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Abstract 

 

Geological evidence for overpressure is common worldwide, especially in petroleum-rich 

sedimentary basins. As a result of an increasing emphasis on unconventional resources, new 

data are becoming available for source rocks. Abnormally high values of pore fluid pressure 

are especially common within mature source rock, probably as a result of chemical 

compaction and increases in volume during hydrocarbon generation. To investigate processes 

of chemical compaction, overpressure development and hydraulic fracturing, we have 

developed new techniques of physical modelling in a closed system. During the early stages 

of our work, we built and deformed models in a small rectangular box (40 x 40 x 10 cm), 

which rested on an electric flatbed heater; but more recently, in order to accommodate large 

amounts of horizontal shortening, we used a wider box (77 x 75 x 10 cm). Models consisted 

of horizontal layers of two materials: (1) a mixture of equal initial volumes of silica powder 

and beeswax micro-spheres, representing source rock, and (2) pure silica powder, 

representing overburden. By submerging these materials in water, we avoided the high 

surface tensions, which otherwise develop within pores containing both air and liquids. Also 

we were able to measure pore fluid pressure in a model well. During heating, the basal 

temperature of the model surpassed the melting point of beeswax (~62 °C), reaching a 

maximum of 90 °C. To investigate tectonic contexts of compression or extension, we used a 

piston to apply horizontal displacements. 

In experiments where the piston was static, rapid melting led to vertical compaction of 

the source layer, under the weight of overburden, and to high fluid overpressure (lithostatic or 

greater). Cross-sections of the models, after cooling, revealed that molten wax had migrated 

through pore space and into open hydraulic fractures (sills). Most of these sills were 
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horizontal and their roofs bulged upwards, as far as the free surface, presumably in response 

to internal overpressure and loss of strength of the mixture. We also found that sills were less 

numerous towards the sides of the box, presumably as a result of boundary effects. In other 

experiments, in which the piston moved inward, causing compression of the model, sills also 

formed. However, these were thicker than in static models and some of them were subject to 

folding or faulting. For experiments, in which we imposed some horizontal shortening, before 

the wax had started to melt, fore-thrusts and back-thrusts developed across all of the layers 

near the piston, producing a high-angle prism. In contrast, as soon as the wax melted, 

overpressure developed within the source layer and a basal detachment appeared beneath it. 

As a result, thin-skinned thrusts propagated further into the model, producing a low-angle 

prism. In some experiments, bodies of wax formed imbricate zones within the source layer. 

Thus, in these experiments, it was the transformation, from solid wax to liquid wax, which led 

to chemical compaction, overpressure development and hydraulic fracturing, all within a 

closed system. According to the measurements of overpressure, load transfer was the main 

mechanism, but volume changes also contributed, producing supra-lithostatic overpressure 

and therefore tensile failure of the mixture. 

 

Keywords: fluid overpressure, physical modelling, chemical compaction, thrust detachments 

 

Introduction 

 

Fluid overpressures are common worldwide, especially within petroleum-rich 

sedimentary basins (Swarbrick et al., 2002). Osborne and Swarbrick (1997) described three 

main mechanisms for the generation of fluid overpressures in sedimentary basins: diagenetic 

reactions, disequilibrium compaction and hydrocarbon generation. Several authors have 

described geological hydrofractures within source rocks for petroleum, these fractures having 

filled with solid materials, such as pyrobitumen or fibrous calcite. The solid infills have 

therefore preserved the fractures. Good examples come from the ‘Vaca Muerta’ source rock 

of the Neuquén Basin, western Argentina. In the northern part of this basin, bitumen veins are 

relatively common and tend to be parallel to bedding (Borrello, 1956; Abraham, 1960); 

whereas in the southern part, veins are commonly of fibrous calcite, but may also contain 

hydrocarbons (Parnell and Carey, 1995; Parnell et al., 2000; Rodrigues et al., 2009). In 

general, calcite veins that are parallel to bedding go under the name of “beef” (see historical 

and worldwide review by Cobbold et al., 2013). Cobbold and Rodrigues (2007) managed to 
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reproduce open horizontal fractures in physical models, attributing them to the action of 

seepage forces, which result from vertical gradients in overpressure. 

More generally, in the last decade or so, techniques of physical modelling have evolved, 

so as to take into account pore fluids and overpressures within granular materials and their 

structural effects (e.g. Cobbold and Castro, 1999; Cobbold et al., 2001; Mourgues and 

Cobbold, 2003; Cobbold and Rodrigues, 2007; Rodrigues et al. 2009). Other authors have 

used physical models to study processes of magmatic intrusion, especially during horizontal 

shortening (Benn et al., 1998; Galland et al. 2003, 2006, 2007; Gressier et al., 2012; Román-

Berdiel, 1999). However, in all of these physical models, the fluid pressures came from 

outside, via injectors. This technique has the advantage of allowing good controls on 

boundary conditions of pressure and flow rate, but it cannot investigate the causes of 

overpressure or the possible feedback between overpressure generation and hydrofracturing. 

For this purpose, Lemrabott and Cobbold (2010) developed another technique, in which 

model materials were of solid particles, of which some (beeswax microspheres) were able to 

melt, thus simulating the catagenesis of kerogen to hydrocarbons. The experiments resulted in 

fluid overpressure, partly as a result of volume changes (15% for beeswax), but more as a 

result of load transfer, from the solid overburden to the pore fluid, during a process that was 

physically analogous to the chemical compaction of Swarbrick and Osborne (2002). 

In what follows, we describe the results of similar experiments, but involving new 

apparatus and more detailed observations. We have studied the effects of overpressure 

development in various tectonic settings, in particular that of horizontal shortening, so as to 

simulate what happens to fold and thrust belts within foreland basins. A relevant example is 

the Magellan (Magallanes-Austral) Basin of southern Patagonia, South America, where 

detachments have occurred within source rock (Diraison et al., 1997; Cobbold, 2005; Rojas 

and Mpodozis, 2006; Zanella et al., in press). 

 

1. Experimental Materials 

 

In all of our physical models, the scaling was such that 1 cm in the model represented 

something between 100 m and 1 km in nature. To model brittle rock, we therefore used weak 

frictional material, which failed according to a Mohr-Coulomb envelope.  However, we 

required two such materials, one representing a source rock, the other representing an 

overburden of low permeability. 
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As an analogue material for the overburden, we used a pure silica powder (Millisil C4, 

available from Sifraco, Compiègne, France). This material has a grain size of less than 150 

µm, a porosity of about 40%, a bulk density of about 1.34 g/cm3 and an intrinsic permeability 

of about 1.6 Darcy (Table 1B; see also Rodrigues et al., 2009, their table 2A). Because the 

grains are angular, they tend to lock together, so that the dry material is cohesive. It fails 

according to a Coulomb criterion, the cohesive strength being about 300 Pa and the angle of 

internal friction about 40° (see Galland et al., 2006; their table 1B). In tension, the material 

has a strength of about 100 Pa and fails by forming open fractures.  However, in our 

experiments, we saturated the silica powder with water, by fully submerging it. Thus we 

avoided the high surface tensions, which otherwise develop within pores that simultaneously 

contain air and one or more liquids, rendering the material cohesive (as in sand castles on a 

beach). As yet, we have not measured the mechanical properties of the silica powder in an 

underwater state. However, Graveleau et al. (2011, table 1B) have done so, for a similar silica 

powder. In their tests, capillary cohesion was absent or very small and the behaviour of the 

water-saturated material was analogous to that when it was dry. Currently, we are developing 

new techniques for measuring the mechanical properties of silica powder or similar materials, 

when fully under water. 

For the source rock, following Lemrabott and Cobbold (2010), we used a mixture of 

silica powder and beeswax microspheres (Table 1). The microspheres (about 1 mm in 

diameter) are readily available in France for making candles and pharmaceutical products. 

The variety that we used (cire d’abeille blanche en microbilles, from La Marchande de 

Couleurs) is solid at room temperature, but melts at 62-64 °C to a liquid of low viscosity (14 x 

10-3 Pa s, Table 1B). The density of the solid beeswax is 0.95 g/cm3 and the density of the 

melt is 0.82 g/cm3 at 80 °C. Melting therefore implies a decrease in density and an increase in 

volume. The coefficient of linear expansion is 350 x 10-6/ °C, corresponding to a volume 

change of no more than 15 % or so (similar to that for catagenesis of kerogen to oil). These 

properties mean that the beeswax is a useful analogue material for organic matter in sediment. 

For the mixture, we used equal initial volumes of beeswax and of silica powder. However, the 

initial porosity of the beeswax powder was about 40 % and the microspheres were much 

larger than the particles of silica, so that, on mixing the two materials, much of the silica 

occupied the original pore space between the microspheres. Thus the volume percentage of 

beeswax in the final mixture was about 40 %.  

 

2. First experiments (Series I) 
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2.1. Apparatus and experimental procedure 

During the early stages of our work on the development of fluid overpressures, we built 

our models in a small apparatus, similar to that of Lemrabott and Cobbold (2010). It consisted 

mainly of a rectangular plastic box, 30 cm long, 20 cm wide and 10 cm high (Fig. 1). The aim 

was to heat the model from the base, until the temperature of the beeswax exceeded its 

melting point (~62-64°C). The baseplate of the box was therefore of aluminium, to facilitate 

transfer of heat, whereas the sidewalls were of transparent plastic, for better observation and 

thermal insulation (Fig. 1). The box rested on a flatbed electric heater, which was able to 

deliver a maximum power of 1 W/m2. In our experiments, we used only 30 % of this power, 

in order to reach a maximum temperature of 90 °C. To investigate the influence of tectonic 

compression or extension, we used a piston to apply horizontal displacements.  

We built each model in three layers. The two basal layers, each 1 cm thick, consisted of a 

mixture of coloured silica powder (blue or yellow) and beeswax microspheres, whereas the 

overlying third layer, 1.5 cm thick, was of pure silica powder. We deposited each layer 

carefully and then scraped its surface flat. Thereby, the total thickness of the model was 3.5 

cm. Finally we submerged the model, by slowly pouring water onto its surface, in one corner 

of the box, until the water level was 1 cm above the top of the third layer. Before heating or 

deforming the model, we waited for several hours, so that any air bubbles would have time to 

rise to the surface.  

During each experiment, we used several vertical wells (glass tubes), to measure the pore 

fluid pressure at depth. In fact, we recorded the hydraulic head (difference in water level, 

inside and outside the tubes). The tubes were at the sides of the models, in order to minimize 

disturbances (which might have triggered horizontal hydraulic fractures). We also plugged the 

bottom of each tube with a piece of metallic mesh, to prevent any solid particles from 

penetrating it. Temperatures were recorded (with a precision of ± 0.1 °C) by transducers or 

thermocouples in three positions: (1) the heater itself, (2) within the aluminium plate and (3) 

at the base of the model.  

After each experiment, we drained the model and left it for one night to dry on a hot plate 

at 50 °C. Then, before cutting the model, we impregnated it with gelatine solution and dried it 

again. With a knife we then cut cross-sections every 2 cm. This technique has the advantage 

of preserving the slices for long periods of time. 

 

2.2. Results of Experiments 
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With this first apparatus we did 11 experiments. The results were consistent and here we 

will describe four representative examples (Fig. 2).  

 

2.2.1. Experiment 1 (containing ‘organic matter’, but with no overall tectonic 

deformation) 

In Experiment 1 (Fig. 2B) the lower two layers contained beeswax and the boundaries 

were static, so that the model did not change shape externally. During heating, the 

temperature rose over a period of 400 minutes to a maximum of 74 °C at the base of the 

model. By also measuring the temperature at the surface of the model, we deduced a vertical 

thermal gradient of 10 °C/cm at the centre of the model. Some 80 min after the temperature at 

the base surpassed the melting point of wax (~62-64 °C), the hydrostatic head (difference in 

water level, inside and outside the glass tube) began to increase. After another 3 hours or so, 

the hydrostatic head had reached a value of 12 mm. This was comparable to the vertical 

stress, due to the weight of overburden and source layers, at the base of the model. Indeed, if 

we assume for the granular material an average density (when dry) of 1.3 g/cm3, subtract the 

density of water (1 g/cm3), to account for buoyancy, then take a total thickness of 3.5 cm, this 

yields a vertical stress of 10.5 g/cm2 (about 100 Pa), which is equivalent to the weight of 10 

mm of water. We therefore infer that melting produced an approximately lithostatic 

overpressure at the base of the model. Indeed, cross-sections (Fig. 2B) showed horizontal 

bodies (sills) of wax, which formed by horizontal hydraulic fracturing within the yellow layer. 

In addition, by this stage the blue layer had become thinner than the yellow layer, although 

originally the thicknesses of the two layers were the same. This thinning (compaction) of the 

blue layer was thus due to loss of beeswax by melting and upward migration.  

 

2.2.2. Experiment 11 (no ‘organic matter’ and no ‘tectonic’ deformation) 

Here the conditions were the same as in Experiment 1, except that there was no wax in 

either of the two basal layers (Fig. 2A). The temperature rose in a similar way, but the water 

level in the glass tube remained steady (2 mm of hydrostatic head). We suspect that this small 

value may have been due to a wax plug at the base of the tube. On cross-sections (Fig. 2A), 

no internal structures were visible and the thicknesses of the various layers did not change. 

 

2.2.3. Experiment 4 (‘organic matter’ and extensional deformation) 

In Experiment 4 (Fig. 2C), we used a piston to induce horizontal extension. The piston 

velocity was 2.5 cm/h. We decided to start it moving only after the wax had begun to melt, to 
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see if extension might have an effect on fluid overpressure. We heated the model as in both 

previous experiments. Just after the wax began to melt, the hydrostatic head started to 

increase within the glass tube. When extension began, the hydrostatic head continued to 

increase, but more slowly than in Experiment 1. On cross-sections (Fig. 2C), various 

structures were visible. Near the piston there were several wax dykes, steeply dipping or 

vertical, whereas away from the piston there were some small sills (a few mm long) at the 

base of the yellow layer. 

 

2.2.4. Experiment 8 (‘organic matter’ and compressional deformation) 

For Experiment 8 we used the piston to apply horizontal shortening at a velocity of 2.5 

cm/h (Fig. 2D). As in the previous two experiments, melting of the wax led to a hydrostatic 

head, which we attribute to fluid overpressure at the base of the model. However, when 

horizontal compressional started, the hydrostatic head rose at a rate that was faster than in the 

previous experiments, to a value of 23 mm. Thus we infer that shortening contributed to 

overpressure, perhaps via horizontal tectonic compaction. The cross-sections (Fig. 2D) show 

that sills of wax became thicker and longer than those in Experiment 1 (involving no 

‘tectonic’ deformation). Moreover, the sills were subject to folding and reverse faulting, 

especially near the piston. The blue layer became slightly thinner than the yellow layer, as a 

result of compaction. 

 

2.3. Conclusions for first experiments 

From the first four experiments (Series I), we infer that it was the transformation from 

solid to liquid wax that resulted in fluid overpressure and horizontal hydraulic fracturing. 

Indeed, such overpressure arose when there were source layers in the model (Figs. 2B, 2C, 

2D), but not when source layers were absent (Fig. 2A). Because the volume change, from 

solid to liquid wax, was no more than about 15 %, we attribute the overpressure to a 

mechanism of load transfer, from the overburden to the pore fluid, as the solid framework 

collapsed and compacted. The molten wax migrated through pore space and into open 

hydraulic fractures, where it solidified, when the temperature was low enough. Compressional 

deformation had an amplifying effect on this process (Experiment 8, Fig. 2D) and produced 

more complex structures (folds and faults) around the hydrofractures. 

 

3. New experiments (Series II) 
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Although the results for the first apparatus were encouraging, we did observe some edge 

effects along the transparent sidewalls, especially when the piston advanced, producing 

compressional deformation. These effects we attribute to high friction against the sidewalls. 

In order to avoid this and to be able to model larger amounts of horizontal deformation, we 

decided to build a longer and wider box (Fig. 1). 

 

3.1. Apparatus and experimental procedure 

The new apparatus consists of a square box, 1 m wide and 10 cm high, resting on an 

aluminium table (Fig. 1B). The size of the model is 77 x 75 cm (dimensions of the internal 

box, Fig. 1C). For such a large box, we were unable to find a single electric heater that was 

powerful enough. Instead, we mounted one circular heating plate (15 cm in diameter) beneath 

the centre of the model and two identical rectangular plates, 75 cm long and 37.5 cm wide, 

beneath each half of the model. Each of these heating plates can deliver 1 W/m2, as in the first 

apparatus, and has its own electrical control system, incorporating several thermocouples. 

As before, we built the models with two source layers (1 cm thick) and one overlying 

layer of pure silica powder (1.5 cm thick). In all the experiments, the models were under 

water. For details of construction, see part 2.1. In one experiment, where a piston was to cause 

horizontal shortening of the model, we added a basal black layer of quartz sand (e.g. Fig. 9B) 

and strips of pure silica powder at the sides of the mode. Because the black sand contained no 

wax, heating did not lead to an internal increase in fluid overpressure and therefore the 

frictional resistance of the material remained high. In contrast, along the sides of the model, 

the frictional resistance of the silica powder, when under water, was much lower than that of 

the mixture of sand and beeswax microspheres. Because the models were so large, we did not 

impregnate them with a gelatine solution. Instead, we wet them with water, cut serial cross-

sections (every 2 cm) with a knife, and made a panoramic image of each section, using a 

sequence of overlapping photographs (Fig. 4; Fig. 9). 

As before, we used vertical wells, to measure the pressure in the model. To record the 

temperature, we used thermocouples, but in three positions at the base of the model: (1) at the 

centre; (2) at 20 cm from the edge; and (3) at the edge. The aim was to check for horizontal 

thermal gradients during the experiments. 

 

3.2. Results of Experiments 

So far, we have done 8 experiments with this new apparatus, under conditions of (1) no 

‘tectonic’ deformation or (2) horizontal shortening (compressional deformation). In what 
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follows, we will describe one example from each context, giving particular attention to 

Experiment 4, for which we used a gOcad 3D modeller to define the shapes of layers and wax 

bodies. 

 

3.2.1. No tectonic deformation 

Of the experiments that we did under static conditions (no applied horizontal 

deformation), Experiment 4 was the one that yielded the most data. To estimate the pore fluid 

pressure, we recorded the hydrostatic head in five wells, which penetrated both source layers 

to different depths (every 0.5 cm, from the base to the top; Fig. 3). To record the temperature, 

we placed thermocouples at 3 different horizontal positions along the base of the model. 

About 200 minutes from the beginning of heating, a central bulge appeared at the surface. The 

visibility was even greater after drying the model, because this avoided the optical distortions 

due to the water, which initially covered the model. Surrounding the central bulge was a local 

depression of the top surface (Fig. 3B). Other bulges, similar in shape but smaller, formed a 

circular pattern around the centre of the model, at about 20 cm from its edges. These 

structures were discernable, in part at the surface, but more so on cross-sections and in the 3D 

model (Figs. 6 and 7). Also visible at the surface were some shallow runnels, which formed 

during the progressive wetting of the model (Fig. 3). However, these did not have any effects 

at depth. 

The temperature data revealed a horizontal thermal gradient within the model, which 

stabilised at about 0.6 °C/cm during much of the experiment. We attribute this gradient to loss 

of heat by conduction through the sidewalls of the box and/or radiation from their outer 

surfaces. After melting of the wax, the hydrostatic heads in the glass tubes increased (to 2 

mm), but then they appeared to stop. We suspect that this may have been due to wax, which 

penetrated the tubes when molten and then solidified. 

At the end of the experiment, serial cross-sections of the entire model (every 2 cm) 

revealed many sills of wax (white, Fig. 4). The thickest and widest formed in the yellow 

source layer, in the central part of the model, but thinner and smaller sills formed in both the 

blue and yellow layers. 

Another change was in the thickness of the basal blue layer. A wide depression formed at 

the centre of the model, beneath the main wax sill. Local irregularities in the thickness of the 

yellow layer also developed, but mainly during submerging of the model, when water 

penetrated the mixture of silica powder and beeswax microspheres. 
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3.2.1.1. 3D Reconstruction of model, Experiment 4 

The cross-sections yielded only sparse information on the three-dimensional shapes of 

layers and wax bodies. Unfortunately, on trying to cut sections at a closer spacing, we found 

that the intervening slabs tended to deform. Thus, for Experiment 4 (which involved no 

overall horizontal shortening), we decided instead to use a numerical method (gOcad 3D 

geomodeller; Mallet, 2002), to reconstruct the shapes of the layer interfaces and to calculate 

the volumes of wax bodies and layers (see Appendix for method). 

According to the results of this gOcad modelling, the layers developed topographic 

bulges and depressions, which formed a broadly axisymmetric pattern about the centre of the 

model. We attribute this pattern to the thermal gradient, acting horizontally across the model. 

The upper surface of layer L1 (5A) had a central depression (20 cm wide, 2 mm deep) and a 

surrounding ring of minor bulges (2 mm high); whereas the upper surfaces of layers L2 (Fig. 

5B) and L3 (Fig. 5C) had central bulges (13 cm wide, 9 mm high), as well as surrounding 

inner rings of depressions (2 mm deep) and outer rings of bulges (2 mm high).  

Sectioning and 3D modelling also revealed a large number of wax bodies in the model. 

About 750 of these bodies were small (only a few mm wide), whereas about 65 of them were 

larger (more than 10 mm wide) and had shapes like magmatic sills. The latter formed only in 

layers L1 and L2. In L1, a few sills were at the base, reflecting local melting, but most of 

them were close to the top. Some of them developed within L1, inducing bulges at the top of 

that layer. Other sills were larger and developed, partly at the top of L1, but more so within 

L2. Beneath them depressions formed (at the top of L1), whereas above them bulges formed 

(at the tops of both L2 and L3). This was particularly true in the centre of the model, where a 

large wax body (130 x 150 x 20 mm; Fig. 6) developed. 

 

3.2.1.2. Calculation of volumes 

The layers in the model underwent changes in volume (Table 2A), as a result of two main 

processes: (1) vertical compaction, during submersion under water, and (2) migration and 

intrusion of wax and consequent deformation. 

For layer L3, which contained no original wax microspheres and was not subjet to 

intrusion by wax, the volume change (ca. 20%, Table 2A) was due to compaction during 

wetting. In contrast, for each of layers L1 and L2, volume changes were due to compaction, 

intrusion, or both. However, on considering both layers (L1 and L2) together, the wax 

remained within the system. Thus the overall volume change was due to compaction only. 

However its value (1.4%, Table 2A) was significantly smaller than for layer L3. A possible 
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explanation is that the density of the wax (ca. 0.95 g/cm3) was smaller than that of water, so 

that its buoyancy impeded compaction. 

On removing the effects of compaction from layers L1 and L2 (assuming an even 

distribution within each layer), it is possible to estimate the volume changes, due to migration 

and intrusion of wax. According to the results, layer L1 lost about 500 cm3 of wax, whereas 

L2 gained the same amount (Table 2B). Alternatively, 3D modelling, using the gOcad 3D 

modeller, yields the total volumes of wax bodies in each layer (Table 2C). We have 

investigated two such 3D models, which assume different degrees of connectivity between 

cross-sections (see Appendix). The first model, which assumes no connectivity, yields a total 

volume of 500 cm3 (215 cm3 in L1 and 285 cm3 in L2); whereas the second model, which 

assumes connectivity, yields a larger total volume of 810 cm3 (380 cm3 in L1 and 430 cm3 in 

L2). The difference in results between the two models reflects the difficulty of reconstructing 

complex objects from cross-sections alone. Taking into account the uncertainties in 

calculating volumes (ca. 150 cm3, see Appendix), the volumes of wax bodies for both models 

(Table 2C) are comparable to the volume changes estimated from the gOcad modelling for 

layers L1 and L2 (Table 2B). 

Finally, amongst the wax bodies, we may distinguish those that we consider as 

“intrusive” from those that were not. Most of the small wax bodies developed within L1 

resulted from in-situ melting of one or more microspheres and were therefore not intrusive. In 

contrast, larger bodies resulted from migration of molten wax. Conservatively, we consider as 

intrusive those wax bodies that traversed the interface between the two layers, L1 and L2, or 

those in L1 that led to bulging at the top of the layer. We have chosen not to list or illustrate 

these intrusive bodies, because they number as many as 100. However, on taking them into 

account, Model 2, which assumes connectivity between the wax bodies visible in the sections 

and thereby predicts a total intrusive volume of 550 ± 50 cm3 (Table 2C), would appear to be 

more realistic than Model 1.  

 

3.2.1.3. Interpretation 

Wax bodies within layer L1 produced overlying bulges, which were visible at the end of 

the experiment. In contrast, bodies that developed within both layers (L1 and L2) produced 

depressions at the top of L1 and bulges at the top of L2, these structures resulting from 

intrusion. For L2, the similarity (within the range of uncertainty), between (1) the volume 

change of the entire layer and (2) the volumes of wax bodies, supports the idea that those 

bodies were mainly intrusive and that they derived from the melting of wax in layer L1 
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(where the temperature was hotter) and its subsequent migration. This happened especially, 

but not only, in the centre of the model. Local intrusion resulted in deflation of layer L1 (and 

a resulting depression at its top), together with inflation of layer L2 (and a bulge at its top), as 

previously mentioned. 

 

Finally, from the results it is possible to derive the fraction of melt. Assuming (1) a 

volume of intrusion of 550 ± 50 cm3, (2) that this originated mainly in layer L1, (3) an initial 

porosity of 30 % for layer L1 (neglecting compaction), and (4) an initial wax content of 50 % 

for layer L1, we calculate that the melt fraction was between 25 and 30 %. However, because 

it is likely that some of the intrusive wax originated also in layer L2, a melt fraction of 25 % 

would appear to be more realistic. 

 

3.2.2. Compressional deformation 

In Experiment 5 (Series II), a piston caused horizontal shortening of the model. This was 

the first experiment of the kind that we performed in the large box. So as not to disturb the 

model, we avoided using vertical wells to measure the pore fluid pressure. The aim of the 

experiment was to observe the effects of the generation of overpressure in a source material 

on the development of folds and thrusts. Thus we activated the piston at the beginning of 

heating. During the first hour of the experiment, the temperature at the base of the model did 

not exceed the melting point of wax (~62-64 °C) and shortening resulted in the formation of a 

high-angle wedge (next to the piston), which contained a series of fore thrusts and a single 

back thrust (Fig. 7B). At this stage, the structures had relatively straight traces. However, after 

one hour of experiment, once melting had occurred, the style of deformation began to change. 

In the central part of the model, the deformation front migrated very quickly, away from the 

piston, and it also began to curve. By the end of the experiment (after 170 minutes), the 

curvature was greater than one might expect as a result of boundary friction alone (Fig. 7C). 

After deformation, serial cross-sections of the model revealed that the high-angle wedge, 

which had formed near the piston during the earliest stages of the experiment, was thick-

skinned, in the sense that it involved all the layers in the model, including the basal layer of 

black sand (Fig. 8). The wedge contained a major back thrust and several steep fore thrusts. 

Toward the centre of the model, thrusts were less steep. They were also thin-skinned, in that 

they affected, not so much the basal black layer, as the source layers (yellow and blue) or the 

overburden (white). The gently dipping thrusts detached at the base of the yellow source layer 

(Fig. 8). Within that same layer, some small gently dipping wax lenses appeared (Fig. 8 and 
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Fig. 10). We infer that they formed by hydraulic fracturing during thrust development (top to 

right, Fig. 10). These results were reproducible. 

 

3.3. Conclusions for experiments in the large apparatus (Series II) 

In the larger apparatus, edge effects were less widespread than they were in the smaller 

apparatus. Furthermore, the deformation was easier to study. However, wax bodies formed 

widely throughout the models. As for the experiments in the smaller apparatus, we infer that 

the melting of wax (and so the generation of more liquid) led to load transfer from the solid 

framework to the pore fluid. Under the resulting overpressure gradient, the wax migrated 

through pore space. Some of it filled the horizontal hydraulic fractures, as they opened. Then 

the wax solidified, upon cooling. In Experiment 4 (no applied horizontal deformation), the 

horizontal hydraulic fractures clearly opened in tensile mode, locally uplifting parts of the 

blue source layer (Fig. 10A). 

The gOcad 3-D geomodeller allowed us to define shapes and to estimate volumes, on the 

basis of sections alone. It therefore helped us to understand (1) the migration of fluid from 

areas of generation to ‘reservoirs’ and (2) the distribution of compaction. In our experiments, 

wax appeared to have migrated from the basal warmest area, at the centre of the model, to 

colder areas above and at the sides. Thus the 3D model has revealed both vertical and lateral 

migration of wax. 

In experiments where a piston caused horizontal shortening (compressional deformation) 

of a model, the deformation was thick-skinned before the melting of wax, but changed to thin-

skinned during the melting of wax and the development of fluid overpressure. Thrusts 

propagated into the model by detaching at the base of the source layers and the deformation 

front became strongly curved (Fig. 10B). We infer that detachment was easier in the centre of 

the model, because there the temperatures were higher and so was the overpressure.  

 

Discussion 

 

Most previous physical modelling of the structural effects of overpressure in sedimentary 

basins made use of external fluid injectors (Cobbold et al., 2001; Mourgues and Cobbold, 

2003; Cobbold and Rodrigues, 2007). In contrast, in our experiments, an overpressured fluid 

arose by transformation from a solid to a liquid phase (in fact, by melting). For this purpose, 

following Lemrabott and Cobbold (2010), we used microspheres of beeswax.  
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In all experiments where source layers were present, we observed the development of 

fluid overpressure and hydraulic fracturing within them. In contrast, when no source layers 

were present, no fluid overpressure or hydraulic fractures developed. In other words, it was 

the production of liquid wax (from solid wax), which led to the generation of fluid 

overpressure and hydraulic fracturing in our models. During melting, the volume change did 

not exceed 15% and this was not enough to explain the supra-lithostatic overpressure. 

However, the melting led to collapse of the solid load-supporting framework and therefore, 

inevitably, to load transfer from the overburden to the fluid, this process being mechanically 

analogous to chemical compaction (Swarbrick and Osborne, 2002). Finally, the overpressure 

gradient was enough to initiate hydraulic fractures, which filled with liquid wax. 

In those experiments, for which we also imposed a compressional deformation, some 

hydraulic fractures formed and filled with molten wax. However, the main features were 

faults. Before any overpressure developed, the deformation was thick-skinned and produced a 

high-angle wedge, containing forethrusts and backthrusts; whereas, when melting started, the 

deformation became thin-skinned, above detachments in the source layers (and not the 

underlying black layer), leading to the formation of a low-angle wedge. Analogous features 

are visible in the Magallanes-Austral Basin, where Zanella et al. (in press) have found 

bedding-parallel veins of fibrous calcite (beef), due to hydraulic fracturing, as well as thrust 

detachments, all within mature source rock of Early Cretaceous age, lying upon Jurassic 

volcanic rocks or Palaeozoic basement. 

In the future, we anticipate that it will useful to model what happens in other tectonic 

contexts (such as strike-slip). It will also be important to study in more detail the mechanical 

properties of the various materials used in the experiments, especially when the amount of 

pore fluid increases and intrusion becomes significant. 

 

Conclusions 

 

In sedimentary basins worldwide, abnormally high values of pore fluid pressure are 

common within mature source rock. This phenomenon is probably the result of chemical 

compaction and increases in volume during hydrocarbon generation. To investigate processes 

of chemical compaction, overpressure development and hydraulic fracturing, we have used 

physical models, which are able to generate a fluid from solid particles (beeswax 

microspheres) within a closed system. In our experiments, it was the transformation, from 

solid wax to liquid wax, which led to internal compaction, overpressure development and 
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hydraulic fracturing, all within a physical model of a source rock. In experiments where the 

piston was static, rapid melting led to vertical compaction of the source layer, under the 

weight of overburden, and to high fluid overpressure (lithostatic or greater). Cross-sections of 

the models, after cooling, revealed that molten wax had migrated through pore space and into 

open hydraulic fractures (sills). Under conditions of horizontal shortening and compressional 

deformation, sills also formed. However, these were thicker than in static models and some of 

them were subject to folding or faulting. For experiments, in which horizontal shortening 

started, before the wax had melted, overpressure development had a large effect on the style 

and speed of propagation of thrusting, which changed from thick-skinned to thin-skinned, 

above detachments within the source layers. According to our measurements of overpressure, 

load transfer was the main mechanism of overpressure development, but volume changes also 

contributed, producing supra-lithostatic overpressure and therefore tensile failure of the 

mixture. 
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Appendix: gOcad 3D modelling 

 

The gOcad 3D modeller and the available data 

We used the gOcad 3D numerical modeller (Mallet, 2002) to reconstruct the shapes of 

layer boundaries and to estimate the volumes of intrusive bodies and layers. GOcad modelling 

is a purely geometrical form of computer-assisted design, which provides a discrete 

representation of geological objects in terms of regular meshes (grids) or irregular meshes 

(polygonal curves, triangulated surfaces, or tetrahedralized solids; Mallet, 2002). Triangulated 

surfaces appeared to be particularly relevant for representing closed surfaces, such as those of 

the wax bodies. The 3D reconstruction of geological structures from the data is by Discrete 

Smooth Interpolation (DSI; Mallet, 1992; 2002). 
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For our purposes, we digitized the contours of objects on the 29 cross sections of 

Experiment 4, imported the data into gOcad and removed the optical distortions that were due 

to photography. Cross-sections lie in the X-Z plane, so that the Y axis is normal to them. The 

modelling yielded two kinds of polygonal lines, (1) open lines, representing the interfaces 

between the main layers, and (2) closed lines, representing molten wax bodies. 

 

3D modelling process 

Reconstructing a surface from cross-sections alone is a common need, for example in 

geological or bio-medical imaging (Boissonnat and Memari, 2007; Liu et al., 2008). When 

building 3D objects from 2D sections, two potential problems arise. First, the sections imply 

data anisotropy, more information being available along the sections than transversely. To 

reduce this problem, we smoothed the data and this implied a choice of smoothing 

parameters. Second, the reconstruction of 3D shapes from cross-sections requires correlation 

from one section to another. This is more difficult for bodies that are small, in comparison 

with the spacing of sections (the “cut section effects” of Higgins, 2000). The dimensions of 

the bodies, as visible on sections, may not be representative of their true sizes in three 

dimensions and the sections are more likely to intersect small bodies than large ones, because 

the latter are more numerous. Therefore, we adopted the following procedure. 

1. To reconstruct the layer boundaries, we used Discrete Smooth Interpolation, so obtaining 

continuous triangulated surfaces from the sections. 

2. For the wax bodies, we used an implicit method (Frank et al., 2007), which is robust and 

able to handle arbitrary shapes (e.g. holes or bifurcations). An implicit method 

reconstructs a surface from an equipotential of a 3D implicit scalar function. In general, 

this function is obtained from the data by interpolation on a 3D grid (see review by Frank 

et al., 2007). In our application of this method, we interpolated the implicit function on a 

3-D grid with corner-point hexahedral cells, using the DSI method. Then, we extracted 

triangulated surfaces, corresponding to wax bodies, as isovalues of the 3D grid. Because 

hexahedral grids have limited adaptativity, we improved the fit of the obtained surfaces to 

the wax contours, using the DSI method.  

3. In order to estimate the degree of connection of the wax bodies, we tried 2 end-member 

models, using implicit methods. The first model reconstructs only the largest wax bodies, 

for which connections are clear. For small bodies the model estimates volumes, assuming 

that they are separate ellipsoids. This first model clearly underestimates the total volume 

of wax bodies. Thus we tried a second model, which includes contours for all wax bodies. 
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This model tends to result in more connections between small bodies and therefore yields 

a larger estimate for the total volume of wax bodies. 
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Captions to figures and tables 

 

Figure 1. A. Photograph of the first (small) apparatus. Plastic box (30 cm x 20 cm x 10 cm) 

with an aluminium baseplate rests on an electric heater. Piston (left) can deform model 

horizontally. During heating, beeswax microspheres melt. Vertical well (not visible) measures 

pore fluid pressure at base of model. For description of layers, see Fig. 2. B. Photograph (3D 

view) of the new (large) apparatus . Outer plastic box (1 m x 1 m) rests on aluminium table 

and has three hot plates beneath it. C. 3D view of outer and inner plastic boxes of the new 

apparatus. Inner box (77 cm x 75 cm) houses models. Piston (top left), driven by two electric 

motors, can deform model horizontally. 

 

Figure 2. Results of 4 experiments with first apparatus. Graphs show variation with time (in 

minutes) of temperature (at 3 points, see text for details) and fluid pressure (at base of model) 

since beginning of each experiment. Photographs show longitudinal sections. Results are for 

no organic matter and no overall deformation (A. Experiment 11 – Series I); organic matter 

and no overall deformation (B. Experiment 1 – Series I); organic matter and extensional 

deformation (C. Experiment 4 – Series I); or organic matter and compressional deformation 

(D. Experiment 8 – Series I). For Experiment 4, piston was at right and moved outward (to 

right) at 2.5 cm/h; whereas, for Experiment 8, piston was at left and moved inward (to right) 

at 2.5 cm/h. 

 

Figure 3. Photographs of top surface, Experiment 4 – Series II, (A) before deformation (t = 0) 

and (B) after 450 mins. Five vertical glass tubes (A, top) are for measuring pore fluid pressure 

(every 5 cm, from bottom to top of source layer). After deformation (B), wax migrated into 

central horizontal hydraulic fracture, uplifting surface of model. Runnels, visible at the 

surface, formed by runoff of water during submerging of the model and do not have any 

effects at depth. 

 

Figure 4. Selection of 8 full-length serial cross-sections, Experiment 4 – Series II (no applied 

horizontal deformation). For number and position of each section, see key (top left). Wax has 

migrated upward (and laterally) through pore space, from basal blue source layer and into 

open horizontal hydraulic fractures, forming sills (white) upon solidifying. At centre of 

model, sills are most numerous and thick within yellow layer; whereas, near edges of model, 
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some sills are visible in blue basal source layer. Large bulges at top of model are above thick 

sills within source layers. Scale bar is 7 cm long. 

 

Figure 5. Three views of 3-D model, Experiment 4 – Series II. A. Oblique view of upper 

surface of layer L1. Colours and contours indicate altitudes (see key at bottom right)). , Notice 

central depression (red or green colours) and surrounding bulges (blue, pink or white). B. 

Similar view of upper surface, layer L2, showing central bulge (white). C. Cross-section of 

centre of model and adjacent views of three upper surfaces (layers L1 to L3). Large wax body 

(tan, with white contour) is immediately beneath bulges (at top L2 and top L3) and at centre 

of annular lateral depression (at top L3). 

 

Figure 6. Three views of main wax body, Experiment 4 – Series II. A. Oblique photograph of 

upper surface and cross sections, after removal of surrounding silica powder. In its original 

position, base of body was gently dipping (see Fig. 6C). B. Oblique view (3D model) after 

gOcad reconstruction (model 1, small parts disconnected, see Appendix). By comparison with 

A, notice that many second-order deflections are missing. C. New cross-section of entire 

model (including layer boundaries). For line of section, see B. Main wax body appears to root 

locally into top of layer L1 (centre right) and to spread elsewhere within layer L2 (as in true 

sections, Fig. 4). 

 

Figure 7. Photographs of top surface, Experiment 5 – Series II (compressional deformation), 

before deformation (A, t = 0) and at two later stages (B, t = 30 min; C, t = 170 min). Before 

melting of wax and consequent generation of fluid overpressure (until t = 30 min, B), 

compressional deformation resulted in formation of a high-angle prism, next to piston and 

deformation front was straight. Subsequently the deformation front migrated more rapidly 

away from piston and began to curve, migrating fastest in centre of model, where temperature 

was highest (see text for details). 

 

 

Figure 8. Selection of 8 full-length serial cross-sections (13 to 22), Experiment 5 – Series II 

(compressional deformation). Piston (at left) has moved inward (to right). From bottom to 

top, black layer is of sand, yellow and blue layers are source layers (equal initial volumes of 

wax microspheres and of silica powder); and white layer is of pure silica powder. Near piston 

(left) fore thrusts and back thrusts (thick-skinned deformation) were responsible for formation 
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of a high-angle wedge, affecting all layers; whereas further away (right), deformation was 

thin-skinned, above detachment at base of yellow layer, producing low-angle wedge in 

uppermost three layers. Thrust offsets decreased away from piston. Some imbricate zones 

formed in source layers. Small wax bodies (white) also formed, especially in yellow layer. 

Scale bar (bottom right) is 7 cm long. 

 

Figure 9. Close-up views of two models, illustrating structural details. A. Central part of 

cross-section number 16, Experiment 4 – Series II (no applied horizontal deformation). Main 

wax sill (white) is clearly visible (centre) and attests to tensile opening (arrows) of horizontal 

hydraulic fracture. Upward bulging of white and yellow layers corresponds to opening of 

fracture. Basal blue layer has compacted, due to collapse of solid framework, as wax melted 

and migrated upwards. However, area of compaction is wider than length of main wax body. 

B. Part of model near piston, after horizontal shortening (Experiment 5 – Series II). 

Deformation is thick-skinned, near piston (left) and thin-skinned, away from piston (right). 

Flat-lying detachment is visible at base of yellow source layer. This layer also contains an 

imbricate thrust zone and several gently dipping wax bodies, which we interpret as having 

formed during horizontal simple shear (top to right). 

 

Table 1. Properties of the modelling materials. A. Properties of beeswax microspheres, as 

used in this study. B. Mechanical properties of dry silica powder (from Rodrigues et al., 

2009). 

 

Table 2. Data for Experiment 4 – Series II (according to gOcad 3D modeller). A. Compaction 

data. B. Volume changes. C. Volumes of wax bodies.  
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Physical modelling of chemical compaction, overpressure development, 
hydraulic fracturing and thrust detachments in organic-rich source rock 

 

Highlights 
 
1. We have developed physical models to investigate the origin of fluid overpressure. 
 
2. We used a mixture of beeswax microspheres and silica powder as source material. 
 
3. The melting of wax led to fluid overpressure and hydraulic fracturing. 
 
4. During horizontal shortening, detachments appeared at the base of the source layer. 
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Table 1A. Beeswax microspheres
Material Grain size, 

µm
Melting point, 

°C
Density 

(solid), g.cm-3

Density (liquid), 

g.cm-3

Viscosity 
(liquid), Pa.s

Thermal 
expansion 
coefficient, 

.°C-1

Thermal 
conductivit

y, W.m-1.K-

1

Latent heat 
of fusion, 

J.g-1

microsphere
s ≈1000 ≈62-64 0.95 (at 20°C) 0.82 (at 80°C)14×10-3 (at 80°C) 350×10-6 0.4 175.8

Table 1B. Silica powder
Material Variety Roughness Grain size, µm d10, µm d50, µm d90, µm Particle 

density, 

g.cm3

Bulk 
density, 

g.cm-3

Permeabilit
y to water, 

m2.Pa-1.s-1

Silica 
powder

Millisil 
C4

Angular 0-150 177 64 8.8 2.65 1.34 8.00×10-8
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Intrinsic 
permeabilit

y, m2

Intrinsic 
pemeabilit
y, Darcy

1.6×10-12 1.621
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Table 2A. Compaction data for Experiment 4 - Series II
Layer Initial wax Intrusion or 

melting
Initial volume, 

cm3

Final volume, 

cm3

Compaction, 
%

L3 No No 8662 6944 19.8

L1+L2 Yes Yes 11550 11394 1.4

Table 2B. Volume changes in Experiment 4 - Series II
Layer Initial 

volume, cm3

Volume after 
compaction, 

cm3

Final volume, 

cm3

Volume 

change, cm3

L2 5775 5697 6201 +504 (gain)

L1 5775 5697 5193 -504 (loss)

Table 2C. Volumes of wax bodies in Experiment 4 - Series II

Total 

volume, cm3

Volume in L1, 

cm3

Volume in L2, 

cm3

Model 1 500 215 285

Model 2 810 380 430
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