
HAL Id: insu-01004059
https://insu.hal.science/insu-01004059

Submitted on 11 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling preasymptotic transport in flows with
significant inertial and trapping effects - The importance

of velocity correlations and a spatial Markov model
Diogo Bolster, Yves Méheust, Tanguy Le Borgne, Jeremy Bouquain, Philippe

Davy

To cite this version:
Diogo Bolster, Yves Méheust, Tanguy Le Borgne, Jeremy Bouquain, Philippe Davy. Modeling
preasymptotic transport in flows with significant inertial and trapping effects - The importance of
velocity correlations and a spatial Markov model. Advances in Water Resources, 2014, 70, pp.89-103.
�10.1016/j.advwatres.2014.04.014�. �insu-01004059�

https://insu.hal.science/insu-01004059
https://hal.archives-ouvertes.fr


  

Modeling preasymptotic transport in flows with
significant inertial and trapping effects - the importance

of velocity correlations and a spatial Markov model
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Abstract

We study solute transport in a periodic channel with a sinusoidal wavy bound-

ary when inertial flow effects are sufficiently large to be important, but do not

give rise to turbulence. This configuration and setup are known to result in large

recirculation zones that can act as traps for solutes; these traps can significantly

affect dispersion of the solute as it moves through the domain. Previous studies

have considered the effect of inertia on asymptotic dispersion in such geome-

tries. Here we develop an effective spatial Markov model that aims to describe

transport all the way from preasymptotic to asymptotic times. In particular we

demonstrate that correlation effects must be included in such an effective model

when Péclet numbers are larger than O(100) in order to reliably predict observed

breakthrough curves and the temporal evolution of second centered moments.

For smaller Péclet numbers correlation effects, while present, are weak and do

not appear to play a significant role. For many systems of practical interest, if

Reynolds numbers are large, it may be typical that Péclet numbers are large also

given that Schmidt numbers for typical fluids and solutes can vary between 1-

500. This suggests that when Reynolds numbers are large, any effective theories

of transport should incorporate correlation as part of the upscaling procedure,

which many conventional approaches currently do not do. We define a novel

parameter to quantify the importance of this correlation. Next, using the the-
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ory of CTRWs we explain a to date unexplained phenomenon of why dispersion

coefficients for a fixed Péclet number increase with increasing Reynolds number,

but saturate above a certain value. Finally we also demonstrate that effective

preasymptotic models that do not adequately account for velocity correlations

will also not predict asymptotic dispersion coefficients correctly.

Keywords: Inertial Flow, Upscaling Transport, Spatial Markov

1. Introduction

GI Taylor [44], in a seminal work, demonstrated that at asymptotic times,

for laminar flow conditions transport in a cylindrical tube can be effectively de-

scribed by a one dimensional transport equation with an enhanced longitudinal

effective dispersion that accounts for the interplay between transverse molecu-

lar diffusion and longitudinal advection by the shear flow. Aris then formalized

this concept by relating this dispersion coefficient to the second centered spatial

moment of a plume [3]. For all parallel shear flow geometries, the scaling of the

dispersion coefficient as a function of the average fluid velocity, typical geomet-

rical dimension, and molecular diffusion coefficient is the same. See for example

[16] for a detailed account of Taylor’s, Aris’, and subsequent early developments

on this matter. Since then there have been countless studies, in numerous fields

including hydrology, using effective dispersion coefficients, thus demonstrating

the strength and utility of this simple concept. While Taylor’s concept was

limited to purely shear flows, the idea was extended to more complex domains

and flows by a variety of methods, including the method of moments [17], the

method of volume averaging [41] and homogenization [31]. Howard Brenner, in

honor of Taylor’s contribution, coined the term ’Taylor dispersion’ to describe

this effective dispersion phenomenon.

Taylor dispersion is only valid at asymptotic times, which in other words

means after the solute in the system has had sufficient time to sample the full

statistics of the velocity field. This time scale is determined by how quickly

diffusion can act and is typically quantified as τD = l2c/D, where lc is a charac-
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teristic length scale of the system being considered. If this time is much shorter

than the times of interest, then it may be appropriate to use asymptotic Taylor

dispersion estimates. However, if the time scales of interest are shorter than

or on the order of τD, then preasymptotic effects should be accounted for. At

preasymptotic times the evolution of the spatial moments of a plume generally

do not scale in a Fickian manner and so models capable of capturing these anom-

alous scalings should be used. For the specific case of shear flows considered by

Taylor and Aris a variety of papers studying preasymptotic effects have been

published [29, 9, 36, 16]. Pre asymptotic effects may be particularly important

for modeling mixing, since transverse concentration gradients are significant in

this regime [36, 37, 12]. The goal of the work presented here is to develop and

test a model for transport at preasymptotic times.

For more complex geometries and flows traditional Taylor-Aris type model-

ing approaches may not be appropriate, but a rich family of alternatives exists.

In this particular work we will focus on the Spatial Markov model originally

introduced and studied in [13, 14, 33, 1] to model effective transport in highly

heterogeneous porous media flows. This model has also gone by the name

correlated CTRW and has been applied successfully to model effective preas-

ymptotic transport in a channel with periodically varying aperture and in a

two-dimensional porous medium at the pore scale [38, 1]. Both of these flows

were considered using the classical porous medium assumption of Stokes flow at

low Reynolds numbers (Re ¿ 1).

While for many practical applications the low Reynolds assumption is per-

fectly reasonable, there are situations where inertial effects may play an impor-

tant role, e.g. flow through fractures [19], or flows where fluid viscosity is small

such as for Carbon sequestration where the viscosity of supercritical CO2 can

be two orders of magnitude smaller than that of water [5, 45]. Inertial effects

change the structure of the flow, which can have profound implications when

upscaling the flow equation. In particular, as inertial effects increase, the pres-

ence of recirculation zones also increases. While such recirculation zones can

and do occur for flows at low (and even vanishing) Reynolds number [40, 35, 10]
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they become more pronounced as inertial effects become increasingly important;

their structure can also change significantly with increasing inertia, leading for

example to strong asymmetries with respect to the flow direction, regardless of

existing symmetries in the geometry. These recirculation zones are low velocity

regions that are known to have a significant impact on conservative [30, 20, 8]

and reactive transport [27, 48]. They are often conceptualized as regions where

solutes are trapped in an immobile state. For example, Aris [4] studied asymp-

totic dispersion coefficients in flow through a tube with immobile pockets.

In this work, we study preasymptotic transport in a system where inertial

effects in the flow are important. We focus on a simple idealized pore geometry,

namely a channel with a periodically varying aperture, which is formally defined

in the following section. While this is a very simple system it has been shown in

a variety of studies to provide valuable physical insight into what controls flow

and transport in a porous medium. One of the benefits is that the system is

sufficiently simple so as to limit the number of relevant dimensionless numbers,

a feature exploited in a variety of previous studies. Limitations of this geometry

are that it is periodic, which true porous media will likely not be, it is vertically

bounded meaning that transverse dispersion effects cannot be explored and it

is two-dimensional, where real systems would be three dimensional. Dykaar

& Kitanidis [28] chose this geometry to upscale reactive transport in a porous

medium. Cardenas et al. [18] studied a similar geometry in a variety of contexts

to assess the impact of inertia on flow from the perspective of upscaling flow

and the breakdown of Darcy’s law [22]. Bolster et al. [10] used this geometry to

demonstrate that an increase in boundary fluctuations does not automatically

induce greater dispersion under creeping flow conditions. Le Borgne et al [38]

used this geometry to study preasymptotic transport in low Reynolds number

flows and the authors showed that the features that emerged from this simple

geometry were both qualitatively and quantitatively similar to features obtained

from a more complex, heterogeneous and realistic pore structure. Bouquain et

al [15] studied asymptotic dispersion in this geometry when inertial effects be-

come important. They investigated the dependence of the asymptotic effective
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dispersion coefficient on Reynolds and Péclet, and observed that it saturates at

high Reynolds numbers at a Péclet-dependent value. A scaling law was found

for the asymptotic dispersion coefficient as a function of Reynolds and Péclet,

with a power law dependence on the Péclet that deviates from the classic Pe2

of Taylor and Aris. A recent work by Richmond et al [42] looks at asymptotic

dispersion in a similar geometry, including at higher Reynolds number unsteady,

but not fully turbulent, flow. At these larger Reynolds number temporal veloc-

ity fluctuations result in increased mass transfer, diminishing tailing and thus

decreasing longitudinal dispersion effects. It is some of these results that moti-

vate the current study, where we look more closely into the role of recirculation

zones. Wood [46], using the theory of volume averaging, studied dispersion in

flows through porous media where inertial effects play a role and showed how

different scalings with Péclet number for the asymptotic dispersion coefficient

emerge depending on the specific value of the Reynolds number and whether

inertial effects are important or not. Experiments exploring asymptotic longitu-

dinal dispersion in porous media where inertial effects are significant have also

been conducted [23], showing scalings similar to those in [46].

The paper is structured as follows. Section 2 defines the model system,

the numerical methods used to study flow and transport through it, the de-

velopment of the proposed effective spatial Markov model and the metrics and

observables used to test the model. Section 3 presents results of the simulation

and comparisons of observed results to model predictions. Section 4 provides

a discussion on predictions of asymptotic dispersion coefficients using CTRW

theory which does not incorporporate correlations and demonstrates how preas-

ymptotic models that do not adequately account for correlation effects will not

accurately predict asymptotic dispersion coefficients for sufficiently large Péclet

numbers. It also discusses the importance of the probability of successive trap-

ping of particles in immobile/recirculation zones. Section 5 provides conclusions

of this work.
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2. Model System

2.1. Geometry

h
_

h′

Figure 1: Schematic of the unit cell ’pore’ for flow and transport modeling in this work.

The geometry we consider in this study is a two-dimensional channel with

a sinusoidal boundary, depicted in figure 1; the boundaries of the system are

described by

h(x) = h̄− h′ cos
(

2πx

L

)
, (1)

where x is the horizontal coordinate, h is the half-aperture, h̄ is the mean

half-aperture, h′ is the amplitude fluctuation of the half-aperture and L is the

length of a single cell. This geometry is fully characterized by two dimensionless

numbers

ε =
2h̄

L
and a =

h′

2 h̄
, (2)

where ε describes the aspect ratio of the cell and a the relative amplitude of the

aperture fluctuations. a is bounded between 0 < a < 1/2 as for values equal

to or greater than 1/2 the channel is closed and no flow occurs. For a = 0 one

recovers Poiseuille flow, i.e. parallel flow between two plates. Bouquain et al
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[15] demonstrated that for sufficient a and ε recirculation zones will arise even if

they were not present at Re = 0 and grow in area as inertial effects become more

important. In order to maintain a small number of dimensionless parameters in

this current study we will restrict ourselves to a system with specific values of

a = 0.4 and ε = 0.47. These values are chosen because they coincide with one

set of values that received focus in [15]. However, as outlined in [15], the features

that we will focus on in this study such as emergence of recirculation zones as

inertial effects increase or an asymptote in the effective dispersion coefficient as

inertial effects increase are not restricted to these values and occur for similar

reasons at other values of ε and a.

We consider flow in this system from left to right. Given a mean fluid velocity

ū we define the additional dimensionless Reynolds number as

Re =
2h̄ū

ν
, (3)

where ν is the kinematic viscosity of the fluid. The Reynolds number charac-

terizes the relative importance of inertial to viscous effects. In this study we

always maintain h̄ and ū constant and so modify ν to change the Reynolds

numbers so that systems with similar average velocities can be easily compared.

As noted, in this study we are interested in flows where inertial effects are im-

portant and so we focus on flows for which Re ≥ 1. However, in this current

study we are not interested in the role of turbulence, which emerges at very

large Reynolds numbers. We restrict our study to non-turbulent inertial effects

with Reynolds number smaller than 100. While in [15] we studied a broad range

of 1 ≤ Re ≤ 100, here we focus primarily on cases where Re = {1, 30, 100} as

these effectively serve to highlight our central messages. Streamlines for these

three cases are shown in figure 2. For Re = 1 no recirculation is present and

streamlines follow the wall boundary structure. For Re = 30 a large asymmetric

recirculation zone has already developed. For Re = 100 a very large recircula-

tion zone that occupies most of the domain, other than a narrow flow channel

down the center between throats, exists.
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Since we are interested in describing the effective transport of a solute, a

final dimensionless number, the Péclet number, arises such that

Pe =
2h̄ū

D
, (4)

where D is the diffusion coefficient of the solute considered. The Péclet number

is a measure of the ratio of advective to diffusive effects in transport. In this it

is similar to the Reynolds number, which is an estimate of the same ratio for

the flow. The ratio of the Péclet number to Reynolds number is known as the

Schmidt number Sc = Pe/Re = ν/D; it is an intrinsic property of the fluid and

solute and for most solutes of practical interest it is greater than 1, meaning

that when advective effects are important for flow they are also important for

transport.

2.2. Flow simulations

Re=1 Re=30 Re=100

Figure 2: Streamlines for the selected geometry at Re=1, 30 and 100. Note the larger area
occupied by the recirculation zones as the Reynolds number gets bigger and bigger.

The steady state flow field through the geometry described above was mod-

eled numerically by direct numerical simulation. The flow was treated as in-

compressible, resulting in the following conservation of mass and momentum

equations (Navier-Stokes)

∇ · u = 0 ρ(u ·∇u) = ρg −∇p + µ∇2u . (5)

These equations are solved using a finite element method with the com-

mercially available software package COMSOL MULTIPHYSICS. The in and

outflow boundaries are treated as periodic, a mean flow is imposed at the inlet

and a constant pressure at the outlet, which allows the solver to adjust the
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pressure so as to satisfy periodicity and the imposed flow rate. Further details

are available in [15].

2.3. Simulation of transport

We consider conservative solute transport as governed by the advection dif-

fusion equation
∂C

∂t
+ u ·∇C = Dm ∇2C , (6)

where C is the concentration of the solute and Dm is the molecular diffusion

coefficient. In all cases we consider a flux weighted pulse initial condition at

the narrowest location in the throat of the channel. Due to the linearity of

the problem at hand this initial condition provides sufficient information to

predict transport for more complex initial configurations, although it should

be noted that specific breakthrough curves and spatial moments of a plume

can be sensitive to the specific initial condition [21, 47, 49]. We solve this

system numerically using a Lagrangian particle based random walk method,

where the solute plume is discretized into a finite number of N particles. In our

simulations particle numbers were increased until results converged. Generally

this was achievable with 104 particles and to minimize noise effects in most cases

we used one million particles. For a given time step ∆t each particle i is then

moved according to the Langevin equation

xi(t + ∆t) = xi(t) + ui∆t + ξi

√
2D∆t

yi(t + ∆t) = yi(t) + vi∆t + ηi

√
2D∆t

i = 1, ..., N ,

where xi and yi are the horizontal and vertical position of particle i respec-

tively and ξ and η are independently distributed Gaussian variables with zero

mean and unit variance. We used a third order Runge-Kutta scheme to ad-

vance particle locations in time. The choice of time step is critical in producing

accurate results (e.g. [32]). Typically we found convergence of results for time

steps smaller than ∆t = 10−2 and in most cases ran simulations with steps of

∆t = 10−3. It should be noted that time in these simulations is chosen such
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that one unit of time corresponds to the amount of time it takes an advective

particle travelling with the mean velocity ū to traverse a distance 2h. The solid

boundaries in the domain are treated as no flux boundaries and are modeled

numerically as elastic reflection boundaries for particles, meaning that we calcu-

late a particle’s angle of incidence as it strikes a boundary and reflect it with the

same angle of reflection. Particle velocities are interpolated linearly from nodal

values of the flow mesh [26]. This Lagrangian numerical method is chosen for

a variety of reasons, including (i) it allows for easy and effective calculation of

the spatial moments of the plume and (ii) given the periodic nature of the flow

domain it makes it possible to consider transport through a very large number

of unit cells without requiring a prohibitively large numerical mesh. Specifically

a particle can have any (x, y) location, which is simply stored as a vector. It

can have arbitrarily large x and its velocity, needed to calculate its next spatial

location, can be calculated for this location by simply noting that it is iden-

tical to the velocity at location mod(x, L), where mod denotes the remainder

function, due to the channel’s periodic structure.

2.4. Effective transport Model - Spatial Markov Model

One of the primary outcomes of Taylor dispersion is that at asymptotic

times a two- or three-dimensional transport process is properly described by a

one-dimensional transport equation in the longitudinal direction of flow. In this

study we aim to develop an effective one dimensional transport equation that

is valid at pre-asymptotic times. To this end we will build our effective model

using a spatial Markov framework. Like the classical random walk described

above, spatial Markov models break the solute plume into a large, in principle

infinite, number of particles. At a step n each particle has a position x
(n)
i and

travel time t
(n)
i , which can be grouped into vectors {x(n)} and {t(n)} describing

the kinematic state of the particle population at step n. The governing equation

for transport can be written as
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x(n+1) = x(n) + ∆x(n)

t(n+1) = t(n) + ∆t(n). (7)

∆x(n) and ∆t(n) are successive spatial and temporal increments. The spatial

Markov model is based in the hypothesis that Lagrangian velocities form a

Markov process in space. Physically one can justify this property for our setup

from the following argument. The transition time distribution that a particle

will have to cross one pore depends solely on which streamline it enters the

periodic domain on. Likewise the probability of which streamline one starts the

next jump on, and thus the probability of the next transition time, depends

also on the streamline where it entered. Thus the Markov property arises quite

naturally for this system. In principle ∆t and ∆x can be random with joint

distribution ψ(x, t); independent [8] and coupled cases [24, 39] have been also

considered. In many studies to date a common approach is to fix ∆x to a

constant value such that ψ(x, t) = ψ(t) δ(x − ∆x); in this particular case the

most logical choice would be the unit cell length, i.e. ∆x = L. Then the travel

time distribution describes the distribution of times it takes particles to traverse

one ’pore’. It has to date also been common to take the ∆t as independent

identically distributed variables [8], but a series of recent papers [13, 14, 38]

have shown that it may be important to account for the fact that successive

time steps can be correlated, particularly if one wishes to capture transport

at pre-asymptotic times well. Physically this reflects the fact that particles

that traverse a pore quickly have a higher probability of traversing the next

one quickly too and vice versa because fast particles will tend to stay on faster

streamlines and slow particles on slower streamlines until diffusion smears this

effect out. This conceptual picture is valid for high Péclet numbers. In order to

develop this effective model, we use the fine scale simulations from sections 2.2

and 2.3 to build the distribution for ∆t and quantify the correlation between

successive steps.
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2.5. Metrics and Observables

Here we define the metrics and observables that we will use to understand

the system of interest and assess the effective spatial Markov model.

2.5.1. Longitudinal Spatial Moments

Two classic metrics of solute transport are the first and second centered

spatial moments of the plume. Respectively these are given by

m1 =
ˆ ∞

−∞

ˆ h(x)

−h(x)

x C(x, y, t) dy dx (8)

and

κ2(t) =
ˆ ∞

−∞

ˆ h(x)

−h(x)

x2 C(x, y, t) dy dx −m2
1 . (9)

The first spatial moment m1(t) represents the horizontal position of the center

of mass of the plume and is a measure of the longitudinal position of a plume.

κ2 is the second centered moment, which represents the spatial variance of the

plume and is a measure of the spreading around the center of mass. This is

closely related to the effective dispersion coefficient since

De(t) =
1
2

dκ2

dt
, (10)

which in the limit t → ∞ tends to the asymptotic constant Taylor dispersion

coefficient. At early times it will tend to evolve superdiffusively with time.

2.5.2. Unit Cell Breakthrough Curves

One of the key components of any random walk model is the distribution of

travel times ψ(∆t). For ∆x = L as we have defined it for our spatial Markov

model, this distribution can be obtained by measuring the first passage time

distribution of particles at x = x0 + L where x0 is the starting x position of the

particles. This is qualitatively similar to the breakthrough curve at this location,

although caution must be taking in noting differences between breakthrough

curves and first passage times (e.g. [2]). The wider this distribution, the wider
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the range of arrival times between fast and slow moving particles, leading to

potentially greater dispersive spreading.

2.5.3. Transition Matrix

In order to account for the correlation between successive time steps, we

must find the conditional probability density r(∆t|∆t′), which characterizes the

probability of having a time increment ∆t given that the previous time step was

∆t′. If correlation were non-existent in the system, the conditional probability

would be independent of ∆t′ and the conditional distribution would equal the

distribution of travel times: r(∆t|∆t′) = ψ(∆t). When correlation is impor-

tant this is not true. Quantifying this correlation formally is not numerically

straightforward and so we adopt a discrete approach introduced by [13].

Let us discretize the time step distribution ψ(∆t) into a finite number n of

discrete classes in the range Ci (1 ≤ i ≤ n) such that a particle belongs to bin

Ci if its transition time lies in the range ∆ti ≤ ∆t < ∆ti+1. In this work the

discretization is performed such that each class is equiprobable. For such dis-

cretization, the structure of the transition matrices is due to correlation effects

only and is not influenced by distribution effects. Alternative discretizations

that have been explored previously include linear in time or linear in log time.

The latter is particularly interesting to refine the transitions that occur in the

tails. For simulation purposes these discretization work well but they do not

allow for as simple a physical interpretation of the transition matrices as the

present one since the value of individual transition probabilities depends both

on the strength of the correlation and on the probability of occurrence of each

class.

Now, given these classes, we can discretize r(∆t|∆t′) into a transition prob-

ability matrix that provides the probability of jumping between classes between

successive time steps. The transition matrix is defined as

Tij =

´∆tj+1

∆ti

´∆ti+1

∆ti
r(t|t′)ψ(t′)dt′dt

´∆ti+1

∆ti
ψ(t)dt

(11)
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Tij characterizes the probability for a particle to jump from class i in one step

to class j in its next step. Tij is calculated numerically by tracking how long it

takes a particle to traverse a first pore as well as how long it takes to traverse

the next one. The travel time to cross the first pore is used to assign its i class

and the travel time across the second pore its j class. This process is repeated

for a sufficiently large number of particles to populate Tij . In this study one

million particles were used. An important question is how many classes are

adequate to resolve the pertinent dynamics. In a previous work ([38]), it was

shown that reliable effective models can generally be built with as few as 10

classes, although in this work we used a larger number of 25.

A novel metric that we introduce here is

IC =
1

Nc

Nc∑

i=1

Nc∑

j=1

T 2
ij , (12)

where Nc is the number of discrete velocity classes. IC quantifies how important

correlation in a given system is. It is bounded between 1/Nc ≤ IC ≤ 1. If there

is no correlation between successive steps each entry in the transition matrix

will be identical and equal to Tij = 1/Nc and IC = 1/Nc. If the system is

perfectly correlated (i.e. each successive step is identical to the last) then the

diagonal elements of the correlation matrix will be Tii = 1 and all others zero

such that IC = 1.

3. Results

For all results presented here ū = 1, 2h̄=1 and ν and D are adjusted ac-

cordingly to obtain the correct values of Re and Pe. All time units in this work

correspond to a characteristic advection time, defined as the time it would take

a particle moving at mean velocity ū to traverse distance 2h̄.

3.1. Breakthrough Curves and Transition Matrices

Unit cell breakthrough curves for Pe = 100 and Pe = 1000 are shown in

figure 3. In all cases a flux weighted pulse injection was performed, injecting a
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line at the narrowest part of the pore throat, i.e. x0 = 0 in equation (1). The

associated transition matrices are depicted in figure 4. The same color scale is

used for all transition matrices and both values of Pe to highlight similarities

and differences.

At the lowest Reynolds number, Re = 1, where recirculation zones are

nonexistent, the breakthrough curves look very similar to those that have been

published in previous studies [13, 14, 38]. The breakthrough curves have an

early arrival of concentration that causes a rapid rise of the breakthrough curve

up to a peak. After the peak the concentration decreases monotonically with

time. However as the Reynolds number increases and the recirculation zones

occupy a larger and larger fraction of the unit cell, the post-peak part of the

curve does not decrease monotonically; there is a double-hump, which becomes

more distinct as Re increases. Such double peaks have not been observed in

previous studies [13, 14, 38]. The dominant and distinct feature of the flows

studied here compared to those of previous studies is the presence of large re-

circulation zones. [13, 14] studied transport in highly heterogeneous porous

media at the continuum scale, for which flow is governed by Darcy’s law, which

does not mathematically permit the existence of recirculation due to the fact

that pressure must be monotonically decreasing in the direction of flow along

a streamline, precluding streamlines from wrapping back on themselves. This

restriction does not exist for Stokes or Navier-Stokes flow, where recirculation

zones can and often do occur. [38] studied flow in a geometry similar to the

present one, but at small Reynolds numbers, where any recirculation zones that

do exist cover a rather small area and exhibit very small fluid velocities, which

renders them practically equivalent to zones of immobile fluid. Based on this we

initially hypothesized that the presence of this double peak is clearly associated

with recirculation. Physically we believed it is a reflection of the fact that a

particle can enter a recirculation at one point and exit at an upstream point

from where it entered, which can result in the double-hump feature.

Another notable feature is that as the size of the recirculation zones increases

the distribution of travel times becomes broader with earlier arrival times as Re
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increases and later tails for cases with large recirculation. Physically this reflects

the fact that the recirculation zones cause a faster flow speed through the central

channel as well as trapping and delays in breakthrough. In the breakthrough

curves the primary role of Péclet number appears to be a sharper initial peak and

greater late time tailing, which is consistent with previous observations. This

reflects the fact that with weaker diffusive effects more of the solute remains in

the main channel breaking through quickly, but that the solute that does enter

the recirculation zones will reside there for longer.

We also measured the amount of time that the particles spend in the recir-

culation zone and the mean times are approximately t = 11 for both Reynolds

numbers for the Pe = 1000 case and approximately t = 2.8 for the Pe = 100

cases. The similarity for both Re numbers at each Pe helps explain why the

late time tails for the breakthrough curves at each Pe, once recirculation exists,

in figure 3 are so close regardless of Re.

The transition matrices in figure 4 display many of the features observed in

previous studies. All of the matrices have a diagonal dominance reflecting the

fact that a particle’s most probable next transit time sits in the same class as its

previous one. With the chosen color scale this is difficult to see for the Pe = 100

cases, but it becomes clearer if one rescales the color scale. The specific color

scale in figure 4 does not aim at showing this, but rather at highlighting contrasts

and the weakness of correlation in the Pe = 100 cases relative to the Pe = 1000

ones. The strongest correlation exists for the greatest and lowest transit times;

i.e. particles in the center of the channel with the highest velocities will continue

to sit there and particles with the slowest velocities, which are those that enter

the recirculation zones, are most likely to enter the next recirculation zone.

This is visually depicted in figure 5 and discussed in greater detail in section

4.2. It appears that the structure of the matrices, at least qualitatively, is weakly

sensitive to Reynolds number. However, the dependence on the Péclet number

is clearly evident. For the Pe = 100 case the greatest values in the transition

matrix are approximately 0.06, while for the Pe = 1000 case they are 3 times

greater. If there were absolutely no correlation all values in the transition matrix
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would be equal to 0.04. This suggests that correlation effects for the Pe = 100

case may not be all that important, while they may play a significant role in

the Pe = 1000 case. Again, this will be discussed in greater detail below.
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Figure 3: Breakthrough curves after a single unit cell for Re=1 (blue - -), 30 (red −) and 100
(black -.) at Pe = 100(left) and Pe = 1000(right).

3.2. Role of Recirculation Advection in Immobile Zones

As noted above, the recirculation zones change the nature of the single unit

breakthrough curves by increasing the breadth of travel time distributions and

allowing the emergence of a double hump. In order to test the true influence of

advective recirculation in these regions we reran the transport simulations, but

under the condition where all velocities in the immobile regions are set to 0 and

particles can only move by diffusion. Advection only occurs in the main channel

flow and any transport in the ’recirculation’ zones is purely diffusive. Note that

this is unphysical as the flow will no longer satisfy the Navier-Stokes equation

and is purely done as a numerical experiment to isolate the role of advection in

the recirculation zones.

The unit cell breakthrough curves for cases with recirculation turned on and

off are shown in figure 6. Results are shown for the Re = 30 and 100 cases as

no recirculation exists at Re = 1. As we had originally hypothesized, for the

Pe = 100 case the double-hump feature does indeed disappear and the post

peak breakthrough curve decreases monotonically when advection is turned off

in the recirculation zones. However for the Pe = 1000 case a double hump does
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Figure 4: Spatial transition matrices T corresponding to different Reynolds numbers for Pe =
100(left column) and Pe = 1000 (right column). The horizontal axis represents the initial
transit time class and the vertical axis represents the next transit time class. Small matrix
indices correspond to small Lagrangian velocities (large transit times), and large matrix indices
correspond to large Lagrangian velocities (small transit times). The color scale represents the
transit time transition probabilities along particle paths.
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Figure 5: Particle Trajectories for two sample particles at Re = 30 and Pe = 1000. The blue
one starts in the fast channel and persists there. The red one starts in an immobile zone
and is also trapped in the next one. This visually demonstrates strong correlations between
successively fast and successively slow transition times .

still occur for both Reynolds numbers, but it occurs at lower concentrations

and later times, still suggesting that advection in the recirculation zones is a

dominant contributor to this effect. Physically, the proposed mechanism for the

double hump, by which a particle enters the recirculation region at a one point

and exits at an upstream point can still occur when motion is purely diffusive;

its occurrence is just less probable, hence the shift of the second hump to later

times and lower concentrations.

We also conducted simulations where we maintained zero velocity and also

turned horizontal diffusion off in the recirculation zones, allowing particles to

only diffuse vertically. In all of these curves the second hump is not discernible.

Other than this the breakthrough curves look virtually unchanged. This pro-

vides some evidence that it is indeed horizontal transport mechanisms in the

recirculation zones that are responsible for the emergence of this double hump

behavior.

While as part of this discussion we have focused heavily on the difference

between the advective and diffusive immobile zones with regard to the double-

hump, it is important to note that this feature occurs at intermediate break-

through times. An equally interesting observation is that both the early and

late arrival times seem to be virtually unaffected by the presence of advection

in the recirculation regions. In many cases early and late arrival times are those

of greatest practical concern [e.g. 11], suggesting that perhaps resolving these

20



  

recirculation zones is not critical depending on a specific application. From

the scientific perspective we find these differences interesting and important as

they are signatures one can clearly look for in real breakthrough curves, provid-

ing additional interpretation possibilities of observations. While not depicted

here, the transition matrices for purely diffusive recirculation zones are virtually

identical to those with advection turned on.

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

t

C

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

t
C

Figure 6: Breakthrough Curves for Re=30 (red) and 100 (black) for Pe=100 (left) and
Pe=1000 (right). The dashed lines represent simulations where the recirculation zones are
treated as inertial advective zone and resolve the velocity field while the solid lines represent
simulations where advective effects in the recirculation zones are neglected .

3.3. Down Stream Breakthrough Curves

While studying the unit cell breakthrough curve is key to developing our

effective modeling framework, ultimately the goal is to understand how trans-

port behaves at greater downstream distances. Figure 7 displays breakthrough

curves at greater distances (x = 5L, 10L, 20L and 50L), which will be used to

test the predictive capacity of the effective spatial Markov model. To supple-

ment the discussion of the previous section, breakthrough curves are shown for

cases where advection in the recirculation zones is both switched on and off.

In all cases the early breakthrough curves preserve many of the signatures of

the single cell breakthrough curves, displaying features like tailing and the dou-

ble hump, associated with the presence of recirculation zones discussed above.

For the Pe = 1000 curves many of these features are preserved in all break-

through curves, while for the Pe=100 the breakthrough curves at large distances
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(e.g. x = 50L) appear more Fickian, which is consistent with the idea that at

these late times transport has converged to an asymptotic Fickian Taylor regime.

Similar differences, such as smaller second humps but similar early arrivals and

late time tails, exist as between the curves where advection is left on and turned

off in the recirculation zones as was observed for single cell breakthrough curve.
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Figure 7: Breakthrough Curves for Re=1, 30 and 100 for Pe=100 (dashed –) and Pe=1000
(solid -) at distances of x = 5L (blue), 10L (green), 20L (purple) and 50L (red). The left hand
column represents models where we treat the recirculation zones as advective (Navier-Stokes
flow), while on the right hand side we treat recirculation zones as purely diffusive .
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3.4. Predictive Capacity of Spatial Markov Model

One of the primary goals of this work is to test the effective spatial Markov

model, which is developed with the single unit breakthrough curves and transi-

tion matrices. In order to test it we consider two measures. First we test the

effective model’s ability to predict the late time breakthrough curves discussed

in section 3.3. It is common to find fits to a single breakthrough curve as a mea-

sure of an effective model’s success, although multiple examples of predictions of

concentration at various times and downstream locations do also exist [7, 8]. We

argue that full model validation should require this prediction of other break-

through curves with no additional fitting. The second measure is the model’s

ability to reproduce the second centered moment of the plume, which is another

traditional measure of a model’s strength. The work of Dentz & Bolster [25]

highlights why there is a need for cross-validation using breakthrough curves

and spatial moments.

3.4.1. Comparison of Down Stream Breakthrough Curves

Predictions with both an uncorrelated and correlated spatial Markov model

for Pe = 100 and Pe = 1000 cases are shown in figures 8 and 9. The uncorre-

lated effective model takes the unit cell breakthrough curve as the probability

distribution for transit times, but does not use information from the transition

matrix to condition a transit time on its previous value - i.e. successive steps

are completely independent of one another, while the correlated spatial Markov

model imposes correlation of successive steps using the transition matrix.

For the Pe = 100 case both models do an excellent job of predicting the late

time breakthrough curves, including early arrivals, intermediate effects such

as the double hump and any late time tails. For the Pe = 1000 case the

correlated spatial Markov model does an equally good job of predicting the

measured breakthrough curves. However, the uncorrelated model is unable to

reproduce certain features observed in the simulated curves. In particular it does

not faithfully reproduce early and intermediate time arrivals, underestimating

the peak concentration of the breakthrough curves. It appears, at least for
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the Re = 30 and 100 cases to capture the late time tails. This suggests that

correlation of fast moving particles is particularly important as these are the

main contributors to the early arrival times.

The fact that correlation in the effective model is unimportant for Pe = 100

is perhaps unsurprising given how weak correlation effects are in the transition

matrices for these cases. However, it should be clear that correlation becomes

increasingly important as Pe increases. Again this comes as no surprise as it

is diffusion that allows particles to jump across streamlines and thus transition

between velocity classes.

These results demonstrate a very important point though. If correlation

effects are not important the unit cell breakthrough curve provides sufficient

information to predict late time behavior of the plume and traditional effec-

tive models such as CTRW characterized by uncorrelated transition times.,

multi-rate mass transfer (MRMT) and fractional advection dispersion equa-

tions (fADE) [8, 30, 20, 7, 6] should work well in a predictive sense. If however,

correlation effects are important, they must be incorporated into the model. It

is interesting to note that incorporating correlation effects appears to play its

most important role in predicting early concentration arrivals as to date much

focus on effective models has been aimed at capturing late time anomalous tails.

3.4.2. Moments

Figure 10 displays the evolution of the second centered moment against time

for three different Reynolds numbers Re = 10, 30 and 100. The second centered

moment is larger for larger Re, which is consistent with the observations of

[15]. To address how well our models work at capturing the observed simulated

second centered moments we introduce the following measure of error

Er =
1
N

N∑

i=1

|Oi −Mi|
Oi

, (13)

where Oi is observed data from the fine scale simulations and Mi is model data

from the spatial Markov and uncorrelated CTRW models. This is a measure of
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Figure 8: Comparison of Breakthrough Curves for Re=1, 30 and 100 for Pe=100 at distances
of x = 5L (blue), 10L (green), 20L (purple) and 50L (red). Solid lines represent simulated
results and symbols are effective model results. The left hand column represents models with
no correlation between successive steps, while the right hand column represents the spatial
Markov model with correlation between successive steps
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Figure 9: Comparison of Breakthrough Curves for Re=1, 30 and 100 for Pe=1000 at distances
of x = 5L (blue), 10L (green), 20L (purple) and 50L (red). Solid lines represent simulated
results and symbols effective model results. The left hand column represents models with
no correlation between successive steps, while the right hand column represents the spatial
Markov model with correlation between successive steps
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by what fraction the modeled results are off from the simulated observed results.

For Pe = 100 Er is less than 5 × 10−3 for the correlated model and less than

2.5×10−2 for the uncorrelated model. Both errors can be considered small, but

clearly the correlated model outperforms the uncorrelated one demonstrating

that even for this Pe some small correlation effects are present and may be

necessary depending on what one is interested in. For the Pe = 1000 case Er is

around 1.5×10−2 for the correlated model and 0.28 for the uncorrelated model,

demonstrating a significant improvement with the inclusion of correlation. This

is consistent with the BTC predictions, where the uncorrelated model failed

to adequately capture the peak early arrivals, which would lead to a greater

spread in mass around the plume’s mean position. Again it is clear that there is

a transition from correlation being unimportant to important, which we discuss

in further detail in the next section.
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Figure 10: A comparison of the second centered moment between simulations (solid lines) and
spatial Markov (◦) and uncorrelated (+) predictions. On the left are cases for Pe = 100 and
on the right Pe = 1000. Re=1 (blue), 30 (red) and 100(green) are shown.

3.5. The Importance of Accounting for Correlation in Successive Jumps

As noted above it seems clear that there is a transition from correlation

being unimportant to correlation being important in developing the effective

CTRW model somewhere between Pe = 100 and Pe = 1000. In order to fully

understand this let us take a look at the importance of correlation parameter
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IC defined in equation (12). A plot of how IC varies with Pe is shown in

figure 11. For Pe < 100 it is clear that IC is close to its absolute minimum

value, which is 1/25. This suggests that for these values of Pe the transition

matrix is relatively homogenous, meaning that there is little correlation between

successive jumps. For Pe > 100 there is a monotonic increase of IC with Pe

emphasizing that correlation effects become more and more important as Pe

increases. Interestingly for the Pe = 1000 case where we have already shown

that correlation effects must be included to reliably reproduce observables, IC =

0.07, which one could argue is not all that large. While IC clearly measures some

degree of correlation effects, better metrics should be sought. This demonstrates

perhaps how strong the influence of correlation, even if relatively weak, truly can

be. Some of the large Pe numbers shown in figure 11 may seem very large for

Re = 100. However they may not be unusual as for flowing water systems Sc =

O(100−1000), while for flowing gasses Sc = O(1) may be more typical. Results

for Péclet numbers much larger than 105 may not be entirely physical for water

and should be taken with a grain of salt, although they may apply for example

for solutes in more more viscous fluids (e.g. oil, glycerol, molasses). Additionally

materials that diffuse more slowly, such as larger nanoparticles, which can have

diffusion coefficients several orders of magnitude smaller than typical solutes

[34], may exhibit higher Pe, although in this case further physics may be required

to model the system adequately. However, it should be noted that this plot

merely serves to demonstrate the increasing importance of correlation with Pe.

To demonstrate that the spatial Markov model is able to replicate results even

at these larger numbers a comparison of late time breakthrough curves for Re =

100 and Pe = 105 is shown in figure 12. Again, note the correlated model is

able to capture the early time peaks exactly, while the uncorrelated one fails.

At this large Péclet number the uncorrelated model also fails to capture the

later time tails.
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Figure 11: A plot of the Importance of Correlation Parameter (IC ) against Péclet number
for Re = 100.
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Figure 12: Comparison of late time breakthrough curves at distances of x = 5L (blue), 10L
(green), 20L (purple) and 50L (red) for the uncorrelated (left) and spatial Markov model
model (right) for Re = 100 and Pe = 105, which would correspond to a solute with Schmidt
number 1000, an order of magnitude typical for many solutes in aqueous environments. Solid
lines are measured from simulations and symbols are model results.
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4. Discussion

4.1. Asymptotic Dispersion

In this section we discuss and attempt to explain physically, using the models

and results presented so far, a to date unexplained observation made by [15]. As

outlined in the introduction, Bouquain et al. [15] observed that as the Reynolds

number increases, for fixed Pe, there is an increase in the asymptotic effective

dispersion coefficient. As the area of the recirculation zones grows there is

a strong and rapid growth of asymptotic dispersion coefficient with Reynolds

number that eventually almost saturates to some upper value. The rapid growth

at intermediate Reynolds number appears to be related to the growth of the

area of the recirculation zone as a function of the Reynolds number. Note that

this behavior is observed at fixed Pe. In a physical experiment, increasing the

mean flow velocity to increase the Reynolds number would also increase the

Péclet number, hence the behavior as a function of Reynolds alone is difficult to

investigate experimentally. As mentioned in the introduction, [15] have already

shown that the dependence of the asymptotic dispersion coefficient on Reynolds

and Péclet can be separated into two factors, the factor dependent on Péclet

being a power law with a negative exponent.

To understand this behavior let us look at the expected theoretical behavior

of asymptotic dispersion coefficients in continuous time random walks, which

are analogous to our uncorrelated model. In a seminal paper [43] showed that

the second centered moment of a plume moving with a CTRW is given by

σ2(t) = l2L−1

(
ψ∗(s)

s(1− ψ∗(s)

)
+ l

2L−1

(
2ψ∗2(s)

s(1− ψ∗(s)2

)

−l
2
[
L−1

(
ψ∗(s)

s(1− ψ∗(s)

)]2

, (14)

where L is the Laplace transform operator, L−1 the inverse Laplace transform

operator, s the Laplace domain variable, ψ∗(s), the Laplace transform of the

travel time distribution, l the mean jump distance and l2 the mean of the jump

distance squared. For our case l is constant and equal to the length of the pore.
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Recall that late time behaviour (i.e. t → ∞) in the time domain corresponds

to small Laplace domain variable (i.e. s → 0). If ψ(t) has finite first and

second moments, which in all our cases it does [43] argued that for small s,

ψ∗(s) ∼ 1− st + 1
2s2 t2 +O(t3); t and t2 are the first and second moment of the

travel time distribution respectively, which are calculated from the first passage

times obtained in the numerical simulations. Substituting this expression into

(14), expanding in small s and performing the inverse Laplace transforms it can

be shown that at large times to leading order in time, its time dependence can

be written as

σ2(t) = l
2
(

1
t

+
2
t

[
1
2

t2

t
2 − 1

])
t + O(t0) , (15)

which scales linearly in time, with all other order terms of order O(t0) or lower.

For all cases considered the asymptotic mean velocity of the plume is equal to

the mean velocity of the flow, meaning that t must be the same for all cases,

since ū is identical for all numerical simulations. Thus, since the asymptotic

dispersion coefficient is equal to the time derivative of σ2(t)

D∞ = l2
(

t2

t
2 − 1

)
. (16)

The red circles in figure 13 correspond to predictions made with this for-

mula for Pe = 100 and it can be seen that there is excellent agreement between

this prediction and the values of the asymptotic dispersion coefficients measured

from the random walk numerical simulations. Note that the observations made

with numerical simulations correspond to times greater than the characteristic

Taylor dispersion time. For this setup equation (16) in essence says that the

asymptotic dispersion coefficient is directly proportional to the variance of the

arrival time distribution. A look at the travel time distributions presented in

figure 3 demonstrates why there is a large jump in asymptotic dispersion be-

tween the small and intermediate Reynolds numbers, but also why the value

more or less saturates. As already mentioned previously as the Reynolds num-
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Figure 13: Asymptotic Dispersion Coefficient against Reynolds number for Pe=100 and
Pe=1000. The dispersion coefficient is normalized by the value for Re=1. The solid blue
line (Pe=100) and dashed black line (Pe=1000) connect measured values from direct random
walk simulations, while the red circles (Pe=100) and black plus signs (Pe=1000) correspond to
values estimated using the uncorrelated CTRW prediction in equation. Finally the magenta
square symbols correspond to the prediction for Pe=1000 using the uncorrelated model with
the transition time probability over a distance of 15L, rather than just L (16) .
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ber increases and recirculation zones emerge there is a broadening of the arrival

times with both greater earlier arrival as well as increased late time tailing.

As the Reynolds number increases further the late time tail seems relatively

unaffected, while there is a small shift in the early arrival times. The relative

influence of this shift in early arrival times is small with respect to the vari-

ance and so the asymptotic dispersion coefficient as predicted by equation (16)

changes very little. In essence it is the tails that control the asymptotic disper-

sion coefficient and once significant recirculation zones have formed these tails

are almost identical for all Re.

If we apply equation (16) to the Pe = 1000 case as we did to the Pe = 100

case the resulting equivalent plot is also shown in figure 13. Note that the

measured asymptotic dispersion coefficients behave almost identically to the

Pe = 100 case, which is in line with the observations of [15], who showed that

the ratio of asymptotic dispersion coefficients behaves the same regardless of

Péclet number. However the results from applying (16) differ significantly from

the measurements, overpredicting the ratio between asymptotic dispersion at

Re = 100 to Re = 1 by about a factor of 2. This is consistent with the ideas

presented so far, because for Pe = 1000 correlation effects must be included

and the theory leading to equation (16) does not account for correlations. We

address this issue briefly in the next section.

4.2. Probability of Successive Trapping

A primary feature that arises in the considered flow as Reynolds number

increases is the emergence and growth of the recirculation zone, which can be

thought of as a trapping zone. Given the correlated nature of transport, partic-

ularly at larger Péclet numbers, a pertinent question is what is the probability

of a particle being trapped in the next recirculation zone given that it has just

exited a recirculation zone (see figure 5). This persistence of longer travel times

is an important feature that the proposed spatial Markov model captures, but

that an uncorrelated model would not capture as well; this explains for example

why the late time tails are not captured by the uncorrelated model in figure 12.
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Here we briefly discuss estimates of this probability of successive trapping.

Let us define Pt as the probability for a particle to be trapped in the im-

mediately next recirculation zone given that it has been trapped in a current

recirculation zone. Thus

Pt = p(ti+1 > t∗|ti > t∗), (17)

where ti is the travel time of a particle through cell number i and t∗ is the maxi-

mum such travel time that a particle can have without entering the recirculation

zone. This can be estimated as the travel time along the streamline adjacent to

the recirculation zone. Assuming that the trapping process is Markovian, the

probability of n successive trappings occurring along a particle’s trajectory is

simply Pn
t . This is because this probability is stationary (i.e. the probability

of being trapped in recirculation zone 2, given that the particle was trapped in

recicrulation zone 1 is the same as being trapped in recirculation zone n + 1

given being trapped in n). The average number of successive trapping events,

〈n〉, is then obtained as

〈n〉 =
1∑∞

n=1 Pn
t

∞∑
n=1

n Pn
t =

Pt∑∞
n=1 Pn

t

d

d(Pt)

( ∞∑
n=1

Pn
t

)
, (18)

where
∑∞

n=1 Pn
t is equal to Pt/(1− Pt). Hence:

〈n〉 = (1− Pt)
1

(1− Pt)2
=

1
1− Pt

. (19)

Pt can be computed from the transition matrices or by direct numerical sim-

ulation, and, consequently, 〈n〉 using Eq. (19). Figure 14 shows how Pt varies

with Reynolds number. As the recirculation zones become larger and larger

the probability of trapping increases, although the range of Pt does not vary

enormously, particularly for Pe = 1000. Interestingly for the larger Reynolds

number cases the probability of successive trapping for the Pe = 100 case is

larger than the Pe = 1000 case, while for the smaller Reynolds number Pt is
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larger for Pe = 1000: for the Pe = 1000 case the average number of successive

trapping events 〈n〉 varies between 1.5 and 1.8, while that for the Pe = 100

case varies between 1.4 and 2. This is due to the way diffusion and advection

interact. Let us consider solute particles that have just exited a recirculation

zone (by diffusion) and are therefore moving close to the boundary of the recir-

culation zone. Diffusion is what can allow them to enter the next recirculation

zone; it is also what can allow them to move transversally away from the next

recirculation zone. At lower Reynolds numbers, the latter process is enhanced

by advection, as flow lines diverge significantly after going through the neck that

separates consecutive cells; therefore increasing diffusion can actually decrease

successive trapping. Conversely at larger Reynolds numbers the mainstream

channel is quasi linear, and increased diffusion is observed to favor trapping in

the recirculation zones over transport towards the center line of the cells.

Another interesting metric in thinking about correlation and successive trap-

ping is, given that a particle is trapped in a recirculation zone what is the

probability of it getting trapped in any downstream recirculation zone, i.e.

p(ti+n > t∗|ti > t∗). (20)

It is important to recognize is that just because a particle is not trapped in

the immediately next recirculation zone does not mean that it does not have

a preferential trapping in further downstream ones as correlation effects can

persist over several jump lengths. This metric provides an idea of how quickly

the system decorrelates as eventually the probability of entering a recirculation

zone should be independent of whether it was previously trapped or not. This

metric provides a measure of memory in the system. Figure 15 (top) depicts

this probability where initially all particles are trapped in recirculation zone 1

and then the probability of being trapped in downstream recirculation zones

2, 3, ...15 is measured. Results for Re=30 and 100 and Pe=100 and 1000 are

shown. It is immediately evident that for the Pe=100 cases the probability of

successive trapping is higher than the Pe=1000 cases, reflecting the fact that
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with larger diffusive effects it is easier for particles to enter the recirculation

zones. Additionally though for Pe=100 the probability of entering any of the

downstream recirculation zones is the same for all recirculation zones. This

reflects the fact that all particles have almost equal access to all travel times as

shown by the weak correlation and almost uniform transition matrices for the

Pe = 100 cases. This is in effect why the uncorrelated model works as well as

it does in reproducing observed metrics from the direct numerical simulations.

For Pe = 1000 there is a decay in probability of trapping with downstream

recirculation zone, reflecting the strong correlation.
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Figure 14: Probability of being trapped in the next recirculation zone given that a particle is
trapped in the current one depending on Re. Red solid line corresponds to Pe=1000 and the
blue dashed line to Pe=100.

An alternative manner of looking at this persistence of correlation is to look

at the importance of correlation parameter IC and the transition matrix. Due

to the Markov property of the transition matrix one can look at correlations

over multiple jumps by taking powers of the transition matrix

TT (n) = Tn (21)
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where TT (n)ij measures the transition probability after n spatial jumps; i.e. it

calculates the probability of a particle belonging to some class j, given that it

belonged to class i n jumps ago. Now we can calculate IC for successive powers

of T, defined as the squared norm of matrix TT (n):

ICT (n) =
1

Nc

Nc∑

i=1

Nc∑

j=1

(TT (n))2ij , (22)

A plot depicting IC (normalized) against n, the number of steps, is shown in

figure 15 (bottom). This appears to display the same quasi-exponential corre-

lation structure as figure 15 (top). Thus the transition matrix combined with

IC provides all information needed to estimate the number of steps required for

correlation in the spatial Markov model to no longer be important. In this case

it appears to be on the order of about 12 to 15. Thus, if one measured the tran-

sition time over 15L one could in principle build a predictive uncorrelated model

using this transition time distribution and a jump size of 15L. Consistently, if

one applies (16) to the travel time distributions obtained after a distance of 15L

one obtains a much better prediction of the asymptotic dispersion behaviors as

shown by the corresponding results in figure 13 (magenta square symbols).

5. Conclusions

We have studied dispersion in a periodic wall bounded domain with sinu-

soidal boundaries using finite element numerical simulations of the flow field and

random walk numerical simulations of transport. We have considered systems

with Reynolds numbers that are sufficiently large that inertial effects play an

important role on transport, but limited ourselves to systems where flows are

laminar and steady. As Reynolds number increases in the chosen flow domain,

recirculation zones emerge and become increasingly large in size as inertial ef-

fects grow. These recirculation zones act as traps for solute and cause a strong

preferential channel down the center of the domain. In combination these effects

strongly affect the nature and magnitude of dispersion in such a channel. To
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Figure 15: (Top) Probability of being trapped in downstream recirculation zone n, given that
a particle is trapped in recirculation zone 1. (Red–) Re=100, Pe=100, (Black -.) Re=30,
Pe=100, (Purple -*) Re=100, Pe=1000 and (Blue -) Re=30, Pe=1000. (Bottom) Normalized
Importance of Correlation IC for successive powers of the transition matrix T n demonstrating
the decorrelation over successive jumps. This is for Re=100 and Pe=1000. The inset shows
the same data on a semi-log plot to highlight the exponential decay.
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date most research on such effects has been restricted to studying asymptotic

dispersion effects, in analogy with Taylor dispersion.

In order to better understand and model preasymptotic dispersion, which

cannot be effectively modeled using a classical Fickian approach, we develop a

spatial Markov model, which aims to effectively model transport from early to

asymptotic times. The method relies on measuring breakthrough times at two

successive lengths and with this information calculating a correlation matrix

that quantifies correlation between successive transit time jumps. In order to

quantify the magnitude of this correlation we have defined a new parameter IC,

the importance of correlation. IC, for this chosen configuration, suggests that

correlation effects are unimportant when Pe < O(100), but become increasingly

important as the Péclet number grows larger than this. Indeed we demonstrate

that an effective model, which does not incorporate correlation between suc-

cessive jumps, does an almost equally good job as a correlated equivalent of

predicting breakthrough curves at several downstream breakthrough locations

as well as in predicting the evolution of a plume’s second centered moment over

time when Pe = 100. However, when Pe = 1000 only the correlated model suc-

cessfully matches observations, with the uncorrelated CTRW underpredicting

the magnitude of the second centered moment and failing to accurately cap-

ture the early concentrations of the breakthrough curves. For a larger Péclet

number of Pe = 105 this mismatch is even larger with the uncorrelated model

failing to accurately capture both observed early and late times breakthrough

curve arrivals, while the spatial Markov model successfully replicates observed

behaviors. This demonstrates that for systems with smaller Péclet numbers, for

this configuration less than 100, effective models need not include correlation

effects and that conventional approaches may work well. Likewise though, if

Péclet numbers are larger than this, correlation effects must be incorporated

to reliably recover true behaviors. This reflects the fact that diffusion at the

small scale is the process that decorrelates successive steps; thus larger relative

diffussion effects mean less correlation.

To conclude the paper we explain the previously unexplained phenomenon
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where it has previously been observed that, for fixed Péclet number, the magni-

tude of the asymptotic dispersion coefficient grows rapidly with increasing ad-

vective effects, but then saturates at a more or less constant value beyond which

little further increase occurs despite continued increases in Reynolds number.

We do so using classical CTRW theory that does not incorporate correlations.

Additionally we discuss how the transition matrix and the importance of corre-

lation parameter can be used to estimate the probability of successive trapping

events as the number of steps required such that correlation effects become

unimportant.

While the presented geometry is incredibly simple it provides valuable in-

sights into more complex systems, where both spatial Markov and uncorrelated

CTRW models have been applied in the past. For these more complex systems

it still most likely holds true that there is a critical Péclet number below which

correlation effects may be neglected and above which they are critical in effec-

tive model development. Identifying such critical cutoffs will be important to

improved future model development.
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- We study preasymptotic transport in a simple pore geometry  

 

- Inertial flow effects are important and lead to strong recirculation zones. 

 

- We test a Spatial Markov model to predict observed transport 

 

- Correlation effects are important when Peclet number is larger than O(100). 




