

Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of the Benue Trough, Nigeria

Romain Vullo, Philippe Courville

▶ To cite this version:

Romain Vullo, Philippe Courville. Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of the Benue Trough, Nigeria. Journal of African Earth Sciences, 2014, 97, pp.194-206. 10.1016/j.jafrearsci.2014.04.016 . insu-01004270

HAL Id: insu-01004270 https://insu.hal.science/insu-01004270

Submitted on 11 Jun2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of
2	the Benue Trough, Nigeria
3	
4	Romain Vullo *, Philippe Courville
5	Laboratoire Géosciences Rennes, UMR CNRS 6118, Université de Rennes 1, 263
6	avenue du Général Leclerc, 35042, Rennes, France
7	
8	* corresponding author.
9	Email address: romain.vullo@univ-rennes1.fr
10	
11	Abstract
12	Selachian and ray-finned fish remains from various Late Cretaceous localities of
13	Nigeria are described. Each locality has yielded only a very few specimens and the
14	diversity is therefore very low. However, some taxa are recorded for the first time in
15	Africa. The Ashaka locality in the Upper Benue Trough (northeastern Nigeria) has
16	yielded a small but interesting late Cenomanian assemblage of microremains, including
17	teeth of "Carcharias" amonensis, Rhombopterygia zaborskii sp. nov., Hamrabatis sp.,
18	"Stephanodus" sp., and a possible ionoscopiform. A large prearticular dentition coming
19	from the early Turonian beds of this locality is assigned to the large pycnodontiform
20	Acrotemnus, a poorly known genus here regarded as a senior synonym of
21	Macropycnodon. In the Lower Benue Trough (southeastern Nigeria), several localities
22	ranging in age from the late Cenomanian to the early Maastrichtian have yielded various
23	widespread taxa such as Ptychodus, Scapanorhynchus, Squalicorax, Vidalamiinae
24	indet., cf. Protosphyraena, and Eodiaphyodus. The seaway that occupied the Benue

25	Trough during transgressive episodes (late Cenomanian-early Turonian and
26	Maastrichtian) created opportunities for the dispersal of many marine fish taxa into new
27	areas, such as the proto-South Atlantic.
28 29 30	Keywords: Elasmobranchii; Actinopterygii; Late Cretaceous; Benue Trough; Nigeria.
313233	1. Introduction
34	Late Cretaceous fish faunas from Africa are relatively well known (see López-
35	Arbarello, 2004 and Murray, 2000 for a review). In Nigeria, most of the works have
36	dealt with Paleogene material (Odunze et al., 2009, 2012; Stevens et al., 2011; White,
37	1926, 1934, 1955) whereas only a very few Cretaceous specimens have been reported.
38	Woods (1911) mentioned the presence of Gigantichthys (= Onchosaurus) sp. in the
39	Turonian of Kumberi (northern part of the Middle Benue Trough) on the basis of some
40	remains collected by J.D. Falconer and A. Longbottom and identified by A.S.
41	Woodward.
42	White (1934) described some fish remains coming from the southern part of the
43	Iullemmeden Basin (Gilbedi and Kaffe localities, Sokoto State, northwestern Nigeria).
44	On the basis of this material, all Maastrichtian in age, White (1934) identified the
45	following taxa: Lamna appendiculata var. biauriculata (= Cretolamna biauriculata),
46	Lamna libyca (= Serratolamna serrata), Schizorhiza stromeri, ?Pristinae indet.,
47	Stephanodus libycus, and Pycnodontidae indet., besides "selachian vertebrae and
48	remains of indeterminable bony fishes". This assemblage was later assigned by Kogbe

49 (1974) to the Maastrichtian Dukamaje Formation.

50	Carter et al. (1963) provided two lists of fish taxa collected from two localities in
51	northeastern Nigeria and identified by E.I. White. The first list (i.e., Onchosaurus
52	pharao, Schizorhiza stromeri, Enchodus cf. lamberti, Ceratodus sp., Lamna sp.)
53	corresponds to a fish assemblage collected from a section in the Biriji River, near
54	Gombe, exposing the base of the Yolde Formation (Cenomanian in age). The second list
55	(i.e., Schizorhiza stromeri, ?Stratodus apicalis, Lamna? serrata, Enchodus lamberti)
56	indicates the fish taxa obtained from a well sunk into the Fika Shales Formation
57	(Turonian?–Coniacian to Santonian–Campanian? in age) at Damagum. The Fika Shales
58	are a clay sedimentary unit occurring in the most northwestern part of the Upper Benue
59	Trough, partly equivalent to the Pindiga Formation. It is worth noting that the known
60	stratigraphical range of some of these species is not consistent with the age of the
61	involved formations, thus suggesting possible misidentifications or sampling bias.
62	Unfortunately, the current whereabouts of the fish material reported by Carter et al.
63	(1963) is unknown and we were unable to re-examine these specimens. The section in
64	the Biriji River near Gombe was visited by one of us (P.C.) in 1990; the outcrops
65	occurring by that time were of variable quality, and it was not possible to obtain further
66	material. Similarly, no good outcrops or fossils were recently obtained from the Fika
67	Shales, despite numerous field observations by one of us (P.C.) in 1990.
68	Lastly, in a study on ammonites from the Ashaka quarry, Courville (1992: 314)
69	noted the presence of various, well-preserved remains of fishes (selachians, pycnodonts)
70	in three distinct stratigraphical levels; these specimens are described in the present work
71	(see below). In a paper dealing with foraminifera from the same quarry, Gebhardt
72	(1997) also mentioned the occurrence of fish remains in several beds of this section, late

73	Cenomanian to early Turonian in age.
74	The material studied in the present work represents the first marine fish remains
75	from the Benue Trough that are well constrained stratigraphically and geographically.
76	All of them were collected by one of us (P.C.) from 1989 to 1991 during field
77	prospections. This material was obtained by surface collecting, except microteeth from
78	one peculiar level of the Ashaka quarry, obtained by screen washing (see below).
79	
80	6
81	2. Geographical and geological settings
82	
83	In Nigeria, West Africa (Fig. 1A1), the Cretaceous marine formations mainly
84	extend in the eastern part of the country, alongside the Benue River and southern branch
85	of the Niger River. The Benue Trough corresponds to a multiple SW-NE strike-slip
86	basin, which origin is directly related to the Early Cretaceous South Atlantic opening
87	(Benkhelil, 1988, 1989; Guiraud, 1991). Its geographical location is particularly
88	interesting, as: 1) being opened to the Cretaceous oceanic domain (modern Calabar
89	flank; Fig. 1A2); 2) a link to the Saharan areas of northeastern Nigeria (Chad Basin;
90	Fig. 1A2), episodically opened to the Late Cretaceous trans-Saharan seaway related
91	itself to the southern margin of the Tethyan Ocean (Courville, 1993; Courville et al.,
92	1998; Reyment and Dingle, 1987).
93	The Nigerian Late Cretaceous formations and faunas (mainly ammonites and
94	other invertebrates) from the Benue Trough (northern part: Upper Benue Trough;
95	southern part: Lower Benue Trough) have been studied for long (e.g., Barber, 1958;
96	Carter et al., 1963; Reyment, 1955; Woods, 1911). More recently, the main marine

97	sedimentary units of the Benue Trough have been studied with a particular
98	biostratigraphical and palaeobiological consideration (e.g., Meister, 1989; Zaborski,
99	1983, 1987, 1990a). A synthesis of the historical and original data was realized by
100	Courville (1993).
101	In northeastern Nigeria, marine conditions partly occurred during the latest
102	Cenomanian-latest "Senonian" (Campanian-Maastrichtian?) interval; only one main
103	clay-shale-dominated sedimentary unit including basal limestone beds (Pindiga
104	Formation and equivalents; Fig. 1B2), occurs. Further south, marine conditions started
105	earlier and earlier (early Albian around the Niger Delta), and persisted continuously
106	during Late Cretaceous times; several local thick clay-shale formations are piling up
107	(Fig. 1B1).
108	From the Chad Basin part of the Upper Benue Trough (Fig. 1B2), quite
109	numerous fish remains were obtained from the Gongila Formation (partly equivalent to
110	the Pindiga Formation), at the classic section of the Ashaka quarry (levels 9>, 21> and
111	26 in Courville, 1992: fig. 3). The level 9> corresponds to a marly sediment including
112	an important sandy fraction and numerous phosphatized elements (mainly fish debris).
113	A few teeth were obtained by screen washing (using 0.5 and 1 mm mesh-sized sieves)
114	of a small amount (~500 g) of matrix from this level. It is considered as latest
115	Cenomanian in age (Saharan Gadeni Zone, partly equivalent to the standard Juddii
116	Zone; Courville, 1993). From the marly-nodular limestone level 21>, vertebrate
117	remains are far less common and include several shark and bony fish teeth and
118	vertebrae, plus several unidentified bone fragments; this level is regarded as the younger
119	local Cenomanian horizon (same biozone as level 9>). Lastly, the level 26 (lowermost
120	Turonian: Saharan Flexuosum Zone = Coloradoense Zone pars.) yielded only one large

pycnodont dentition. 122 From the central part of the Upper Benue trough (Fig. 1B2), only poorly-123 preserved bones belonging to unidentifiable fishes or reptiles were collected from 124 various latest Cenomanian to middle Turonian limestone beds (for outcrop details, see Zaborski, 1990a). 125

126 All other fish remains studied here were collected in southern Nigeria, from

various formations and palaeogeographic areas (Fig. 1B1): 127

121

128 -	The latest Cenomanian to early middle Turonian clay-shale series with nodular
129	limestone beds of the Eze Aku Group was exposed with good conditions in
130	several outcrops along the expressway at Lokpanta, located at the Atlantic side
131	of the Lower Benue Trough (for detailed location and study, see Zaborski,
132	1987). These outcrops yielded quite common and diverse vertebrate remains,
133	often poorly preserved, including fish teeth, vertebrae, or partial skeletons, as
134	well as reptile bones.
135 -	In the overlying clay-shale Awgu Formation of the same area, only poor
136	outcrops occurred by that time, closely located to the sites mentioned by
137	Reyment (1956); probably latest Coniacian to early Santonian in age (no recent
138	ammonite findings), this series yielded a few shark teeth and poorly-preserved
139	reptile bones. Further north, in the southern part of the Lower Benue Trough, the
140	Nkalagu Limestones [a northern equivalent to the basal Awgu Shales, which is
141	clearly early Coniacian in age (Courville, 1993; Offodile and Reyment, 1977;
142	Zaborski, 1990b)], yielded only one isolated fish tooth.

143 In southern Nigeria, the younger Late Cretaceous series examined belong to the 144 fine-detritic Nkporo Shales Formation. Various but very poorly preserved,

145	mostly unidentifiable vertebrate remains occur in its lower part nearly in each
146	outcrop (P.C. pers. obs.). It is only in the most southern area that good outcrops
147	still existed, studied in details by Zaborski (1983, 1985). Rich ammonite faunas
148	clearly indicate that these fossil assemblages occur below and above the
149	Campanian–Maastrichtian boundary; amongst quite diverse and well-preserved
150	fossil assemblages including bivalves, gastropods and crustaceans, one shark
151	tooth and one fish tooth plate were collected in the early Maastrichtian beds of
152	the "fauna 13" fossil site, 42 km from Calabar (Zaborski, 1985: fig. 1).
153	
154	
155	3. Systematic palaeontology
156	
157	Specimen repository. All the material studied in the present work is deposited in the
158	collections of Géosciences Rennes (GR), Université de Rennes 1, France.
159	
160	Class CHONDRICHTHYES Huxley, 1880
161	Incerti ordinis (?HYBODONTIFORMES Patterson, 1966)
162	Family PTYCHODONTIDAE Jaekel, 1898
163	Genus Ptychodus Agassiz, 1838
164	
165	Ptychodus decurrens Agassiz, 1838
166	(Fig. 2A)
167	
168	Material examined. One tooth (GR/PC.1773).

169	Age and locality. Early Turonian (Nodosoides Zone), Lokpanta (level 31), southeastern
170	Nigeria.

171

172 Description. The specimen corresponds to a perfectly preserved tooth. It is wider (12.5 173 mm) than long (10 mm). The crown is not very high and bears eight transverse, curved 174 ridges that are concave labially. These ridges nearly reach the lateral margins of the 175 crown, where they can bifurcate. The narrow, rectangular marginal area of the crown 176 shows a granular surface, with short, irregular, anastomosed folds. The anaulacorhizous 177 root is relatively low and shows a weak basal concavity. A series of foramina is present 178 all around the specimen, just below the crown-root boundary. The root base is also 179 pierced by a few foramina. 180 181 *Remarks*. The morphology and features (e.g., small size, low crown, high number of 182 ridges) of this tooth allows its assignment to the globally widespread species Ptychodus 183 decurrens (see Verma et al., 2012). In Africa, this species was only reported from the 184 Cenomanian of Tunisia (Pervinquière, 1903) and late Turonian of Angola (Antunes and 185 Cappetta, 2002). Some teeth tentatively referred to P. decurrens were also reported from the late Cenomanian-early Turonian black shales of Jbel Tselfat in Morocco 186 187 (Khalloufi et al., 2010).

188

- 190 Order LAMNIFORMES Berg, 1958
- 191 Family PSEUDOSCAPANORHYNCHIDAE Herman, 1979
- 192 Genus Protolamna Cappetta, 1980a

194	cf. Protolamna sp.
195	(Fig. 2B)
196	
197	Material examined. Three incomplete teeth (including GR/PC.1774).
198	Age and locality. Latest Cenomanian (Gadeni Zone), Ashaka quarry (level 21>),
199	northeastern Nigeria.
200	6
201	Description. The best preserved tooth shows an erect, narrow cusp bearing a few slight
202	lingual folds. The labial face is nearly flat whereas the lingual face is strongly convex in
203	apical view. The lingual protuberance of the root is well developed. Lateral cusplets and
204	root lobes are not preserved.
205	
206	Remarks. Although these teeth are incomplete, the shape and ornamentation of the main
207	cusp combined to root morphology indicate that these specimens can be tentatively
208	assigned to the widespread Cretaceous genus Protolamna (Cappetta, 2012). In the other
209	two pseudoscapanorhynchid genera Leptostyrax and Pseudoscapanorhynchus, the
210	mesiodistal compression at the base of the labial face of the main cusp is stronger
211	(Cappetta, 2012). In Africa, teeth of Protolamna and Leptostyrax were reported from
212	the Albian of Angola and Tunisia (Antunes and Cappetta, 2002; Cuny et al., 2004).
213	
214	
215	Family OTODONTIDAE Glikman, 1964
216	

- 217 Genus Cretolamna Glikman, 1958
- 218
- 219 Cretolamna sp.
- 220 (Fig. 2C)
- 221
- 222 *Material examined*. One incomplete tooth (GR/PC.1775).
- 223 Age and locality. Coniacian?–Santonian, Awgu, southeastern Nigeria.
- 224

Description. The unique specimen corresponds to a large upper lateral tooth. The main cusp bends distally and shows a convex mesial cutting edge. The distal cutting edge is more rectilinear. Only the distal lateral cusplet is preserved. It is triangular, wider than high, and relatively large. The root has a poorly marked lingual protuberance. The root lobes are short and separated by a broad, rounded mediobasal notch.

- *Remarks.* This tooth is very characteristic of this widespread genus. In Africa, teeth of
 Cretolamna are common in Late Cretaceous marine deposits (e.g., Antunes and
- 233 Cappetta, 2002; Arambourg, 1952; Cuny et al., 2012; Dartevelle and Casier, 1949;
- 234 White, 1934). A lateral tooth with a similar morphology has been described as

235 Cretolamna appendiculata by Antunes and Cappetta (2002: pl. 10, fig. 12) from the late

236 Turonian of Iembe (Angola). Most of *Cretolamna* teeth found in Late Cretaceous

- 237 deposits have been commonly assigned to the type species C. appendiculata, but a
- 238 recent revision of this genus based on an abundant material from the Cenomanian-
- 239 Campanian interval shows that several species can be recognized among the *C*.
- 240 *appendiculata* group (Siverson et al., in press).

SCRIF

241

242

- 243 Family ANACORACIDAE Casier, 1947
- 244 Genus Squalicorax Whitley, 1939
- 245
- 246 Squalicorax pristodontus (Agassiz, 1843)
- 247 (Fig. 2D)

248

- 249 Material examined. One incomplete tooth (GR/PC.1776).
- 250 Age and locality. Early Maastrichtian (Neubergicus Zone), Calabar, southeastern

251 Nigeria.

252

253 Description. This wide (29 mm), large tooth shows a rather gibbous mesial edge and an

- attenuated distal heel. Serrations of the cutting edges are well developed. The basal part
- 255 of the root is not preserved.

256

- 257 Remarks. This widespread species is well known in the latest Cretaceous marine
- 258 deposits of Africa, especially in the Democratic Republic of the Congo (Dartevelle and
- 259 Casier, 1943), Morocco (Arambourg, 1952), Egypt (Cappetta, 1991; Gemmellaro,
- 260 1920), Angola (Antunes and Cappetta, 2002) and Senegal (Cuny et al., 2012).

261

- 263 Family MITSUKURINIDAE Jordan, 1898
- 264 Genus Scapanorhynchus Woodward, 1889

265	
266	Scapanorhynchus cf. texanus (Roemer, 1849)
267	(Fig. 2E, F)
268	
269	Material examined. Three incomplete teeth (including GR/PC.1777, GR/PC.1778).
270	Age and locality. Coniacian?–Santonian, Awgu, southeastern Nigeria.
271	
272	Description. These teeth are large (up to 41 mm in length) and relatively robust. The
273	crown consist of only one main cusp, without lateral cusplets. It is clearly sigmoid in
274	profile view. The lingual face is slightly convex and smooth whereas the labial face is
275	strongly convex and bears up to 25 well marked longitudinal folds. The root has a very
276	pronounced lingual protuberance marked by a short and deep groove. Only the distal
277	lobe of the root is preserved on the best preserved tooth (GR/PC.1777: Fig. 2E). It is
278	relatively robust and has a rounded extremity.
279	
280	Remarks. The Nigerian specimens studied here are very similar to those figured by
281	Antunes and Cappetta (2002: pl. 9, fig. 4-7) from the late Turonian of Iembe (Angola).
282	However, the root lobes seem more robust in the Nigerian material. These teeth from
283	Awgu would confirm the occurrence of this species in the Late Cretaceous of Africa.
284	
285	
286	Incertae familiae
287	Incertae genus

- 289 "Carcharias" amonensis (Cappetta and Case, 1975a)
- 290 (Fig. 3A)
- 291
- 292 *Material examined*. One tooth (GR/PC.1779).
- 293 Age and locality. Late Cenomanian (Gadeni Zone), Ashaka quarry (level 9>),
- 294 northeastern Nigeria.
- 295
- 296 *Description*. The specimen corresponds to an upper lateral tooth. The main cusp is
- 297 labiolingually compressed and strongly bent distally. There is one pair of triangular
- 298 lateral cusplets, plus one additional incipient mesial cusplet. The root is damaged and no
- 299 lingual protuberance, median furrow or lobes can be observed.
- 300
- 301 *Remarks*. This small tooth is clearly referable to "Carcharias" amonensis, a
- 302 geographically widespread Cenomanian lamniform shark. This taxon corresponds to a
- 303 good biostratigraphical marker for this stage. It is mainly known from North American
- and European localities where it can be abundant, while it seems to be slightly less
- 305 common in Africa. In this continent, it has been found in Morocco (Cavin et al., 2010),
- 306 Libya (Rage and Cappetta 2002), Egypt (Slaughter and Thurmond, 1974; Werner,
- 307 1989), and Angola (Antunes and Cappetta, 2002). It is also present in Lebanon, where a
- 308 few complete skeletons have been collected (Cappetta, 2012: 208). This species is
- 309 clearly not an odontaspidid s.l. (e.g., *Odontaspis*, *Carcharias*, and their fossil relatives)
- 310 and is only assigned to the genus *Carcharias* pending further study on its relationships
- 311 to other lamniform sharks.
- 312

SCRIF

2	1	2
3	T	3

- 314 Order RAJIFORMES Berg, 1940
- 315 Incertae familiae
- 316 Genus Rhombopterygia Cappetta, 1980b
- 317
- 318 *Rhombopterygia zaborskii* sp. nov.
- 319 (Fig. 3B–E)
- 320
- 321 *Holotype*. One anterior tooth (GR/PC.1780) (Fig. 3B).
- 322 Paratypes. Three anterolateral to lateral teeth (GR/PC.1781, GR/PC.1782,
- 323 GR/PC.1783) (Fig. 3C–E).
- 324 Additional material. Two incomplete teeth.
- 325 Age and type locality. Late Cenomanian (Gadeni Zone), Ashaka quarry (level 9>),
- 326 northeastern Nigeria.
- 327 Etymology. Species named in honour to Peter M. P. Zaborski, who led one of the author
- 328 (P.C.) to the Ashaka quarry.
- 329
- 330 *Diagnosis*. New species of *Rhombopterygia* with very small (about 0.5 to 0.8 mm wide)
- teeth characterized by the following features: 1) cusped crown at least as wide as root,
- 332 2) lingual face with concave lateral margins in occlusal view, 3) well-developed median
- 333 uvula, 4) lateral uvulae reduced but always present.
- 334
- 335 Differential diagnosis. New species of Rhombopterygia with teeth differing from those
- of *R. rajoides*, the type and only species of the genus, by the following features: 1)

anterior teeth narrower with crown as wide as root, 2) lateral margins of lingual face
concave in anterior teeth, 3) median uvula narrower and less rounded, 4) more marked
lateral uvulae, 5) cusp more developed in anterior teeth and present in lateralmost teeth,
6) smaller size.

341

342 Description. Anterior teeth (including the holotype GR/PC.1780: Fig. 3B) have a 343 subrectangular crown in occlusal view. The labial edge of the crown is convex. The 344 lingual face shows a well-developed, subtriangular median uvula that projects lingually, 345 whereas lateral uvulae are much more reduced. Both faces are separated by a transverse 346 crest that rises up into an obtuse central cusp. The root, not very high, is as wide as the crown and shows in lingual view a pair of marginolingual foramina located below the 347 348 junction of the median and lateral uvulae. In basal view, the root is marked by a deep 349 median furrow that separates two subtriangular lobes. The furrow displays a foramen in 350 central position. Lateral teeth (including the paratype GR/PC.1783: Fig. 3E) have a crown which is more expanded laterally and marked by a transverse crest bearing a 351 352 lower central cusp. The lingual edge shows a broad, triangular central uvula which is 353 flanked by one pair of smaller, poorly salient lateral uvulae. The root is narrower than 354 the crown.

355

Remarks. Two "rhinobatoid" taxa have been described from the early Late Cretaceous
of Africa. *Isidobatus* is a genus based on isolated "rhinobatoid"-like teeth from the late
Cenomanian of Egypt (Werner, 1989). The Ashaka teeth do not display the transverse
keels and crest present in those of *Isidobatus* and have less-developed median and
lateral uvulae. They can thus be easily distinguished from this peculiar genus. The

361	platyrhinid genus Tingitanius, recently described on the basis of a nearly complete
362	specimen from the early Turonian of Morocco (Claeson et al., 2013), has teeth which
363	are rather similar to those found at Ashaka. However, the teeth of <i>Tingitanius</i> mainly
364	differ by the lack of a cusp and their higher root.
365	The teeth from Ashaka are here assigned to the genus Rhombopterygia on the
366	basis of its broad crown, the shape of the transverse crest, the presence of a small cusp,
367	and the morphology of the lingual uvulae. This genus has been originally described on
368	the basis of complete skeletons from the Cenomanian of Lebanon representing a single
369	species, R. rajoides (Cappetta, 1980b). In addition, isolated teeth assigned to
370	Rhombopterygia have been reported from the Cenomanian and Coniacian of Spain
371	(Bernárdez, 2002; Vullo et al., 2009), while there is a doubtful occurrence from the
372	Campanian of Germany (Müller, 1989). The teeth described by Bernárdez (2002: pl. 54,
373	figs. 1-4) as "R. villae" (nomen nudum) strikingly resembles those of R. zaborskii sp.
374	nov. and are also late Cenomanian in age. Therefore, they might represent the same
375	species or closely related forms. Lastly, it can be noted that "Rhinobatos" whitfieldi
376	from the Cenomanian of Lebanon has similar teeth in overall morphology, but these are
377	smaller and more cuspidate (Cappetta, 1980b). Rhombopterygia was placed among the
378	Rhinobatidae by Cappetta (1980b, 2012), but the phylogenetic analysis performed by
379	Claeson et al. (2013) would not support this interpretation. This analysis found
380	"Rhinobatos" whitfieldi and Rhombopterygia rajoides as successive sister taxa to
381	Zanobatos and Myliobatiformes. However, it is worth noting that this result was
382	recovered by the 50% majority rule tree but not in the strict consensus.
383	

|--|

386

387 Hamrabatis sp.

388 (Fig. 3F, G)

389

390 *Material examined*. Two teeth (GR/PC.1784, GR/PC.1785).

391 Age and locality. Late Cenomanian (Gadeni Zone), Ashaka quarry (level 9>)

392 northeastern Nigeria.

393

394 Description. The best preserved specimen (GR/PC.1784: Fig. 3F) is a small

anterolateral tooth. In occlusal view, it displays a rhombic crown as wide as long and

396 marked by a blunt transverse keel. The lingual area of the occlusal face shows an

397 irregular, alveolate surface whereas the labial area is almost smooth. The lingual face is

398 strongly concave in profile view. The basal part of the lingual face is subhorizontal, flat

and falciform in occlusal view. The root is not preserved. A poorly preserved lateral

400 tooth (GR/PC.1785: Fig. 3G) shows a crown more expanded laterally. It is apparently

401 devoid of transverse keel and ornamentation. The basal part of the lingual face is

403

402

damaged.

Remarks. Hamrabatis is known from the Late Cretaceous of Europe, Northern Africa,
Near East and North America (see Cappetta, 2012). Thus, the presence of *Hamrabatis*in the Cenomanian of Nigeria represents the southernmost occurrence of this
widespread rajiform genus. So far, *H. bernardezi* from France and Spain is the only
known Cenomanian species of the genus (Bernárdez, 2002; Vullo et al., 2007, 2009).

- 409 The teeth from Ashaka differ from *H. bernardezi* by their crown almost devoid of
- 410 ornamentation, but this may be due to abrasion. Because of the scarcity and poor
- 411 preservation of the Ashaka material, these teeth are here referred to *Hamrabatis* sp.
- 412
- 413
- 414 Class OSTEICHTHYES Huxley, 1880
- 415 Order PYCNODONTIFORMES Berg, 1937
- 416 Family PYCNODONTIDAE Agassiz, 1833
- 417 Genus Acrotemnus Agassiz, 1836
- 418
- 419 Acrotemnus sp.
- 420 (Fig. 4A)
- 421
- Material examined. One prearticular dentition (GR/PC.1786). 422
- Age and locality. Early Turonian (Coloradoense Zone), Ashaka quarry (level 26), 423
- 424 northeastern Nigeria.
- 425

Description. The unique specimen corresponds to a large (92 mm long), complete right 426 427 prearticular dentition bearing 34 robust teeth. The symphysis is long (52 mm) but not 428 very thick. There are three rows of teeth. The ten teeth of the inner row are large, up to 429 18 mm wide. They are bean-shaped or oblong and marked medially by a narrow 430 transverse groove. The twelve teeth of the middle row are less transversally extended 431 and are marked by a granular central depression. Lastly, the twelve teeth of the outer 432 row are oval to subcircular, with an unornamented, rounded central depression.

Δ	3	٦
	\cdot	\cdot

434	Remarks. Macropycnodon is a large genus of pycnodont fish recently erected on the
435	basis of a single vomerine dentition (M. streckeri) and isolated teeth (M.
436	megafrendodon) from the Turonian of U.S.A. (Kansas and New Mexico, respectively)
437	(Shimada et al., 2010). Therefore, the prearticular dentition of <i>Macropycnodon</i> is
438	unknown and no direct comparisons can be made between the North American and the
439	Nigerian material. However, the dental features observed on the large prearticular jaw
440	from the Ashaka quarry are very similar to those present in Macropycnodon, especially
441	in the type species <i>M. streckeri</i> (specimen KUVP 946; Shimada et al., 2010: fig. 2). In
442	addition, the Nigerian specimen also shares with Macropycnodon the Turonian age and
443	the unusual large size. It can be distinguished from the prearticulars of the Coelodus
444	species, which bear teeth that are generally smooth and more elongated transversally
445	(Schultz and Paunović, 1997; Poyato-Ariza and Wenz, 2002: fig. 22a).
446	It is worth noting that some large pycnodont teeth and jaw fragments from the
447	Late Cretaceous (Turonian?) of the Damergou area in Niger (eastern Iullemmeden
448	Basin) have been referred by Arambourg and Joleaud (1943) to the poorly known taxon
449	Acrotemnus faba, originally described on the basis of a few associated teeth from the
450	Late Cretaceous (Turonian) of England (Agassiz, 1833-1843; Woodward, 1909). Like
451	Macropycnodon, this genus has robust teeth characterized by a sharp transverse apical
452	ridge (Arambourg and Joleaud, 1943: pl. II, figs. 14-17). Furthermore, some teeth from
453	Damergou show a ring-like ridge and a central depression (Arambourg and Joleaud,
454	1943: pl. II, figs. 11, 13), indicating that the variation in tooth morphology is similar to
455	that observed in Macropycnodon and the prearticular dentition from Ashaka. Since
456	Macropycnodon and Acrotemnus share the same diagnostic features, the former appears

457	to be a junior synonym of the latter. Thus, Acrotemnus streckeri may be a subjective
458	junior synonym of A. faba, whereas A. megafrendodon is clearly a distinct species. The
459	Nigerian specimen here described is assigned to <i>Acrotemnus</i> sp. It must be noted that
460	two other Late Cretaceous species were referred to Acrotemnus: A. splendens from
461	Belgium (Leriche, 1911) and A. yangaensis from Angola (Dartevelle and Casier, 1949).
462	While the holotypic material of the former belongs in fact to the enigmatic, purported
463	pycnodontiform genus Hadrodus, the holotypic material (a single tooth) of the latter
464	must be regarded as Pycnodontidae indet.
465	
466	Incerti ordinis (?PYCNODONTIFORMES Berg, 1937)
467	Incertae familiae
468	Genus "Stephanodus" Zittel, 1888
469	
470	"Stephanodus" sp.
471	(Fig. 5A)
472	
473	Material examined. Two teeth (including GR/PC.1787).
474	Age and locality. Late Cenomanian (Gadeni Zone), Ashaka quarry (level 9>),
475	northeastern Nigeria.
476	
477	Description. This small hook-shaped branchial tooth shows a strong lateral
478	compression. A flattened discoid extension develops between the base and the hook.

- 479
- 480 *Remarks*. This dental morphotype is usually referred to the genus "Stephanodus", which

- 481 may represent a parataxon (see discussion in Berreteaga et al., 2011). Such branchial
- teeth are mainly present in pycnodontiforms (Kriwet, 1999), but can also be found in
- 483 other Mesozoic and Cenozoic fish groups. Thus, several authors considered
- 484 "Stephanodus" as a non-pycnodontid fish and referred it to the Eotrigonodontidae
- 485 within the Tetraodontiformes (e.g., Arambourg, 1952; Bardet et al., 2000; Dartevelle

390

486 and Casier, 1949; White, 1934).

487

- 488 Order AMIIFORMES Hay, 1929
- 489 Family AMIIDAE Bonaparte, 1837
- 490 Subfamily VIDALAMIINAE Grande and Bemis, 1998

491

- 492 Genus indet. A
- 493 (Fig. 4B, C)
- 494
- 495 *Material examined*. Two vertebrae (GR/PC.1788-1789).
- 496 Age and locality. Latest Cenomanian (Gadeni Zone), Ashaka quarry (level 21>),
- 497 northeastern Nigeria.
- 498

499 *Description*. The larger specimen (GR/PC.1788: Fig. 4B) corresponds to an abdominal

500 vertebral centrum, slightly broader than high and weakly compressed anteroposteriorly.

501 It shows insubstantial parapophyses. The neural and aortal facets are visible dorsally

- and ventrally, respectively. In dorsoventral view, the smooth lateral surfaces appear
- 503 markedly concave. The second, smaller specimen (GR/PC.1789: Fig. 4C) is a posterior
- 504 caudal (ural) centrum, higher than wide.

5	Δ	5
J	υ	э

506	Remarks. The shape of these vertebral centra is characteristic of those found in the trunk
507	(= abdominal) and caudal region of amiid fishes (Grande and Bemis, 1998). The fact
508	that no well-developed parapophyses are fused to the centrum indicates that these
509	specimens do not belong to the subfamily Amiinae (Grande and Bemis, 1998). Based on
510	their general morphology, these two centra can be assigned to the subfamily
511	Vidalamiinae (Grande and Bemis, 1998). The dorsal vertebral centrum closely
512	resembles that of an indeterminate vidalamiine described from the Late Cretaceous
513	(Maastrichtian) of Brazil (Martinelli et al., 2013). However, the latter does not display
514	the concavity of the lateral surface observed in dorsoventral view in GR/PC.1788.
515	Among other mid-Cretaceous amiids, similar large centra characterized by a weak
516	anteroposterior compression are also observed in the Pachyamia from the late Albian of
517	Mexico (Grande and Bemis, 1998) and the early Cenomanian of the Near East (Chalifa
518	and Tchernov, 1982), as well as in a partial vertebral column of a possible indeterminate
519	vidalamiine from the middle Turonian of Brazil (Gallo et al., 2007b).
520	
521	Genus indet. B
522	(Fig. 4D)
523	
524	Material examined. One vertebra (GR/PC.1790).
525	Age and locality. Coniacian?–Santonian, Awgu, southeastern Nigeria.
526	
527	Description. This specimen corresponds to a laterally extended vertebral centrum,
528	broader than high and anteroposteriorly compressed. No parapophyses are fused to the

529 centrum. In anteroposterior view, it shows a subrhombic shape, with dorsolateral (i.e, 530 between the neural facets and parapophyses) and ventrolateral (i.e., between the aortal 531 facets and parapophyses) surfaces appearing slightly convex and concave, respectively. 532 This shape indicates a central trunk position. 533 534 *Remarks*. Like the amiid centra from the Ashaka quarry, this centrum shows anatomical 535 features that permit to assign it to the Vidalamiinae. However, it can be distinguished 536 from the Cenomanian abdominal vertebral centrum described above by a stronger 537 anteroposterior compression, a more rhombic outline, and the presence of slight 538 ventrolateral concavities. Thus, the material from Ashaka and Awgu may represent two 539 distinct vidalamiine taxa. Such ventrolateral concavities are an autapomorphic feature of 540 the non-marine (possibly marine?) genus *Melvius* from the Late Cretaceous 541 (Campanian-Maastrichtian) of North America (Bryant, 1987; Grande and Bemis, 542 1998), in which this character can be much more marked than in the centrum from 543 Ashaka. Unfortunately, the intracolumnar shape variation of the centra remains unknown for the Ashaka vidalamiine, and a deeper comparison with Melvius is not 544 545 possible. Interestingly, the "early Senonian" (Coniacian–Santonian) locality of In Beceten in southern Niger yielded an indeterminate amiid taxon (Broin et al., 1974). An 546 547 examination of the material (including isolated centra) housed at the Muséum national 548 d'Histoire naturelle of Paris indicates that the amiids from Awgu and In Beceten are at 549 least closely related (R.V. pers. observ.). It is worth noting that this specimen was 550 collected in the Awgu area beside a few teeth of the marine sharks Cretolamna and 551 Scapanorhynchus. However, all these fossils were found naturally cleaned on an 552 inclined outcrop surface, probably not exactly in situ. Furthermore, a different colouring

5RIF

- also suggests that the amiid and shark specimens originally came from two distinct
- 554 beds.
- 555
- 556 Order IONOSCOPIFORMES Grande and Bemis, 1998
- 557 Family and genus indet.
- 558 (Fig. 5B)

559

560 *Material examined*. One tooth (GR/PC.1791).

561 Age and locality. Late Cenomanian (Gadeni Zone), Ashaka quarry (level 9>),

562 northeastern Nigeria.

563

564 Description. This small tooth shows a subcircular base, slight longitunal folds, and an

565 apex bearing a transverse, curved carina.

566

567 *Remarks*. This tooth resembles that described from the middle–late Cenomanian of

568 northern Spain (La Cabaña Formation) (Vullo et al., 2009), showing the typical

569 ionoscopiform dental features described by Mudroch and Thies (1996) and Thies and

570 Mudroch (1996). To date, ionoscopiform fishes are known from complete skeletons

571 from Middle Triassic to Early Cretaceous in Europe, Africa, and North and South

572 America (Alvarado-Ortega and Espinosa-Arrubarrena, 2008; Brito and Alvarado-

573 Ortega, 2008). However, *Neorhombolepis*, known from a single incomplete skeleton

- 574 from the Lower Chalk (Cenomanian) of England (Woodward, 1888), has been
- 575 considered by some authors as a ionoscopiform genus, closely related or even
- 576 synonymous to the ophiopsid genus *Macrepistius* from the Albian of Texas (Grande and

577	Bemis, 1998; Patterson, 1973). In addition, it is noteworthy that the poorly known,
578	monospecific genus Petalopteryx from the Cenomanian of Lebanon (Pictet, 1850)
579	closely resembles the ophiopsid genera <i>Teoichthys</i> and <i>Placidichthys</i> (both from the
580	Early Cretaceous of America), and therefore may belong to this group of
581	ionoscopiforms. Lastly, the presence of some ionoscopiforms in the Cenomanian of
582	Komen (Slovenia) and the Island of Hvar (Croatia) was noted by Wenz and Kellner
583	(1986). All these data and observations would indicate that the temporal range of
584	ionoscopiforms fishes extends into the early Late Cretaceous, and thus would support
585	the assignment of the isolated teeth from the Cenomanian of Spain and Nigeria to this
586	primitive order of marine halecomorph fishes.
587	
588	
589	Order PACHYCORMIFORMES Berg, 1937
590	Family PACHYCORMIDAE Woodward, 1895
591	Genus Protosphyraena Leidy, 1860
592	
593	cf. Protosphyraena sp.
594	(Fig. 4E)
595	
596	Material examined. One incomplete tooth (GR/PC.1792).
597	Age and locality. Early Coniacian, Nkalagu, southeastern Nigeria.
598	
599	Description. The crown is laterally compressed, not very elongated and triangular in
600	lateral view. The apex is broken, showing the very thin layer of enamel in cross-section.

- 601 One of the two face displays a single, short enamel fold near the apex. There are two
- 602 sharp carinae. These anterior and posterior cutting edges are slightly concave and
- 603 convex, respectively.
- 604
- 605 *Remarks*. In Africa, the only report of this genus is a single tooth from the Maastrichtian
- of Egypt (Gemmellaro, 1920), whereas it is widespread in the Cretaceous of North
- 607 America and Europe. More recently, a few isolated teeth from the Campanian-
- 608 Maastrichtian of Saudi Arabia were tentatively assigned to Protosphyraena sp. (Kear et
- 609 al., 2009).
- 610
- 611
- 612 Order CROSSOGNATHIFORMES Taverne, 1987
- 613 Suborder PACHYRHIZODONTOIDEI Forey, 1977
- 614 Family and genus indet.
- 615 (Fig. 6)
- 616
- 617 *Material examined*. One caudal skeleton (GR/PC.1793).
- 618 Age and locality. Late Cenomanian (Juddii Zone), Lokpanta (level 33), southeastern
- 619 Nigeria.
- 620
- 621 *Description*. The caudal skeleton is embedded at the surface of a flattened, laminated
- 622 calcareous nodule. About ten preural vertebrae are preserved. Most of the bones of the
- 623 caudal fin have been removed by weathering and are now preserved as external moulds.
- 624 There are two well-developed dorsal and ventral caudal scutes. These bones are curved,

625	broaden medially and become thinner, needle-like at their extremities. Posteriormost
626	centra of the preural vertebrae are hardly visible, as well as the ural centra. The basal
627	(proximal) part of an element identified as the parhypural would indicate the position of
628	the first preural centrum (Pu1). Hypural elements seems to be largely fused (Hy1+Hy2
629	and Hy3+Hy4 condition?). Uroneural elements are damaged, possibly displaced, but
630	rather large and broad element (Un1?) with a pointed distal extremity can be observed.
631	Imprints of lepidotrichs, of which the bases partly overlap the hypurals, indicate a
632	significant degree of hypurostegy. Although distal parts of the caudal fin lobes are not
633	preserved, the symmetry of the tail suggests that it may have been forked and
634	homocercal. The upper and lower lobes show eleven and nine principal rays,
635	respectively. Outermost rays are well segmented. Between these two lobes, the tail
636	displays numerous thin and densely segmented lepidotrichs.
637	
638	Remarks. Despite its state of preservation, this specimen shows some anatomical
639	features (i.e., well-developed caudal scutes and uroneurals, partly fused hypurals) that
640	are present in most of pachyrhizodontoid fishes, such as <i>Elopopsis</i> , <i>Goulminichthys</i> and
641	Pachyrhizodus (Cavin, 2001: fig. 13). This group of primitive teleosts are well
642	represented in the early Late Cretaceous of Northern Africa, with Elopopsis and
643	Goulminichthys from the Cenomanian and Turonian of Morocco, respectively (Cavin,
644	1995, 2001; Taverne, 1976).
645	

646

647 Order AULOPIFORMES Rosen, 1973

648 Family ENCHODONTIDAE Woodward, 1901

650	
651	Enchodus cf. gladiolus (Cope, 1872)
652	(Fig. 5C)
653	
654	Material examined. Two teeth (including GR/PC.1794).
655	Age and locality. Late Cenomanian (Gadeni Zone), Ashaka quarry (level 9>),
656	northeastern Nigeria.
657	
658	Description. The larger and best preserved tooth is sigmoid in lateral view and shows a
659	weak barb in the apical region of the posterior carina. In the posterior part of the crown,
660	there are a few longitudinal folds between the base and the barb.
661	
662	Remarks. This tooth from Ashaka is very similar to those from the middle-late
663	Cenomanian of North America that are referred to Enchodus cf. gladiolus (Cumbaa et
664	al., 2010; Nagrodski et al., 2012; Shimada et al., 2006). As mentioned above, Enchodus
665	(E. lamberti) was reported in Nigeria from the Yolde and Fika Shales formations by
666	Carter et al. (1963).
667	
668	
669	Order ALBULIFORMES Nelson, 1973
670	Family PHYLLODONTIDAE Sauvage, 1875
671	Genus Eodiaphyodus Dartevelle and Casier, 1949

Genus Enchodus Agassiz, 1835

- 673 *Eodiaphyodus* cf. granulosus Arambourg, 1952
- 674 (Fig. 4F)
- 675
- 676 *Material examined*. One nearly complete tooth plate (GR/PC.1795).
- 677 Age and locality. Early Maastrichtian (Neubergicus Zone), Calabar, southeastern
- 678 Nigeria.
- 679
- 680 Description. This oval-shaped tooth plate (47 mm long and 37 mm wide) displays an
- aggregation of numerous small subcircular teeth (between 2 and 4 mm in diameter). The
- basal face of the plate shows the tooth bases which are thick, irregular and marked by a
- 683 central depression. The occlusal face of the plate is more convex and has a smooth
- 684 surface.
- 685

686	Remarks. This genus was originally described on the basis of complete and fragmentary
687	tooth plates from the Maastrichtian of the Democratic Republic of the Congo and
688	assigned to a new species, Eodiaphyodus lerichei (Dartevelle and Casier, 1949).
689	Arambourg (1952) described a second species (i.e., E. granulosus) from the
690	Maastrichtian (and Paleocene?) of Morocco. In addition, Arambourg (1952) recognized
691	a third species (i.e., E. bebianoi) that had been previously referred to the genus
692	Pseudoegertonia by Dartevelle and Casier (1949). This species was described on the
693	basis of a few isolated teeth and tooth plate fragments from the Paleocene of the
694	Democratic Republic of the Congo (Dartevelle and Casier, 1949). E. bebianoi might
695	represent a senior synonym of E. granulosus, but it is better to consider it as a nomen
696	dubium due to the incompleteness of the type material. Estes (1969) tentatively referred

697	the Moroccan species to the genus Pseudoegertonia and restricted the genus
698	Eodiaphyodus to the species E. lerichei alone, but this interpretation is not followed
699	here. As noted by Arambourg (1952), tooth plates of <i>E. lerichei</i> differ from those of <i>E.</i>
700	granulosus (and E. bebianoi) by their teeth that are relatively smaller, more numerous
701	and more slender. In E. lerichei, tooth bases are thinner, more regular and more circular,
702	showing a well-developed central depression (Dartevelle and Casier, 1949: pl. 18, fig.
703	1d). The tooth plate from Calabar described here is morphologically very close to <i>E</i> .
704	granulosus, although about twice smaller, and is tentatively referred to this species. In
705	Africa, Eodiaphyodus also occurs in the late Campanian-Maastrichtian of Angola
706	(Antunes and Cappetta, 2002) and thus seems to have been a common component of
707	latest Cretaceous to earliest Paleogene ichthyofaunas present along the Atlantic margin.
708	
709	
710	4. Concluding remarks

711

In all studied localities, the fish material is generally scarce and poorly diverse, 712 713 mainly due to sampling bias. Nevertheless, most of these sites have yielded one or several taxa that are recorded for the first time in this part of Africa. Thus, these new 714 715 occurrences have significant palaeobiogeographical implications. The seaway that 716 occupied intermittently the Benue Trough during transgressive episodes is known to 717 have played a key role in the dispersal of many fish groups (Cavin, 2008; Cavin et al., 718 2012; Gallo et al., 2007a; Maisey, 2000; Martín-Abad and Poyato-Ariza, 2013) and 719 marine invertebrates (e.g., Courville et al., 1998; Gebhardt, 1999; Néraudeau and Courville, 1997; Néraudeau and Mathey, 2000), especially because it provided a 720

721	connection between the proto-South Atlantic and the Mediterranean Tethys (via the
722	trans-Saharan seaway) during both the early Late Cretaceous and late Late Cretaceous
723	intervals (e.g., Benkhelil, 1989; Néraudeau and Mathey, 2000; Reyment, 1980a, b;
724	Reyment and Dingle, 1987). The late Cenomanian fish material from Nigeria includes
725	taxa which probably dispersed from the southwestern Europe (Iberian Peninsula) and/or
726	southern Tethyan platforms (Morocco to Lebanon), such as "Carcharias" amonensis,
727	Rhombopterygia and Hamrabatis. Thus, "C." amonensis was able to reach the South
728	Atlantic (Angola), corresponding to its southernmost and only Southern Hemisphere
729	occurrence (see Kitamura, 2013: fig. 3). As underlined by Cavin (2008), the
730	biogeographical history of pachyrhizodontoid fishes is not well understood. The
731	Nigerian occurrence could have resulted from either a vicariant or dispersal event. The
732	similarity between the vidalamiine from the late Cenomanian of northeastern Nigeria
733	(as well as both closely related forms from the younger beds of southern Nigeria and
734	Niger) and members of this clade from the Late Cretaceous of North and South America
735	may be indicative of an Early Cretaceous vicariant event, like for the genera
736	Calamopleurus and Pachyamia (Cavin, 2008). However, although most of Late
737	Cretaceous amiid fishes are regarded as non-marine forms, some of these fossils can be
738	recovered from marine deposits, such as the material studied here and the possible
739	vidalamiine specimen described from the Turonian of the Sergipe Basin in northeastern
740	Brazil (Gallo et al., 2007b). If these fragmentary specimens were not washed into the
741	sea and actually correspond to marine forms, a trans-Atlantic dispersal during the early
742	Late Cretaceous cannot therefore be rejected.
743	The origin and dispersal history of Ptychodus decurrens remains unclear. Verma
744	et al. (2012) have suggested that it could have dispersed from Western Australia to

745	Europe and North America via India or the South Atlantic. This species had a mid to
746	high-palaeolatitudinal distribution (Hoch, 1992; Verma et al., 2012) and its equatorial
747	occurrence in the early Turonian of southern Nigeria may have been due to episodically
748	colder sea water temperatures in this part of the Benue Trough directly connected to the
749	South Atlantic (Néraudeau and Mathey, 2000). Occurrences of this species in the
750	Cenomanian-earliest Turonian of North Africa (e.g., Tunisia, Morocco) would suggest
751	that it migrated southwards during the Turonian to reach the Lower Benue Trough
752	(Nigeria) and Benguela Basin (Angola) in the early and late Turonian, respectively.
753	Interestingly, P. decurrens was also reported in the early Turonian of the Sergipe Basin
754	(northeastern Brazil), then located in the northwestern margin of the proto-South
755	Atlantic, roughly at the same palaeolatitude as the Lower Benue Trough (Andrade,
756	2005; Carvalho and Gallo, 2002). Concerning the genus Acrotemnus, it might have
757	dispersed from European seas to the trans-Saharan seaway (Niger) and Benue Trough
758	(Nigeria), and also to the Western Interior Seaway (U.S.A.). A similar pattern of
759	dispersal has been recently proposed by Martín-Abad and Poyato-Ariza (2013) for
760	various Cenomanian–Turonian pycnodontid genera.
761	Scapanorhynchus texanus might have originated during the Turonian-Santonian
762	interval in the Afro-Arabian plate where it is relatively rare, known only by a few teeth
763	from Angola, Nigeria, and Jordan (Antunes and Cappetta, 2002; Mustafa, 2000;
764	Zalmout and Mustafa, 2001). During the Campanian-Maastrichtian interval, this
765	species seems to have been restricted to North America (Cappetta and Case, 1975b;
766	Case and Schwimmer, 1988; Welton and Farish, 1993) while it was apparently replaced
767	in Africa and Near East by S. rapax (Antunes and Cappetta, 2002; Bardet et al., 2000;
768	Quaas, 1902; Retzler et al., 2013). As discussed above, the presence of a vidalamiine

769	fish in the Coniacian?-Santonian beds of Awgu can be the result of either vicariant or
770	dispersal events.
771	The few Campanian-Maastrichtian occurrences of Eodiaphyodus along the
772	South Atlantic coast (Angola, Nigeria) are the oldest ones known for the genus. This
773	suggests that Eodiaphyodus originated in this part of Africa and dispersed northwards
774	(via the Atlantic coast of Western Africa or via the trans-Saharan seaway) to reach
775	northwestern Africa, where it is especially common in the late Maastrichtian of
776	Morocco (Arambourg, 1952).
777	
778	Acknowledgements
779	
780	We are grateful to Peter M. P. Zaborski for his precious assistance during fieldtrips
781	between 1988 and 1991, as well as the Service Culturel de l'Ambassade de France
782	(Lagos) and Elf Petroleum Nigeria Limited (now Total E&P Nigeria Limited) for their
783	financial and technical support. Lionel Cavin and Louis P. Taverne are thanked for the
784	discussion about the pachyrhizodontoid specimen. We also thank Ronan Allain and
785	Gaël Clément for accessing the palaeoichthyological collection of the Muséum national
786	d'Histoire naturelle of Paris, and Holger Gebhardt for providing additional sediment
787	samples from the Ashaka section. Guillaume Guinot and an anonymous reviewer are
788	thanked for their valuable comments.
789	
790	

- **References**

793	Agassiz,	1833–1843.	Recherches	sur les	Poissons	fossiles.	Imprimerie	de Petitpie	erre,

794 Neuchâtel.

- 795 Alvarado-Ortega, J., Espinosa-Arrubarrena, L., 2008. A new genus of ionoscopiform
- fish (Halecomorphi) from the Lower Cretaceous (Albian) lithographic limestones
- 797 of the Tlayúa Quarry, Puebla, Mexico. Journal of Paleontology 82, 163–175.
- Andrade, E.J., 2005. Turonian inoceramids and biostratigraphy of the Sergipe Basin,
- northeastern Brazil: an integrated study of the Votorantim and Nassau quarries.
- 800 Unpublished Ph.D. thesis, University of Heidelberg, Germany.
- 801 Antunes, M.T., Cappetta, H., 2002. Sélaciens du Crétacé (Albien–Maastrichtien)
- d'Angola. Palaeontographica, Abteilung A 264, 85–146.
- 803 Arambourg, C., 1952. Les vertébrés fossiles des gisements de phosphates (Maroc -
- 804 Algérie Tunisie). Notes et Mémoires du Service géologique du Maroc 92, 1–
 805 372.
- Arambourg, C., Joleaud, L., 1943. Vertébrés fossiles du Niger. Bulletin de la Direction
 des Mines de l'Afrique Occidentale Française 7, 31–85.
- Barber, W., 1958. Upper Cretaceous Mollusca from north-eastern Nigeria. Records of
 the Geological Survey of Nigeria 1956, 14–37.
- Bardet, N., Cappetta, H., Pereda Suberbiola, X., Mouty, M., Al Maleh, A.K., Ahmad,
 A.M., Khrata, O., Gannoum, N., 2000. The marine vertebrate faunas from the
- 812 Late Cretaceous phosphates of Syria. Geological Magazine 137, 269–290.
- 813 Benkhelil, J., 1988. Structure et évolution géodynamique du bassin intracontinental de
- 814 la Bénoué (Nigéria). Bulletin des Centres de Recherches Exploration-Production
- Elf Aquitaine 12, 29–128.
- 816 Benkhelil, J., 1989. The origin and evolution of the Cretaceous Benue Trough (Nigeria).

817	Journal of African Earth Sciences 8, 251–282.
818	Berg, L.S., 1937. A classification of fish-like vertebrates. Bulletin de l'Académie des
819	Sciences de l'U.R.S.S., Classe des Sciences mathématiques et naturelles (série
820	biologique) 1937, 1277–1280.
821	Berg, L.S., 1940. [Classification of fishes, both recent and fossil]. Travaux de l'Institut
822	Zoologique de l'Académie des Sciences de l'U.R.S.S. 5, 87–517. [in Russian]
823	Berg, L.S., 1958. System der rezenten und fossilen Fischartigen und Fische. VEB
824	Deutscher Verlag der Wissenschaften, Berlin.
825	Bernárdez, E., 2002. Los dientes de seláceos del Cretácico de la Depresión Central
826	Asturiana. Unpublished Ph.D. thesis, University of Oviedo, Spain.
827	Berreteaga, A., Poyato-Ariza, F.J., Pereda-Suberbiola, X., 2011. A new actinopterygian
828	fauna from the latest Cretaceous of Quintanilla la Ojada (Burgos, Spain).
829	Geodiversitas 33, 285–301.
830	Bonaparte, C.L., 1832–1841. Iconografia della fauna italica per le quatro classi degli
831	animali vertebrati. Tipografia Salviucci, Roma.
832	Brito, P.M., Alvarado-Ortega, J., 2008. A new species of Placidichthys (Halecomorphi:
833	Ionoscopiformes) from the Lower Cretaceous Marizal Formation, northeastern
834	Brazil, with a review of the biogeographical distribution of the Ophiopsidae, in:
835	Cavin, L., Longbottom, A., Richter, M. (Eds.), Fishes and the Break-up of
836	Pangaea. Geological Society, London, Special Publications 295, pp. 145–154.
837	Broin, F. de, Buffetaut, E., Koeniguer, JC., Rage, JC., Russell, D., Taquet, P.,
838	Vergnaud-Grazzini, C., Wenz, S., 1974. La faune de vertébrés continentaux du
839	gisement d'In Becetem (Sénonien du Niger). Comptes Rendus de l'Académie des
840	Sciences, série D 279, 469-472.

- 841 Bryant, L.J., 1987. A new genus and species of Amiidae (Holostei; Osteichthyes) from
- the Late Cretaceous of North America, with comments on the phylogeny of the
- Amiidae. Journal of Vertebrate Paleontology 7, 349–361.
- 844 Cappetta, H., 1980a. Modification du statut générique de quelques espèces de sélaciens
- 845 crétacés et tertiaires. Palaeovertebrata 10, 29–42.
- 846 Cappetta, H., 1980b. Les sélaciens du Crétacé supérieur du Liban. II: Batoïdes
- Palaeontographica, Abteilung A 168, 149–229.
- 848 Cappetta, H., 1991. Découverte de nouvelles faunes de sélaciens (Neoselachii) dans les
- 849 phosphates maastrichtiens de la Mer Rouge, Egypte. Münchner
- 850 Geowissenschaftliche Abhandlungen, Reihe A 19, 17–56.
- 851 Cappetta, H., 2012. Chondrichthyes Mesozoic and Cenozoic Elasmobranchii: Teeth,
- in: Schultze, H.-P. (Ed.), Handbook of Paleoichthyology, volume 3E. Verlag Dr.
- 853 Friedrich Pfeil, München.
- 854 Cappetta, H., Case, G.R., 1975a. Sélaciens nouveaux du Crétacé du Texas. Geobios 8,
 855 303–307.
- 856 Cappetta, H., Case, G.R., 1975b. Contribution à l'étude des sélaciens du groupe
- 857 Monmouth (Campanien–Maestrichtien) du New Jersey. Palaeontographica,
- 858 Abteilung A 151, 1–46.
- Carter, J.D., Barber, D.F.M., Tait, E.A., 1963. The geology of parts of Adamawa,
 Bauchi and Bornu Provinces, north-eastern Nigeria. Bulletin of the Geological
 Survey of Nigeria 30, 1–109.
- 862 Carvalho, M.S.S. de, Gallo, V., 2002. The presence of *Ptychodus* (Chondrichthyes,
- 863 Hybodontoidea) in the Cotinguiba Formation, Upper Cretaceous of the Sergipe–
- Alagoas Basin, northeastern Brazil, in: Castro, J.C. de, Dias-Brito, D., Musacchio,

865	E.A., Rohn, R. (Eds.), Boletim do 6º Simpóso sobre o Cretáceo do Brasil – 2 ^{do}
866	Simposio sobre el Cretácico de América del Sur, São Pedro. UNESP publication,
867	São Paulo, pp. 307–309.
868	Case, G.R., Schwimmer, D.R., 1988. Late Cretaceous fish from the Blufftown
869	Formation (Campanian) in western Georgia. Journal of Paleontology 62, 290-301.
870	Casier, E., 1947. Constitution et évolution de la racine dentaire des Euselachii. II –
871	Etude comparative des types. Bulletin du Musée Royal d'Histoire Naturelle de
872	Belgique 23, 1–32.
873	Cavin, L., 1995. Goulminichthys arambourgi n. g., n. sp., un Pachyrhizodontidae
874	(Actinopterygii, Teleostei) d'une nouvelle localité à nodules fossilifères du
875	Turonien inférieur marocain. Comptes Rendus de l'Académie des Sciences, série
876	IIa 321, 1049–1054.
877	Cavin, L., 2001. Osteology and phylogenetic relationships of the teleost Goulminichthys
878	arambourgi Cavin, 1995, from the Upper Cretaceous of Goulmima, Morocco.
879	Eclogae geologica Helvetiae 94, 509–535.
880	Cavin, L., 2008. Palaeobiogeography of Cretaceous bony fishes (Actinistia, Dipnoi and
881	Actinopterygii), in: Cavin, L., Longbottom, A., Richter, M. (Eds.), Fishes and the
882	Break-up of Pangaea. Geological Society, London, Special Publications 295, pp.
883	165–183.
884	Cavin, L., Alexopoulos, A., Piuz, A., 2012. Late Cretaceous (Maastrichtian) ray-finned
885	fishes from the island of Gavdos, southern Greece, with comments on the
886	evolutionary history of the aulopiform teleost Enchodus. Bulletin de la Société
887	géologique de France 183, 561–572.
888	Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot,

889	R., Buffetaut, E., Dyke, G., Hua, S., Le Lœuff, J., 2010. Vertebrate assemblages
890	from the early Late Cretaceous of southeastern Morocco: An overview. Journal of
891	African Earth Sciences 57, 391–412.
892	Chalifa, Y., Tchernov, E., 1982. Pachyamia latimaxillaris, new genus and species
893	(Actinopterygii: Amiidae), from the Cenomanian of Jerusalem. Journal of
894	Vertebrate Paleontology 2, 269–285.
895	Claeson, K.M., Underwood, C.J., Ward, D.J., 2013. Tingitanius tenuimandibulus, a new
896	platyrhinid batoid from the Turonian (Cretaceous) of Morocco and the Cretaceous
897	radiation of the Platyrhinidae. Journal of Vertebrate Paleontology 33, 1019–1036.
898	Cope, E.D., 1872. On the families of fishes of the Cretaceous formation in Kansas.
899	Proceedings of the American Philosophical Society 12, 327–357.
900	Courville, P., 1992. Les Vascoceratinae et les Pseudotissotiinae (Ammonitina)
901	d'Ashaka (NE Nigéria): relation avec leur environnement biosédimentaire.
902	Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine 16,
903	407–457.
904	Courville, P., 1993. Les formations marines et les faunes d'ammonites cénomaniennes
905	et turoniennes (Crétacé supérieur) dans le Fossé de la Bénoué (Nigéria). Impact
906	des facteurs locaux et globaux sur les échanges faunique à l'interface Téthys-
907	Atlantique Sud. Unpublished Ph.D. thesis, University of Dijon, France.
908	Courville, P., Lang, J., Thierry, J., 1998. Ammonite faunal exchanges between south
909	Tethyan platforms and South Atlantic during the Uppermost Cenomanian–
910	Lowermost/Middle Turonian in the Benue Trough (Nigeria). Geobios 31, 187-
911	214.
912	Cumbaa, S.L., Shimada, K., Cook, T.D., 2010. Mid-Cenomanian vertebrate faunas of

- 913 the Western Interior Seaway of North America and their evolutionary,
- 914 paleobiogeographical, and paleoecological implications. Palaeogeography,
- 915 Palaeoclimatology, Palaeoecology 295, 199–214.
- 916 Cuny, G., Martin, J.E., Sarr, R., 2012. A neoselachian shark fauna from the Late
- 917 Cretaceous of Senegal. Cretaceous Research 34, 107–115.
- 918 Cuny, G., Ouaja, M., Srarfi, D., Schmitz, L., Buffetaut, E., Benton, M.J., 2004. Fossil
- 919 sharks from the Early Cretaceous of Tunisia. Revue de Paléobiologie, volume
- 920 spécial 9, 127–142.
- 921 Dartevelle, E., Casier, E., 1949. Les poissons fossiles du Bas-Congo et des régions
- 922 voisines (deuxième partie). Annales du Musée du Congo Belge, série A 3, 201–
 923 256.
- Estes, R., 1969. Studies on fossil phyllodont fishes: interrelationships and evolution in
 the Phyllodontidae (Albuloidei). Copeia 2, 317–331.
- 926 Forey, P.L., 1977. The osteology of *Notelops* Woodward, *Rhacolepis* Agassiz and
- *Pachyrhizodus* Dixon (Pisces: Teleostei). Bulletin of the British Museum (Natural
 History) Geology 28, 123–204.
- 929 Gallo, V., Cavalcanti, M.J., Silva, H.M.A. da, 2007a. Track analysis of the marine
- palaeofauna from the Turonian (Late Cretaceous). Journal of Biogeography 34,
 1167–1172.
- Gallo, V., Silva, H.M.A. da, Andrade, E.J., 2007b. New fish records from the Turonian
 of the Sergipe Basin, northeastern Brazil. Arquivos do Museu Nacional 65, 385–
 396.
- 935 Gebhardt, H., 1997. Cenomanian to Turonian foraminifera from Ashaka (NE Nigeria):
- 936 quantitative analysis and palaeoenvironmental interpretation. Cretaceous Research

- 937 18, 17–36.
- 938 Gebhardt, H., 1999. Cenomanian to Coniacian biogeography and migration of North
- and West African ostracods. Cretaceous Research 20, 215–229.
- 940 Gemmellaro, M., 1920. Ittiodontoliti maëstrichtiani di Egitto. Atti della Reale
- 941 Accademia di Scienze, Lettere e Belle Arti di Palermo, 3^a serie 11, 151–204.
- 942 Glikman, L.S., 1958. [Rates of evolution in lamnoid sharks]. Doklady Akademii Nauk
- 943 SSSR 123, 568–571. [in Russian]
- 944 Glikman, L.S., 1964. [Sharks of Paleogene and their stratigraphic significance]. Nauka
- 945 Press, Moscow–Leningrad. [in Russian]
- 946 Grande, L., Bemis, W.E., 1998. A comprehensive phylogenetic study of amiid fishes
- 947 (Amiidae) based on comparative skeletal anatomy. An empirical search for
- 948 interconnected patterns of natural history. Society of Vertebrate Paleontology

949 Memoir 4 (supplement to Journal of Vertebrate Paleontology 18), 1–690.

950 Guiraud, M., 1991. Mécanisme de formation du bassin sur décrochements multiples de

- 951 la Haute-Bénoué (Nigéria). Bulletin des Centres de Recherches Exploration-
- 952 Production Elf Aquitaine 15, 11–67.
- Hay, O.P., 1929. Second bibliography and catalogue of the fossil Vertebrata of North

America – I. Carnegie Institute of Washington Publication 390, 1–917.

- Herman, J., 1979. Réflexions sur la systématique des Galeoidei et sur les affinités du genre *Cetorhinus* à l'occasion de la découverte d'éléments de la denture d'un
 exemplaire fossile dans les sables du Kattendijk à Kallo (Pliocène inférieur,
- 958 Belgique). Annales de la Société Géologique de Belgique 102, 357–377.
- Hoch, E., 1992. First Greenland record of the shark genus *Ptychodus* and the

960 biogeographic significance of its fossil assemblage. Palaeogeography,

- 961 Palaeoclimatology, Palaeoecology 92, 277–281.
- 962 Huxley, T.H., 1880. On the application of the laws of evolution to the arrangement of
- 963 the Vertebrata, and more particularly to the Mammalia. Proceedings of the
- 200 Zoological Society of London 1880, 649–662.
- Jaekel, O., 1898. Über die verschiedenen Rochentype. Sitzungsberichte der Gesellschaft
- 966 naturforschender Freunde zu Berlin 1898, 44–53.
- 967 Jordan, D.S., 1898. Description of a species of fish (Mitsukurinia owstoni) from Japan,
- 968 the type of a distinct family of lamnoid sharks. Proceedings of the California
- 969 Academy of Sciences, 3^{rd} series 1, 199–204.
- 970 Kear, B.P., Rich, T.H., Ali, M.A., Al-Mufarrih, Y.A., Matiri, A.H., Al-Masary, A.M.,
- 971 Attia, Y., 2009. An Upper Cretaceous (Campanian–Maastrichtian)
- actinopterygian fish assemblage from the marginal marine Adaffa Formation of
- 973 Saudi Arabia. Cretaceous Research 30, 1164–1168.
- 974 Khalloufi, B., Ouarhache, D., Lelièvre, H., 2010. New paleontological and geological
- 975 data about Jbel Tselfat (Late Cretaceous of Morocco). Historical Biology 22, 57–
 976 70.
- 977 Kitamura, N., 2013. "*Carcharias*" *amonensis* from the Upper Cretaceous Mifune Group
- 978 in Kumamoto, Japan. Paleontological Research 17, 230–235.
- 979 Kogbe, C.A., 1974. Palaeoecologic distribution of the vertebrate fossils in the
- 980 Dukamaje and Dange formations (Maestrichtian and Palaeocene) of north-western
 981 Nigeria. Journal of Mining and Geology 8, 49–55.
- 982 Kriwet, J., 1999. Pycnodont fishes (Neopterygii, †Pycnodontiformes) from the Lower
- 983 Cretaceous of Uña (E-Spain) with comments on branchial teeth in pycnodontid
- 984 fishes, in: Arratia, G., Schultze, H.-P. (Eds.), Mesozoic Fishes Systematics and

985	Fossil Record.	Verlag Dr.	Friedrich Pfeil,	München, pp.	215-238.

- 986 Leidy, J., 1860. Remarks on Saurocephalus and its allies. Transactions of the American
- 987 Philosophical Society (new series) 11, 91–95.
- 988 Leriche, M., 1911. Un pycnodontoïde aberrant du Sénonien du Hainaut Le genre
- 989 Acrotemnus L. Agassiz Acrotemnus splendens de Koninck. Bulletin de la
- 990 Société Belge de Géologie, de Paléontologie et d'Hydrologie 25, 1624168.
- 991 López-Arbarello, A., 2004. The record of Mesozoic fishes from Gondwana (excluding
- 992 India and Madagascar), in: Arratia, G., Tintori, A. (Eds.), Mesozoic Fishes 3 –
- 993 Systematics, Paleoenvironments and Biodiversity. Verlag Dr. Friedrich Pfeil,
- 994 München, pp. 597–624.
- 995 Maisey, J.G., 2000. Continental break up and distribution of fishes of Western
- Gondwana during the Early Cretaceous. Cretaceous Research 21, 281–314.
- 997 Martín-Abad, H., Poyato-Ariza, F.J., 2013. Historical patterns of distribution in
- 998 pycnodontiform and amiiform fishes in the context of moving plates. Geologica
 999 Belgica 16, 217–226.
- 1000 Martinelli, A.G., Bogan, S., Agnolin, F.L., Ribeiro, L.C.B., Cavellani, C.L., Ferraz,
- 1001 M.L.F., Teixeira, V.P.A., 2013. First fossil record of amiid fishes (Halecomorphi,
- 1002 Amiiformes, Amiidae) from the Late Cretaceous of Uberaba, Minas Gerais State,

1003 Brazil. Alcheringa 37, 105–113.

- Meister, C., 1989. Les ammonites du Crétacé supérieur d'Ashaka, Nigéria: analyse
 taxonomique, ontogénétique, biostratigraphique et évolutive. Bulletin des Centres
 de Recherches Exploration-Production Elf Aquitaine 13, mémoire
- supplémentaire, 1–84.
- 1008 Mudroch, A., Thies, D., 1996. Knochenfischzähne (Osteichthyes, Actinopterygii) aus

- 1009 dem Oberjura (Kimmeridgium) des Langenbergs bei Oker (Norddeutschland).
- 1010 Geologica et Palaeontologica 30, 239–265.
- 1011 Müller, A., 1989. Selachier (Pisces: Neoselachii) aus dem höheren Campanium
- 1012 (Oberkreide) Westfalens (Nordrhein-Westfalen, NW-Deutschland). Geologie und
- 1013 Paläontologie in Westfalen 14, 1–161.
- 1014 Murray, A.M., 2000. The Palaeozoic, Mesozoic and Early Cenozoic fishes of Africa.
- 1015 Fish and Fisheries 1, 111–145.
- 1016 Mustafa, H., 2000. Fish teeth from the Upper Umm Ghudram Formation (Late
- 1017 Santonian) of NW-Jordan. Neues Jahrbuch für Geologie und Paläontologie,
- 1018 Monatshefte 2000, 595–612.
- 1019 Nagrodski, M., Shimada, K., Schumacher, B.A., 2012. Marine vertebrates from
- 1020 Hartland Shale (Upper Cretaceous: Upper Cenomanian) in southeastern Colorado,
- 1021 USA. Cretaceous Research 37, 76–88.
- 1022 Nelson, G.J., 1973. Relationships of clupeomorphs, with remarks on the structure of the
- 1023 lower jaw in fishes. Zoological Journal of the Linnean Society 53 (supplement 1),
 1024 333–349.
- 1025 Néraudeau, D., Courville, P., 1997. Cenomanian and Turonian echinoids from Nigeria.
 1026 Geobios 30, 835–847.
- 1027 Néraudeau, D., Mathey, B., 2000. Biogeography and diversity of South Atlantic
 1028 Cretaceous echinoids: implications for circulation patterns. Palaeogeography,
- 1029 Palaeoclimatology, Palaeoecology 156, 71–88.
- 1030 Odunze, S.O., Stevens, N.J., Obi, G.C., Eastman, J.T., 2009. Paleocene ichthyofauna
- and paleoenvironmental setting, Imo Formation, southeastern Nigeria. Journal of
- 1032 Vertebrate Paleontology 29, supplement to 3, 158A.

- 1033 Odunze, S.O., Stevens, N.J., Cooper, L.N., Obi, G.C., 2012. Paleogene ichthyofauna of
- 1034 the Imo and Ameki formations, southeastern Nigeria. Supplement to the online
- 1035 Journal of Vertebrate Paleontology 32, 152.
- 1036 Offodile, M.E., Reyment, R.A., 1977. Stratigraphy of the Keana–Awe area of the
- 1037 Middle Benue region of Nigeria. Bulletin of the Geological Institutions of the
- 1038 University of Uppsala, New Series 7, 37–66.
- 1039 Patterson, C., 1966. British Wealden sharks. Bulletin of the British Museum (Natural
- 1040 History) Geology 11, 283–350.
- 1041 Patterson, C., 1973. Interrelationships of holosteans. Zoological Journal of the Linnean
- 1042 Society 53 (supplement 1), 233–305.
- 1043 Pervinquière, L. 1903. Etude géologique de la Tunisie centrale. Direction Générale des
- 1044 Travaux Publics, Carte géologique de la Tunisie, 1–359.
- 1045 Pictet, F.-J., 1850. Description de quelques poissons fossiles du Mont Liban. Imprimerie
- 1046de Jules-Guillaume Fick, Genève.
- 1047 Poyato-Ariza, F.J., Wenz, S., 2002. A new insight into pycnodontiform fishes.
- 1048 Geodiversitas 24, 139–248.
- 1049 Quaas, A., 1902. Beitrag zur Kenntniss der Fauna der obersten Kreidebildungen in der
- 1050 libyschen Wüste (Overwegischichten und Blätterthone). Palaeontographica 30,
 1051 153–336.
- 1052 Rage, J.-C., Cappetta, H., 2002. Vertebrates from the Cenomanian, and the geological
 1053 age of the Draa Ubari fauna (Libya). Annales de Paléontologie 88, 79–84.
- 1054 Retzler, A., Wilson, M.A., Avni, Y., 2013. Chondrichthyans from the Menuha
- 1055 Formation (Late Cretaceous: Santonian–Early Campanian) of the Makhtesh
- 1056 Ramon region, southern Israel. Cretaceous Research 40, 81–89.

1057	Reyment, R.A., 1955. The Cretaceous Ammonoidea of southern Nigeria and the
1058	southern Cameroons. Bulletin of the Geological Survey of Nigeria 25, 1–112.
1059	Reyment, R.A., 1956. On the stratigraphy and palaeontology of Nigeria and the
1060	Cameroons, British West Africa. Geologiska Föreningen i Stockholm
1061	Förhandlingar 78, 17–96.
1062	Reyment, R.A., 1980a. Biogeography of the Saharan Cretaceous and Paleocene
1063	epicontinental transgressions. Cretaceous Research 1, 299–327.
1064	Reyment, R.A., 1980b. Paleo-oceanology and paleobiogeography of the Cretaceous
1065	South Atlantic Ocean. Oceanologica Acta 3, 127–133.
1066	Reyment, R.A., Dingle, R.V., 1987. Palaeogeography of Africa during the Cretaceous
1067	period. Palaeogeography, Palaeoclimatology, Palaeoecology 59, 93–116.
1068	Roemer, F., 1849. Texas. Mit besonderer Rücksicht auf deutsche Auswanderung und
1069	die physischen Verhältnisse des Landes nach eigener Beobachtung geschildert.
1070	Adolph Marcus, Bonn.
1071	Rosen, D.E., 1973. Interrelationships of higher euteleostean fishes. Zoological Journal
1072	of the Linnean Society 53 (supplement 1), 397–513.
1073	Sauvage, HE., 1875. Note sur le genre Nummulopalatus et sur les espèces de ce genre
1074	trouvées dans les terrains tertiaires de la France. Bulletin de la Société géologique
1075	de France, 3 ^{ème} série 3, 613–630.
1076	Schultz, O., Paunović, M., 1997. Der Nachweis von Coelodus (Osteichthyes,
1077	Pycnodontidae) im Turonien (Oberkreide) von Gams bei Hieflau, Steiermark,
1078	Österreich, und aus der Oberkreide von Kroatien und Italien. Annalen des
1079	Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie,
1080	Geologie und Paläontologie, Anthropologie und Prähistorie 98, 73–141.

1081	Shimada, I	K., Schumacher,	B.A.,	Parkin,	J.A.,	Palermo,	J.M.,	2006.	Fossil	marine
------	------------	-----------------	-------	---------	-------	----------	-------	-------	--------	--------

- 1082 vertebrates from the lowermost Greenhorn Limestone (Upper Cretaceous: Middle
- 1083 Cenomanian) in southeastern Colorado. The Paleontological Society Memoir 63,
- supplement to Journal of Paleontology 80, 1–45.
- 1085 Shimada, K., Williamson, T.E., Sealey, P.L., 2010. A new gigantic pychodont fish from
- 1086 the Juana Lopez Member of the Upper Cretaceous Mancos Shale of New Mexico,
- 1087 U.S.A. Journal of Vertebrate Paleontology 30, 598–603.
- 1088 Siverson, M., Lindgren, J., Newbrey, M.G., Cederström, P., Cook, T.D. Late Cretaceous
- 1089 (Cenomanian–Campanian) mid-latitude sharks of *Cretalamna appendiculata* type.
 1090 Acta Palaeontologica Polonica, in press.
- 1091 Slaughter, B.H, Thurmond, J.T., 1974. A Lower Cenomanian (Cretaceous) ichthyofauna
- 1092 from the Bahariya Formation of Egypt. Annals of the Geological Survey of Egypt1093 4, 25–40.
- 1094 Stevens, N.J., Eastman, J.T., Odunze, S.O., Cooper, L.N., Obi, G.C., 2011. Paleocene
- 1095 ichthyofauna and paleoenvironmental setting, Imo Formation, southeastern
- 1096 Nigeria. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 260,
 1097 289–296.
- 1098 Taverne, L., 1976. A propos d'Elopopsis microdon, Heckel, J. J., 1856, du Crétacé
- 1099 moyen d'Afrique et d'Europe et des affinités systématiques de la famille fossile
 1100 des Pachyrhizodontidae au sein des téléostéens primitifs. Revue Zoologique
 1101 Africaine 90, 487–496.
- 1102 Taverne, L., 1987. On the cranial and caudal osteology of the Cretaceous marine teleost
- 1103 *Pachyrhizodus* (Pachyrhizodontidae, Crossognathiformes). Biologisch Jaarboek
- 1104 Dodonaea 55, 136–145.

- 1105 Thies, D., Mudroch, A., 1996. Actinopterygian teeth from the Late Jurassic
- 1106 (Kimmeridgian) of N Germany, in: Arratia, G., Schultze, H.-P. (Eds.), Mesozoic
- 1107 Fishes Systematics and Paleoecology. Verlag Dr. Friedrich Pfeil, München, pp.
- 1108 105–114.
- 1109 Verma, O., Prasad, G.V.R., Goswami, A., Parmar, V., 2012. Ptychodus decurrens
- 1110 Agassiz (Elasmobranchii: Ptychodontidae) from the Upper Cretaceous of India.
- 1111 Cretaceous Research 33, 183–188.
- 1112 Vullo, R., Cappetta, H., Néraudeau, D., 2007. New sharks and rays from the
- 1113 Cenomanian and Turonian of Charentes, France. Acta Palaeontologica Polonica
- 1114 52, 99–116.
- 1115 Vullo, R., Bernárdez, E., Buscalioni, A.D., 2009. Vertebrates from the middle?-late
- 1116 Cenomanian La Cabaña Formation (Asturias, northern Spain):
- 1117 Palaeoenvironmental and palaeobiogeographic implications. Palaeogeography,
- 1118 Palaeoclimatology, Palaeoecology 276, 120–129.
- 1119 Welton, B.J., Farish, R.F., 1993. The Collector's Guide to Fossil Sharks and Rays from
- 1120 the Cretaceous of Texas. Before Time, Lewisvile, Texas.
- 1121 Wenz, S., Kellner, A.W.A., 1986. Découverte du premier Ionoscopidae (Pisces,
- 1122 Halecomorphi) sud-américain, Oshunia brevis n. g., n. sp., dans le Crétacé
- 1123 inférieur de la Chapada do Araripe (nord-est du Brésil). Bulletin du Muséum
- 1124 national d'Histoire naturelle, 4^{ème} série 8, 77–88.
- 1125 Werner, C., 1989. Die Elasmobranchier-Fauna des Gebel Dist Member der Bahariya
- 1126 Formation (Obercenoman) der Oase Bahariya, Ägypten. Palaeo Ichthyologica 5,
- 1127 1–112.
- 1128 White, E.I., 1926. Eocene fishes from Nigeria. Bulletin of the Geological Survey of

- 1129 Nigeria 10, 1–82.
- 1130 White, E.I., 1934. Fossil fishes of Sokoto Province. Bulletin of the Geological Survey of
- 1131 Nigeria 14, 1–78.
- 1132 White, E.I., 1955. Notes on African Tertiary sharks. Colonial Geology and Mineral
- 1133 Resources 5, 319–325.
- 1134 Whitley, G.P., 1939. Taxonomic notes on sharks and rays. Australian Zoologist 9, 227-
- 1135 262.
- 1136 Woods, H., 1911. The palaeontology of the Upper Cretaceous deposits of northern
- 1137 Nigeria, in: Falconer, J. D., The Geology and Geography of Northern Nigeria.
- 1138 Macmillan and Co., London, pp. 273–286.
- 1139 Woodward, A.S., 1888. A synopsis of the vertebrate fossils of the English chalk.
- 1140 Proceedings of the Geologists' Association 10, 273–338.
- 1141 Woodward, A.S., 1889–1901. Catalogue of the Fossil Fishes in the British Museum
- 1142 (Natural History). Trustees of the British Museum of Natural History, Taylor and
- 1143 Francis, London.
- Woodward, A.S., 1909. The fossil fishes of the English chalk Part 5. Monograph of
 the Palaeontological Society 63, 153–184.
- 1146 Zaborski, P.M.P., 1983. Campano-Maastrichtian ammonites, correlation and
- 1147 palaeogeography in southern Nigeria. Journal of African Earth Sciences 1, 59–63.
- 1148 Zaborski, P.M.P., 1985. Upper Cretaceous ammonites from the Calabar region, south-
- 1149 east Nigeria. Bulletin of the British Museum (Natural History) Geology Series 39,
- 1150 1–72.
- 1151 Zaborski, P.M.P., 1987. Lower Turonian (Cretaceous) ammonites from south-east
- 1152 Nigeria. Bulletin of the British Museum (Natural History) Geology Series 41, 31–

- 1153 <u>66</u>.
- 1154 Zaborski, P.M.P., 1990a. The Cenomanian and Turonian (Mid-Cretaceous) ammonite
- biostratigraphy of north-eastern Nigeria. Bulletin of the British Museum (Natural
- 1156 History) Geology Series 46, 1–18.
- 1157 Zaborski, P.M.P., 1990b. Some Upper Cretaceous ammonites from southern Nigeria.
- 1158 Journal of African Earth Sciences 10, 565–581.
- 1159 Zalmout, I., Mustafa, H., 2001. A selachian fauna from the Late Cretaceous of Jordan.
- 1160 Yarmouk University Publications 10, 377–434.
- 1161 Zittel, K.A. von, 1888. Handbuch der Palæontologie. Abteilung I Palæozoologie.
- 1162 Band III Pisces, Amphibia, Reptilia, Aves. Druck und Verlag von R.
- 1163 Oldenbourg, München and Leipzig.

1165

1166 Figure captions:

- 1168 Fig. 1. Geographical and stratigraphical position of the fish remains studied here. A,
- 1169 Nigerian geographical framework (A1) and main Nigerian structural and sedimentary
- 1170 units (A2). B, synthetic stratigraphical successions of the Lower Benue Trough,
- 1171 southern Nigeria (B1) and Upper Benue Trough, northeastern Nigeria (B2). Map,
- stratigraphical successions and other data modified from Courville (1993) and Courville
- 1173 et al. (1998).
- 1174
- 1175 Fig. 2. A, Ptychodus decurrens, tooth (GR/PC.1773) in occlusal (A1), lingual (A2) and
- 1176 lateral (A3) views. B, cf. Protolamna sp., tooth (GR/PC.1774) in lingual (B1) and
- 1177 mesiodistal (B2) views. C, Cretolamna appendiculata, tooth (GR/PC.1775) in lingual
- 1178 (C1) and labial (C2) views. D, Squalicorax pristodontus, tooth (GR/PC.1776) in lingual
- (D1) and labial (D2) views. E, F, Scapanorhynchus cf. texanus, GR/PC.1777 (E) and
- 1180 GR/PC.1778 (F), teeth in lingual (E1, F), labial (E2) and distal (E3) views. Scale bars
- 1181 equal 5 mm (B) and 10 mm (A, C–F).
- 1182
- 1183 Fig. 3. A, "Carcharias" amonensis, tooth (GR/PC.1779) in lingual view. B-E,
- 1184 Rhombopterygia zaborskii sp. nov., holotype GR/PC.1780 (B), paratypes GR/PC.1781
- 1185 (C), GR/PC.1782 (D) and GR/PC.1783 (E), teeth in occlusal (B1, C, D1, E), lingual
- 1186 (B2, D2) and mesiodistal (B3) views. F, G, Hamrabatis sp., GR/PC.1784 (F) and
- 1187 GR/PC.1785 (G), teeth in occlusal (F1, G), lingual (F2) and mesiodistal (F3) views.
- 1188 Scale bars equal 500 μ m (B–G) and 1 mm (A).

1189

- 1190 Fig. 4. A, Acrotemnus sp., right prearticular dentition (GR/PC.1786) in occlusal view.
- 1191 B, C, Vidalamiinae indet. A, GR/PC.1788 (B) and GR/PC.1789 (C), abdominal and ural
- 1192 centra (respectively) in anterior (B1, C), posterior (B2), dorsal (B3), ventral (B4) and
- 1193 left lateral (B5) views. D, Vidalamiinae indet. B, abdominal centrum (GR/PC.1790) in
- anterior (D1), posterior (D2), dorsal (D3), ventral (D4) and left lateral (D5) views. E, cf.
- 1195 Protosphyraena sp., tooth (GR/PC.1792) in labiolingual views. F, Eodiaphyodus cf.
- 1196 granulosus, tooth plate (GR/PC.1795) in occlusal (F1), basal (F2) and lateral (F3)
- 1197 views. Scale bars equal 5mm (C, E) and 10 mm (A, B, D, F).

1198

- 1199 Fig. 5. A, "Stephanodus" sp. (?Pycnodontiformes), branchial tooth (GR/PC.1787) in
- 1200 lateral view. B, Ionoscopiformes indet., tooth (GR/PC.1791) in mesiodistal? (B1),

1201 labial? (B2) and apical (B3) views. C, Enchodus cf. gladiolus, tooth (GR/PC.1794) in

- 1202 lateral view. Scale bars equal 500 µm.
- 1203
- 1204 Fig. 6. Pachyrhizodontoidei indet., caudal skeleton (GR/PC.1793) in right lateral view.
- 1205 Abbreviations: DCS, dorsal caudal spine; HS, hemal spine; Hy, hypural; Le,
- 1206 lepidotrichs; NS, neural spine; Ph, parhypural, Pu, preural vertebra; U, ural centrum;
- 1207 Un, uroneural; VCS, ventral caudal spine. Scale bar equals 50 mm.

Figure 1

Figure 2

- 1210 Highlights:
- 1211 - Selachian and ray-finned fishes are described from the Late Cretaceous of Nigeria.
- 1212 - Some fish taxa are recorded for the first time in Africa.
- 1213 - Rhombopterygia zaborskii sp. nov. is described from the Cenomanian of Ashaka.
- . fish 1214 - The Benue Trough created opportunities for the dispersal of many marine fishes.