (0.7) 0.82 5.0 

LP1 VII         " -13.39 0.9 6.3 Gl (93.6), Cpx (5.6), Ilm (0.7) 0.76 6.4 

LP1 VIII        " -13.49 0.8 5.7 Gl (88.6), Cpx (6.2), Plg (4.5), Ilm (0.7) 0.97 11.4 

LP1 IX          " -13.61 0.7 5.1 Gl (75.1), Plg (17.2), Cpx (1.4), Pig (5.7), Ilm (0.6) 0.67 24.9 

LP1 X           " -13.74 0.6 4.6 Gl (58.1), Plg (32.5), Pig (12.0), Ilm (0.5), Cpx (traces) 0.76 41.9 

        Min XI           " -13.30 1 6.9 Gl (97.1), Amph (3.4), Ilm (0.3), Cpx (traces) 0.79 2.9 

Min XII          " -13.39 0.9 6.3 Gl (90.3), Plg (6.9), Opx (1.9), Cpx (0.4), Ilm (0.5) 0.95 9.7 

Min XIII         " -13.49 0.8 5.2 Gl (77.4), Plg (17.9), Opx (4.1), Ilm (0.6) 0.91 22.6 

Min XIV          " -13.61 0.7 5.1 Gl (73.0), Plg (22.5), Opx (4.1), ilm (0.4) 0.57 27 

Min XV           " -13.74 0.6 4.7 Gl (66.2), Plg (27.4), Opx (5.8), Ilm (0.5) 0.91 33.8 

        CR XVI          " -13.30 1 6.6 Gl (92.3), Amph (7.3), Ilm (0.4) 2.77 7.7 

CR XVII         " -13.39 0.9 6.3 Gl (81.4), Amph (14.0), Plg (7.3), Ilm (0.3), Opx (traces) 0.66 18.6 

CR XVIII        " -13.49 0.8 4.0 Gl (67.7), Plg (28.0), Opx (8.3), Ilm (1.0) 1.18 32.3 

CR XIX          " -13.61 0.7 4.1 Gl (57.5), Plg (32.1), Opx (9.5), Ilm (1.0) 1.06 42.5 

CR XX           " -13.74 0.6 2.9 Gl (42.5), Plg (46.6), Opx (9.9), Ilm (1.0) 0.73 57.5 

        Experiment # 3: Pt = 4135 ±19 bar, PH2 = 6.6 bar (target: FMQ buffer), T = 901 ±1°C, run duration 126.1 hours 

  

        Sensor Co-Pd 

 
-12.27 (FMQ) 

     LP2 I           dry glass -12.27 1 8.4 Gl only 

  LP2 II          " -12.36 0.9 5.1 Gl only 

  LP2 III         " -12.46 0.8 4.0 Gl (97.9), Opx (2.1) 2.16 2.1 

LP2 IV          " -12.58 0.7 3.6 Gl (96.7), Opx (3.3) 2.90 3.3 

LP2 V           " -12.71 0.6 3.0 Gl (84.6), Plg (12.3), Opx (2.7), Ilm (0.5) 1.87 15.4 

        LP1 VI          " -12.27 1 7.9 Gl only 

  LP1 VII         " -12.36 0.9 5.5 Gl (98.5), Cpx (1.5) 2.31 1.5 

LP1 VIII        " -12.46 0.8 4.8 Gl (97.8), Cpx (2.2) 1.88 2.2 

LP1 IX          " -12.58 0.7 3.8 Gl (97.0), Cpx (3.0) 1.74 3.0 

LP1 X           " -12.71 0.6 2.9 Gl (95.6), Cpx (4.4) 2.28 4.4 

        Min XI           " -12.27 1 8.0 Gl only 

  Min XII          " -12.36 0.9 5.1 Gl only 

  Min XIII         " -12.46 0.8 4.3 Gl (97.7), Cpx (2.3) 1.12 2.3 

Min XIV          " -12.58 0.7 3.7 Gl (96.8), Cpx (3.2) 1.53 3.2 

Min XV           " -12.71 0.6 2.5 Gl (89.1), Plg (7.5), Cpx (3.3) 1.36 10.9 

        CR XVI          " -12.27 1 9.6 Gl only 

  CR XVII         " -12.36 0.9 5.4 Gl, Cpx 

  CR XVIII        " -12.46 0.8 4.8 Gl (96.5), Cpx (3.1), Ilm (0.4) 2.55 3.5 

CR XIX          " -12.58 0.7 3.8 Gl (95.4), Cpx (4.0), Ilm (0.5) 2.12 4.6 

CR XX           " -12.71 0.6 2.6 Gl (88.3), Plg (6.2), Cpx (2.8), Opx (2.3), Ilm (0.4) 1.16 11.7 

 
 
 
 
 
 



Table 3. Phase equilibria experiments: conditions, run products and phase proportions. 

 



Table 4a. Volatile compositions of the Minoan melt inclusions (MI) from SIMS measurements 

  
             

Sample-Crystal#-MI# Host MI location 
Dry 

SiO2 

Touching 

Plg 
H2O ± Cl ± F ± S ± 

      wt% An% wt%   ppm   ppm   ppm   

             S82-34B-A3 MI1/2 Plg R 73.4 42.1 4.01 0.41 4183 130 923 57 115 11 

S82-34B-A3 MI3 Plg R 73.4 41.6 4.65 0.47 2991 244 864 53 49 1 

             S82-30A-B3 MI4/4 Plg C 72.4 50.2 5.82 0.58 4437 187 1218 122 92 3 

             S82-30A-6 MI1/2 Plg R 72.5 39.9 4.60 0.46 3500 112 587 38 46 1 

             S82-11D-A5 MI1/2 Plg C 72.3 50.0 4.13 0.42 3144 156 641 39 111 3 

S82-11D-A5 MI3 Plg C 71.4 49.4 4.07 0.43 2817 134 555 38 184 12 

             

             

             Table 4b. Volatile compositions of the Cape Riva melt inclusions (MI) from SIMS measurements 

 
             
Sample-Crystal#-MI# Host MI location 

Dry 

SiO2 

Touching 

Plg/Px 
H2O ± Cl ± F ± S ± 

      wt% An/Wo% wt%   ppm   ppm   ppm   

             S09-62f-10 MI1 Plg GR-RS 71.1 n.a. 5.27 0.13 2747 109 770 22 96 2 

S09-62f-10 MI2 Plg GR-RS 71.2 n.a. 4.74 0.16 2369 25 672 21 85 0 

S09-62f-10 MI3 Plg GR-RS 71.3 n.a. 5.13 0.47 2504 233 762 74 89 8 

S09-62f-10 MI5 Plg R 71.2 n.a. 4.95 0.51 2577 81 816 50 85 2 

             S09-62f-9 MI1 Plg GR-RS 71.2 41.6 5.77 0.64 2711 143 804 62 97 5 

S09-62f-9 MI2 Plg GR-RS 71.9 41.5 3.65 0.42 2385 115 793 59 76 3 

S09-62f-9 MI5 Plg GR-RS 70.9 42.1 4.57 0.51 2805 151 808 62 101 5 

             S09-62f-2 MI1 Plg GR-RS 71.6 42.7 4.11 0.41 2644 259 781 49 92 3 

S09-62f-2 MI3 Plg GR-RS 71.3 41.5 5.27 0.82 2912 299 834 64 92 11 

             S09-62h-6 MI1 Plg GR-RS 71.2* 

 

6.61 0.66 2451 80 766 47 85 2 

             S09-62c-2 MI1 Opx C 71.4 n.a. 3.27 0.33 2793 99 773 47 84 2 

S09-62c-2 MI2 Opx C 71.0 n.a. 5.00 0.15 3738 42 983 12 137 1 

S09-62c-2 MI3 Opx C 70.5 n.a. 4.50 0.14 3810 71 967 19 111 1 

             S09-62i-2 MI3 Cpx C 70.2 n.a. 5.55 0.56 2635 80 820 50 104 2 

S09-62i-2 MI4 Cpx C 71.1 39.9 5.94 0.59 2638 166 837 51 143 7 

*SiO2 used by default for water content calculation 

          n.a.: not analysed 

             
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Volatile compositions of the melt inclusions (MI) from SIMS measurements. 4a. 

Minoan melt inclusions, 4b. Cape Riva, 4c. Lower Pumice 2, 4d. Lower Pumice 1.  

Plg: plagioclase; Opx: orthopyroxene; Cpx: clinopyroxene. C: crystal core; C border: the 

border of the core; R: crystal rim; GR: overgrowth rim; RS: resorption surface; Interm: 

between core and rim. An/Wo%: anorthite and wollastonite content in plagioclase and 

pyroxenes, respectively. H2O, Cl, F and S values are the results of one or two analyses per 

MI, depending of the MI size. The ± symbol next to each H2O, Cl, F and S values corresponds 

to the error taking into account the statistic error on the measurement and the error on the 

calibration.  

 

Table 5. H2O-saturation pressure estimates for rhyolitic melts made with VolatileCalc 

        

 
Input 

 
Output 

  H2O (wt%) CO2 (ppm) T (°C) 

 

H2Om (wt%) OHm (wt%) P (bars) 

Minoan 4.55* 0 853 

 

2.824 1.726 1314 

  5.82** 0 853 

 

3.986 1.834 1952 

Cape Riva 4.96* 0 879 

 

3.193 1.767 1555 

 

6.61** 0 879 

 

4.733 1.877 2402 

LP2 3.94* 0 856 

 

2.290 1.650 1035 

  5.34** 0 856 

 

3.540 1.800 1711 

LP1 4.48* 0 869 

 

2.762 1.718 1304 

  6.26** 0 869   4.400 1.860 2205 

        
* Mean H2O (wt%) from plagioclase- and pyroxene-hosted melt inclusions 

  
** Highest H2O (wt%) measured in plagioclase- and pyroxene-hosted melt inclusions (Table 4) 

H2Om and OHm: molecular H2O and OH 

      
Table 5. H2O-saturation pressure estimates for rhyolitic melts made using the VolatileCalc 

software (Newman & Lowenstern, 2002). 
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Electronic Appendix 1. Experimental phase compositions of the Minoan rhyodacite, 1a. 

Anhydrous compositions of the experimental glasses (wt%), 1b. Experimental plagioclase, 1c. 

orthopyroxene, 1d. clinopyroxene, 1e. amphibole, 1f. Fe-Ti oxides. 

 

Electronic Appendix 2. Experimental phase compositions of the Cape Riva dacite, 2a. 

Anhydrous compositions of the experimental glasses (wt%), 2b. Experimental plagioclase, 2c. 

orthopyroxene, 2d. clinopyroxene, 2e. amphibole,  2f. Fe-Ti oxides. 

 

Electronic Appendix 3. Experimental phase compositions of the LP2 rhyodacite, 3a. 

Anhydrous compositions of the experimental glasses (wt%), 3b. Experimental plagioclase, 3c. 

orthopyroxene, 3d. amphibole, 3e. Fe-Ti oxides. 

 

Electronic Appendix 4. Experimental phase compositions of the LP1 rhyodacite, 4a. 

Anhydrous compositions of the experimental glasses (wt%), 4b. Experimental plagioclase, 4c. 

orthopyroxene, 4d. clinopyroxene, 4e. Fe-Ti oxides. 
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melt inclusions, 5b. Mineral phases. 
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