
HAL Id: insu-01016372
https://insu.hal.science/insu-01016372v1
Submitted on 17 Sep 2014 (v1), last revised 30 Jun 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remobilisation of uranium from contaminated
freshwater sediments by bioturbation

Sandra Lagauzère, Mikael Motelica-Heino, Eric Viollier, G. Stora, J.M.
Bonzom

To cite this version:
Sandra Lagauzère, Mikael Motelica-Heino, Eric Viollier, G. Stora, J.M. Bonzom. Remobilisation of
uranium from contaminated freshwater sediments by bioturbation. Biogeosciences Discussions, 2014,
10, pp.17001-17041. �10.5194/bgd-10-17001-2013�. �insu-01016372v1�

https://insu.hal.science/insu-01016372v1
https://hal.archives-ouvertes.fr


BGD

10, 17001–17041, 2013

Remobilisation of

uranium from

contaminated

freshwater sediments

S. Lagauzère et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Biogeosciences Discuss., 10, 17001–17041, 2013

www.biogeosciences-discuss.net/10/17001/2013/

doi:10.5194/bgd-10-17001-2013

© Author(s) 2013. CC Attribution 3.0 License.

O
p

e
n

 A
c
c
e

s
s

Biogeosciences
Discussions

This discussion paper is/has been under review for the journal Biogeosciences (BG).

Please refer to the corresponding final paper in BG if available.

Remobilisation of uranium from
contaminated freshwater sediments by
bioturbation

S. Lagauzère
1
, M. Motelica-Heino

2
, E. Viollier

3
, G. Stora

4
, and J. M. Bonzom

1

1
Laboratoire d’Ecotoxicologie des Radionucléides, Institut de Radioprotection et de Sûreté

Nucléaire (IRSN)/PRP-ENV/SERIS, Cadarache, Bât. 186 – BP 3, 13 115

Saint-Paul-Lez-Durance, France
2
Université d’Orléans, ISTO, UMR7327 CNRS/INSU 1A, rue de la Férollerie, 41071 Orléans

Cedex 02, France
3
Laboratoire de Géochimie des Eaux, Université Paris Diderot, Sorbonne Paris Cité, Institut

de Physique du Globe de Paris, UMR7154 CNRS, 75013 Paris, France
4
Université Aix-Marseille, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO),

UM 110, 13288 Marseille, France

Received: 25 September 2013 – Accepted: 19 October 2013 – Published: 30 October 2013

Correspondence to: S. Lagauzère (lagauzere@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

17001

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/17001/2013/bgd-10-17001-2013-print.pdf
http://www.biogeosciences-discuss.net/10/17001/2013/bgd-10-17001-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD

10, 17001–17041, 2013

Remobilisation of

uranium from

contaminated

freshwater sediments

S. Lagauzère et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Abstract

Previous studies have demonstrated that benthic macro-invertebrate bioturbation can

influence the remobilization of uranium initially associated with freshwater sediments

resulting in a high release of this pollutant through the overlying water column. Giving

the potential negative effects on aquatic biocenosis and the global ecological risk, it ap-5

peared crucial to improve our current knowledge concerning the uranium biogeochem-

ical behaviour in sediments. The present study aimed to assess the biogeochemical

modifications induced by Tubifex tubifex (Annelida, Clitellata, Tubificidae) bioturbation

within the sediment permitting to explain such a release of uranium. To reach this goal,

uranium distribution between solid and solute phases of a reconstructed benthic sys-10

tem (i.e. in mesocosms) inhabited or not by T. tubifex worms was assessed in a 12 day

laboratory experiment. Thanks notably to fine resolution (mm-scale) measurements

(e.g. DET gels probes for porewater, bioaccumulation in worms) of uranium and main

chemical species (iron, sulfate, nitrate, nitrite), this work permitted (i) to confirm that the

removal of bottom sediment particles to the surface through the digestive tract of worms15

greatly favours the oxidative loss of uranium in the water column, and (ii) to demonstrate

that both uranium contamination and bioturbation of T. tubifex substantially influence

major microbial-driven biogeochemical reactions in sediments (e.g. stimulation of deni-

trification, sulfate-reduction and iron dissolutive reduction). This study provides the first

demonstration of biogeochemical modifications induced by bioturbation in freshwater20

uranium-contaminated sediments.

1 Introduction

Trace metal pollution of rivers, lakes and estuaries is a preoccupant ecological problem

in many industrialized areas worldwide. Despite recent efforts to improve water quality,

notably in most of developed countries, many aquatic ecosystems are still threatened25

by pollution accumulated in sediments and groundwaters. In this context, the case
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of uranium released by mining extraction is of particular interest due to its complex

biogeochemical behavior and its potential high ecotoxic risk for aquatic biocenosis.

Whereas the natural geochemical background level of uranium in freshwater sediments

is considered lower than 10 µgUg
−1

(dry weight) (Kurnaz et al., 2007), much higher

concentrations, up to a few thousands µgUg
−1

, have been measured in rivers and5

lakes close to former or operating mining sites (Neame et al., 1982; Lottermoser and

Ashley, 2006; Lozano et al., 2002; Hart et al., 1986). The long-term storage capacity

of such contaminated sediments depends on numerous geochemical and biological

parameters affecting the solubility and thus the mobility of uranium.

The biogeochemical behaviour of uranium in surface sediments is in fact directly re-10

lated to its speciation, the chemistry of the solute and solid phases and to processes

including precipitation, dissolution, adsorption, complexation, and to a large extent to

numerous transformations occurring in early diagenesis processes. Uranium speci-

ation is primarily related to pH and oxido-reduction potential values (Langmuir, 1978)

but also strongly depends on the CO2 partial pressure, the ionic force of solute phases,15

the total concentration in uranium, the presence of organic and mineral ligands (Rag-

narsdottir and Charlet, 2000; Davis et al., 2002, 2004, 2006; Denison, 2004; Curtis

et al., 2006) and microbial activity (Renshaw et al., 2007). In most surface freshwaters

(i.e. under oxic conditions, pH 5–9), uranium occurs under a free and soluble form, the

uranyl ion UO
2+
2 , which is at the (+VI) oxidation state. Depending on the pH and the20

ionic composition of the water, the uranyl ion can form complexes with other ions, prin-

cipally hydroxyles or carbonates, phosphates, fluorides, chlorides, but also with some

organic compounds such as humic acids (Ragnarsdottir and Charlet, 2000; Marang,

2007). Adsorption on mineral (e.g. oxy/hydroxydes of iron or manganese and clays)

or organic particular phases also plays an important role by reducing the mobility of25

uranyl ions in water (Curtis et al., 2006). Thereby, uranium coming in contact with the

sediment is either on a soluble form, free or complexed, and will diffuse towards the

porewater, or sorbed to suspended matter and will be incorporated by sedimentation.

In anoxic sediments, uranium is reduced to U(+IV) which is an insoluble form and tends
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to be immobilised and thus to accumulate in the deeper sediment layers by formation of

insoluble nanoparticulates or large aggregated oxides like uraninite or schoepite (Liger

et al., 1999; Phrommavanh, 2008). Additionally, the reduction of uranium can also oc-

cur biotically through metal-reducing bacteria metabolism in sediment (Lovley et al.,

1991). This process has notably been used in recent bioremediation programs of con-5

taminated sites where immobilisation of uranium in sediments was favoured by organic

amendment at the sediment surface (Renshaw et al., 2007; Wall and Krumholz, 2006;

Wilkins et al., 2006; Barlett et al., 2012).

Inversely, mechanical disturbances of top sediment can hamper the incorporation

of uranium in bottom anoxic layers and its immobilization. Among them, the modifi-10

cations of sediment properties induced by benthic macro-invertebrate activities (i.e.

bioturbation) are likely to be of first importance. As demonstrated for diverse trace

metals, bioturbation can increase their remobilization from the sediment through the

overlying water by favouring the oxidative loss of previously accumulated solid phases

(Motelica-Heino et al., 2003; Naylor et al., 2004, 2006, 2012). Three major processes15

are involved: (i) oxygen penetration in bottom sediment due to active water pumping

in burrows (i.e. bioirrigation), (ii) removal of particles from the bottom sediment to its

surface, (iii) and indirect effects due to induced heterogeneity (e.g. redox conditions,

organic matter availability, fluxes of solutes) and stimulation/inhibition of microbial com-

munities. However, little work has been undertaken so far to evaluate these processes20

in sediments accumulating uranium in freshwater systems (Komlos et al., 2008; Phrom-

mavanh, 2008) and the few previous studies on this topic concerned marine ecosys-

tems (Zheng et al., 2002; Morford et al., 2009). In freshwaters, some organisms able

to survive in contaminated environments, such as tubificid worms (Annelida, Clitellata),

are known to induce a strong sediment reworking that could impact the remobilisation25

of metals (Zheng et al., 2002; Alfaro-De-la-Torre and Tessier, 2002; Ciutat and Boudou,

2003; Ciutat et al., 2007; De Haas et al., 2005; Petersen et al., 1995; Soster et al.,

1992; Zoumis et al., 2001). Tubificid worms represent a dominant group of freshwater

benthic macro-invertebrates. Their populations can reach very high densities notably
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in organic-rich sediments. Despite no active bioirrigation of their gallery network, the

effects induced by tubificid worms on the sediment matrix are crucial for the global

biogeochemical functioning and the metal distribution at the benthic interface. Due to

their particular mode of feeding which consist on ingestion of sediment particles in

bottom layers and rejection at the sediment–water interface (i.e. upward-bioconveying,5

sensu Gérino et al., 2003), they create a removal of associated compounds including

metals initially immobilized under reduced forms. This phenomenon has been recently

observed in uranium-contaminated sediment inhabited by Tubifex tubifex worms (La-

gauzère et al., 2009a–c). In these mesocosm experiments, it was demonstrated that

despite important ecotoxic effects of uranium on the worms (e.g. malformations, auto-10

tomy, mortality), their bioturbation activity remained sufficiently important to stimulate

diagenetic processes (e.g. increase of oxygen uptake) and to induce a 2- to 10-fold

higher release of uranium through the overlying water. However, underlying biogeo-

chemical processes occurring under these conditions still need to be assessed to ex-

plain the remobilization of uranium.15

The main goal of this study was thus to assess the influence of the bioturbation of

T. tubifex in a benthic ecosystem for which sediment was initially contaminated with ura-

nium. We conducted a laboratory experiment using mesocosms with natural sediment

artificially contaminated in uranium and inhabited or not by T. tubifex. The distribution

of uranium between solid and solute phases, including bioaccumulation in T. tubifex20

worms, was estimated to calculate fluxes between the sediment and the water column,

and a mass budget. In parallel, high-resolution profiles of dissolved uranium, iron, man-

ganese, sulfates, nitrates and nitrites were measured to give an overview of the main

biogeochemical reactions occurring in sediment and to propose hypothesis of their in-

teractions with uranium in presence or absence of T. tubifex worms.25
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2 Material and methods

2.1 Preparation of the aquaria

Surface sediment and water were collected in a dead arm of the Esparron Lake,

a reservoir-lake upstream from a man-made dam on the river Verdon (Alpes de Haute-

Provence, Southern France). This site was chosen for the pristine quality of its surface5

water and the fine texture of the sediment (median grain size, D50 = 33.8 µm). Sed-

iments were treated to eliminate the grosser particulate phases (vegetal fragments,

stones, wastes) and the maximum of organisms by sieving at 2 mm and freezing at

−20
◦
C for 48 h. The sediments were then homogenised mechanically and stored at

4
◦
C until the preparation of the aquaria. The water was filtered at 20 µm to eliminate10

macro- and meiofauna and also stored at 4
◦
C before use. The principal physical and

chemical parameters of the sediment and overlying water were reported in a previous

work (Lagauzère et al., 2009c). Briefly, analyses revealed a highly calcareous medium

(total calcite in sediments: 70 %, water hardness: 152 EqmgCaCO3 L
−1

), with a pH of

8.2–8.6 and a low organic matter content (2.4 %) for a lake sediment.15

The sediment was artificially contaminated with a solution of uranyl nitrate

UO2(NO3)2 ·6H2O in a large HDPE container (height=65 cm, ∅=41 cm, 68 L drum

from CurTec
®

, the Netherlands) in order to obtain a nominal uranium concentration

of 600 µgUg
−1

(dry weight). The tank was then daily shaken during 2 weeks before

the beginning of the experiment to allow adsorption of uranium on the sediment par-20

ticles and a homogenous contamination. The effective measured concentration after

2 weeks was 539 µgUg
−1

. This concentration level was chosen as a function of re-

sults obtained in previous works with similar experimental conditions. It corresponds to

a bioturbation activity though diminished that generates an important remobilisation of

uranium from the sediment to the water column (Lagauzère et al., 2009a, c). A non-25

contaminated sediment tank was similarly prepared for control aquaria. For each condi-

tion (contaminated and control), nine aquaria were prepared in cylindrical PVC boxes
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(12 cm in diameter, 20 cm in height). The aquaria were filled with 10 cm of sediment

and an overlying 10 cm water column. They were randomly placed in a large tank with

controlled temperature (21
◦
C) and photoperiod (16 h light/8 h dark). Each aquarium

received a constant air bubbling in the water column. This setting has been stabulating

for 4 weeks before the introduction of the T. tubifex worms. Slight additions of distilled5

water were done on a daily basis to compensate the water losses due to evaporation.

Volumes extracted for sampling were replaced by initial lake water.

2.2 Origin, acclimatization and introduction of benthic organisms

The T. tubifex worms were purchased from a commercial breeding (Grebyl and Fils,

Arry, France). They were acclimated to the experimental conditions during several10

weeks and were fed twice a week with Tetramin
®

flakes (Tetra Werke, Melle, Germany)

put into suspension (3 mg ind
−1

from a 10 gL
−1

suspension). Before the beginning of

the experiment, the worms were starved in artificial sand for 48 h. In each aquarium

devoted for worm addition, 28 g of T. tubifex was added at the sediment surface. This

mass corresponds to ca. 60 000 individuals per square meter, which is representative15

of an average natural density for freshwater ecosystems (Budd, 2005). The air bub-

bling was stopped for three hours to allow the worms to settle to the sediment–water

interface.

2.3 Experimental procedure

On the 9 aquaria prepared for each condition (contaminated/control), 3 were retrieved20

on the first day of the experiment (day 0) i.e. after the 4 weeks of stabilization, 3 re-

ceived T. tubifex worms on day 0 and were retrieved after twelve days (day 12), and

the remaining 3 did not receive any organisms and were also retrieved on day 12. The

coding of experimental treatments was the following: C- for control, U- for contaminated

sediment, T- for presence of T. tubifex, followed by −0 or −12 for the time of sampling25
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(for instance, UT-12 corresponds to “contaminated sediment/presence of worms” after

12 days).

2.4 Physico-chemical measurements

2.4.1 Measurements in the water column: temporal monitoring

Temperature, pH and dissolved oxygen concentration of the water column were mea-5

sured one day before the introduction of the T. tubifex worms and then every second

day until the end of the experiment (day 12). The concentration in total uranium in the

water column was monitored from non-filtered and acidified water samples (2 % HNO3)

analysed by ICP-AES (Optima 4300 DV, Perkin Elmer, USA). The apparent uranium

exchange flux between the sediment and the water column was calculated from the10

uranium concentrations at day 0 and day 12 (based on the variation of uranium in the

water column divided by the area of the water–sediment interface). The concentrations

of dissolved chemical species, including uranium, were estimated from the average

values measured from the water-exposed part of the DET probe (see below). The dif-

ferences in concentrations between day 12 and day 0 were also expressed in terms of15

mean fluxes.

2.4.2 Pore-water concentration profiles of the dissolved chemical species

In each aquarium, the concentration profiles of the dissolved elements were deter-

mined by using two constrained DET probes (Diffusive Equilibrium in Thin-films) pur-

chased from DGT Research Ltd (Lancaster, UK). One of the probes was devoted to20

the analysis of major cations and uranium by ICP-AES (Optima 4300 DV, Perkin Elmer,

USA) whereas the second one was used for the analysis of major anions by ionic liq-

uid chromatography (DX120, column AS11HC 4 mm, eluant KOH, Dionex, Sunnyvale,

USA). These peeper-gel probes consisted of plastic holders (240 mm×40 mm×5 mm)

with an open window (18 mm×150 mm). From the aperture, a series of parallel25
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agarose-gel strips (1 mm×1 mm×18 mm) were exposed through a 0.2 µm Nylon

membrane to the ambient medium for equilibration. Before use, the probes were de-

oxygenised in a 0.01 M NaCl solution with nitrogen for 48 h. They were afterwards

deployed in the sediment of each aquarium 48 h before the desired analysis time (i.e.

2 days before the introduction of the organisms for treatments C-0 and U-0 and at5

day-10 for treatments C-12, CT-12, U-12 and UT-12). After sampling, the probes were

placed in a glove box under nitrogen atmosphere. The gels strips were gently retrieved

and directly eluted in 1 mL HNO3 2 % for samples analysed by ICP-AES (major cations

and uranium) and in 1 mL Milli-Q water for samples analysed by ionic chromatography

(major anions). All measurements were performed in the 6 days following the sampling.10

During their storage, the samples were kept at 4
◦
C and daily hand-shaked. Calcula-

tions were made based on the assumption of gel strips dimension homogeneity.

2.4.3 Determination of net accumulation rates in overlying waters

Accumulation rates were calculated from differences between start-end concentrations

of dissolved species divided by the duration of the experiment. Positive values indicate15

a net input to the overlying water. In contrast, negative values suggest a net elimina-

tion/output of dissolved species.

2.4.4 Determination of diffusive instantaneous fluxes at the sediment–water in-

terface and sediment uranium consumption rates

Each vertical profile of dissolved chemical species was simulated using the PROFILE20

software (Berg et al., 1998) in order to estimate uranium consumption rates below the

sediment-water interface and instantaneous diffusive fluxes of other solutes.

Briefly, the diffusive flux J at the sediment–water interface was estimated from the

sediment porewater concentration profile obtained with DET probe using the Fick’s first
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law of diffusion (Li and Gregory, 1974; Berner, 1980):

J(z) = −ϕ ·Ds ·
∂C(z)

∂z

where φ is the porosity, Ds is the diffusion coefficient in sediments (cm
2

s
−1

), C is the

concentration (mmolcm
−3

), z is the depth (cm) and ∂C(z)/∂z is the concentration

gradient across the sediment–water interface.5

Ds was estimated from values of the diffusion coefficient in water D reported in the lit-

erature corrected for temperature and salinity (Li and Gregory, 1974; Boudreau, 1997;

Schultz and Zabel, 2000) and the tortuosity θ of the sediment using the following equa-

tion:

Ds =
D

θ2
10

where θ was calculated from the porosity using the empirical relation given by

Boudreau (1997):

θ2
= 1− ln(ϕ2)

In our experiments the subsurface porosity was estimated at 0.75 in absence of

worms and 0.83 in presence of worms, independently of the uranium contamination.15

Thus the tortuosity values were θ2
=1.57 without worms (treatments C-0, C-12, U-0,

U-12) and θ2
=1.37 with worms (treatments CT-0, CT-12, UT-0, UT-12).

Differential equations were then solved numerically at a steady state to reproduce

C(z) and provide the best “reasonable” estimation of R(z) (Berg et al., 1998). The

boundary conditions were the concentration in the overlying water at the top and an20

absence of flux in deeper sediment. All fluxes were integrated over overlying water

height in order to be compared to net accumulation rates in overlying waters.
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2.4.5 Determination of the uranium concentration in the solid phase of the sed-

iment

After aforementioned analyses, at day 0 for U-0 and at day 12 for U-12 and UT-12,

the water was retrieved with a syringe and the sediment column was gently sliced at

a resolution of 1 cm. Each slice was dried at 60
◦
C for 72 h and then homogenised5

by manual grinding with a mortar. Three sub-samples of 1 g of dry sediment were

then mineralised by successive addition of HNO3, HCl and H2O2. After two cycles

of mineralization/evaporation (105
◦
C, 90 min) the solutions were filtered at 0.45 µm

(Minisart acetate cellulose filters) and subsequently analysed by ICP-AES to determine

the concentration of total uranium in the sediment. These data were used to calculate10

the global mass budget of uranium over the duration of the experiment.

2.4.6 Determination of the uranium bioaccumulation in T. tubifex worms

Four hours before dismantling the contaminated aquaria containing T. tubifex worms

(UT-12) the air bubbling was stopped to allow the worms to come out of the sediment.

A sample of worms was collected with a pipette to determine the bioaccumulation of15

uranium in them. After two hours of integument depuration in non-contaminated water

at ambient temperature (22–25
◦
C), samples of worms were dried at 60

◦
C for 48 h and

then mineralised with the following procedure. Each sample (ca. 630 mg) was miner-

alized by addition of 5 mL of HNO3 at 65 % and 5 mL H2O2 at 30 % followed by two

cycles of heating at 95
◦
C for 90 min. After complete evaporation, the solid residues20

were put in suspension in 10 mL HNO3 at 2 % at ambient temperature for 24 h. Sam-

ples were then filtered at 0.45 µm (Minisart acetate cellulose filters) and analysed by

ICP-AES. The quality control sample was prepared by adding a known concentration

of uranium to mineralized T. tubifex worms; this preparation was necessary because

no certified biological material was available for uranium measurement by ICP-AES in25

aquatic organisms. To estimate the amount of uranium in the total biomass the mea-

sured concentration was related to the mass of worms initially introduced in the aquaria
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with a minoration of 10 % to take into account the mortality of the species at this con-

centration of uranium (Lagauzère et al., 2009c).

2.5 Statistical analysis

All statistical analyses were performed with the Statistica software (StatSoft, Inc.,

OK, USA). Before each statistical analysis, the normality of the data was tested with5

a Shapiro–Wilk’s test and the homogeneity of the variances by a Levene’s test. These

tests were repeated after transformation of the data when these hypotheses were not

fulfilled. A threshold of significance of 5 % was applied for all statistical analysis.

i. The temporal variation of physico-chemical parameters of the water column were

analysed by repeated-measures ANOVAs (RM-ANOVAs) for each treatment.10

ii. The variation of total uranium concentration in the water was analysed by a Stu-

dent’s t test. To separate the effects of bioturbation and the effects of uranium

contamination, the variations of other parameters (iron, sulfates, nitrates and ni-

trites) were analysed by two-ways ANOVAs (“Tubifex”/“uranium”) completed by

post-hoc Fisher’s LSD tests.15

iii. The diffusive fluxes at the sediment–water interface in the different treatments

were analysed by one-way ANOVAs and compared by post-hoc Fisher’s LSD

tests.

3 Results

3.1 Chemistry of the water column20

For all the experimental treatments, the water temperature was maintained at 21.2

(±0.1)
◦
C, the dissolved oxygen concentration at 8.1 (±0.3) mgL

−1
and the pH at 8.4
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(±0.2) with no significant difference between the treatments and times of sampling

(RM-ANOVAs: P > 0.05; two-ways ANOVAs: P > 0.05).

The concentration of total uranium in the water column of contaminated aquaria,

with and without T. tubifex worms, according to time is presented in Fig. 1, with the

apparent net accumulation rate of uranium in the water column as an inset. In both5

cases, the concentrations of uranium increased during the experiment but they reached

clearly higher values in presence of worms in the sediment (117±9.6 nmolUcm
−3

,

i.e. > 3 times the concentration at day 0). It resulted in a net accumulation rate of

total uranium significantly higher (i.e. 5 times) in presence of worms (Student’s test:

t = −14.7, P = 0.000). The concentration of dissolved uranium measured with DET10

probes (see below) showed the same results (Fig. 2a–c).

Although several other compounds were effectively measured during the analyses,

only total dissolved concentrations of iron, sulfate, nitrate and nitrite were retained here

as certain compounds (e.g. manganese, potassium, phosphates) had concentrations

below the detection limits of the measurement devices (ICP-AES: 1 µgL
−1

, ionic chro-15

matography: 10 µLm
−1

), or simply provided no relevant information (e.g. chlorides, cal-

cium).

The results were the following:

i. Iron was not detectable in the water column of any aquarium (detection limit<
1 µLm

−1
) (Fig. 3a and b).20

ii. Independently of the uranium contamination, the concentrations in sulfate in-

creased significantly in the water column in presence of worms (ANOVA “Tubifex”:

F8,1 = 36.7; P = 0.000; “uranium”: F8,1 = 0.98; P = 0.35; “Tubifex·uranium”: F8,1 =

0.85; P = 0.38; Fisher LSD: P < 0.05) (Fig. 4a–c).

iii. The concentrations of nitrate in the control aquaria decreased without worms but25

increased strongly in their presence (Fig. 5a). In the contaminated aquaria, the

nitrate concentrations increased with time but it was greatly stronger in presence

of worms (Fig. 5b). The highest fluxes observed under the effect of bioturbation
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appeared similar between control and contaminated aquaria (ANOVA “Tubifex”:

F8,1 = 482; P = 0.000; “uranium”: F8,1 = 3.85; P = 0.04; “Tubifex·uranium”: F8,1 =

32.8; P = 0.000; Fisher LSD: P < 0.05) (Fig. 5c).

iv. For nitrite, despite low variations, slightly significant effects were noticed for

bioturbation (ANOVA “Tubifex”: F8,1 = 14.22; P = 0.005) and uranium contam-5

ination (ANOVA “uranium”: F8,1 = 223; P = 0.000) but not for the interaction

Tubifex·uranium (ANOVA “Tubifex·uranium”: F8,1 = 0.89; P = 0.37). In the control

aquaria, the nitrite concentrations diminished with time and this effect was ampli-

fied by bioturbation (Fig. 6a and c). In contrast, in the contaminated aquaria the

nitrite concentrations slightly increased with time independently of the bioturbation10

(Fisher LSD: P < 0.05) (Fig. 6b and c).

3.2 DET- Porewater concentration profiles

3.2.1 Uranium

The water column and sediment porewater concentrations profiles of uranium for the

three contaminated treatments (U-0, U-12 and UT-12) are presented in Fig. 2a–c. In15

all cases, the average concentrations of uranium determined in the water column by

the DET probes was similar to those obtained from non-filtered water samples (above-

mentioned results), indicating that almost all of uranium in the water column was un-

der a dissolved form. These results confirm an increase of uranium concentrations in

the water during the experiment with a much more pronounced effect in presence of20

worms.

Under the sediment–water interface, the shape of uranium profiles is similar

in all treatments and shows decreasing concentrations with depth (Fig. 2a–c),

probably due to its diffusion from the overlying water and its reduction within

the anoxic sediment. Modelling estimations from PROFILE reveal significant dif-25

ferences. On one hand, in absence of worms, the diffusive instantaneous inward
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flux more than doubled with time, from −0.09±0.00×10
−3

nmolUcm
−3

h
−1

(U-0)

to −2.21±0.01×10
−3

nmolUcm
−3

h
−1

(U-12). In response to increasing concentra-

tions in overlying water and subsequently increasing chemical gradient, uranium con-

sumption rate increased, indicating a strong kinetic dependency to substrate (i.e.

uranyl) concentration. On the other hand, the diffusive flux was lower with bioturba-5

tion (−0.07±0.01×10
−3

nmolUcm
−3

h
−1

). Indeed, uranyl production occurred in a fine

layer directly under the interface and the reduction started 1 cm deeper than in undis-

turbed sediment. This production, accounting for 5.75×10
−5

nmolUcm
−2

s
−1

, may be

relative to oxidation of upward-diffusing reduced uranium and then limited the total in-

ward flux.10

Order of magnitudes of instantaneous fluxes (Fig. 2d) and time integrated fluxes (in-

set graph of Fig. 1) can be compared: they both indicate that the presence of worms

clearly increased the uptake flux of uranium as a response to increased transfer to

overlying water from dissolution/release of particle-bounded uranium. Biogeochemical

pathways responsible for uranium consumption at depth did not seem to be quantita-15

tively modified by worm activities, at least at the experiment time scale.

3.2.2 Other dissolved species

Here again, for clarity and interest, only dissolved concentration profiles of total iron,

sulfate, nitrate and nitrite are presented (Figs. 3–6).

Total iron – without bioturbation (C-0, C-12), the iron profiles show increasing con-20

centrations from the sediment–water interface to a certain depth and then a decrease

(Fig. 3a). They are characteristics of an upward diffusion of Fe
2+

in top sediment, the

remobilisation of iron through dissolutive reduction of iron oxi/hydroxides in deeper sed-

iment, and a removal by precipitation onto mineral phases within the bottom sediment.

With bioturbation (CT-12), the concentrations of iron in the sediment were globally lower25

and decreased gradually with depth but no peak appeared on the profiles (Fig. 3b). The
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same trends were observed in contaminated aquaria (U-0, U-12, UT-12) with an addi-

tional increase of concentrations in the deepest part of the profiles (Fig. 3b).

All profiles indicated an upward diffusive flux at the top of the sediment (Fig. 3c)

though no dissolved iron was detected in the water column. This could be explained by

a direct precipitation of released iron since the water was well oxygenated.5

Sulfate – in the uncontaminated aquaria (C-0, C-12), the sulfate concentration pro-

files showed a net production under the sediment–water interface and consumption in

depth (Fig. 4a), resulting in a net outward flux towards the water (Fig. 4c). With bioturba-

tion (CT-12), the highest concentrations were detected in the water column and sulfates

diffuse towards the sediment where they were directly consumed under the interface10

(Fig. 4d). The presence of uranium also modified these profiles (Fig. 4b): the produc-

tion of sulfate under the sediment–water interface was not yet observed in undisturbed

aquaria (U-0, U-12) but occurred in a fine layer in bioturbated ones (UT-12). Finally, the

consumption of sulfate in bottom sediment probably due to bacterial sulfate-reduction

resulted in an inward diffusive flux in all contaminated aquaria (Fig. 4c).15

Nitrate – in control aquaria without worms (C-0, C-12), the concentrations of nitrate

were low and the profiles were poorly marked (i.e. no significant flux at the sediment–

water interface), only indicating a slight consumption within sediment (Fig. 5a and d).

On the other hand, the concentrations were higher in presence of worms (CT-12) and

the profile showed a slight outward diffusive flux (Fig. 5a and d). In contaminated20

aquaria, the profiles appeared clearly different. Without bioturbation (U-0, U-12), de-

spite some irregularities in the shape of the profiles, the concentrations of nitrate gradu-

ally increased in the sediment, indicating a clear production of this compound (Fig. 5b).

The resulting diffusive fluxes were directed towards the sediment (Fig. 5c and d). Here

again, in presence of worms (UT-12), the concentrations were higher and the profile25

showed a negative peak across the sediment–water interface reflecting consumption

of nitrate (Fig. 5b). However, production also occurred in this case but deeper in the

sediment. The net diffusive flux was directed towards the overlying water (Fig. 5d).
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Nitrite – compared to nitrate, the concentrations of nitrite were very lower. Except

for the U-0 condition for which PROFILE modelling estimated a clear production of

nitrite within sediment, the other profiles indicated very slight diffusive fluxes related

rather to consumption in undisturbed sediment (C-0, C-12, U-12) and to production in

bioturbated sediment (CT-12, UT-12) (Fig. 6a–d).5

3.3 Bioaccumulation in T. tubifex worms

The average concentration in uranium determined in the tissues of the T. tubifex worms

after 12 days of exposure was 37.4 (±8.3) µgUg
−1

dry weight. As the concentration

of uranium in the surrounding sediment was around ten times higher, it can be con-

cluded that these organisms did not bioconcentrate uranium (Bioconcentration factor10

BCF≪ 1). However, it can be noted a low bioconcentration by comparing the value of

bioaccumulation to the concentration in the water closed to the sediment–water inter-

face (BCF=1.3±0.1) or to the porewater concentration in the sediment surrounding

worms (BCF=2.3±0.1).

3.4 Mass balance of uranium15

Table 1 presents the mass balance of uranium between the different compartments

(water column, sediment, pore water, organisms) for the initial conditions (day 0) and

after 12 days with or without bioturbation. Although equilibrium was not reached after

12 days of experiment, since between treatments U-0 and U-12 the concentration in

water continued to rise (∼ 1 %), the results confirmed that uranium did not remain within20

the sediment and was released through the water column. Bioturbation has a stronger

effect on this remobilisation with more than 5 % of uranium being removed from the

sediment towards the water phases at the end of the experiment.
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4 Discussion

4.1 Bioturbation effects in uncontaminated sediment

Although the main goal of this study was to investigate the distribution and transfers

of uranium in bioturbated sediment, the comparison of parameters in uncontaminated

aquaria (C-0, C-12, CT-12) have permitted to improve substantially our global knowl-5

edge of biogeochemical processes influenced by the bioturbation of T. tubifex worms.

It is thus important to rapidly discuss these results. The most visible consequence of

bioturbation was the changes of the water quality with increasing concentrations of sul-

fate and nitrate. Since there was not influx of water during the experiment (excepted

additions made to compensate evaporation and sampling), these results can be only10

related to changes occurring within the sediment.

In the absence of uranium contamination, the worms reached the bottom of the

aquaria (10 cm) and induced a high upward advection of sediment particles towards

the water column (Lagauzère et al., 2009a, c). A fine layer of mucus-bounded faecal

pellets appeared at the top of the sediment. The sediment–water interface area mod-15

erately increased, the oxygen penetration depth was reduced from 3 to 2 mm, and the

diffusive oxygen uptake (DOU) of sediment was enhanced by 14 % (Lagauzère et al.,

2009b). In accordance with previous works reported in the literature, it has been sug-

gested that these observations were relative to a global stimulation of microbial activity

through notably a supply of labile organic matter, the re-fractioning of sediment parti-20

cles, and the providing of new microniches for micro-organisms involved in diagenetic

processes (Mermillod-Blondin et al., 2013). The upward-bioconveying of sediment par-

ticles also induces oxidation of reduced compounds removed from the bottom sediment

(i.e. iron sulfide Fe-S), and enhances fluxes of nutrients due to higher diffusion and ad-

vection processes (Matisoff, 1995; Mc Call and Fisher, 1980; Mermillod-Blondin et al.,25

2005; Nogaro et al., 2007; Svensson et al., 2001). In the case of high densities of

benthic worms (20 000–70 000 indm
−2

), as used in our study, high removal of reduced

compounds coupled with intensive aerobic microbial activity in the faecal pellet layer
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hampers the oxygen penetration in surface sediments (Pelegri and Blackburn, 1995).

These authors suggested that denitrification and sulfate-reduction would be favoured

by these suboxic/anoxic conditions whereas nitrification would be limited to a very fine

layer under the sediment–water interface. In the present work, the profiles obtained

from DET-gel probes partially confirm these assumptions. For instance, the higher sul-5

fate concentrations measured in bioturbated aquaria (CT-12) can be explained by re-

moval of reduced sulfur and its subsequent oxidation in the water. Sulfate ions diffuse

therefore towards the sediment where they are rapidly consumed by sulfate-reducers.

Inversely, in undisturbed sediment (C-0 and C-12), the concentration profiles show

a peak under the sediment–water interface that reflects production of sulfate through10

iron sulphide oxidation since top sediment was more oxygenated than in bioturbated

sediment. This apparent production in sediment can also be due to gypsum dissolu-

tion as gypsum particles are commonly present in the Verdon River, the main tributary

of the Esparron Lake (E. Viollier, personal communication, 2012). Without upward ad-

vection of sediment particles, as induced by worms (see below), the concentrations of15

sulfate remained low in the water column.

On the other hand, nitrate and nitrite concentration profiles do not directly fit the

assumption of an enhanced denitrification and a limited nitrification. In all cases, the

concentrations were rather homogeneous with sediment depth that indicates a lower

nitrogen turn-over. Nevertheless, the only remarkable profiles correspond to aquaria20

with bioturbation (CT-12). In this case, concentrations were also more or less constant

on the entire profile but much higher than in undisturbed aquaria. As suggested by Stief

and De Beer (2002), this result can be explained by a high coupling of denitrification

and nitrification processes resulting in a fast turn-over of nitrogen in sediment. Through

enhanced organic matter mineralization and their own excretion, the worms lead to25

the production of ammonium which is in return re-oxidized into nitrite and nitrate. The

nitrate concentration profile shows however a low diffusion towards the sediment which

can be related to consumption by denitrification.
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Finally, it is important to note the downward shift of iron profiles with bioturbation,

which indicated a higher dissolutive reduction of Fe(III)-oxi/hydroxides compared to the

undisturbed sediment. Here again, the particle reworking of the sediment column was

likely to enhance the removal of iron from bottom sediment towards a more reactive

zone and then to increase its global turn-over.5

4.2 Bioturbation effects in uranium-spiked sediment

As already mentioned, previous experiments conducted in strictly same conditions

have permitted to obtain a solid basis to understand the influence of T. tubifex bio-

turbation in uranium-spiked sediments and to choose the most suitable experimental

design for the present study (Lagauzère et al., 2009a–c). At the tested concentration of10

ca. 600 µgUg
−1

dry sediment (i.e. > 100 times the background level for freshwater sed-

iments), the population of worms was reduced by 10–20 % after 12 days of exposure.

Uranium induced several negative effects on T. tubifex (e.g. malformations, autotomy,

loss of biomass) that became significant only for these higher concentrations. Never-

theless, their bioturbation activity was significantly affected from this level of contamina-15

tion. The most easily observable effects were a 2-fold reduction of the total length of the

gallery network, a net concentration in upper layers of sediments (< 2 cm), a lower max-

imal penetration depth (6 cm) and asynchronous, disordered and slower movements of

sampled individuals. By simulating vertical profiles of particle tracers (microspheres

and luminophores) with diagenetic models, it was possible to estimate a decrease of20

advective (60–70 %) and diffusive transports (25–30 %) induced by bioturbation in con-

taminated sediments (Lagauzère et al., 2009a). Likewise, in presence of worms the

porosity was only enhanced of 10 % in the first cm of uranium-spiked sediments while

it reached more than 20 % within 2 cm in uncontaminated sediments. Finally, it is im-

portant to note that the lower penetration and dispersal of worms within the sediment25

column led to a 2-fold higher ingestion rate compared to control sediment, with a peak

in the nearest cm under the sediment surface. As a main hypothesis, it was suggested

that the behavior of worms resulted in a trade-off between avoiding contaminated sed-
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iment and yet remaining within it to meet their physiological needs and to be protected

from predators.

Despite the negative effects of uranium on the activity of T. tubifex worms, the con-

centration of uranium in the water column was multiplied by 5 in the course of the three

aforementioned studies, a result again confirmed in the present case. As demonstrated5

for other metals, such a release of uranium can be explained by the removal of parti-

cles from anoxic layers to the surface of sediment through the digestive tract of worms.

Nevertheless, underlying biogeochemical processes needed to be investigated further-

more to support this hypothesis and to provide additional information on the influence

of tubificid worms in contaminated sediments. Previous results relative to DOU (Diffu-10

sive oxygen uptake) of sediments, which is a representative parameter of the global

functioning of sediment, have shown a net increase due to both uranium contamina-

tion (+24 %), T. tubifex bioturbation (+14 %), and the combination of these two factors

(+53 %). The present study has permitted to confirm and quantify the direct and in-

direct oxidative loss of uranium initially associated with sediment and to demonstrate15

a clear impact of uranium and/or bioturbation on microbial-driven diagenetic reactions.

First, it is important to consider the information provided from experimental units

without T. tubifex worms. As confirmed by DET profiles, uranium released in the water

was actually produced in the oxic sediment (< 3 mm). Initially, uranium was added to

the sediment in close beakers kept without oxygenation for 4 weeks. In this state, most20

of uranium would be under insoluble and reduced form U(+IV). After assembling the

aquaria, the sediment became in contact with aerated water and uranium could gradu-

ally desorbed and be oxidized into its soluble form U(+VI). This result is supported by

previous experimental work demonstrating that the oxidation of reduced uranium solid

phases is a fast process (Anderson et al., 1989; Cochran et al., 1986). By comparing25

concentrations of uranium in the water of U-0 and U-12 aquaria, it can be noticed that

this process was still on going after 12 days of experiment, so that equilibrium state

had been not yet reached. As a consequence, the diffusive flux of uranium towards the

sediment increased during the duration of the experiment due to increasing concentra-

17021

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/17001/2013/bgd-10-17001-2013-print.pdf
http://www.biogeosciences-discuss.net/10/17001/2013/bgd-10-17001-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD

10, 17001–17041, 2013

Remobilisation of

uranium from

contaminated

freshwater sediments

S. Lagauzère et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

tion in the overlying water. Although the direct oxidative loss of uranium could explain

the enhanced DOU of sediment (+24 %), it was assumed that uranium could influence

several microbial-driven diagenetic processes.

First of all, sulfate concentration profiles show the disappearance of the sulfur oxi-

dation layer in top sediment and only reflect a low diffusion of sulfate from the water to5

the sediment and then a lower sulfate-reduction rate. In the present case, the micro-

organisms involved in the sulfur cycle were not stimulated and even rather inhibited by

uranium contamination.

In the same manner, profiles of nitrate/nitrite concentrations in the contaminated

aquaria show clear differences with the control aquaria. The concentrations in the sed-10

iment were higher that could reflect intensive nitrification process. However, these con-

centrations might be more probably explained by the way of sediment contamination

itself since uranyl nitrate was used. Nevertheless, this nutrient supply seemed to not be

consumed by denitrification. Here again, the uranium contamination did probably not

influence micro-organisms involved in the nitrogen cycle, all the more than they were15

not already very active in the uncontaminated sediment.

In contrast, uranium has induced slight modifications of the iron cycle as indicated by

higher concentrations of dissolved iron in bottom sediment due to potentially enhanced

dissolutive reduction of Fe(III) oxi/hydroxides.

Although no strong stimulation of microbial activity linked to sulfur, nitrogen or iron cy-20

cles by uranium was put in evidence in this work, some examples have been reported in

the literature. Most of these studies deal with the immobilization of uranium in sediment

by favoring its reduction in the context of bioremediation of contaminated water. Indeed,

uranium can be a potential substrate for anaerobic respiration (Lovley et al., 1991).

Most of dissimilatory metal-reducing bacteria capable of conserve energy by coupling25

organic matter and H2 oxidation with reduction of metallic ions can also reduce uranyl.

As well, some sulfate-reducing bacteria can catalyze the reduction of ferrous ions or

uranyl ions without keeping energy or grow up with these ions as sole electron accep-

tors (Wilkins et al., 2006). In contaminated sites, it was demonstrated that anaerobic
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prokaryotes were easily cultivable on nuclear wastes, with a clear dominance of nitrate-

reducing organisms (Akob et al., 2007). Besides these reduction processes, oxidation

of uranium (uraninite) can also be biotically favored in presence of nitrate or Fe(III) ox-

ides but it remains currently unknown if bacteria turn a gain of energy from this reaction

(Borch et al., 2010). Comparatively to these studies, the present experiment represents5

the first assessment of uranium contamination on microbial communities not previously

exposed to pollution. More generally, toxicity of uranium to micro-organisms has been

so far poorly investigated and appears to be lower than for other heavy metals (Nies,

1999). A case of resistance has been also reported in an aerobic bacterium capable

for detoxification through formation and rejection of intra-cytoplasmic granules (Suzuki10

and Banfield, 2004). Here, we indirectly demonstrated an inhibition of the activity of

micro-organisms involved in sulfur and nitrogen cycles after some weeks of exposure

to contaminated sediment. However, from these results, it is not possible to conclude

to long-term effects of such a contamination and potential adaptations processes of

micro-organisms could not be excluded (Hoostal et al., 2008). Finally, in absence of15

available estimations of aerobic microbial activity alone, the higher oxygen consump-

tion of sediment in presence of uranium should be mainly attributed to its oxidation that

leads to increase its concentration in the water by solubilisation. Without more evident

stimulation of metal reducers, the oxidation of uranium may be primarily abiotic.

The presence of T. tubifex worms introduced another transfer pathway of uranium20

previously associated with sediment. By conveying particles directly from the depth of

maximal ingestion rate (2 cm), which is within the reducing zone, to the sediment sur-

face, oxidative dissolution of uranium was greatly enhanced. In addition, the contact

of ingested particles with digestive tract solutions is likely to have contributed to ura-

nium dissolution. Already observed in marine environments accumulating authigenic25

uranium (Zheng et al., 2002), these results confirm what was previously reported for

other metals in freshwater sediments (Ciutat and Boudou, 2003; Ciutat et al., 2007;

Krantzberg, 1985; Matisoff, 1995). The flux modelling corresponding to UT-12 profile

indicates that this process was all the more so efficient that bioturbation also limited
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the diffusive flux from the water to the sediment due to the presence of an oxidation

layer in top sediment. As well, a low bioaccumulation of sediment-associated uranium

during the digestive tract of particles into the worms has favoured its release. Only

the bioconcentration factors relative to water were higher than 1, indicating that diffu-

sion of dissolved uranium through the tegument of worms may be the dominant way5

of exposure and accumulation. However, this effect was weak, probably because of

the water hardness (152 EqmgCaCO3 L
−1

) and the pH (8.6) that considerably limit the

bioavailability of uranium (Markich, 2002; Sheppard et al., 2006). Nevertheless, long-

term effects need to be assessed furthermore to determine potential adaptation of

worm populations or on the contrary increased bioaccumulation and toxic effects due10

to increasing uranium concentration in the water.

Although the upward particle advection induced by the worm feeding mode was ap-

parently the most influent factor in the present case, the diagenetic behaviour of metal-

lic pollutants can also be indirectly modified by bioturbation-driven changes of sediment

properties (e.g. redox boundaries). In presence of T. tubifex worms, the DOU of sedi-15

ment increased of 18 % in comparison with undisturbed aquaria (U-0 and U-12) and of

53 % when sediment was initially not contaminated (C-0 and C-12) (Lagauzère et al.,

2009b). From these results it was suggested that bioturbation stimulated aerobic reac-

tions already favoured by uranium. However, the present experiment did not confirm

totally this hypothesis since anaerobic reactions were mainly stimulated. Like in control20

aquaria, sulfate and nitrate concentrations increased in the water due to modifications

in the sediment. The profile of sulfate seems to result of combined effect of uranium

(i.e. inhibition of micro-organisms involved in sulfur cycle) and bioturbation (i.e. upward-

bioconveying of reduced sulfur from bottom sediment, subsequent oxidation in the wa-

ter and diffusion towards the sediment where it was consumed by sulfate-reduction),25

the latter apparently the dominant. For nitrate, the same trend was observed as the

profiles were marked by a negative peak around the interface that can be explained

by the use of the nitrate supply due to contamination by uranyl nitrate. Although nitrate

were not reduced in absence of worms (U-0 and U-12), the bioturbation seemed to
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have stimulated denitrification in UT-12 aquaria, a reaction which was already slightly

enhanced in control conditions (CT-12). It is however difficult to explain nitrate con-

centration increase at depth since the bioturbation activity was damped from 2 cm.

The occurrence of transient anaerobic nitrification based on ammonium oxidation by

manganese oxides, as proposed in the case of newly deposited sediment (i.e. flood5

sediments or turbidites) in recent studies (Anschutz et al., 2002; Chaillou et al., 2008;

Clément et al., 2005) could be considered for instance. The nitrate profile was particu-

larly complex in contaminated sediment where the interplay with denitrification seems

to play an important role. In contrast, the dissolutive reduction of iron oxi/hydroxides

did not seem to be modified by the presence of worms.10

The higher oxygen consumption of sediment was therefore mainly attributed to oxi-

dation of reduced materials removed from bottom anoxic sediment. Nevertheless, aer-

obic microbial respiration could have been stimulated by the higher supply of labile

organic matter due to toxic effect on worms themselves (i.e. mortality of 10–20 % of the

worm population, enhanced mucous production by resistant individuals and lost of the15

posterior part of their bodies through a detoxification process).

Finally, after only 12 days of bioturbation, around 5 % of uranium initially associ-

ated with sediment was removed towards the aqueous phases. Based on estimation

of diffusive fluxes in the different experimental treatments and uranium accumulation

in water, a conceptual outline is proposed in Fig. 7 to visualize the transfers of ura-20

nium in presence of worms in the sediment. Considering a Predicted No-Effect Con-

centration (PNEC) of 23 mgUL
−1

, as estimated from our experimental conditions (pH

8.6, water hardness 152 EqmgCaCO3 L
−1

), the concentration reached in the water

(∼ 30 mgUL
−1

) due to bioturbation represents a serious threat for the aquatic biota

(Sheppard et al., 2006). However, the benthic response to increasing concentration25

in the water corresponds to enhanced downward diffusive fluxes. Until a steady state

would be reached, it would account for increasing bioaccumulation of uranium and

possible toxic effects slowing down bioturbation activity. In the other hand, long-term
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adaptations are likely to occur for a tolerant species such as T. tubifex if some popula-

tions are gradually or punctually exposed to uranium contamination in the environment.

5 Conclusions

This work confirms the major role of T. tubifex bioturbation in the biogeochemistry of

freshwater sediments in general (e.g. stimulation of diagenetic processes, remobilisa-5

tion of reduced materials, redistribution of solutes), and in the remobilization of ura-

nium from the sediment. Despite a lower bioturbation activity in uranium-contaminated

sediment, these biogeochemical processes are maintained and some microbial com-

munities are even stimulated (denitrifying and sulfate-reducing bacterial communities)

compared to non-bioturbated sediments (Table 2). It remains unclear if these changes10

indirectly influence the uranium distribution but T. tubifex play a key-role in the remo-

bilisation of this metal from the sediment to the water through upward bioconveying

of sediment particles. Long-term effects still need to be assessed, microbial diversity

and activity have to be investigated more precisely through molecular approach, and

experiments should be extended to real contaminated sites. However this study pro-15

vides the first demonstration of biogeochemical modifications induced by bioturbation

in freshwater uranium-contaminated sediment. As regard to the high tolerance of tubi-

ficid worms to sediment contamination and the potential risk for aquatic biocenosis

exposed to dissolved uranium, it appears crucial to consider bioturbation as an impor-

tant factor in further studies, notably in the development of bioremediation strategies20

where the potential key-role of bioturbation is largely overlooked.
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Table 1. Mass balance of uranium between the different compartments of the benthic ecosys-

tem reproduced in mesocosms. Means in %±SD (N = 3).

Preparation

of aquaria

Day 0

U-0

Day 12

(−) Tubifex

U-12

Day 12

(+) Tubifex

UT-12

Sediment ∼ 100 99.2 (0.21) 98.1 (0.21) 95.5 (0.44)

Porewater n.a. 0.16 (0.01) 0.37 (0.04) 0.84 (0.22)

Water column – 0.63 (0.20) 1.53 (0.19) 4.36 (0.44)

T. tubifex worms

(bioaccumulation)

– – – 0.13 (0.06)
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Table 2. Effects of T. tubifex and uranium on sediment biogeochemistry.

Parameter + Tubifex + Uranium + Tubifex/uranium

O2 consumption Increased (+14 %)
∗

Increased (+24 %)
∗

Increased (+53 %)
∗

– higher OM

mineralization

– oxidative loss of

uranium

combined effects

+OM supply

– oxidation of

removed reduced

compounds

– stimulation of aerobic

micro-organisms (?)

Fe-cycle Increased dissolutive

reduction

Increased dissolutive

reduction

Increased dissolutive

reduction

(no additional effect)

N-cycle Higher turn-over

Increased denitrification

Slightly increased

nitrification (?)

Increased denitrification

Complex coupling

S-cycle Increased sulfate-

reduction

Decreased sulfate-

reduction

Increased sulfate-

reduction

Water quality Increased

[SO
2−

4
] and [NO

−

3
]

Increased

[NO
−

3
], [NO

−

2
]

and [totU]

Increased

[SO
2−

4
], [NO

−

3
], [NO

−

2
]

and [totU]

∗
From Lagauzère et al. (2009b).
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Fig. 1. Temporal variation of the total uranium concentration in the water column, without (©)
and with (N) T. tubifex worms inhabiting the sediment. The inset bar chart shows the
net accumulation rate of uranium after 12 days. Means±SD (N = 3).
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Fig. 2. (A–C) Dissolved uranium concentration profiles and instantaneous consump-

tion/production rates in the sediment estimated in the different treatments (at initial conditions

[U-0], and after 12 days without [U-12] or with [UT-12] T. tubifex worms in the sediment) us-

ing the software PROFILE. Grey dots are measured concentrations (Means±SD, N = 3) and

the fine black line the fitted concentration profile. The bold black line shows the production as

a function of depth modelled from the concentration profile. The dotted line indicates the sed-

iment–water interface. (D) Diffusive downward fluxes (integrated with the height of overlying

water) of dissolved uranium in the different treatments estimated from concentration profiles.

Means±SD (N = 3). Different letters correspond to significant differences between treatments.

17036

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/17001/2013/bgd-10-17001-2013-print.pdf
http://www.biogeosciences-discuss.net/10/17001/2013/bgd-10-17001-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD

10, 17001–17041, 2013

Remobilisation of

uranium from

contaminated

freshwater sediments

S. Lagauzère et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Fig. 3. Dissolved total Fe concentration profiles in uncontaminated (A) and uranium-spiked

sediment (B) in the different treatments: at initial conditions [C-0] and [U-0] (©), and after
12 days without [U-12] (⋄) or with [UT-12] (N) T. tubifex worms in the sediment. The
bar chart (C) indicates the corresponding integrated outward diffusive fluxes at the
sediment–water interface estimated using the software PROFILE. Means±SD (N = 3).
No significant difference was detected between treatments.
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Fig. 4. Dissolved sulfate concentration profiles in uncontaminated (A) and uranium-spiked sed-

iment (B) in the different treatments: at initial conditions [C-0] and [U-0] (©), and after 12 days
without [U-12] (⋄) or with [UT-12] (N) T. tubifex worms in the sediment. The bar chart
(C) corresponds to the net accumulation rate in the water column after 12 days. The
bar chart (D) shows the integrated diffusive fluxes at the sediment–water interface esti-
mated using the software PROFILE. Means±SD (N = 3). Different letters correspond
to significant differences between treatments.
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Fig. 5. Dissolved nitrate concentration profiles in uncontaminated (A) and uranium-spiked sed-

iment (B) in the different treatments: at initial conditions [C-0] and [U-0] (©), and after 12 days
without [U-12] (⋄) or with [UT-12] (N) T. tubifex worms in the sediment. The bar chart (C)
corresponds to the net accumulation rates in the water column after 12 days. The bar
chart (D) indicates the integrated diffusive fluxes at the sediment–water interface esti-
mated using the software PROFILE. Means±SD (N = 3). Different letters correspond
to significant differences between treatments.
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Fig. 6. Dissolved nitrite concentration profiles in uncontaminated (A) and uranium-spiked sedi-

ment (B) in the different treatments: at initial conditions [C-0] and [U-0] (©), and after 12 days
without [U-12] (⋄) or with [UT-12] (N) T. tubifex worms in the sediment. The bar chart (C)
corresponds to the net outward flux in the water column after 12 days. The bar chart
(D) indicates the corresponding diffusive fluxes at the sediment–water interface esti-
mated using the software PROFILE. Means±SD (N = 3). Different letters correspond
to significant differences between treatments (no significant differences detected on D).
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Fig. 7. Conceptual outline of the repartition and transfers of uranium within a sediment

without macro-invertebrate (A) or bioturbated by T. tubifex worms (B) under an oxygenated

water column (U oxi=uranium under its oxidized form, U red=uranium under its reduced

form). Framed values indicate the estimated fluxes of uranium over the 12 days of experiment

(10
−3

nmolcm
−3

h
−1

): diffusion values correspond to diffusive fluxes estimated with profile; out-

ward flux values, i.e. desorption/oxidation± removal by bioturbation, correspond to variation of

uranium concentration in water column in [U-12] and [UT-12] aquaria, respectively.
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