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Abstract: 

The aim of this paper was to estimate the potential leakage of acrylamide monomer, used for 

flocculation in a settling basin, towards the groundwaters. Surface-groundwater interactions were 

conceptualized with a groundwater transport model, using a transfer rate to describe the clogged 

properties of the interface. The change in the transfer rate as a function of the spreading of the 

clogged layer in the settling basin was characterized with respect to time. It is shown that the water 

and the Acrylamide transfer rate are not controlled by the spreading of the clogged layer until this 

layer fully covers the interface. When the clogged layer spreads out, the transfer rate remains in the 

same order of magnitude until the area covered reaches 80%.  The main flux takes place through 

bank seepage. In these early stage conditions of a working settling basin, the acrylamide flux towards 

groundwaters remains constant, at close to 10 g/yr (± 5). 
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1. Introduction:  

Emerging contaminants are compounds that were previously not detectable but that are now being 

found in groundwater. The environmental routes by which these compounds enter groundwaters, 

their toxicity and the potential risks to drinking water and aquatic ecosystems are a source of great 

concern (Stuart et al. 2012). One of these contaminants is acrylamide (AMD), a carcinogenic, 

mutagenic and reprotoxic monomer (Stuart et al. 2012). AMD is a process residue associated to the 

use of polyacrylamide (PAM)-based flocculants. These flocculants are used by quarries to improve 

the separation of suspended particles in water and hence its clarification and recycling in the 

treatment plant. All the papers dealing with AMD in natural waters report the presence of AMD in 

significant concentrations after PAM-based flocculants were used (Brown & Rhead 1979; Chu & 

Metcalfe 2007; Croll et al. 1974). Recent progress in AMD measurements shows the presence of 

AMD in the surface waters and sediment pore waters of the settling basins used in an aggregates 

quarry (Touzé et al. 2014). The relationship between quarry basin and the surrounding groundwater 

quality has already been well demonstrated (Muellegger et al. 2013). 

A number of studies have been conducted to estimate the biodegradation of AMD in the 

environment. Results generally indicate that there is a widespread microbial ability to degrade AMD 

in various environments, soils, sediments and water (Guezennec et al. 2014). However, the reactivity 

of AMD in low concentration conditions such as groundwater has rarely been studied. So far, no 

significant reactivity has been demonstrated in groundwaters and no significant adsorption was 

observed in sediment composed of 90% sand and 10% feldspar (Mnif, et al. 2014). 

The second key parameter to estimate the mass flux toward the groundwater is the water transfer 

rate ;SophoĐleous et al., ϮϬϬϮͿ. Based on DarĐǇ’s laǁ the ǁater fluǆ (Qi [m3/day]) through this 

interface with a surface (A [m²]) is described using a transfer rate (1/dayand the head difference 

(h [meter]) between the basin and the groundwaters (Eq. 1). 
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Qi = A h   (Eq. 1)  

In many hydrological contexts, the transfer rate between surface water and groundwater changes 

with time related to an increase in the infiltration rate (Binet et al. 2007), or related to the cover 

change in the interface properties (Binet et al. 2006). In settling basins, low permeability sediments 

create a clogged layer at the interface between surface and ground water. This clogged layer can be a 

pollution retention zone (Dechesne et al. 2004) or an interface. It is an unconsolidated layer, with 

time dependent properties (Siriwardene et al. 2007). This interface spreads out, increases in 

thickness and changes the hydraulic properties of the interface. Schubert (2002) reports that the 

transfer rate of clogged areas varies with the dynamic hydrology and cannot be regarded as a 

constant. The transfer rate of the riverbed is therefore a major factor determining the volume of 

bank filtrate, and may evolve in space and in time (Rosenberry & Pitlick, 2009) from high values 

controlled by the aquifer hydraulic conductivity to a low value controlled by the low hydraulic 

conductivity and thickness of the clogged layers. Clogging of inflow regions produces heterogeneous 

subsurface clay deposits even when the bed is initially homogeneous (Packman & Mackay 2003). 

Kalbus et al.  (2009) observed that a homogeneous low-K streambed, a case often implemented in 

regional-scale groundwater flow models, resulted in a strong homogenization of fluxes, which may 

have important implications for the estimation of peak mass flows. All these papers highlight that 

fluxes are controlled by the interface heterogeneities. 

The aim of this article is to determine the mass flux of AMD seeping from a settling basin toward the 

groundwaters. Knowing the behavior of AMD in porous media and applying the hydrology concepts 

of lake / groundwater interactions (Sophocleous, 2002), the annual mass flux can be estimated. To 

achieve this, a groundwater transport model was developed. Calibration of the model is based on 

pumping and tracer test field scale experiments, coupled with a mapping of the interface clogging. 

The mass flux of AMD was estimated from the AMD concentration in surface water and the 

properties of the clogged layer, assuming conservative conditions of AMD in groundwater. The 
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hypotheses are confronted with field observations of water heads and AMD in groundwater.  The 

discussion focuses on the reactivity of AMD in the aquifers and on the relationship between the 

water transfer rate and the spread of the clogged layer in the basin. 

2. Methods for the characterization of surface water/ groundwater interactions 

2.1. Case study: geometric characterization and hydraulic heads 

The settling basins are located in an alluvial plain, 1.5 km from the river. The studied basin is used for 

the storage of the fine particles contained in the process water of an aggregates treatment plant 

(Touzé et al. 2014).  Figure 1 shows the study area. The black rectangle delineates the modeled zone. 

Limits of the model were defined to be parallel to the observed groundwater flow. The settling basin 

is divided into two sub-basins, B1 and B2, where the water head fluctuations were recorded using an 

OTT® probe. In 2010, construction of the embankment between B1 and B2 had not been finished but 

this was completed by the 2011-2013 monitoring period. Basin B1 has been in use since September 

2011. Its surface is about 19 030m² and the average water flow rate entering the basin is 500 m3/day. 

The flow rate of fines is estimated to be about 6,700 t (dry weight)/year. Basin B2 is unexploited. Five 

observation wells were drilled around these basins.  PZ1, PZ2 and PZ3 were used for water head 

monitoring with a mini OTT® probe. PZB and PZC are about 10 m apart. They were used for pumping 

and tracer tests. 

Elevations above sea level of the water head observation points were measured using a Differential 

GPS method with an accuracy of about 10 cm (Solution G.N.S.S., 2007). The regional water flow is 

from south-east to north-west, according to the water table map, and was measured in February 

2012. 

2.2. Characterization of water transfer rate and properties of the clogged layer  

The thickness and spatial distribution of the settling sediment deposits in basin B1 were mapped 

using bathymetric methods and differential GPS (Bru, 2014). First the bottom of the basin was 
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mapped in May 2011 i.e. before commissioning. The elevation of the bottom bed was recalculated 

using the water table observed on the day of the experiment. The dataset was interpolated using the 

kriging method to create a digital elevation model (DEM) of the basin bottom. Mapping was then 

performed 3 times, in November 2011, June 2012 and October 2012. The difference between the 

three DEMs gave the thickness and the extent of the settling sediments that clogged the interface 

between surface water and groundwater. From this a volume of clogged sediments and an error 

range on the volume induced by the method were calculated. 

The water transfer rate () [1/day] was deduced from the water balance of the basin. The inputs of 

the system are the amount of water [m3/day] from the quarry process (Qex) and the precipitation 

waters (Qrain). The outputs are the infiltrated water (Qi) and the evapotranspirated water (QETR). Thus, 

the water balance of the basin can be expressed as follows: 

QS = QRain + Qex - Qi - QETR  (Eq. 2)  

where QS is the change in the water stored in the basin. 

During the closure days of the quarry, Qex=0, and if the discharge (Qi) is expressed as a function of 

the basin surface (Sl [m²]): 

Qi = (RR + S - ETR)* Sl   (Eq. 3)  

where RR is the precipitation [meter/day)], S the water table change [meter/day] and ETR the 

evapotranspiration [meter/day)]. The values of RR and ETP were recorded by the French 

meteorological network. The weather station is located 13 km from the study basin. 

The head difference (h) [m] between the basin and the aquifer was estimated using the PZ1 

observation well:  

h = hB1 - h PZ1   (Eq. 4) 

Thus, the observed transfer rate (o [1/day]) can be estimated: 
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                 (Eq. 5) 

2.3. Evaluation of groundwater migration using a transport model 

One solution to estimate the mass flux towards the groundwater is to apply a conceptual model of 

surface water /groundwater interactions (Binet et al. 2013), but this approach does not enable the 

spatial variability of these interactions and the change in time of the hydraulic properties to be 

explored. The second possibility is to use the advection, dispersion, degradation model, using a 

groundwater flow model such as Modflow (McDonald & Harbaugh, 1988) or Feflow (Diersch, 2005). 

If no reactions occur, then the transport in a medium is determined by the advection and the 

dispersion:  

       ሺ   ሻ    ሺ ⃗ ሻ      (Eq. 6) 

where c [g/meter3] represents the volumetric mass concentration of the contaminant in space and 

time,  represents the gradient and . the divergence. Q [g/day] is the external contamination-

source rate of injection and D [meter²/day] stands for dispersion. The second term is known as the 

diffusive flux and the third one the advective flux. The flux velocity vector (v [meter/day]) is 

calculated from DarĐǇ’s law, knowing the hydraulic conductivity (K [m/s]), the porosity (n [/]) and the 

hydraulic head gradient (h [meter]) 

 ⃗           (Eq. 7) 

Knowing D, K and n, the migration of AMD towards the saturated flows can be investigated by solving 

equation 1 with a finite elements model that discretizes a 3D aquifer with movable free surface 

Feflow ®(Diersch, 2005). The modeled zone (black rectangle in figure 1) was divided into 8 layers of a 

meter, 26280 mesh nodes and 45296 mesh elements. The south-east and north-west limits of the 

model were considered to be constant heads, respectively h max and h min. The recharge from the 

quarry process was modeled as a 500 m3/day constant flow rate in the basin. The flow velocity was 
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solved for steady states. The mass concentration (c) was considered to be null at the beginning of the 

calculation, except in the settling basin, where c at the boundary was constant (Cb [g/meter3]). The 

concentrations were solved for each cell and each time using a forward/backward Euler time 

integration scheme, for a final time of about 1500 days, with adaptive time steps w.r.t. the Peclet 

and the Courant number (Noorishad et al. 1992).  

The basin was simulated as 4000 cells with a 1 m/s hydraulic conductivity and a porosity of about 1. 

The number of cells filled with water or with the clogged layer changes depending on the various 

tests described in the following section. 

The clogged layer overlay was considered as a low (10-8 m/s) hydraulic conductivity layer. Its 

thickness and its spatial distribution in the basin were determined with the bathymetry 

measurements. To compare observations and calculations, the calculated water transfer rate (c) was 

defined as follows: 

               (Eq. 8) 

where Qi and h come from the numerical results.

The mass flux of AMD (F AMD [g/day]) towards the ground water was defined as 

F AMD = Qi Cb    (Eq. 9) 

where Cb is the mass concentration observed in the basin by Touzé et al. (2014) 

2.4. Aquifer properties 

The hydraulic conductivity was deduced from aquifer transitivity assuming an aquifer thickness of 

about 1.5 m. The transmissivity of the aquifer was estimated by a pumping test. A rate of 1m3/h was 

pumped during 20h in the PZC well. The drawdown was observed in PZC and PZ2. Transmissivity and 

storage coefficients were estimated from the analytical solution of Hantush and Jacob (1955). 
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The dispersivity was estimated from a dye tracer test during the pumping test. 100g of fluorescein 

was injected in the PZB well, and the recovery curve was observed in the PZC well. Dispersive 

properties of the aquifer were estimated from an analytical solution for radial converging flow and 

brief injection with the software TRAC (Gutierrez et al. 2013). 

The proposed transport model and the estimation of mass flux towards groundwaters were 

conducted under the assumption of a non-reactive aquifer. The values obtained are considered to be 

maxima. 

2.4.1 Model validation  

The groundwater flows were calibrated using steady state conditions for 3 hydrological conditions.  

(1) The June 2011 period is a base flow period before the use of basin B1. The boundary conditions 

are Qex=0, hmax = 110.9m, and hmin =108.2m. (2) The July 2012 period is a base flow period with the 

use of the basin. Qex=500m3/day, hmax = 111.2m, and hmin =108.2m. (3) The September 2012 period is 

a high flow period with the use of the basin. Qex=500m3/day, hmax = 111.3m, and hmin =108m. For the 

3 runs, only these boundary conditions change. The calculation was validated using a comparison 

between observed and calculated water heads in the B1 and B2 basins and in the 3 observation 

wells. 

The transport of AMD was validated using the observed concentrations presented in Touzé et al. 

(2014). A concentration of 0.01 - 0.02 µg/L was measured in June 2013 in the PZ1 and PZ2 wells while 

it was not observed before. 

2.4.2 Parametric tests  

The question was to assess whether the transfer rate changed with the increasing size of the settling 

layer that clogs the interface between the surface waters and the groundwaters. The bathymetry 



9 

 

results and the observed transfer rate (section 3.2) provided field data for comparison with the 

model results.  

The calculated transfer rate (c) was estimated for five configurations of the clogged layer. Five runs 

were done, from an unclogged (0%) to a fully clogged (100%) settling basin. Figure 2 shows an 

enlargement of the modeled basin 1 (black line) with the mesh used for calculation. Yellow surfaces 

represent cells with a low hydraulic conductivity value, considered as a clogged zone. The percentage 

of clogged zone increases from scenario 1 to 5. 

In a second step, the calculated transfer rate versus the clogged surface was estimated for a 10-2, 10-3 

and 10-4 m/s aquifer hydraulic conductivity. 

3. Results 

3.1. Geometric characterization and hydraulic heads 

The water elevations observed at the monitoring points are presented in Figure 3. This figure shows 

seasonal variations of heads in the basin and the groundwaters. In September 2011, the 

commissioning of Basin 1 created an increase in the basin hydraulic head. If this is compared with the 

PZ1 water head, a hydraulic gradient inversion can be observed between the basin and the 

groundwater. The basin, which was at equilibrium with the groundwater, is now higher because of 

the injected discharge from the quarry activity (Figure 3). The B1 water table shows daily 

fluctuations, correlated with the discharge in basin B1, highlighted in the figure by a zoom on the 

April 2012 fluctuations. Water elevation increased during quarry activity, and decreased during 

closure periods. These daily fluctuations were used to calculate the observed transfer rate. 

3.2. Thickness of the clogged layer and observed transfer rate 

The volume of settled fine particles was estimated from the four bathymetries of basin B1 (Table 1). 

In November 2011, 1310 m3 covered the bottom of the basin. These deposits cover 2850m², 
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representing an increase of about 15% of the basin surface. The volumes and the surface covered 

with fine particle deposits increased with time. 

According to equation 5 and to the water balance of the basin, for the time period where Qex =0, a 

decrease of S was observed, making it possible to estimate a transfer rate over time (Fig.4). From 

2011 to 2013, the transfer rate was constant, close to 0.02 1/day. The error range was estimated 

with the error range of the initial parameters. A 20% uncertainty on the evapotranspiration 

calculation (ETR) gives a 0.001 1/day error range on the transfer rate. A 2mm/day uncertainty on the 

precipitation (RR) gives a 0.05 1/day error range on the transfer rate calculation. These are the most 

significant error factors. Thus the observed changes are below the error range of the method and no 

significant change in transfer rate with time can be observed.  

3.3. Aquifer properties  

To estimate the aquifer properties, a pumping test was performed. Figure 5a presents the water 

table drawdowns and the return to equilibrium observed in the PZB well, due to the 1m3/h pumping 

rate during 0.33 day. The continuous line corresponds to the Hantush and Jacob (1955) model, fitted 

with observed data, suggesting a transmissivity of about 5 10-4 m²/s and a storage coefficient of 

about 0.3. 

To estimate the dispersive properties, the aquifer was pumped during 0.8 day. Figure 5b presents the 

tracer breakthrough curve, observed in the PZC well. For technical reasons, the pump was stopped 

before the end of the test period. The dye tracer was injected at t=0 in the PZB well. The time of first 

arrival of the tracer was 0.57 days after the injection. An analytical solution of the advection 

dispersion model (red line) suggests, for a porosity of 0.3, a 1.2 meter longitudinal dispersivity. For a 

10 meter scale, these values are consistent with the review by Gelhar et al. 1992.  

3.4. ADR model 
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For each cell, the transport model described in section 3.3 above needs to be further implemented 

with hydraulic conductivity, porosity and longitudinal dispersivity values. Table 2 summarizes the 

values applied for the aquifer, the clogged and the basin layers. The values chosen for the clogged 

layers and the basin are very different in order to simulate surface water and a very low flow layer.  

From these properties and with the boundary conditions described above, the model calculates the 

water flow and the concentration migration in the aquifer. The calculated water heads evidence that 

the basin is connected with the aquifer. The basin recharges the aquifer. According to Touzé et al. 

(2014), the concentration in the basin (Cb) is fixed at about 0.2 µg/L. The extent of the plume 700 

days after the commissioning of the basin reaches piezometer 2. 

3.4.1 Validation 

The first validation step was to compare the observed and calculated water heads. A steady state 

model was selected, but the model was compared with different configurations of the ground water 

(low or high water) and different configurations of the quarry activity (open or closed). The 

differences between observed and modeled water heads are below a 0.2% error range. Thus the 

model gives a correct description of different conditions of the system. The assumption of a steady 

state to describe the flows thus seems acceptable. 

The second step was to validate the model with AMD concentration data. Only a few observation 

data were available. To validate the calculation, figure 6 shows the breakthrough curves in the PZ1 

and PZ2 wells. 

 

The observations show that the first molecules of AMD arrived in the observation wells more than 

one year after commissioning of the basin. The calculation explains the null concentrations observed 

during the first year and the increase in concentration in PZ1 and PZ2 after the first year. This is 

consistent with the PZ2 breakthrough curve that increased two years after the beginning of the 
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calculation to reach a stationary value close to the lake concentration. The observed concentrations 

in PZ1 are in the same range as the modeled concentration. The calculated first arrivals in PZ1 occur 

earlier than the observed ones, suggesting that dispersion processes are over-estimated. Results 

suggest an advective dominated process in PZ2, with after 4 years, 100% of the water sampled in PZ2 

coming from basin 1. It is important to underline that the configuration of the basin enables a low 

dilution process and that, after four years of advection, the concentrations of groundwater 

downstream of the basin stabilize close to the basin concentration itself. 

 

3.4.2 Clogged layer and exchanged water 

The key parameter that describes the flux toward the aquifer is the water transfer rate. Figure 7 

shows the change in the transfer rate versus the percentage of the surface covered by the clogged 

layer. When the clogged layer spreads out, the transfer rate remains in the same order of magnitude 

until the area covered reaches 80%. Even if the spreading of the clogged layer involves a decrease in 

the bottom interface hydraulic conductivity, the stability of the transfer rate can be explained by the 

observed increase in the basin water level, thus leading to a higher surface transfer rate through the 

non-clogged surface. Similar results were found by Bru (2014), who showed that the most important 

contribution to the total transfer rate is by seepage through the bottom surface, which could explain 

the drastic decrease in the transfer rate when the clogged layer covered more than 80% of the 

surface. Moreover, it was shown that the fines particles contained in the process water of this case 

study exhibit very low permeability when just settled and they also have very poor consolidation 

properties, leading to only a few changes in the permeability of the clogged layer over time. The tests 

performed show that during the early stage of clogging (surface <80%) the transfer rate is controlled 

by the hydraulic conductivity of the aquifer. Then for a basin with an advanced stage of clogging, the 

transfer rate is controlled by the hydraulic conductivity of the clogged layer. The transition is fast, 

when 90% of the basin is clogged (Fig. 7). 



13 

 

These model results were validated by field observations of the transfer rate (c, blue points in figure 

8) plotted versus the percentage of the surface clogged in the basin. The observations confirm a 

hydraulic conductivity of the aquifer of about 2.10-4 m/s. The observed transfer rate remains in the 

same order of magnitude with the increase in clogging, for a clogging below 50%, which is consistent 

with the model results. 

 

4. Discussion: seepage of AMD toward the groundwater 

In the early stage of the basin, when the clogged layer does not cover the whole surface, the flux 

remains in the same order of magnitude, controlled by the aquifer properties and the concentration 

observed in the basin Cb. According to equation 9, or an average basin concentration of about 0.2 

µg/L, the AMD flux is estimated to be about 10 g/year. The errors on Cb, K and D estimations 

suggested that the error range is about ± 5g/year. Compared to the calculation by Touzé et al. (2014), 

showing that 1.5 kg/year are released in the process, these results suggest that 6 % leaks towards the 

groundwaters. This value does not take into account the reactivity of AMD in groundwater. In fact, 

water takes two years to reach PZ2. At this point, the concentrations observed in the groundwater 

show the same order of magnitude as the calculated concentration using only dilution processes. 

This suggests that the underground reactivity is low, compared to the reactivity observed in the basin 

by Touzé et al. (2014). 

Touzé et al. (2014) show that AMD is located in the pore waters of the sediments that constitute the 

clogged layer. The groundwater model suggests a very low water flow in this layer. AMD in clogged 

layers is stored. In the final stage of the basin, the flux though this layer is controlled by the hydraulic 

head in the basin. The model suggests a 10-8 m/s water flow velocity. According to the observed 

concentration of about 0.4 µg/L measured in the pore water of the sediments (Touzé et al. 2014), the 

flux from the clogged layer towards groundwater is estimated to be less than 0.02 g/year without 

reactivity, in the hydraulic conditions of basin 1 and without artificial recharge. 
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5. Conclusion 

The leakage of AMD, used for flocculation in a settling basin, towards the groundwaters was 

estimated using a groundwater transport model. The interactions between the surface and the 

groundwaters were conceptualized using a transfer rate to describe the clogged properties of the 

interface. The change in the transfer rate as a function of the spread of the clogged layer in the 

settling basins was characterized with respect to time. It is shown that the water and the acrylamide 

transfer rate are not controlled by the spreading of the clogged layer until this layer fully covers the 

interface. When the clogged layer spreads out, the transfer rate remains in the same order of 

magnitude until the area covered reaches 80%. The main flux takes place through bank seepage. In 

these early stage conditions of a working basin, the transfer rate is controlled by the hydraulic 

conductivity of the aquifer. The acrylamide flux towards groundwater remains in the same order of 

magnitude at close to 10g/year (± 5). In the final stage, the fluxes through the sediments from the 

settling are controlled by the properties of the clogged sediments. The low flow suggests a low mass 

flux of less than 0.02 g/year. 

This comparison between observed and calculated AMD in groundwater indicates that the reactivity 

of acrylamide is low compared to dilution processes. The monitoring of observation wells, 

downstream of the basin, needs to be continued to improve our understanding of the chemical 

behavior of emergent pollutants in aquifers.  
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FIGURES: 

 

Fig.1: Observation wells (circles) and February 2012 water-head (blue lines) around the quarry basins 

(yellow surfaces) B1 and B2. Black lines are roads. The black rectangle is the study area boundary for 

the groundwater model. Grey nodes are the mesh of the hydrodynamic model and blue circle are the 

constant head (boundary conditions). 

Fig.2: Parametric tests: Map of the scenario of the spreading of the clogged layer (yellow surface) in 

the basin (black line) used for calculation of the water transfer rate. 
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Fig. 3: Hydraulic heads with time in the 2 basins and in the observation wells. Injection discharge in 

the basin (right axis). The small square on the right is an enlargement of the hydraulic head and of 

the injection discharge in basin 1 for April 2012. 

 

Fig. 4: Observed transfer rate change with time. Given the error ranges, no change can be seen. 
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Fig. 5: Pumping test results, a/ drawdown observed and calculated in PZB. b/ concentration 

breakthrough curve observed and calculated during the pumping test in PZC. 

Fig.6: Observed and calculated concentrations versus time of AMD in groundwaters, in the PZ2 (blue) 

and PZ1 (red) wells. Transient Calculation was applied for transport with steady state hydraulic 

conditions.  
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Fig. 7: Observed 

(blue points) and calculated (line) water transfer rate versus the percentage of area covered by the 

clogged layer. Calculated values are presented for 10
-2

, 10
-3

 and 10
-4

 m/s aquifer hydraulic 

conductivity. 
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TABLES:  

 

Table 1: Volumes and surfaces of the clogged layer with time 

 

Table 2: Hydraulic properties of the groundwater transport model.  

 

 


