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Abstract

We use flows that we invert from two geomagnetic field models spanning centennial
time periods (gufm1 and COV-OBS), and apply Principal Component Analysis and Sin-
gular Value Decomposition of coupled fields to extract the main modes characterizing
their spatial and temporal variations. The quasi geostrophic flows inverted from both
geomagnetic field models show similar features. However, COV-OBS has a less energetic
mean flow and larger time variability. The statistical significance of flow components is
tested from analyses performed on subareas of the whole domain. Bootstrapping methods
are also used to extract robust flow features required by both gufm1 and COV-OBS.

Three main empirical circulation modes emerge, simultaneously constrained by both
geomagnetic field models and expected to be robust against the particular a priori used to
build them. Mode 1 exhibits three large robust vortices at medium/high latitudes, with
opposite circulation under the Atlantic and the Pacific hemispheres. Mode 2 interestingly
accounts for most of the variations of the Earth’s core angular momentum. In this mode,
the regions close to the tangent cylinder and to the equator are correlated, and oscillate
with a period between 80 and 90 years. Each of these two modes is energetic enough to
alter the mean flow, sometimes reinforcing the eccentric gyre, and other times breaking it
up into smaller circulations. Mode 3 shows more distinct spatial and temporal signatures
in the two inverted flows, preventing the emergence of significant spatial features. The
three main circulation modes added together to the mean flow account for about 70% of
the flows variability, 90% of the root mean square total velocities, and 95% of the secular
variation induced by the total flows.

Direct physical interpretation of the computed modes is not straightforward. Nonethe-
less, similarities found between the two first modes and time/spatial features identified
in different studies of core dynamics, suggest that our approach can help to pinpoint the
relevant physical processes inside the core on centennial timescales.

1 Introduction

Time variation of the main geomagnetic field on timescales smaller than about a couple
of centuries (secular variation, SV) have been scrutinized for deeper understanding of the
Earth’s core dynamics. New insights have been gained both from numerical simulation of

1



the Navier-Stokes, energy and induction equations inside the core and inversion of magnetic
field models fitting observatory and satellite observations (Aubert et al., 2013). Although the
parameter regime characterizing the Earth’s short timescale dynamics is not yet attainable
in three-dimensional numerical simulations, different schemes have been used to extrapolate
results. These include derivation of scaling laws and/or the use of simplifying approximations
that allow the use of more Earth-like parameters.

The Quasi-Geostrophic (QG) approximation is such an example, since it reduces the
system dimensionality from three to two (3D to 2D) making it possible to investigate a range
of Ekman and Lundquist numbers that approach the Earth’s core conditions. Convective
quasi-geostrophic rolls are known since the work by Roberts (1968) and Busse (1970) and
recent studies show that for timescales characteristic of SV and large scale flows, elongated
structures along the z-rotation axis won’t be destroyed by Lorentz (magnetic) forces (Jault,
2008; Gillet et al., 2011).

From the point of view of flows computed from inversion of geomagnetic field models, the
QG approximation is one example of constraint used to mitigate the intrinsic non-uniqueness
characterizing the inverse problem. In addition, although the flow is inverted on the core
surface, it has a unique prolongation inside the core. QG flows inverted from different geo-
magnetic field models have been previously computed that explain the observed SV (Pais &
Jault, 2008; Gillet et al., 2009). In these studies, a large scale spatial structure was identified
and described as a large eccentric anticyclonic gyre. It interestingly gathers into one and the
same structure the well-known westward drift under the low latitude Atlantic region, and the
high latitude jet under the Bering Sea and close to the tangent cylinder (TC, cylinder coaxial
with the Earth’s rotation axis and tangent to the inner core surface). This structure seems
to be more prominent in inversions derived from recent satellite geomagnetic field models,
suggesting some time variability on relatively short timescales characteristic of SV. Other
structures are also retrieved, a large scale cyclonic vortex beneath the Pacific Hemisphere
and smaller scale vortices dominantly cyclonic under the Pacific Hemisphere and anticyclonic
under the Atlantic Hemisphere. Gillet et al. (2009) pointed out that the smaller scale vortices
may not in fact be well resolved, since they strongly depend on the induction effects that
involve the small scale main field (above harmonic degree 13-14), which can not be known
from surface and satellite observations. But there has not yet been a dedicated study to
establish the robustness of the flow structures. In this paper, we study the time variability
of the inverted flow, and we assess their significance with statistical tools largely used in
climate studies and oceanography. Ultimately, our main motivation is to bring new material
to discuss core dynamics.

Recently, a new geomagnetic field model has been computed, COV-OBS, which covers the
period of historical geomagnetic field data provided by the international network of observa-
tories (1840-1990), but also includes the recent period of satellite missions (1990-2010) with
a dense coverage of high quality data (Gillet et al., 2013). It avoids employing the regular-
ized least squares inversion approach used to compute the gufm1 model (Jackson et al., 2000),
where roughness in the spatial and in the temporal domains is minimized when fitting the data
to a truncated spherical harmonic expansion and using splines in the time domain. Claiming
that such regularisations are mainly ad hoc and do completely constrain the model above
some harmonic degree (smaller at older epochs, larger at recent ones), Gillet et al. (2013) pre-
ferred to use a priori information on the statistical properties of the geomagnetic field, which
they consider to be relatively well known, and follow a stochastic modeling approach. The
Gauss coefficients of the geomagnetic field are treated as resulting from a stationary process,
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their statistical properties being condensed into a large prior covariance matrix with variances
and time correlations for all coefficients. Although the two models gufm1 and COV-OBS fit
the shared data at the same level for the common period (1840-1990), the different intrinsic
characteristics are expected to distinguish flows inverted from one and the other.

In this study, we use QG flow models inverted from both gufm1 and from COV-OBS. The
computation of these flows, which is outlined in section 2, is explained and discussed in the
appendix A. Our main purpose is to test the possibility to describe the global circulation
of the core flow in terms of a small number of patterns of variability, much like the climate
variability can be described as a combination of patterns like the ENSO (El Niño-Southern
Oscillation), PNA (Pacific - North America teleconnection pattern), NAO (North Atlantic
Oscillation), etc. We apply Principal Component Analysis (PCA) tools, of standard use in
the geophysical sciences of meteorology and oceanography, where we find the main references
(e.g Preisendorfer, 1988; Von Storch & Navarra, 1995). These are non-parametric methods
that do not assume any particular statistical distribution for the analyzed data nor do they
assume any particular dynamical equation for the flow. They can nevertheless, in certain
cases, provide information on the underlying dynamics, where a physical interpretation can be
found for the main modes (e.g North, 1984). Singular Value Decomposition (SVD) of coupled
fields is also applied to identify pairs of coupled spatial patterns explaining the covariance
between gufm1 and COV-OBS (see e.g. Bjornsson & Venegas, 1997). At the same time, we
propose to carry out significance tests that can decide which are the modes carrying relevant
information on the system variability. The obtained results receive statistical support from
analyses performed on subareas of the whole domain. Bootstrapping resampling methods are
used to assess the statistical robustness of particular flow features. In the end, a physical
interpretation of the most important/significant modes is sought.

The flow data to be analyzed is described in section 2. The basis of the PCA method and
the more technical aspects that are used in this study are introduced in section 3. Results
are discussed in section 4. They include results obtained when analyzing flows inverted
from gufm1 and from COV-OBS separately, and results obtained by extracting correlated
information contained in both of them. Section 5 contains a discussion on the identified
structures and their possible dynamical interpretation. Finally, the last section summarizes
the main conclusions in this study.

2 Inverted QG flow models

Two core surface flow models were computed, using regularized inversion, from the time-
varying geomagnetic field models for the observatory era gufm1 (1840 – 1990) (Jackson et al.,
2000) and COV-OBS (1840 – 2010) (Gillet et al., 2013). The inversions generate a flow
snapshot for each year in the geomagnetic field model period, and the whole set of flows is de-
noted flowgufm1 and flowCOV−OBS , respectively. The whole inversion procedure is explained
in detail in the appendix A.

In the inversion, the flows were assumed to be columnar in the whole volume and in-
compressible. This implies that they can be completely retrieved from a single scalar pseudo
streamfunction ξ, symmetric with respect to the equatorial plane, which in turn can be in-
verted from geomagnetic field models. At the core surface, the relation between the core
surface flow u and ξ at a certain epoch is (Schaeffer & Cardin, 2005; Pais & Jault, 2008; Amit
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& Pais, 2013):

u =
1

cos θ
∇H ∧ ξ(θ, φ) r̂ +

sin θ

Rc cos2 θ
ξNZ(θ, φ) φ̂ (1)

where (r, θ, φ) are spherical coordinates, Rc is the core radius, and ξNZ is the non-zonal part
of ξ. The first term in (1) has exactly the same expression as tangential geostrophic (TG)
flows computed at the CMB (Chulliat & Hulot, 2000, e.g.), where ξ would represent the
geostrophic pressure to within a constant factor, pgeo = −2ρΩξ (with ρ the core fluid density
and Ω the Earth’s rotation rate). For columnar flows touching the CMB, if they conserve
mass they no longer follow isocontours of ξ because of the second term in (1). This term
does not contribute to the zonal flow, is everywhere latitudinal and dependent on co-latitude.
It is required for fluid mass conservation, leading to equal contributions to upwellings and
downwelling from the two terms (see e.g. Amit & Pais, 2013). As also discussed in Amit & Pais
(2013), the ξ field is uniquely determined from inversion of geomagnetic field models. Close
to the equator, ξNZ(θ, φ) ∼ cos2 θ in order for the flow to remain finite. Canet et al. (2014)
use other pseudo streamfunction Ψ(θ, φ) to study hydromagnetic quasi-geostrophic modes in
planetary interiors, the two scalar functions being related through ΨNZ = −Rc cos θ ξ

NZ and
∂θΨ

Z = −Rc cos θ ∂θ ξ
Z (where the Z superscript denotes the zonal component).

The assumption of equatorially symmetric flow due to columnar convection does not hold
inside the tangent cylinder. Different regimes can be envisaged there, depending on the
dominant force balance believed to exist in that region. In particular, either independent
columnar convection in the North and South hemispheres (Pais & Jault, 2008) or thermal
wind convection (e.g Aurnou et al., 2003) that can change the sign of circulation close to the
inner core and the outer core boundaries.

Because of this uncertainty, and for convenience, we use the same assumptions inside and
outside the TC for computing u. Hence, to guarantee that flows computed for this small
region (that usually tend to have high root mean square velocity urms) will not affect the
PCA modes, the 20◦ caps around the North and South CMB poles were excluded from the
analysis as explained in the following section.

3 Principal Component Analysis of QG flows

We follow the implementation of the method as explained in (Bjornsson & Venegas, 1997;
Hannachi et al., 2007). The field ξ, closely related to a geostrophic pressure especially at
high latitudes, can be used to characterize the spatial flow features and its time variability
over some time-period, with a similar role to sea-level pressure in studies of variability of
atmospheric currents (e.g. (Hannachi et al., 2007)). In short, we will analyze the ξ field
into a sum of orthogonal functions in space, multiplied by coefficients which are uncorrelated
functions of time, by applying a linear transformation to the dataset that concentrates as
much of the variance as possible into a small number of terms in the expansion.
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3.1 Empirical Orthogonal Functions and Principal Components

The spatio-temporal data representing the flow is gathered into matrices:

X =











X11 X12 · · · X1Np

X21 X22 · · · X2Np

...
...

...
...

XNe1 XNe2 · · · XNeNp











(2)

with

Xij ≡ X(ti, ~rj) =
√
sin θ

(

ξ(ti, θj , φj)−
1

Ne

Ne
∑

i=1

ξ(ti, θj , φj)

)

. (3)

In a few words, Xij is the (scalar) value of the ξ pseudo-streamfunction at the core surface
point ~rj = ~r(Rc, θj , φj) at time ti, once the time-average has been subtracted. It is also
weighted by a latitude-dependent factor

√
sin θ to compensate for the fact that in a regular

grid on a spherical surface the number of points to cover a given area increases with latitude.
The index i takes values from 1 to the total number of epochs, Ne, and the index j takes
values from 1 to the total number of grid points, Np. For flow

gufm1 and flowCOV−OBS , a set
of 5 ◦× 5 ◦ latitude/longitude grids of the scalar function ξ were computed, one for each year,
covering the CMB region under study defined by 20◦ < θ < 160◦ for all values of longitude.
We exclude the polar caps because, as referred above, the computed QG flows are not reliable
inside the tangent cylinder (TC).

The Empirical Orthogonal Function/Principal Component analysis (EOF/PCA) relies
on the description of the space-time data in terms of decorrelated modes. They are the
eigenvectors of the covariance (or variance-covariance) matrix CX = XTX: each element
(CX)ij = XliXlj =

∑Ne

l=1X(tl, ~ri)X(tl, ~rj) is the discrete form of the (temporal) covariance
between the data values at points ~ri and ~rj . In search for decorrelated modes, we need to
transform CX in a diagonal matrix, for which the standard procedure is to transform the
data matrix X into

Y = XP (4)

where P is the orthogonal matrix of eigenvectors ofCX , each eigenvector pi forming a column.
The covariance matrix of Y is then

CY = PTCXP = Λ (5)

and is diagonal with non-zero elements λi, ordered from the highest to the lowest.
The transformed data-matrix Y is now expressed in terms of decorrelated modes, as was

intended. From (4) the reconstructed data matrix yields

X = YPT , (6)

which can be written

X = y1p
T
1 + y2p

T
2 + · · ·+ yNp

pT
Np

=

Np
∑

k=1

ykp
T
k , (7)

i.e., as a linear combination of all eigenvectors of CX , the coefficients of the expansion being
the different columns of matrix Y.

Here, and according to (Bjornsson & Venegas, 1997), the following notation is used:
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• each column pk of P is an Empirical Orthogonal Function (EOF) and represents a
certain spatial function;

• each column yk of Y is a Principal Component (PC) and represents a time series.

This decomposition presents the further advantage of data reduction, since there is no
practical need to keep the whole set of Np EOF s (the same number as grid points) in the
analysis. The different eigenvalues λi of CX , determine which modes are to be kept in the
expansion and in practice only the first few ones are important, those that explain the highest
percentage of data variance as given by

fi = λi





Np
∑

k=1

λk





−1

. (8)

In terms of describing the data covariance matrix, upon which the whole framework is
based, the EOFs provide a simplified and (hopefully) compressed way to decompose this
matrix. From (5) it follows

CX =

Np
∑

k=1

λkpkp
T
k , (9)

with only the first modes required.

3.2 Singular Value Decomposition of coupled fields

Singular Value Decomposition (SVD) of coupled fields has been widely used in meteorology
and oceanography, to study two combined data fields of different physical quantities such as
e.g. Sea Level Pressure (SLP) and Sea Suface Temperature (SST). In this study, it is used as
a framework to isolate important coupled modes of variability between the two time series of
core flows, flowgufm1 and flowCOV−OBS , representing the same physical quantity but derived
from geomagnetic field models computed using different a priori on the data and the model
itself. We argue that by applying SVD to the correlation between the two flows the most
robust features can be recovered, those that do not depend specifically on the a priori used
in one or the other geomagnetic field models.

We follow the implementation of the method as explained in Bretherton et al. (1992),
Bjornsson & Venegas (1997) and Hannachi et al. (2007). Starting from two data matrices X1

and X2 for flowgufm1 and flowCOV−OBS respectively, built as explained above, the temporal
cross-variance matrix is constructed, CX1X2

= XT
1 X2. As will be made clear in the following,

it makes no difference for the spatial patterns, the temporal functions or the percentage of
cross-covariance explained, that this covariance matrix or its transpose, CX2X1

, be considered.
The SVD general matrix operation is applied to CX1X2

:

CX1X2
= UΛVT , (10)

where U and V are both orthogonal matrices, the former having in columns the eigenvectors
of CX1X2

CT
X1X2

and the later having the eigenvectors of CT
X1X2

CX1X2
. As to Λ, it is a

diagonal matrix with singular values λi in its diagonal, ordered from the highest to the
lowest. These λi are the (positive) square roots of the eigenvalues of CT

X1X2
CX1X2

, the same

as for CX1X2
CT

X1X2
.
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Linear transformation of data matrices X1 and X2 with the orthogonal matrices U and V

respectively, makes the new cross-correlation matrix diagonal, CY1Y2
= Λ, where Y1 = X1U

and Y2 = X2V. The original data matrices are reconstructed as

X1 = Y1U
T

X2 = Y2V
T , (11)

analogously to (6). It is nonetheless worth noting that U and V integrate information on
both flowgufm1 and flowCOV−OBS , contrary to the transformation matrix P in section 3.1.
As a result, spatial patterns obtained from U for instance are different from EOFs obtained
by applying PCA to X1. Also, the expansion coefficients time series in (11), namely Y1 and
Y2, are different from the PCs referred in (3.1).

In analogy with (9), the column vectors ui and vi of the transformation matrices U and
V, respectively, can be used to decompose the matrix CX1X2

:

CX1X2
=

Np
∑

k=1

λkukv
T
k . (12)

This expression resorts the fact that each pair k of coupled modes describes a fraction of the
cross-covariance between the two fields, the fraction being given by fk (see 8).

3.3 Homogeneous and heterogeneous correlation maps

Besides direct representation of PCA or SVD modes in the form of maps of the EOFs and
time plots of corresponding PCs, correlation maps are a means to highlight in the analyzed
spatial region, those regions that are evolving in time in a correlated manner. In each point
of the space grid, a correlation coefficient is computed between a PC time function and the
‘observed’ time-evolving streamfunction in that same point. For homogeneous correlation
maps, the concept is very similar to the one leading to different EOFs and correlating the
different PCs with the original data gives rise to spatial structures that are the same as the
corresponding EOFs. Nonetheless, it involves looking for strong correlation instead of strong
covariance and, as such, it is normalised to local variance and the values in each grid point are
between −1 and +1. In this way, regions of low amplitude variations that show up as faint
regions in the charts of EOFs, will show up as strong as regions of high amplitude variations,
if they belong to the same EOF structure. Heterogeneous correlation maps are meaningful in
SVD analysis to show how PCs extracted from a certain flow model are correlated with the
other flow model. If the identified SVD modes are to be given some physical meaning, it is
required that a certain PC correlated with the two flow models gives similar structures.

From studies of climatic patterns analyses, we borrow standard tests used to assess the
robustness of variability modes. The relevant quantities are introduced in appendix B.

4 Results of statistical analyses

The mean flows shown in Fig. 1 are computed by averaging the flow over the corresponding
time-period: 1840 - 1990 for flowgufm1 and 1840 - 2010 for flowCOV−OBS . There are no
significant differences if we consider the shorter 1840 - 1990 period for COV-OBS. The root
mean square (rms) velocity for the surface mean flow, urms, is stronger for flowgufm1 (12
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Figure 1: The mean QG-flow on the equatorial plane over the time period 1840 - 1990, as
seen from the North pole. For gufm1 (left) and COV-OBS (right). At the top, the pseudo
streamfunction ξ/Rc in units of km/yr; at the bottom, arrows visualize the flow.

km/yr) than for flowCOV−OBS (10 km/yr), basically due to a stronger anticyclone under the
Pacific Hemisphere and a stronger radial jet under the Eastern Asian continent, from high to
low latitudes. The two different kind of charts in Fig. 1 illustrate the fact that the flow very
closely follows contours of the ξ streamfunction at medium-high latitudes. The rule to keep in
mind when interpreting ξ-contour charts, from eq. 1, is that the fluid circulates anti-clockwise
around centers of positive ξ and clockwise around centers of negative ξ.

The EOF/PCA tools can sort out the time variability associated to the main structures
in the mean flow, and other structures which average out during the inspected period. In
the following, we will be showing results for the analysis carried out over the computed flows,
using tools described in section 3 and appendix B.

4.1 PCA applied to gufm1 and COV-OBS, separately

Table 1 and Fig. 2 show results obtained when applying PCA to the two flow models,
independently. The first five modes account for about 80% of the flow total variability.
Different columns of Table 1 show the percentage of total variance explained by each mode
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Fraction of variance, fi [%] (δfi [%])
mode-1 mode-2 mode-3 mode-4 mode-5

COV-OBS (1840 - 2010) 34.1 (4.1) 16.6 (2.0) 11.0 (1.3) 10.3 (1.2) 7.5 (0.9)
COV-OBS (1840 - 1990) 34.4 (4.5) 18.3 (2.4) 12.7 (1.7) 8.6 (1.1) 7.7 (1.0)
gufm1 (1840 - 1990) 33.3 (4.3) 22.9 (3.0) 16.2 (2.1) 7.9 (1.0) 6.6 (0.9)

Table 1: Standard PCA applied to flowgufm1 and flowCOV−OBS separately. Percentage of
variance explained by each mode (100fi, using eq. 8). In parenthesis, the δfi error due to δλi

as given by eq. 21.

Fraction of variance, fi [%] (δfi [%])
mode-1 mode-2 mode-3 mode-4 mode-5

COV-OBS (1840 - 1990), PH 29.7 (3.7) 19.3 (2.4) 16.2 (2.0) 9.5 (1.2) 7.7 (1.0)
COV-OBS (1840 - 1990), AH 42.8 (5.5) 15.7 (2.0) 13.0 (1.7) 8.3 (1.1) 5.6 (0.7)
gufm1 (1840 - 1990), PH 40.3 (5.0) 23.4 (3.0) 11.5 (1.5) 7.4 (0.9) 5.3 (0.7)
gufm1 (1840 - 1990), AH 33.5 (4.3) 27.0 (3.4) 20.3 (2.6) 5.6 (0.7) 4.4 (0.6)

Table 2: Subdomain stability of EOF/PCs for flowgufm1 and flowCOV−OBS , when considering
separately the Pacific and the Atlantic hemispheres. Percentage of variance explained by each
mode and, in parenthesis, estimate of corresponding standard error, calculated as in Table 1.

and an estimation of the associated standard error using eq. 21. Results for COV-OBS

considering the two time periods are similar. Note however that the first 3 modes represent
a larger fraction of the signal for the shorter period. Besides, the 4th mode may not be
completely separated from the 3rd when considering the longer time period. Comparing
COV-OBS and gufm1, the first mode explains very similar variances. Using North’s criterion
(eq. 22) to detect mode degeneracy, modes 4 and 5 in COV-OBS (1840 - 1990) and modes 3
and 4 in COV-OBS (1840 - 2010) are not completely separated (see Figure 2), meaning that
they may describe two aspects of a common structure. A simple illustration of this effect is
found in the example of a propagating wave that can be decomposed into two spatial patterns
space-shifted by fourth of a wavelength, multiplied by two sinusoidal functions time-shifted
by fourth of a period. One unique structure (a propagating wave) would then appear in the
PC analysis decomposed into two modes with exactly the same f value. In the case of the
above-mentioned degenerate modes, they should be considered together.

As a test for subdomain stability, the whole CMB domain was subdivided into two lon-
gitudinal hemispheres, and EOF/PC modes were recalculated for each of them. The chosen
meridian for the separation goes through 70◦E and the two resulting hemispheres have lon-
gitudes 70◦E to 250◦E (Pacific Hemisphere, PH) and -110◦E to 70◦E (Atlantic Hemisphere,
AH). Results are shown in Tables 2 and 3. From Table 2 we can see that the first five modes
are still non-degenerate when computed independently for each hemisphere and according to
North’s criterion (eq. 22). Table 3 shows that, while the spatial and temporal descriptions
of modes 4 and 5 can be different depending on if a global or an hemispherical grid of data
values is used, the first three modes are recovered under AH with very close characteristics
as in the global grid. The first three variability modes are not so well recovered using only
data under the PH, especially for mode 2.

To summarize this section, PCA applied to gufm1 and COV-OBS, independently, allowed
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Figure 2: Fraction of explained variablity fi for PCA applied to different datasets and for
SVD of coupled flowgufm1 and flowCOV−OBS (on bottom, right), with error bars with total
length 2δfi, computed from eq. 21. Degenerate modes following North’s criterion (eq. 22)
are inside boxes
.
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|g(PH, global)| / |r(PH, global)| |g(AH, global)| / |r(AH, global)|
gufm1 COV-OBS gufm1 COV-OBS

mode-1 0.99 / 0.95 0.87 / 0.77 0.94 / 0.95 0.98 / 0.98

mode-2 0.88 / 0.77 0.62 / 0.65 0.93 / 0.94 0.93 / 0.96

mode-3 0.85 / 0.81 0.96 / 0.90 0.96 / 0.97 0.92 / 0.90

mode-4 0.25 / 0.30 0.68 / 0.79 0.72 / 0.70 0.39 / 0.34
mode-5 0.25 / 0.32 0.87 / 0.85 0.73 / 0.84 0.21 / 0.28

Table 3: Subdomain stability of EOF/PCs for flowgufm1 and flowCOV−OBS , when considering
separately the Pacific and the Atlantic hemispheres. Absolute values of congruence coefficients
between corresponding EOFs computed using the global grid and the grid under only the Pa-
cific or the Atlantic hemispheres (|g(PH, global)| and |g(AH, global)|, respectively). Absolute
values of correlation coefficients between corresponding PCs computed using the global grid
and the grid under Pacific or Atlantic hemispheres (|r(PH, global)| and |r(AH, global)|, re-
spectively). Bold is used for g and r values above 0.8, indicating high similarity.

fi [%] (δfi [%]) |g(EOF gufm1
i , EOFCOV−OBS

i )| |r(PCgufm1
i , PCCOV−OBS

i )|
mode-1 33.9 (4.4) 0.80 [0.56] 0.96 [0.75]
mode-2 19.0 (2.5) 0.74 [0.45] 0.93 [0.40]
mode-3 16.4 (2.1) 0.62 [0.24] 0.94 [0.38]
mode-4 8.4 (1.1) 0.61 [0.63] 0.92 [0.75]
mode-5 7.1 (0.9) 0.47 [0.31] 0.91 [0.70]

Table 4: SVD of coupled flows flowgufm1 and flowCOV−OBS . In the first column, values for
the percentage of cross-variance explained by each mode and, in parenthesis, estimate of cor-
responding standard error according to eq. 21. Second and third columns are for congruence
and correlation coefficients that compare corresponding EOFs and PCs, respectively, that re-
construct flowgufm1 and flowCOV−OBS . In square brackets, values comparing corresponding
EOFs and PCs from independent PCA over flowgufm1 and flowCOV−OBS .

to identify three first modes as explaining about 70% of the data covariance matrix both for
flowgufm1 and flowCOV−OBS (Tables 1 and 2). They are well separated among themselves and
from the following modes, according to North’s criterion (eq. 22). They are stable in space, as
confirmed by results obtained when the global domain is subdivided in two hemispheres. Some
significant differences come out, nevertheless, between flowgufm1 and flowCOV−OBS : mode 2
is more important to explain the variability of flowgufm1 than of flowCOV−OBS , possibly due
to a less clear expression under the PH in the latter model. In general, differences between
recovered modes in PH and AH hemispheres are more important for flowCOV−OBS than for
flowgufm1 (Table 3). Most importantly, corresponding modes in flowgufm1 and flowCOV−OBS

exhibit significant spatial and temporal differences in general, as shown by relatively low
values of congruence and correlation coefficients in square brackets in Table 4.

4.2 SVD of coupled gufm1 and COV-OBS

In order to identify structures correlated in both flows, we apply SVD of coupled fields to
flowgufm1 and flowCOV−OBS for the common period 1840-1990.
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Table 4 shows the percentage of cross-covariance matrix explained by different coupled
modes, the corresponding dispersion, the congruence coefficients (eq. 24) characterizing the
EOFs that allow to reconstruct flowgufm1 and flowCOV−OBS (see section 4.2) and the cor-
relation coefficients comparing the time dependent expansion coefficients. Besides, in square
brackets, values of congruence and correlation coefficients between corresponding modes of
PCA applied independently to flowgufm1 and flowCOV−OBS are displayed.

In Figure 3 we represent the contours of streamfunction ξ for the three first coupled modes.
As all modes show important spatial structures at medium-high latitudes, where visualization
of the flow through ξ contours is quite straightforward, the representation adopted uses these
contours projected onto the equatorial plane as seen from the North pole. Each pattern
EOFi contributes to the global flow with the flow circulation retrieved directly from Fig.
3 in epochs of positive PCi and opposite circulation in epochs of negative PCi. We easily
recognize common main structures in the pair of EOFs for the first two modes, namely three
large rolls at medium-high latitudes for the former, two anti-cyclonic under the AH and one
cyclonic under the PH, and an important zonal component around the TC in mode 2. Mode
2 also presents a strong zonal component at the equator, which is not easy to see in Figure
3 because of the chosen projection (see however Fig. 6 and section 5). Special care must
be taken in interpreting the EOF2 pattern. Indeed, in mode 2, the streamfunction ξ has an
important negative zonal component at the equatorial region which contributes to the flow
through the first term in the RHS of eq. 1, but not through the second term where only
nonzonal components of ξ appear. Then as ∇Hξ points radially inwards, the corresponding
flow circulation is eastward (in Fig. 3), the same direction as around the TC. The two coupled
spatial functions of mode 3 differ more than for modes 1 and 2 (Table 4). In particular, EOF3

for flowgufm1 (Fig. 3 bottom left) is mainly localized under the Atlantic, a feature not seen in
the EOF3 that reconstructs flowCOV−OBS (Fig. 3 bottom right). There are nonetheless some
corresponding features in these EOF3 charts: a cyclone under West of Iberia and another
under East of the Caribbean Sea, an anticyclone under Eastern Canada and another under
the Bering Sea.

Figure 4 shows the expansion coefficient time series (PCs) for the four main modes in
the case of simple EOF/PC analysis of flowgufm1 and flowCOV−OBS (thin lines) and also
in the case of SVD of the two coupled flows (thick lines). Notice that, for a given mode,
the flowgufm1 and flowCOV−OBS PCs for the SVD analysis are always closer than the PC’s
of separated EOF/PC analysis of flowgufm1 and flowCOV−OBS . In addition, for mode 1
(respectively mode 2), the expansion coefficients obtained by SVD are closer to the one
obtained by PCA of flowCOV−OBS (respectively flowgufm1). This ability of SVD to bring
the two flow descriptions closer together is also observed for spatial structures: the EOFs
for the SVD analysis shown in Figure 3 are closer together than the corresponding EOFs
for PCA analysis of individual flows. This result is apparent in Table 4, from comparison of
values inside and outside square brackets for congruence (spatial similarity) and correlation
(temporal resemblance) coefficients.

In Fig. 5, correlation maps are represented (see section 3.3) for the first two SVD modes.
Correlating PCi of flowgufm1 (resp. flowCOV−OBS) with the data matrix corresponding to
flowgufm1 (resp. flowCOV−OBS) yields an homogeneous correlation map, whereas correlating
it with the data matrix corresponding to flowCOV−OBS (resp. flowgufm1) yields an hetero-
geneous correlation map. Homogeneous correlation maps provide a representation of EOFi,
while heterogeneous correlation maps are of special interest, since they reveal the coupled
structures present in the two flows. Strong blue and red patches show regions of flowgufm1
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Figure 3: The three first pairs of EOFs resulting from SVD of coupled fields applied to
flowgufm1 and flowCOV−OBS . For mode 1 (top), mode 2 (middle) and mode 3 (bottom),
the EOFs allowing to reconstruct flowgufm1 (left) and flowCOV−OBS (right). Values are
directly those from columns of matrices U and V (see section 4.2) and are normalized such
that pT

i pj = vT
i vj = δij . Contours of ξ/Rc streamfunction are used to visualize the flow,

projected onto the equatorial plane, as seen from the North pole.
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Figure 4: Temporal functions representing: the expansion coefficients of PCA modes that
reconstruct flowgufm1 (thin solid line) and flowCOV−OBS (thin line with empty circles); the
expansion coefficients of SVD coupled modes that reconstruct flowgufm1 (thick solid line) and
flowCOV−OBS (thick line with filled circles).
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Figure 5: Homogeneous (two left columns, first for PCgufm1
i correlated with flowgufm1, second

for PCCOV−OBS
i correlated with flowCOV−OBS) and heterogeneous (two right columns, first

for PCgufm1
i correlated with flowCOV−OBS , second for PCCOV−OBS

i correlated with flowgufm1)
correlation maps for SVD modes 1 (top row) and 2 (bottom row). Results are projected onto
the equatorial plane and seen from the North pole.
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or flowCOV−OBS where the flow evolution is strongly correlated with a certain PCi (red for
positive correlation, blue for anti-correlation). Note that the black solid lines, which separate
regions of positive and negative correlation with PCi, are also the zero iso-ξ lines of EOFi.

The correlation maps of Figure 5 highlight a spiraling structure in mode 1, better seen in
flowgufm1 than in flowCOV−OBS and that was not obvious in Figure 3 because of disparate flow
amplitudes. It is brought out by the normalization underlying the computation of correlation
coefficients.

Estimates of significance of the correlation coefficients were computed as explained in
appendix B. To build one single map that could concentrate information from the SVD
analysis, we computed for mode i, with i = 1, 2, 3, the mean of the two PCs, PCgufm1

i and
PCCOV−OBS

i since they are very close (see Figure 4). Then, the resulting time function
PCi was correlated with flowgufm1 and with flowCOV−OBS , giving two correlation maps
superimposed in Figure 6. To condense information in one single map, vertical colored lines
give information on correlation values between PCi(t) and flowgufm1 and horizontal colored
lines on correlation values between PCi(t) and flowCOV−OBS . For each of the correlation
coefficients shown on these maps, a corresponding p-value was computed (see sec. B). The
p = 0.1 iso-contours for correlation of PCi(t) with flowgufm1 (dashed lines) and for correlation
of PCi(t) with flowCOV−OBS (solid lines) are plotted on Fig. 6. These contours enclose
the regions with correlation coefficients statistically significant at level 90% or higher (i.e,
the probability that these correlations are obtained by chance is no more than 10%), which
means their variability is well explained by PCi(t) in both flow models. From Figure 6 top, we
conclude that not only the main 3 vortices are robust features of the first mode, but also several
smaller ones. Likewise, the zonal equatorial flow characterizing mode 2 is also a robust feature
in both flows, unlike the zonal flow component next to the tangent cylinder which is significant
in flowgufm1 but not in flowCOV−OBS . As for mode 3, the presence of correlated rolls under
AH is robust, cyclonic around 1860 and 1970, anticyclonic around 1920 (see also Fig. 4).
Their localization is however fuzzy as we can conclude from a relatively weak superposition of
corresponding p-level curves from correlation with flowgufm1 and flowCOV−OBS . Under the
PH, this third mode shows more variability in flowCOV−OBS than in flowgufm1.

A quasi-periodicity is seen in the temporal variation of mode 2, which we proposed to
clarify given the importance of this mode in terms of data variability explained and significance
of its spatial features close to the TC and at the equator. To this end, all PC2s obtained
from PCA applied to flowgufm1 and flowCOV−OBS separately, both in a global grid and
hemispherical subdomain grids, together with PC2s obtained from SVD of coupled flows, in
a total of 9 time series, were fitted with a single sinusoid where amplitude, frequency and
initial phase were set as parameters. An average and a standard deviation of the estimated
period T for the ensemble PC2s were produced. When using the whole 1840-1990 dataset we
found T = 90.5 ± 4.6 yr and, when using the more recent dataset for 1900-1990 for which
errors in geomagnetic field models are smaller, we found T = 80.1± 2.7 yr.

Finally, and in order to visualize how and when these robust flow structures can be seen in
the flow, Figure 7 shows the flow reconstructed from the mean and the two first SVD modes
for flowgufm1. The chosen epochs are 1860, when both PC1 and PC2 are weak, negative;
1900, when PC2 is particularly strong, positive; 1930, when PC2 is strong, negative; 1970,
when PC1 has a maximum and 1980, when both PC1 and PC2 are relatively strong and
positive. In epochs of high positive values of PC1 and/or PC2, the flow features in these
two modes act to destroy the large eccentric jet, their amplitude being of the same order of
magnitude as the mean flow. It is the case of epochs 1900, 1970 and 1980. Referring only
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Figure 6: Correlation maps for coupled SVD modes and p-level contours: vertical colored lines
for correlation maps between PCi(t) and flowgufm1; horizontal colored lines for correlation
maps between PCi(t) and flowCOV−OBS ; p-level lines of 0.1 from correlation of PCi(t) with
flowgufm1 (dashed) and flowCO−OBS (solid). Top: i = 1, middle: i = 2, bottom: i = 3.
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Figure 7: Contours of pseudo streamfunction ξ/Rc in units of km / yr , for a reconstruction
of flowgufm1 using the mean flow and the two first SVD modes. Shown epochs are, from top
left to bottom right: 1860, 1900, 1930, 1970 and 1980.

18



urms (km/yr) 〈Ḃi〉/〈Ḃ〉 mean flow projection
gufm1 COV-OBS gufm1 COV-OBS gufm1 COV-OBS

mean flow 12.2 10.0 0.78 ± 0.16 0.75 ± 0.11 – –
mode-1 14.0 ± 3.2 12.2 ± 3.6 0.88 ± 0.19 0.86 ± 0.15 0.17 0.06
mode-2 14.8 ± 3.1 13.1 ± 3.2 0.94 ± 0.20 0.91 ± 0.13 0.35 0.42
mode-3 15.9 ± 4.0 14.6 ± 2.9 0.98 ± 0.17 0.95 ± 0.08 0.22 0.32
total flow 17.1 ± 5.1 16.7 ± 3.1 1.00 1.00 – –

Table 5: First and second columns show cumulative values of urms, starting from the mean
flow over the 1840-1990 period; average and standard deviation (std) values are displayed.
Third and fourth columns show the cumulative fraction of SV predicted, when comparing to
the SV signal induced by the total flows; average and std values are displayed. Fifth and
sixth columns show the normalized contribution of each orthogonal mode in the mean flow
expansion. The last row shows values of urms mean and standard deviation for the whole
flows flowgufm1 and flowCOV−OBS (first and second column). Note that they induce a SV
signal that doesn’t fit exactly the SV models, mainly because of the parameterization error
(see appendix A). The percentage of SV root mean square explained by both global flows is
on average 87%.

to the most significant features simultaneously spotted in both flows (see Fig. 6), the jet
breakup can occur either because of an intensification of the cyclone centered at ∼ −150◦E
longitude (mode 1), either because of an intensification of the high latitude cyclones cutting
the TC under Asian continent, the most important centered at ∼ 60◦E longitude (mode 2).
Negative values of PC1 and/or PC2 tend to reinforce the jet, as can be seen in 1930.

To summarize, the cumulative importance of the three first SVD modes both in terms
of urms and the energy in the secular variation that they account for is gathered in Table

5. From the urms,i = 〈ui〉 =
(

(1/4πR2
c)
∫

ui · ui dS
)1/2

value for each epoch, a mean and
standard deviation were calculated for each of the modes i = 1, 2, 3 cumulatively superposed
to the mean flow and previous modes. Also shown in the last row are values characterizing the
whole flows. We can use them to conclude that the compressed description of the flows using
the mean and the three first variability modes, already accounts for about 90% of the total
urms. The percentage of SV explained by this compressed flow description is even greater,
amounting to 95% or more. To see this, each mode added to the mean flow and previous
variability modes, was made to interact with the corresponding geomagnetic field model for
the whole 1840-1990 period and the relative SV energy 〈Ḃi〉/〈Ḃ〉 was computed for each

epoch, where 〈Ḃi〉 =
(

(1/4πR2
c)
∫

Ḃi · Ḃi dS
)1/2

is the root mean square of SV due to mode

i superposed to the mean and previous modes and 〈Ḃ〉 the corresponding quantity due to the
whole flow. A mean and a standard deviation were calculated. All these values are shown in
the first four columns. From them we can conclude that the variability in flowCOV−OBS is
higher than in flowgufm1, since larger fractions of the whole flow urms and induced SV are
explained by variability modes. Finally, it is also shown in the last two columns the fraction
of mean flow projected onto each one of the three modes. If we denote the mean flow column
vector as x, with the same dimension as ui and vi vectors (the EOFs), then we may write
xT = αTUT or xT = αTVT , depending if we are projecting the mean flow from one or the
other flow models. The column vector α has the expansion coefficients of the mean flow in the
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orthogonal basis of EOFs. The last two columns in table 5 show results for
(

α2
i /
∑Np

k=1 α
2
k

)1/2

when considering the projection of the two mean flows onto the corresponding basis of EOFs,
with i = 1, 2, 3.

5 Discussion

5.1 Mean flow

The mean flows obtained from our inversions of gufm1 and COV-OBS, shown on Fig. 1 are
not a surprise, both displaying an eccentric gyre already described by Pais & Jault (2008).
There are however several differences between the two: flowCOV−OBS needs a much weaker
Pacific recirculation, and a lower overall rms value for the mean flow. As can be seen, the
centennial timescale flow representing the mean shows strong latitudinal jets as main fea-
tures, an anisotropy which is seen on different natural rotating flow systems, with or without
magnetic fields. This fact was used by Schaeffer & Pais (2011) to propose an anisotropic
regularization favoring zonation and leading to a mean flow not much different from that in
Figure 1. The dominance of m = 1 azimuthal wavenumber in the mean flow suggests that an
m = 1 forcing strongly influences the core flow. With direct numerical simulations of the core,
Aubert et al. (2013) advocate for a differential inner-core growth (Alboussière et al., 2010) to
explain the jet eccentricity. In their model, the westward circulation is an effect of uppermost
liquid core lagging behind the mantle which, due to gravitational coupling with the inner core
is indirectly pushed eastward by thermochemical winds inside the tangent cylinder. However,
the pattern observed here is strikingly close to the one found by Hori et al. (2013) (compare
their Fig 4c with our Fig. 1) with a geodynamo simulation with internal sources and an
heterogeneous (m = 1) heat flux imposed by the mantle. Thus the mean flows inverted from
both COV-OBS and gufm1 could suggest a control of the convection by heterogeneous heat
extraction from the mantle. They might indicate that more heat is extracted from the core
in an hemisphere centered on the Western Atlantic, between −60◦ and −90◦ longitude, if we
follow the findings of Hori et al. (2013).

5.2 First mode

The principal component analysis of both flow models show similar empirical orthogonal
modes. The singular value decomposition of the coupled flows further pinpoints robust fea-
tures. The method is particularly convenient in making corresponding time functions (PCs)
and spatial patterns (EOFs) that reconstruct flowgufm1 and flowCOV−OBS more similar (Ta-
ble 4). The empirical mode that carries the largest variability of the flow consists mainly of
three big vortices (see Fig. 3): two anti-cyclones located at mid-latitudes around −60◦ and
+45◦ longitude respectively; a cyclone located under the Eastern Pacific ocean around −150◦

longitude, but which appears weaker on the flow inverted from COV-OBS. The significance
analysis carried out on this mode further indicates that all the main three rolls (as well as
a few weaker ones) are robust, the centers of the most significant regions being located at
medium latitudes between 40◦ and 50◦ (see Fig. 6). Note also the cyclonic features close to
the tangent cylinder under the North Atlantic ocean. The main effect of this empirical mode
when added to the mean flow is to slightly reinforce the mean eccentric gyre before 1940, and
later break it by making the three vortices largely dominant after 1960, and especially around
1970 (see Fig. 7).
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Figure 8: On the left, the zonal component of uφ for SVD mode 2, in km/yr, as a function
of normalized distance to the rotation axis. On the right, the observed LOD variation (thick
black line with squares), estimates from our SVD mode 2 assuming a columnar flow (thick
blue and green lines, see Jault & Finlay, accepted, for the formula) or assuming the flow is
restrained to a stratified layer at the top of the core of thickness 140 km (thin lines).

5.3 Second mode

The second mode coming out of our analysis has the interesting property of carrying most of
the angular momentum of our core flows, as shown in Fig. 8 (right) where the estimations for
length of day (LOD) variations δT have been computed for our core flows and compared to
LOD observations. The flow contributing to these variations is concentrated near the equator
and the tangent cylinder (see Fig. 8, left). In addition to the zonal part, mode 2 also shows
several vortices and especially two corotating ones located close to the tangent cylinder under
Eastern and Western Russia. There are also vortices with opposite circulation, the most
robust being located under north of the Mediterranean basin, at mid latitudes. During the
period 1840-1990, this mode shows two main oscillations basically reinforcing the eccentric
gyre around 1850 and 1930, and weakening it especially around 1900 with vortices and an
opposite circulation around the tangent cylinder. The fact that most of the variation in
zonal motion is correlated to these vortices might indicate either an excitation of a (zonal)
eigenmode by the convecting flow, or the presence of slave secondary vortices excited by the
interaction of a zonal eigenmode with the background magnetic field.

In this study, we show that these oscillations have a mean period between 80 and 90 years
(see Fig. 4). These rather long periods cannot be explained by torsional oscillations which
are thought to have much shorter periods of about 6 years (Gillet et al., 2010), but could, in
principle, be a match for (a combination of) MAC oscillations (Braginsky, 1993), as shown
recently by Buffett (2014). However, these MAC oscillations are restricted to a thin stratified
layer at the top of the core. Fig. 8 (right) shows that such a thin layer largely underestimates
the LOD variations and columnar flows are needed to explain the observed LOD variations
with the current core flows.

Periods close to 80 and 90 yrs have also been reported in Zatman & Bloxham (1997,
1998), associated to standing waves with parameters fitted to core surface flows. At the time,
they were interpreted as torsional oscillations and accordingly used to retrieve information
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on the radial internal magnetic field. However, those studies only considered the zonal flow
component and a subset of the flows for the period 1900-1990 (and even 1960-1990). The
standing oscillation reported in our study also involves nonzonal features, mainly close to the
TC, and is detectable during the whole 1840 -1990 period.

5.4 Flow reconstruction and other modes

The flow reconstructed from the first two modes and the mean flow is shown in Figure 7 and
basically exhibits a very strong eccentric gyre around 1860 and 1930, which is destroyed by
the appearance of several vortices around 1900 (especially two counter rotation vortices under
Asia) and by three very strong and large vortices around 1970, basically splitting the unique
global gyre into two circulation systems, a cyclonic one located under the Pacific ocean, and
an anticyclonic one under Europe and the Atlantic ocean.

The third mode is less important in terms of the pseudo-streamfunction ξ variability
explained, still it accounts for more than 10% either using PCA or SVD (Fig. 2). It’s spatial
pattern is also more complex showing a distribution of smaller-scale vortices, with often no
clear correspondence between flowgufm1 and flowCOV−OBS . The correlated vortices clustered
under the Atlantic region show nonetheless some correspondence in both flows, significant
only in reduced regions of Fig. 6.

We also checked higher order modes, which concentrate smaller fractions of the data
variability. We looked in particular for a 6 year periodicity which has been reported by Gillet
et al. (2010). Such periodicities can be glimpsed at modes 8 and 10 of PCA applied to COV-

OBS for the time period 1960-2010. However, they never stand out above other relatively
small periods that are also present, as is the case of a period of 9 years. Other tools should
be employed to look at small signals of specific periods, as the EOF/PC analysis is not the
most adequate tool to isolate such a relatively low amplitude variability.

6 Conclusions

We use Principal Component Analysis tools applied to ‘data’ consisting of the pseudo-
streamfunction ξ evaluated on a regular spatial grid at the core surface outside the tangent
cylinder. Our main goal is to identify some underlying structure in the flow and reconstruct
the data from a linear combination of a small number of spatial patterns multiplied by time-
varying coefficients. In this attempt for a simplification of observations, we first extracted the
mean flow over the observatory era period (1840 to present): a large eccentric jet, flowing at
lower latitudes under the Atlantic Hemisphere (AH) and at higher latitudes under the Pacific
Hemisphere (PH) and a large cyclone under the PH, centered at medium-latitudes. The clear
dichotomy revealed in this mean flow can be due to heterogeneous thermal forcing at the
core-mantle boundary or at the solid core boundary (Aubert et al., 2007; Aubert et al., 2013;
Hori et al., 2013).

We further identified three main circulation modes that account together for about 70%
of the observed variability, 90% of the total flow urms and 95% of the SV predicted by the
total flow. Mode 1, consists of three large QG vortices indicative of large scale convection. It
has an aperiodic variability during the inspected period, with a main boost around the 1970
epoch. At this time, the amplitude of mode 1 largely dominates the mean flow urms and the
three-roll flow breaks the large eccentric jet. The same dichotomy as in the mean flow reveals
the dominance of anticyclonic circulation under the AH and cyclonic one under the PH.
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A second mode was identified, which concentrates variations of core angular momentum,
with a quasi-periodicity of 80 to 90 yrs. Periods close to 80 and 90 yrs have been seen in the
magnetic field data and inverted flows. Never before, however, have they been put forward
using the whole time period 1840-1990 and without focusing the analysis on the zonal flow.
Here, this period emerges associated with an empirical orthogonal mode of the whole system,
naturally associated to a large zonal flow but also, interestingly, to some robust small scale
circulations mainly next to the tangent cylinder. These vortices evolve correlated with the
equatorial flow and can also contribute to destroy or reinforce the large jet. The spatial
structure of this mode has a large projection on the mean flow suggesting that this mode can
give some insight into the morphology of the sources responsible for accelerating the large
eccentric jet.

Mode 3 shows the presence of robust correlated rolls under AH but their localization is
fuzzy due to the fact that they are retrieved differently in flowgufm1 and flowCOV−OBS .

Significance tests were carried out with results that support the spatial stability of modes
1, 2 and 3 in general, and of specific spatial features present in these modes in particular. The
PCA tools used in this study look for the directions of maximum variance in data space. The
modes corresponding to projection along these directions will be of special interest in the case
that higher variability modes correspond to interesting dynamics and lower ones correspond
to noise. We can not guarantee from our results that this condition is fulfilled. However,
we point out the similarities we found between certain identified modes (modes 1 and 2),
significant both in terms of spatial features described and amount of variance explained, and
other time/spatial features identified in previous studies of core dynamics.

This study gives important insight into the variability of the core flows on centennial time-
scales. We have shown that the mean flow and three empirical modes can account for most of
the secular variation of the geomagnetic field. Direct physical interpretation of the observed
variability modes is not straightforward, although we have been able to link the first one to
a dominant vortex pattern, and the second one to observed length-of-day variations. These
modes may also guide future analytical and numerical studies on QG modes (e.g. Canet et al.,
2014) and maybe help to constrain geometry of the internal magnetic field.

Finally, decomposition of quasi geostrophic flows inverted from geomagnetic field models
into a few number of spatial structures and time dependent coefficients is of practical interest
to serve as input for dynamical studies of the Earth’s core interior where conditions closer to
geomagnetic data are sought. An interesting question that this decomposition in empirical
modes could help to answer is whether the core flow that we can reconstruct from magnetic
models is able to explain the geodynamo. How efficient are the spatial structures and their
evolution in time, retrieved in the empirical modes analysis, to produce the Earth’s magnetic
field? We plan to address this question in a future study.
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A Iterative inversion of gufm1 and COV-OBS

In this appendix we outline the procedure to invert the geomagnetic field models gufm1 in
the time-period 1840-1990 and COV-OBS in 1840-2010, for a QG core flow with surface
core expression u. The method is regularized weighted least squares inversion, whereby
the objective function Φ(m) that expresses a linear combination of the discrepancy between
observables and theoretical predictions and a term with quadratic forms on the flow model u
is minimized (e.g Gubbins, 1983):

Φ(m) =
(

A(b)m− ḃ
)T

C−1
e

(

A(b)m− ḃ
)

+ λmTC−1
m m . (13)
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m is the vector of poloidal (s
m(c,s)
ℓ ) and toroidal (t

m(c,s)
ℓ ) coefficients of the spherical harmonic

(SH) expansion of the scalars S and T that determine u = Rc∇HS − Rcr̂ ∧ ∇HT ; ∇H =
∇− r̂∂/∂r is the horizontal nabla operator; b is the vector of SH time-dependent coefficients
of the scalar potential V that determines the internal component of the geomagnetic field at
the Earth’s surface B = −∇V and ḃ is the vector of the corresponding first time derivatives;
A is the interaction matrix or matrix of equations of condition, with elements that depend
on the geomagnetic field model and on the Elsasser and Adams-Gaunt integrals (e.g. Whaler,
1986):

b = A(b)m+ e . (14)

The solution to this minimization problem is of the form

m̂ =
(

ATC−1
e A+ λC−1

m

)

ATC−1
e ḃ . (15)

The formalism above is standard and can be found in different studies. We now concentrate
on specific features of our inversions.

A.1 The error covariance matrix, Ce

In the inversions for the present study, the dimension of vector m is that required to solve
for flow coefficients up to degree and order ℓm = 26. As to vectors b and ḃ, coefficients up
to degree and order ℓb = ℓ

ḃ
= 13 from model mod are used, for the deterministic part of the

main field and its SV, where mod stands for gufm1 or COV-OBS.
The error e is treated as a Gaussian random variable e ∼ N (0,Ce). We consider two

contributions for Ce: (i) Cmod
e is the a posteriori covariance matrix for the SV coefficients

coming from the geomagnetic field model; (ii) Cr
e is the covariance matrix characterizing the

spatial resolution or modeling errors. This second term is dependent on the flow solution m:

Ce = Cmod
e +Cr

e(m) . (16)

Previous studies have identified the modeling errors arising from an incomplete knowledge of
the main field (Cr

e(m)) as having a higher contribution to the large scales of the SV than
do observational errors (e.g. Eymin & Hulot, 2005; Pais & Jault, 2008; Gillet et al., 2009).
Current inversions do already take into account these errors, though different approaches have
been followed, in particular the iterative approach in Pais & Jault (2008) and the stochastic
approach in Gillet et al. (2009). More recently another method has been proposed, called
inverse geodynamo modeling, whereby the estimation of the effects of underparametrization
is based on a statistical study of a numerical dynamo used as a prior model (Aubert, 2013,
2014).

A law is required to prolongate the spectrum of the geomagnetic field to length scales that
are unperceivable at the Earth’s surface and above. We used the form R(ℓ, Rc) = W/(2ℓ+1)
for the Lowes-Mauersberger spectrum at the CMB, from McLeod (1996). This function was
fitted to the geomagnetic spectrum computed from gufm-sat-E3 (Finlay et al., 2012) for the
2005 epoch and using only 3 ≤ ℓ ≤ 13. The value W = 1.11 × 1011nT2/yr2 was found. The
small-scale magnetic field (14 ≤ ℓ ≤ 40) was then treated as a Gaussian random variable of
zero mean and variance-covariance matrix CbS , i.e.

bS ∼ N (0,CbS ) , (17)
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where CbS is a diagonal matrix with elements given by

σ2
bS (ℓ) =

W

(ℓ+ 1)(2ℓ+ 1)2

(

Rc

RE

)2ℓ+4

, (18)

RE being the mean Earth radius.
To compute Ce for a certain flow solution m, an ensemble of K modeling error vectors

er,k(m) = A(bS,k)m are calculated, from an ensemble of K small-scale magnetic fields bS,k

with statistical properties given by (17) and (18). From this sampling, estimates of the mean
and covariance matrix for the modeling (or spatial resolution) error are computed according to
standard formulas, the (non-diagonal) covariance matrix being denoted Cr

e(m). The updated
error covariance matrix is then computed from eq. 16. In all our computations we used
K = 80.

A.2 The flow regularization

The second term in the RHS of (13), also referred to as model regularization, incorporates
the assumptions on the flow; its relative weight in the linear combination is controlled by
the magnitude of the regularization parameter λ. Two important assumptions are considered
in this study: (a) that most of the observed SV is due to a large scale flow interacting
with the magnetic field and (b) that this flow is the surface expression of incompressible
columnar convection inside the core. To impose condition (a) a ℓ3 norm that minimizes
flow gradients was used (Gillet et al., 2009). As to condition (b), it requires the flow at the
CMB to be equatorially symmetric and verifying ∇H · (u cos2 θ) = 0 (e.g. Pais & Jault, 2008;
Schaeffer & Pais, 2011; Amit & Pais, 2013). This second condition is imposed using a very
high λ multiplier, such that deviations are zero to the machine precision. The regularizing
parameter multiplying the ℓ3 norm, denoted λR, is allowed to change from one epoch to the
other, though, in order for the normalized misfit to be nearly 1 at each epoch. For each
inversion the following condition is used to select an acceptable λR:

0.8 <

√

χ2

N
< 1.2 (19)

where

χ2 =
(

A(b)m− ḃ
)T

C−1
e

(

A(b)m− ḃ
)

(20)

is the normalized misfit and N is the total number of SV coefficients.

A.3 The inversion algorithm

In this study, the iterative approach of Pais & Jault (2008) was used, whereby the effects of
the small-scale magnetic field are computed for each step i of the flow calculation and the
result is assimilated as a modeling error into the covariance matrix Ci

e. The procedure is
repeated iteratively until a convergence is met, when either the modeling error or the flow
solution no longer suffer significant changes. At this point, the found solution is consistent
with the error covariance matrix Ce used to invert it. Another iterative search is made with
iteration index j, within each step i, in order to find the regularization parameter λR that
provides a flow solution m satisfying (19).

The whole procedure can be described in the following way, for each epoch. Each step i
of the cycle involves three intermediate flows, mi,0, mi,1 and mi,2:
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i− 1: mi,0 is used to compute a first estimate C
i,0
e (mi,0) of the error covariance matrix, as

explained in section A.1;

i− 2: C
i,0
e is used in eq. 15 to invert for mi,1 and from this a new error covariance matrix

C
i,1
e (mi,1) is computed as in previous item;

i− 3: C
i,1
e is used to invert for mi,2 and mi,2 is used to compute C

i,2
e (mi,2);

i− 4: The two flows solutions mi,1 and mi,2 and the two error covariance matrices Ci,1
e (mi,1)

and C
i,2
e (mi,2) are compared, using as diagnostic parameters the L2 norm of the vector

difference mi,2 − mi,1 and the Frobenius norm of the matrix difference C
i,2
e (mi,2) −

C
i,1
e (mi,1);

i− 5: The flow solution resulting from step i is mi = (mi,1+mi,2)/2, which is used as mi+1,0

in the next step.

Each of the two flow inversions made at step i is done according to a second (internal)
iterative cycle with index j, whereby the found solution must verify condition (19):

j = 0, 1: Two trial solutions are first computed from (15), using λR,0 and λR,1 = λR,0 + ∆λ0.
Computing χ2 for each of these two inversions, makes possible to estimate the derivative
of χ2 with respect to λ. Then a Newton-Raphson type algorithm is applied to choose
∆λ1 such that λR,2 = λR,1 +∆λ1 makes χ2 approach the due condition (19).

1 < j < J : For each new value λR,j = λR,j−1 +∆λj−1 a new inversion using (15) is made and the

corresponding χ2 computed. A Newton-Raphson type algorithm is applied to choose
∆λj .

j = J : The cycle ends at iteration J , when λR,J verifies condition (19). This final estimate
gives λR of the inversion.

In the first of all j-cycles, we used in our calculations λR,0 = 1.0 × 106 and ∆λ0 = λR,0/4,
from previous tests. In all other cycles, the converged λR from the previous cycle is used.

Finally, the two particular i-cycle steps are:

i = 0: The initial flow m0,0 is computed from (15), using as error covariance matrix Ce =
Cmod

e + Cr
e, where only diagonal elements are considered for Cr

e, given by σr
e(ℓ)

2 =
36 exp(−ℓ) as in e.g. Schaeffer & Pais (2011).

i = I: Convergence is met for i = I if λi,1
R = λi,2

R AND χi,2(mi,1) = χi,2(mi,2) (see eq. 20).
These two conditions ensure that the inversion is well-converged, as confirmed by very
small values of root squares of the L2 norm of flow differences and of the Frobenius norm
of error covariance matrices differences (10−7 to 10−8 and 10−3 to 10−5, respectively.)

Fig. 9 shows the Lowes-Mauersberger power spectrum at the Earth’s surface of the SV
of model COV-OBS, together with predictions from our inverted flows and different errors
referred above: misfit errors, SV prior data errors from CCOV−OBS

e and modeling errors from
Cr

e(m). For the two last cases, although the covariance matrices are dense, only diagonal
elements are shown. Besides, rotationally invariant errors are calculated by averaging the
diagonal elements (variances) within each degree ℓ. Along the time interval from 1840 to
1990 the prior data errors decrease as the quality and amount of data improve, but the
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Figure 9: The Lowes-Mauersberger power spectrum at the Earth’s surface of: the SV of model
COV-OBS (black solid line), flow predictions (black dashed line), misfit errors (red line), SV
prior data errors from CCOV−OBS

e (blue dashed line) and modeling errors from Cr
e(m) (blue

solid line).
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modeling errors are always of the same order of magnitude with very similar spectra. It is
worth noting that the prediction error for epoch 1850 is very similar to the corresponding error
obtained by (Aubert, 2014, see his Figure 1), in spite of his much more involved approach
using results of direct numerical simulation of the geodynamo.

When dealing with the two different geomagnetic field models gufm1 and COV-OBS, the
main differences come from the fact that we used the diagonal Cgufm

e matrix from Jackson
(1997) and the dense CCOV−OBS

e matrix provided by Gillet et al. (2013). The total matrices
Ce are always non-diagonal, contrary to most previous inversions, thus allowing to take into
account the fact that errors in the SV coefficients are correlated.

For COV-OBS, this correlation comes in part from the geomagnetic field model computa-
tion, but the most important contribution comes from the parameterization errors iteratively
computed during the inversion as explained in section A.1.

B Estimation of significances for identified modes

A test on the covariance matrix spectrum allows to assess the uncertainty of each eigenvalue
of the covariance matrix CX (section 3.1) or each singular value of CX1X2

(section 4.2), that
reflects the fact that the sampling EOF’s and PC’s differ from the asymptotic ones (when
Ne → ∞). Following North et al. (1982), the sampling error in the eigenvalue λi of CX is, to
first order,

δλi ∼ λi

√

2

N
(21)

where N is the number of independent realizations or the number of degrees of freedom, which
we take equal to Ne. Then, two consecutive eigenvalues λi and λj are considered degenerate
if their difference ∆λ = λi − λj is such that

∆λ ≤ λi

√

2

Ne
. (22)

This is known as North’s rule of thumb. When two (or more) eigenvalues ofCX are degenerate
it means they cannot be clearly distinguished and the corresponding EOFs patterns cannot
be considered independent (Hannachi et al., 2007). The same rule of thumb can be used to
decide on the separation of consecutive singular values of the cross-covariance matrix when
applying SVD (e.g. Venegas et al., 1997).

Temporal functions are compared using the correlation coefficient r (e.g. Von Storch &
Navarra, 1995), which measures the extent to which there is a linear relationship between the
two functions. It always takes values in the interval [−1, 1], the two extreme values meaning
there exists a perfect linear relationship between the two compared functions. For t1 a column
vector representing a certain time series and t2 a column vector representing another time
series, with the same dimension,

r(t1, t2) =

(

t1 − t1
)T (

t2 − t2
)

√

(

t1 − t1
)T (

t1 − t1
)

√

(

t2 − t2
)T (

t2 − t2
)

(23)

where t1 and t2 are the average values of the two series over the time period considered.
To estimate the level of similarity between two different spatial structures, we use con-

gruence coefficients, g (e.g. Harman, 1976). If s1 is a column vector representing a given

31



spatial structure and s2 a column vector for some other spatial structure, both with the same
dimension, then

g(s1, s2) =
sT1 s2

√

sT1 s1

√

sT2 s2

(24)

Congruence coefficients have the same range as correlation coefficients, i.e. from -1 (negative
similarity) to +1 (positive similarity). However, as noticed by Richman & Lamb (1985) who
uses this parameter in the context of PCA analysis, unlike the correlation coefficient the
congruence coefficient does not subtract the mean value of the spatial patterns to compare.
It therefore measures not only the pattern similarity but the magnitude similarity as well.

Finally, a Monte Carlo (MC) approach is used to estimate the significance of the correlation
coefficients r for each grid point shown in correlation maps (see Figure 6). To this end, the
two original time series to be correlated are shuffled, one at a time, using a technique called
bootstrapping with moving blocks. The theoretical discussion of the method can be found
in Kunsch (1998) and Liu & Singh (1992). Here, we use it in a similar context as in several
studies on coupled atmosphere-ocean variability (e.g. Wallace et al., 1992; Peng & Fyfe,
1996; Venegas et al., 1997). The method is used for resampling and is applicable to weakly
dependent stationary data that is, data which is nearly independent if far apart in time.
There is nonetheless a correlation time to consider and that should be kept in resampled as
in original data, i.e. the autocorrelation structure of the original series should be preserved.
The reason is that shuffling the data in time randomly would increase the temporal degrees
of freedom, giving in the end lower p-values for the statistical tests and improving artificially
the significance of estimated parameters. So, in order to avoid this effect, the shuffling in
time is applied not to every single data point randomly, but to a number of blocks containing
the original data. The length of the blocks (b) depends on the autocorrelation structure of
the original data. For a data set xi of total time-length Ne, a number of blocks Ne− b+1 are
created so that the data from x1 to xb will be in block 1, the data from x2 to xb+1 will be in
block 2, etc. After creating all the blocks, Ne/b of these blocks are randomly selected to create
a new pseudo-time series x′i, from which a certain quantity to test may be recalculated (if Ne

is not an integer multiple of b, x′i is truncated to have the same length as xi). The length b of
the blocks was chosen after inspection of the flow data autocorrelation function in each point
of the spatial grid. Having verified that the time lag at which the autocorrelation function
becomes zero or very closely zero does not exceed 55 yrs, this time interval was therefore
used as the time-length of the moving blocks. For the significance tests on correlation maps
produced from the SVD of coupled flowgufm1 and flowCOV−OBS , each of the Monte-Carlo
runs included two sub-runs. During the first sub-run the first of the series to correlate, (e.g.
the PCi time series for SVD mode i, see section 4.2) was shuffled and the resulting artificial
series was correlated in each grid point with the second series which is the observed time
series from flowgufm1 or from flowCOV−OBS . During the second sub-run the shuffling in time
procedure was applied to the flow data matrix (flowgufm1 or flowCOV−OBS , respectively),
and the resulting resampled data series for each grid point were then correlated with PCi.
The main goal is always to break the chronological order of one field relative to the other.
For each MC run, the mean of the two artificial correlation coefficients for each grid point
obtained from the two sub-runs was calculated. After a large number of MC runs (2× 1000),
the number of the correlation coefficients of magnitude higher than the original r divided by
the total number of the runs is the p-value of this specific r. This p-value gives the probability
to obtain this specific r just by chance. For instance, a p-value = 0.1 associated to a certain
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correlation coefficient, means that the probability to obtain such correlation coefficient for
this specific pair of correlated time series just by chance is only 10%.
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