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 To constrain the effect of redox state on sulfur transport from subducting crust to 

mantle wedge during fluid-present melting and the stability of sulfur-bearing phases in the 

downgoing ocean crust, here we report high pressure phase equilibria experiments on a 

H2O-saturated MORB with 1 wt.% S at variable oxygen fugacity (
2Of ). Double capsule 

experiments were conducted at 2.0 and 3.0 GPa and 950-1050 °C, using Co-CoO, Ni-NiO, 

NixPd1-x-NiO, and Fe2O3-Fe3O4 external 
2Of  buffers. Sulfur content at sulfide saturation 

(SCSS) or sulfur content at sulfate saturation (SCAS) of experimental hydrous partial melts 

was measured using electron microprobe. All experiments were fluid-saturated and produced 

either pyrrhotite- or anhydrite-saturated assemblages of silicate glass, clinopyroxene, garnet, 

and rutile or titanomagnetite, ± amphibole ± quartz ± orthopyroxene. The silicate partial 

melt composition evolves from rhyolitic at 950 °C to trachydacitic and trachyandesitic at 

1050 °C with increasing 
2Of . At pyrrhotite saturation, melt S contents range from ~30 ppm S 
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at 
2Of  < FMQ-1 to ~500 ppm S at FMQ < 

2Of  ≤ FMQ+1.1, whereas at anhydrite saturation 

(
2Of  ≥ FMQ+2.5) melt S concentrations range from ~700 ppm S up to 0.3 wt.% S. Mass-

balance calculations suggest that the aqueous fluid phase at equilibrium may contain as 

much as ~15 wt.% S at 1050 °C at pyrrhotite saturation (
2Of  ≤ FMQ+1.1), in agreement 

with previous estimates, and up to 8 wt.% S at anhydrite saturation. Our data also show that 

/fluid melt

SD  decreases markedly with increasing 
2Of  at pyrrhotite saturation, from several 

thousands at 
2Of  < FMQ-1 to ~200-400 at FMQ < 

2Of  ≤ FMQ+1.1, owing to the increase of 

melt S content. At anhydrite saturation, /fluid melt

SD  is very low (<100) but increases with 

decreasing temperature, in an opposite way to previous observations at pyrrhotite saturation. 

As a consequence, at T ≤ 900 °C, /fluid melt

SD  might be in the range 200 ± 100, irrespective of

2Of . The present study confirms that slab partial melts saturated with pyrrhotite are unable 

to efficiently transport S from slab to mantle wedge, and suggests that slab partial melts in 

equilibrium with anhydrite also have very limited power to enrich mantle wedge in S. 

Importantly, slab-derived aqueous fluids appear to be efficient vectors for the transport of 

sulfur from slab to mantle wedge at all
2Of . Therefore, S transfer from ocean crust to wedge 

mantle is not 
2Of  dependent and could take place over a range of

2Of   conditions, and 

oxidized slab conditions are not necessarily required to enrich the mantle wedge in S. 

Finally, depending on the initial amount of sulfur in the slab, the proportion of residual 

anhydrite and pyrrhotite in the dehydrated slab below the region of formation of arc magmas 

is likely to be significant and may efficiently be recycled into the deep mantle. 

 

KEY WORDS: Oxygen fugacity; slab-derived fluid; slab partial melt; subduction zone; 

sulfur cycle; anhydrite; pyrrhotite. 
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INTRODUCTION 

 

Sulfur (S) is one of the major volatiles that control fundamental magmatic processes, 

including (chalcophile) elemental partitioning, redox evolution of magma and melt-mantle 

systems, mantle metasomatism, magma degassing, and dynamics of volcanic eruptions. One 

of the main tectonic settings where surficial reservoirs and the Earth‟s interior exchange 

sulfur is the convergent margins, where subduction of altered slab injects sulfur into the 

mantle and magmatic degassing at arcs releases sulfur to the atmosphere (e.g., Alt et al., 

1993; 2012; 2013; Scaillet & Pichavant, 2003; Scaillet et al., 2003; Wallace, 2001; 2005). 

Therefore, the knowledge of magmatic concentrations and fluxes of S in subduction zones 

and volcanic arcs as well as possible fluxes into the deeper mantle by subduction are critical. 

  Comparison between estimates of S input via subduction and S output through arc 

volcanism reveals that the estimated flux of S returned to the exosphere out of arcs is only 

~15-30% of the subduction input (Alt & Shanks, 2011; Jégo & Dasgupta, 2013). This 

imbalance becomes even greater if the mantle S content before subduction input of S (based 

on mantle xenolith data) is considered (Wallace & Edmonds, 2011). Subduction inputs versus 

arc output imbalance suggests that either the slab-released S is locked in the mantle wedge or 

S is retained in the downgoing slab and recycled to the deep mantle (Jégo & Dasgupta, 2013). 

Also, the apparent oxidized state of the mantle wedge has been suggested to originate from 

slab-derived sulfate species (SO4
2-

) (Mungall, 2002; Kelley & Cottrell, 2009), which assumes 

that the potential S enrichment of the sub-arc mantle is caused by the release of SO4
2-

 from an 

oxidized downgoing slab. However, sulfur in altered oceanic crust, ocean-floor sediments, 

and oceanic lithospheric mantle exists both as sulfides and sulfates (Alt et al., 1989; Alt & 

Shanks, 2011) and it is unclear whether the sulfates are preferentially destabilized during 

dehydration and hydrous melting of sediments or crust during subduction. In particular, the 
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behavior of S in subduction zones remains largely unknown (e.g., Jégo & Dasgupta, 2013; 

Prouteau & Scaillet, 2013), in part because the relative mobility of S as a function of oxygen 

fugacity (
2Of ) is poorly constrained at sub-arc depths (e.g., Scaillet et al., 1998; Scaillet & 

Macdonald, 2006; Keppler, 2010; Webster & Botcharnikov, 2011; Baker & Alletti, 2012; 

Evans, 2012). 

  Very little is known about the extent of S loss during relatively low-temperature 

(<700 ºC) slab dehydration, since most estimates on sulfur outflux at subduction zones are 

indirectly based on S content and isotope data of melt inclusions from arc magmatic rocks 

(e.g., Métrich et al., 1999; de Hoog et al., 2001a; 2001b; McInnes et al., 1999; 2001; Marini 

et al., 2011). However, laboratory studies conducted at 0.6-1.4 GPa and 600-800 °C have 

demonstrated solubility of sulfate in hydrous Cl-bearing fluids equivalent to ~0.01-4.00 wt.% 

S (Newton & Manning, 2005), and the effect of water in lowering the melting temperature of 

sulfides (Wykes & Mavrogenes, 2005). In addition, geochemical modeling based on melt 

inclusions suggests that several weight percent S may be present in the H2O-rich component 

transferred from the slab to the mantle wedge (Cervantes & Wallace, 2003). Therefore, S is 

likely to be scavenged in significant amounts by hydrous slab-derived fluids, either from 

sulfide or sulfate mineral phases contained in the subducting lithologies. However, it remains 

unclear whether fluid-mediated sulfur transfer happens at relatively low temperatures and 

shallow depths or at relatively high temperatures at sub-arc depths. If the former, it is difficult 

to envision how such low-temperature, shallow fluids, perhaps released in forearcs, 

contribute to arc volcanism. If the latter, then the presence of hydrous fluid is also expected 

to trigger partial melting and the relative mobility of sulfur in fluid versus melt is 

unconstrained. Thus relative contribution of slab fluid versus slab partial melt in sulfur-

transfer needs to be constrained at sub-arc depths conditions. 
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  Recently, two studies have provided experimental data which constrain the transport 

of S at sub-arc depths during hydrous partial melting of the subducting slab (Jégo & 

Dasgupta, 2013; Prouteau & Scaillet, 2013). However, even though their experimental results 

are partially mutually consistent, their conclusions about the capacity of slab partial melts to 

efficiently transport S at high pressure are divergent and thus provide contrasting views on 

the transfer of S from the slab to the mantle wedge. Starting material compositions and 

ranges of pressure-temperature conditions are very similar in both studies, although Prouteau 

& Scaillet (2013) performed experiments at 700-950 °C with addition of 1-2 wt.% elemental 

S, whereas Jégo & Dasgupta (2013) conducted experiments at 800-1050 °C with 1 wt.% bulk 

S added as pyrite (FeS2). Also, in the Jégo & Dasgupta (2013) experiments, the 
2Of  was 

imposed by using Ni-NiO (NNO) and Co-CoO (CCO) external oxygen buffers, so that all 

experimental charges were pyrrhotite-saturated but variably reduced. Prouteau & Scaillet 

(2013) did not control the 
2Of  (except for one experiment, buffered with a Pt-graphite 

capsule at ~NNO-2), which introduces significant uncertainty about the actual redox state of 

their experiments and thus the interpretation of their data. In most of their runs, the 

experimental products show the coexistence of pyrrhotite and anhydrite, implying that the 

2Of  domain may be close to - or right on - the sulfide-sulfate transition (~NNO+1), i.e., more 

oxidized than Jégo & Dasgupta (2013) experiments. In both studies, the composition of the 

partial melts, quenched to glass, evolves from rhyolitic to dacitic with increasing temperature 

and melting degree. Jégo & Dasgupta (2013) report very low melt S concentrations at 2 and 3 

GPa and all temperatures, with an average of 110 ± 50 ppm S, similar to previous 

measurements at lower pressures. These concentrations represent S contents at sulfide 

saturation (SCSS), and compare relatively well to the melt S content measured in the only run 

of Prouteau & Scaillet (2013) conducted at ~NNO-2 (~230 ppm S). In contrast, in their 1 

wt.% added-S charges at ~NNO+1, Prouteau & Scaillet (2013) report significantly higher 
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melt S concentrations, ranging from 92 ppm (800 °C) to 1260 ppm S (900 °C) at 3 GPa, 

while their 2 GPa experiments give constant melt S contents around 300 ppm S. Increasing 

the bulk S content to 2 wt.% increases the amount of dissolved S to 1500 ppm S at 2 GPa and 

4600 ppm S at 3 GPa and 900 °C. The authors (Prouteau & Scaillet, 2013) use these results to 

argue that, at sub-arc depths, hydrous silicic melts have at least 10-20 times more dissolved S 

than at 0.2-0.4 GPa (Luhr, 1990; Carroll & Webster, 1994; Scaillet et al., 2003; Wallace, 

2005) when moderately oxidizing conditions prevail. Although Prouteau & Scaillet (2013) do 

not rule out a fluid contribution for S transfer from the subducting slab, they report that 

elevated S contents can be achieved in slab partial melts. However, they did not provide any 

quantification of the potential amount of S dissolved in the aqueous fluid phase in 

equilibrium with their fluid-saturated assemblages. 

  On the contrary, the results obtained by Jégo & Dasgupta (2013) suggest that, at sub-

arc depths, high melt S concentrations cannot be achieved in hydrous slab partial melts 

saturated with pyrrhotite, even at high temperature. Instead, mass-balance calculations 

indicate that the aqueous fluid phase at equilibrium may contain as much as 10-15 wt.% S at 

≥ 1050 °C. At temperatures relevant to the subducting slab surface (i.e., ≤900 °C), however, 

the fluid phase coming off the slab is not likely to contain more than 5 wt.% S, and typically 

~ 2.5 wt.% S. Nevertheless, simple mixing calculations show that the apparent S enrichment 

of the mantle wedge can be attained by addition of only ~ 0.3 to 1.5 wt.% of slab-derived 

metasomatic fluids containing ~ 2.5 wt.% S. Therefore, Jégo & Dasgupta (2013) argue that S 

enrichment of the mantle wedge does not necessarily call for slab to mantle wedge transfer of 

S as sulfate species, and could also be achieved in reducing conditions through sulfide 

species in the fluid. 

  The results of Prouteau & Scaillet (2013) suggest that in moderately oxidizing 

conditions (i.e., at the sulfide/sulfate transition), S enrichment of the mantle source of arc 
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magmas might be possible via percolation of S-rich slab partial melts through the mantle 

wedge, provided high bulk S (>1 wt.%) are available in the subducting slab. However, bulk 

ocean crust contains, on average, no more than 1000 ppm S (Alt et al. 1989; 1993; Alt and 

Shanks 2011), and it remains unclear whether unrealistically high fS2 created by high bulk-S 

compositions of Prouteau & Scaillet (2013) can be applied to natural subduction conditions 

(indeed, higher S concentrations in an experimental charge may lead to higher fS2 even if the 

system is saturated with sulfide and/or sulfate phases. There are several reasons for this, 

including: (1) the composition of the sulfide phases (i.e., Fe/S ratio) will vary according to 

fS2 (cf. Fig. 12 of Luhr, 1990; NFeS, i.e., mole fraction of FeS in pyrrhotite, decreases from 

0.96 to 0.90 while fS2 increases by ~4 log units); (2) variation of the activity of either FeO (in 

sulfide-saturated systems) or CaO (in sulfate-saturated systems) in silicate melt may 

compensate variations of fS2 in order to maintain thermodynamic equilibrium (Prouteau & 

Scaillet, 2013); (3) in hydrous systems, the composition of the aqueous fluid phase is 

expected to vary with respect to S-bearing components (i.e., H2S, SO2, S2, HS
-
,…) to 

accommodate higher partial pressures of S. So does the amount of S dissolved in silicate melt 

to maintain equilibrium with the fluid phase). More importantly, the study of Prouteau & 

Scaillet (2013) does not provide constraints on relative mobility of sulfate versus sulfide 

species and thus does not constrain the effect of redox state of the downgoing slab on the 

sulfur mobility and the redox state of the mantle wedge. 

  Here we present fluid-saturated partial melting experiments of a sulfur-bearing 

oceanic crust composition at 2-3 GPa and 950-1050 °C over a wide range of 
2Of  from 

reducing (~FMQ-3) to oxidizing (~FMQ+3.5) conditions (FMQ = fayalite-magnetite-quartz 

oxygen buffer). 
2Of  was imposed by using different external buffers (Co-CoO, Ni-NiO, 

NixPd1-x-NiO, and Fe2O3-Fe3O4) in a double-capsule assembly. The aim was to determine the 

stability of various sulfur-bearing phases (sulfide, sulfate minerals, sulfur-bearing fluids and 
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melts), the S content of aqueous fluid and hydrous silicate melt saturated with either sulfide 

or sulfate, and residual crustal assemblage. We were particularly interested in constraining 

the extent of S transfer that can be achieved during sub-arc depth fluid-fluxed melting at 

conditions of anhydrite saturation. The goal was to compare the carrying capacity of S of 

slab-derived aqueous fluids/silicate melts at oxidized conditions with that at sulfide 

saturation, and test whether high 
2Of  is more favorable to mobilize sulfur from downgoing 

oceanic crust to overlying mantle wedge. 

  

2. EXPERIMENTAL METHODS 

2.1. Starting material synthesis 

  

We used a synthetic starting composition that is representative of sea-floor-altered mid-ocean 

ridge basalt (MORB) and close to the GA1 composition of Yaxley & Green (1994), saturated 

with water and doped with 1 wt.% S. The details of the sample preparation are given in Jégo 

& Dasgupta (2013) and hence are not repeated here. The starting basaltic material was 

prepared from a mixture of reagent grade oxides and reagent grade and natural carbonates 

and was reduced and decarbonated under a stream of CO-CO2 gas mixture. The resulting 

powder was then re-ground under ethanol and Al was added as Al(OH)3 in order to saturate 

the starting mix with water. To introduce S, natural pyrite FeS2 was ground under ethanol in 

an agate mortar and added to the base hydrous silicate mix so as to reach 1 wt.% of total S. 

The resulting bulk composition is given in the footnote of Table 1. The starting material was 

then stored in a desiccator. 

 

2.2. Experimental Procedure 
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All experiments were performed using a half-inch (12.7 mm) assembly in an end-loaded 

piston cylinder apparatus at the Experimental Petrology Laboratory of Rice University at 

pressures of 2.0 and 3.0 GPa and temperatures of 950 °C and 1050 °C (plus one near-solidus 

experiment at 3.0 GPa, 800 °C). The experimental cell assemblies consisted of BaCO3 

pressure-transmitting sleeves, straight cylindrical graphite furnaces, and internal spacers of 

crushable MgO. The entire assembly was wrapped in Pb-foil, in order to lubricate the 

pressure vessel bore and to contain the fragile BaCO3 cell. Temperature was monitored and 

controlled using W5%Re-W26%Re thermocouples (Type-C), without correcting for the 

pressure effect on the measured emf. For all experiments, temperature was controlled by a 

Eurotherm controller within ±1 °C and pressure was maintained, by a pressure controlling 

device, within 0.01 GPa. Temperature and pressure calibration for this assembly are detailed 

in Tsuno & Dasgupta (2011). 

  In each experiment, the oxygen fugacity 
2Of  was controlled by using a double-capsule 

technique similar to that developed by Jakobsson (2012). The capsule assembly consists of a 

cylindrical outer platinum (Pt) capsule (3.0 mm O.D, 2.6 mm I.D) and a cylindrical inner 

gold-palladium (Au80Pd20) capsule (2.0 mm O.D, 1.35 mm I.D). The inner capsule was 

loaded with ~ 6 mg of the powdered starting material and a ~1 mg Pt-wire (0.2 mm Ø) used 

for fO2 measurements (Médard et al., 2008) (Fig. 1a). Several different external 
2Of  buffers 

were used, i.e., Co-CoO (CCO), Ni-NiO (NNO), NixPd1-x -NiO (with x = 0.15, 0.35, and 

0.70), and Fe2O3-Fe3O4 (hematite-magnetite, HM), which span a wide range of 
2Of  from 

reducing to oxidizing conditions (~FMQ-3 to ~FMQ+3.5 in the P, T, 
2H Oa  experimental 

conditions). The buffers were prepared by mixing a metal (Co, Ni, or NixPd1-x) powder with a 

metal oxide (CoO or NiO) powder, or by mixing finely ground Fe2O3 and Fe3O4, 

respectively, in equimolar proportions. To prevent the AuPd-capsule from coming into 

contact with the buffer phases, which would lead to alloying and may cause subsequent 
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melting of the capsule, it was embedded in finely ground Al2O3 and separated from the buffer 

with a Pt-divider. About 1 mg of H2O and ~ 5 mg of the desired buffer were loaded at the 

bottom of the outer Pt-capsule and covered with the Pt-divider. Both inner and outer capsules 

were sealed by arc welding. Jakobsson (2012) showed, and we argue, that owing to the 

elevated permeability of hydrogen through Au-rich AuPd alloys, the double-capsule 

assembly used in this study enables attainment of oxygen fugacity equilibrium with the solid 

buffer in less than 8 h, and maintains it as long as both buffer phases are present. 

Nonetheless, due to the presence of S species, the activity of water (
2H Oa ) in the charge is less 

than unity. Therefore, the experimental 
2Of  imposed by the external 

2Of  buffers are expected 

to deviate from values calculated from calibrations assuming H2O dissociation into H2 and O2 

only (cf. section 3.4). 

  The double capsule was placed in a ~ 6.0-7.0 mm deep hole inside the crushable MgO 

spacer such that the assembly hotspot was centered on the sample. A 1.0-mm-thick MgO disk 

separated the thermocouple junction and the double capsule. The runs were first pressurized 

to within 0.2 GPa of the desired pressure and then automatically heated to the desired 

temperature at a rate of 100 °C/min. After reaching the target temperature, the assembly was 

brought to the desired pressure. The experimental duration varied from 72 to 115 h (and 143 

h for the near-solidus experiment). The experiments were terminated by cutting off power to 

the furnace and then the assemblies were recovered by slow decompression. After each 

experiment the double capsules were weighed and ruptured under ethanol to check for 

bubbles (i.e., fluid saturation), then weighed again. Experimental capsules were mounted in 

epoxy resin (PETROPOXY 154) and then ground longitudinally until the axial sections of the 

samples were exposed. Polishing was done down to 0.3 micron, using lapidary wheel and 

alumina slurry with water as lubricant. 
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2.3. Analysis of the run products 

 

Textural observations and chemical analysis of the run products were performed using a field 

emission gun, scanning electron microscope (FEI Quanta 400 ESEM-FEG) at Shared 

Equipment Authority of Rice University and an electron microprobe (CAMECA SX-50) at 

Texas A&M University. The compositions of the major phases such as clinopyroxene (cpx), 

garnet, quenched silicate melt, pyrrhotite, rutile, Ti-magnetite, and amphibole were analyzed 

using wavelength dispersive spectrometry (WDS). For WDS analyses, 15 keV accelerating 

voltage was applied for all the phases. Analyses of crystalline phases (except amphibole) 

were performed using a focused beam of 20 nA, and those of silicate glasses and amphibole 

using beam currents of 10 nA and a beam diameter of 3-10 μm depending on the size of the 

glass pools. Same counting times were applied on peak and background for quenched silicate 

melt and crystalline phases (except pyrrhotite) and were varied from 20 to 90 s depending on 

the element (see Table S1 of Jégo & Dasgupta, 2013). For pyrrhotite, counting times for S 

and Fe were 20 s on peak and 10 s on background; Ni and Co were also analyzed (70 s on 

peak and 35 s on background) to check for contamination from the buffers. 

 Oxygen fugacity buffer materials were analyzed using energy dispersive X-ray 

spectroscopy (EDS) to confirm the presence of both metal (Co, Ni, or NixPd1-x) and oxide 

(CoO or NiO) phases, or both hematite and magnetite, then WDS was used to check for 

eventual contamination by other elements (Au, Pt, and S, as well as Pd and Fe depending on 

the buffer used). In addition, Fe content was measured in the AuPd-capsule walls and in the 

Pt-wire placed inside the inner capsule for oxygen fugacity estimates (Médard et al. 2008; 

Balta et al. 2011). Counting times were 60 s for S, 50 s for Fe, Ni and Co, and 10 s for Au, Pd 

and Pt, on both peak and background, using beam currents of 100 nA. Primary analytical 

standards were natural diopside (Si, Mg, Ca), albite (Na), orthoclase (Al and K), pyrope (Si, 
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Al, Fe, Mg, Ca), fayalite (Fe), ilmenite (Ti), rutile (Ti), pyrite (Fe, S), spessartine (Mn), Ni 

metal, Co metal, Au metal, Pd metal, and a natural Indian ocean basalt glass (Si, Al, Mg, Ca). 

 For measuring S concentration in silicate glass, pyrite (FeS2) was used as primary 

standard and glasses of Indian Ocean basalt (USNM 113716), Makaopuhi basalt (VG-A99), 

and Juan de Fuca MORB (VG-2) were used as secondary standards. Analyses were 

performed using 15 keV accelerating voltage, 200 nA beam current, defocused electron beam 

(3-10 μm, depending on the size of the glass pools), and peak counting times of 60 sec. The 

detection limit corresponding to these analytical parameters was of the order of 15 ppm S. 

Using our analytical routine, we obtained the secondary standard glass S concentrations as 

1160 ± 40 ppm (Indian Ocean basalt), 160 ± 40 ppm (VG-A99), 1610 ± 30 ppm (VG-2). 

Recommended values for the S content of these Smithsonian standard glasses are in the order 

1200, 170, and 1400 ppm S (Jarosewich et al., 1980; Jarosewich, 2002) (cf. Table 2 of Jégo 

& Dasgupta, 2013). Also, the previously analyzed S content of VG-A99 by EPMA include 

170 ± 80 ppm (Dixon et al., 1991), 138 ± 13 ppm (Witter et al., 2005), and 155 ± 9 ppm (Bell 

et al., 2009). Although some discrepancy can be noted between the measured and 

recommended values of S concentration in the VG-2 glass standard, likely due to slight 

differences in the peak position chosen for the respective analyses, the overall agreement of 

our analyses with the recommended and published values of the standard glasses lends 

confidence on the accuracy and reproducibility of our S analyses reported here. 

 

3. EXPERIMENTAL RESULTS 

3.1. Phase assemblages, texture, and phase proportions 

 

All of our experiments comprise silicate glass, cpx, garnet, rutile, and fluid (interpreted based 

on the presence of round vesicles in glass) (Table 1). In addition, accessory phases are 
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present in some experimental charges (amphibole in G243: 2 GPa, 1050 °C, orthopyroxene in 

G246: 2 GPa, 950 °C, amphibole and quartz in G251: 3 GPa, 950 °C), and titanomagnetite 

(Ti-mgt) is present in most of HM-buffered experiments. Sulfur is stored in anhydrite in HM-

buffered charges and pyrrhotite in all other experiments. The near-solidus HM-buffered 

experiment produced silicate melt at triple grain junctions and along grain edges. In all other 

charges, hydrous partial melts occur as >10 µm diameter pools. These pools of silicate glass 

are commonly associated with vesicles, indicating the presence of fluid during our 

experiments (Fig. 1b, c). It is worth noting that, although the sulfide phase in the starting mix 

was pyrite, we observe the presence of pyrrhotite in the reduced (
2Of ~<FMQ+1.1) charges 

and anhydrite in the oxidized (
2Of ~>FMQ+2.5) charges. 

  Phase proportions (i.e., minerals, silicate melt, and hydrous fluid) and fluid S 

concentration were estimated by iterative mass-balance calculations based on the major oxide 

(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, H2O) composition of all crystalline phases plus the 

silicate glass and the hydrous fluid phase, assuming that the bulk H2O content of the starting 

mix changed little owing to external 
2Of  buffering. To estimate the concentration of S in the 

fluid phase, it is crucial to constrain as best as possible the proportions of pyrrhotite or 

anhydrite. However, because these minerals are accessory phases, they do not exert any 

control on the distribution of Fe or Ca, respectively, but are buffered by the composition of 

the equilibrium silicate phases. Therefore, in the first iterative step of the mass-balance 

calculations, we assumed a S-free assemblage, no pyrrhotite or anhydrite, and a fluid phase 

composed of 100 wt.% H2O. In that case, the fluid proportion is given by the melt proportion, 

which is constrained by the equilibrium between the silicate phases. All the phase proportions 

so obtained were then used in a second iterative step, considering a S-bearing assemblage 

with 1 wt.% S in the bulk, and either pyrrhotite or anhydrite depending on the 
2Of  and 

according to the optical observations of the mineralogical assemblages. The proportion of 
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pyrrhotite or anhydrite obtained after this second step was used to calculate the concentration 

of S in the aqueous fluid phase. Then, in a third iterative step, this fluid S content was 

incorporated in the composition of the fluid phase in order to refine the estimated proportions 

of fluid and pyrrhotite or anhydrite, and so forth in the following iterative steps. Less than 10 

iterative steps were sufficient to reach convergence on the mass balance estimates. The 

analytical uncertainties on the composition of the different phases were also considered 

during each iterative step. Final results of these calculations are reported in Table 1. The 

small errors on the phase proportions, and the reasonably low values of the sums of squared 

residuals (spanning a range similar to that reported by Rapp & Watson (1995) for phase 

equilibria experiments on hydrous basaltic composition), suggest that the mass balances are 

not unreasonable and thus lend credit to the estimated proportions of aqueous fluid and 

pyrrhotite or anhydrite, as well as the sulfur concentration in the aqueous fluid phase. Owing 

to potentially significant loss of alkalis (Na and K) by volatilization during microprobe 

analysis of H2O-rich silicate glass, Na2O and K2O were not used for mass-balance 

calculations. Nevertheless, Na2O and K2O concentrations in silicate glass were estimated at 

each iterative step from the bulk Na2O and K2O contents and the calculated phase proportions 

(assuming no Na and K in the aqueous fluid phase) in order to constrain the amount of H2O 

dissolved in silicate glass (by difference from 100 wt.%). 

  In Fig. 2, the calculated proportions of silicate melt (a), aqueous fluid (b), and either 

pyrrhotite or anhydrite (c) are plotted as a function of
2Of . In the reduced experiments, 

conducted at similar pressure and temperature (3 GPa, 1050 °C), melt proportion is nearly 

constant with increasing 
2Of  around a mean value of 31.5 wt.%. The most reducing charge, 

however, shows a slightly lower melt proportion (26 ± 3 wt.%), coupled with a very low melt 

H2O content (2 wt.%, instead of 7-11 wt.% H2O in the less reduced charges, cf. Table 2). This 

may be interpreted as the effect of 
2Of  in modifying the fluid phase composition at the 
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expense of 
2H Of  relative to 

2Hf , thus decreasing the isobaric melt productivity, as previously 

documented by Jégo & Dasgupta (2013) and discussed below (cf. section 4.1). In the 

oxidized charges, silicate melt proportion consistently increases with increasing temperature 

and decreasing pressure (from 19.0 wt.% at 3 GPa, 950 °C up to 38.7 wt.% at 2 GPa, 1050 

°C) at the expense of garnet at 2 GPa and cpx at 3 GPa (Table 1). 

  The aqueous fluid proportion follows a trend opposite - but directly related - to that of 

the melt proportion in reducing and intermediate 
2Of  conditions: it remains nearly constant 

close to 5 wt.% (within error bars), but reaches a distinctly higher value (~7 wt.%) in the 

most reduced charge, owing to lower melt proportion and melt H2O content. In oxidizing 

conditions, the fluid phase proportion shows limited variation, although it tends to increase 

with increasing pressure and decreasing temperature from ~ 5.1 to 6.3 wt.%. 

  The proportion of pyrrhotite appears to be nearly constant ~1 wt.% in reducing 

conditions. It is slightly higher (1.34 wt.%) at FMQ+0.55, likely as a result of a lower FeOT 

content in garnet which makes more Fe available to pyrrhotite. On the other hand, pyrrhotite 

becomes less abundant (0.64 wt.%) at FMQ+1.08, near the sulfide/sulfate transition. The 

proportion of anhydrite is higher, ranging between 2 and 3 wt.%, but does not seem related to 

variations in pressure and temperature. It rather tends to increase with increasing 
2Of , 

although being subject to the availability of Ca in the mineral assemblage. Thus, at 2 GPa, 

1050 °C, the anhydrite proportion remains low because the melt proportion is the highest of 

the dataset and the melt CaO content is the highest among the oxidized charges (5.85 wt.%, 

cf. Table 2). 

 

3.2. Assessment of chemical equilibrium and oxygen buffering 

 

The experiments reported here are unreversed and the back-scattered electron images and 
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microprobe analyses show some zoning in garnet and cpx, reflecting incomplete chemical 

equilibration. However, a closed system during experiment and an approach to chemical 

equilibrium can be assessed as follows. (1) For experiments in which all phases were 

analyzable, average sums of squared residuals („∑res
2‟

 in Table 1), which are obtained to 

evaluate the mass balance calculations, are <5.3 for all experiments. These sums of squared 

residuals are reasonably low given the uncertainty in H2O content of partial melts and 

variations in Al2O3, CaO and FeOT contents in zoned garnet and cpx, and are similar to the 

residuals reported for previous experiments in hydrous basaltic systems (e.g. Rapp & Watson, 

1995; Berndt et al., 2005; Feig et al., 2006; 2010). (2) Our phase assemblages are consistent 

with near- and super-solidus phase relations for water-saturated basaltic systems from 

previous studies (e.g. Peacock et al., 1994; Sen & Dunn, 1994; Rapp & Watson, 1995; 

Schmidt & Poli, 1998; Berndt et al., 2005; Xiong et al., 2005; 2009; Feig et al., 2006; 2010; 

Jégo & Dasgupta, 2013). (3) The low ±1σ errors from replicate microprobe analyses of sulfur 

concentration in silicate glass (cf. Table 2), reflecting a good homogeneity of silicate melt S 

contents, and the fact that the S-bearing crystalline phase is either anhydrite or pyrrhotite 

whereas the starting material was doped with pyrite both suggest that diffusion of sulfur 

inside the capsule approached equilibrium. (4) For each run (except G264, see below), the 

theoretical experimental 
2Of  conditions are very well reproduced (generally within 0.5 log 

2Of  unit) by at least one of the 
2Of  estimates obtained from AuPd- and Pt-rich alloy redox 

sensors (cf. Table 7, Fig. 6) suggesting that redox equilibrium between inner and outer 

capsule was approached. (5) Water activities were estimated by two different, independent 

methods (from a model of melt H2O solubility, and by using the log 
2Of  charge values). Results 

give a comparable range of 
2H Oa  values and a similar average 

2H Oa  value within error, which 

indicates that the experiments reached chemical equilibrium (cf. section 3.4). (6) With the 

exception of experiments G277 and G281, observed values for   
     

 between garnet and 
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cpx as well as nominal temperatures of our experiments are well reproduced by the garnet-

cpx thermometers of Ravna (2000) and Nakamura (2009), respectively. Experiments G277 

and G281, which show abnormally high   
     

  values and low calculated temperatures, 

have the lowest cpx/garnet ratios and the highest Mg# in cpx of the dataset (cf. Tables 1 and 

3). We suspect that the cpx analyses reported in Table 3 for these two experiments represent 

early crystallized cpx and are not fully representative of the rim composition of the cpx 

crystals in equilibrium with garnet, owing to their small size and moderate zoning that make 

microprobe analysis of the rim difficult. Therefore, the deviation of experiments G277 and 

G281 from the values estimated by the two geothermometers is only due to a lack of cpx 

analyses representative of the composition in equilibrium with garnet and does not infer that 

these two experiments did not approach chemical equilibrium. (7) The    
        

 and 

   
        

 values are below 0.7 and 1.8, respectively, similar to those reported in Rapp & 

Watson (1995) and Jégo & Dasgupta (2013) for experiments in hydrous basaltic system at 

comparable P-T. Moreover, the observed    
        

 values increase with increasing pressure 

and 
2Of , and decrease with increasing temperature as predicted by the parameterization of 

Blundy et al. (1995). In addition, the    
        

 values define a linear decreasing trend with 

increasing temperature as commonly observed during hydrous partial melting of eclogite 

(Rapp & Watson, 1995; Green et al., 2000; Klein et al., 2000). The calculated values of 

   
        

 and    
        

 indicate that average compositions of quenched melt are 

representative of liquid compositions, and are not strongly affected by quench modifications 

or contamination during analyses. These values also reveal that the cpx compositions 

presented in Table 3 are in equilibrium with the silicate partial melt. 

 

3.3. Phase compositions 
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Hydrous partial melt compositions are reported in Table 2, and plotted versus estimated 
2Of  

of the experiments in Fig. 3 on an H2O-free basis. H2O in partial melts is estimated to be in 

the range of 2.0-11.0 wt.% from the difference between 100% and the analytical totals 

(including calculated Na2O and K2O contents; cf. section 3.1). In 3 out of 5 experiments 

conducted in reducing and intermediate 
2Of  conditions at constant P and T, melt H2O 

concentration is nearly constant around 7 wt.%. In experiment G261, melt H2O content is 

higher (11 wt.%) in conjunction with slightly lower silicate melt and aqueous fluid phase 

proportions (Fig. 2). The most reduced charge, on the other hand, shows a significantly H2O-

poor silicate melt (2 wt.% H2O), in agreement with a higher aqueous fluid phase proportion, 

most likely related to a drop of H2O activity (relative to H2) under such reducing conditions. 

Nevertheless, we suspect that the melt H2O content of this charge is underestimated as a 

result of an overestimation of the melt Na2O content, possibly owing to a noticeable amount 

of Na being dissolved in the aqueous fluid phase as Na(OH). Na is indeed expected to be 

relatively fluid-mobile at all 
2Of  conditions, but supposedly to a greater extent in reducing 

conditions (where 
2H Of  is the highest and the fluid phase composition is dominated by OH-

species) than in oxidizing conditions (where SO2 dominates the fluid phase composition) (cf. 

Fig. 7). In oxidized charges, melt H2O content shows little variation around 5 wt.%, but tends 

to slightly increase with increasing T. Compared to more reduced charges at similar P and T, 

this noticeably lower melt H2O concentration is likely explained by the predominance of SO2 

over H2O in the fluid inside the inner capsule (Fig. 7), which lowers the activity and 

solubility of water in silicate melt. In addition to the effect of the high fugacities of S-species 

on H2O solubility, as discussed below (cf. sections 3.4 and 3.5), the fact that the volatile 

phase at the experimental pressures and temperatures is expected to be close to that of a 
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supercritical fluid (e.g., Manning, 2004) probably limits the dissolution of water into the 

silicate melt. 

  Major melt compositions are typically trachyandesitic to trachydacitic at 1050 °C and 

rhyolitic at 950 °C, and show low contents in MgO, FeOT, and CaO, in agreement with 

previous experimental studies of hydrous MORB partial melting at comparable pressure and 

temperature (Rapp & Watson 1995; Xiong et al., 2005). In detail, SiO2 decreases 

significantly at constant P and T from reducing conditions (62.4 wt.%) to intermediate 
2Of  

conditions (54.4 wt.%), as a consequence of an increase in isobaric melt productivity related 

to the increase of the 
2H Of /

2Hf ratio (cf. section 4.1). For the same reason, melt FeOT 

increases from <1 wt.% to as high as ~2.5 wt.%, despite the fact that pyrrhotite is highly 

stable under those 
2Of  conditions . Other major oxides do not display systematic variations 

along the reducing and intermediate 
2Of  range. However, the most reduced charge tends to 

be richer in MgO and Na2O and poorer in TiO2 and CaO than the rest of the pyrrhotite-

saturated charges. In oxidizing conditions, melt TiO2, CaO and Al2O3 contents are clearly 

lower compared to more reduced charges, whereas the opposite is observed for FeOT and 

MgO. In addition, SiO2 and K2O decrease with increasing temperature while FeOT, MgO, 

TiO2, and CaO increase from 950 to 1050 °C. About the effect of pressure, SiO2 and K2O 

decrease from 3 to 2 GPa, while MgO and to a lesser extent CaO, increase, owing to higher 

melting degree. 

  Clinopyroxene (Cpx) compositions are reported in Table 3, and plotted versus 
2Of  in 

Fig. 4. All cpx are diopside-rich and aluminous. TiO2 contents are remarkably constant 

around 0.4 wt.% over the whole 
2Of  range at constant P and T. FeOT concentration increases 

markedly from 3 wt.% at FMQ-2 up to 10 wt.% at FMQ+3.5, while CaO and MgO decrease 
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significantly over the same 
2Of  range. Na2O content of cpx decreases with increasing 

temperature and degree of melting. 

  Garnet compositions are reported in Table 4, and plotted versus 
2Of  in Fig. 5. Garnets 

are solid solutions with subequal proportions of almandine and pyrope. MgO, CaO and FeOT 

contents are nearly constant within error bars (~10.5, ~8.5, and ~19.0 wt.%, respectively) 

over the whole 
2Of  range at constant P and T. CaO concentrations appear to be lower in 

oxidizing conditions, as observed for cpx as well, consistent with anhydrite stability, and tend 

to decrease with decreasing pressure. FeOT and CaO contents decrease with increasing 

temperature and extent of melting, whereas MgO increases, yielding a significant increase of 

Mg# from 41.6 to 51.3 from 800 to 1050 °C. 

 Amphibole and rutile compositions are reported in Table 5. Amphibole composition 

appears to vary significantly with pressure, ranging consistently from hornblende at 2 GPa to 

edenite at 3 GPa. In all experimental charges, rutile contains less than 3.5 wt% FeOT and 1.8 

wt% Al2O3. 

 

3.4. 
2Of  conditions 

 

The 
2Of  of our experiments was imposed by using several external buffers corresponding to 

the Co-CoO, Ni-NiO, NixPd1-x-NiO (with initial x = 0.15, 0.35, and 0.70), or Fe2O3-Fe3O4 

equilibria. However, real 
2Of  conditions are subject to the activity of water (

2H Oa ) inside the 

inner capsule through dissociation of H2O to H2 and O2. Here, 
2H Oa  - which is defined by the 

ratio 
2 2

o

H O H O/f f  (where 
2

o

H Of  is the fugacity of pure H2O at P and T) - must be less than 

unity because additional species are likely present, including H2S, S2 and SO2. Water activity 

in our charges was calculated by extrapolation of the model of Burnham (1979) for H2O 
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solubility in silicate melts. Water activities values are reported in Table 6. In accordance with 

the low H2O concentrations estimated in our fluid-saturated melts, 
2H Oa  values appear very 

low (all data average = 0.24 ± 0.10), reflecting the strong positive effect of pressure on melt 

H2O solubility as well as the effect of the presence of sulfur-bearing species on water activity 

(cf. section 3.5). In HM-buffered charges, melt H2O concentration increases between 950 and 

1050 °C at both pressures investigated, whereas 
2H Oa  does not follow such a trend (i.e., 

increases at 3 GPa but decreases at 2 GPa), illustrating the complexity of the water 

dissolution process and the importance of the compositional factor. In pyrrhotite-saturated 

experiments at constant P and T (3 GPa/1050 °C), 
2H Oa  is around 0.20-0.24 in 3 out of 5 

experiments but reaches a significantly higher value (0.43) in the charge with the highest melt 

H2O content. In the most reducing experiment, the very low melt H2O content leads to a 

questionable 
2H Oa  value of 0.05. 

Thermodynamic equilibrium between inner and outer capsules by diffusion of H2 

implies the following equation: 

 
2Hf  buffer = 

2Hf  charge       (Eqn. 1) 

Since the outer capsule is saturated with pure water, 
2Hf buffer can be expressed as follows: 

 
2Hf  buffer = 

2H Of  buffer / [K.( 
2Of  buffer)

0.5
]    (Eqn. 2) 

with K being the equilibrium constant of water dissociation reaction. Similarly, the inner 

capsule is water-saturated, therefore fO2 charge can be expressed as: 

  
2Of  charge = 

2H Of  charge / [K.( 
2Hf  charge)

0.5
]    (Eqn. 3) 

 By combining Eqns. 1, 2 and 3, we write: 

  
2Of  charge = 

2Of  buffer . [
2H Of  charge / 

2H Of  buffer]
2
   (Eqn. 4) 

Then, because 
2H Of  buffer = 

2

o

H Of  (i.e., pure water), and 
2H Oa  charge = 

2 2

o

H O H O/f f , the 

following relation can be written: 
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   log 
2Of  charge = log 

2Of  buffer + 2 log 
2H Oa  charge   (Eqn. 5) 

Thus, 
2H Oa  values were used to estimate the experimental 

2Of  conditions inside inner 

capsules from Eqn. 5. For the CCO-, NNO-, and NixPd1-x-NiO-buffered experiments, log 
2Of  

buffer was calculated from the calibrations of Taylor et al. (1992) and O‟Neill & Pownceby 

(1993) by considering either pure Co, or pure Ni, or the measured Ni/Pd ratio, respectively, in 

the metal alloys of the buffer assemblages. For the HM-buffered experiments, we used the 

calibration of Schwab & Kustner (1981) to estimate log 
2Of  buffer. The corresponding 

2Of  

values (absolute, and relative with respect to the FMQ buffer from the calibration of Stagno 

& Frost 2010) are reported in Table 6 and plotted in Fig. 6. At constant P and T (3 GPa, 1050 

°C), log 
2Of  values range from -13.75 (i.e., FMQ-5.47) to -5.51 (i.e., FMQ+2.77). However, 

an oxygen fugacity of FMQ-5.47 (in experiment G264) corresponds to IW-1 (IW = iron-

wüstite oxygen buffer). Thus, if this estimated 
2Of  value was real, the charge G264 should 

have experienced Fe-metal saturation, which is not observed. Therefore, the estimated 
2Of  

must be overcorrected in this experiment, owing to a too low 
2H Oa , itself resulting from an 

overestimation of the melt Na2O content and an underestimation of the melt H2O content. 

When considering only HM-buffered charges, log 
2Of  values consistently increase with 

temperature, from -7.02 to -5.55 at 2 GPa and from -7.13 to -5.51 at 3 GPa, between 950 and 

1050 °C. Nonetheless, the 
2Of  values relative to the FMQ buffer do not vary much with 

temperature but decrease with increasing pressure, leading to very oxidizing conditions at 2 

GPa with 
2Of  as high as FMQ+3.42. It is worth noting that the range of 

2Of  covered by this 

whole data set goes from reducing to oxidizing conditions such that it covers the 
2Of  values 

over which sulfide to sulfate transition may take place. Therefore, the speciation of S 

dissolved in the silicate melt and the hydrous fluid is expected to vary substantially, from 
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sulfide species (i.e., S
2-

/Total S ~ 1) to sulfate species (i.e., S
6+

/Total S ~ 1), respectively. 

 As mentioned above, the experimental 
2Of  conditions were also estimated by using the 

calibration of Balta et al. (2011), which considers the concentration of Fe dissolved in the 

AuPd-capsule walls, and the calibration of Médard et al. (2008), which considers the 

concentration of Fe dissolved in the Pt-wire placed inside the inner capsule. The results of 

these estimates are reported in Table 7 and plotted in Fig. 6. It appears that the experimental 

2Of  values calculated from the buffer compositions and corrected based on estimated 
2H Oa  

are well reproduced by at least one calibration in all experiments, within less than 0.55 log 

2Of  unit (except for the overcorrected G264, and with the exception of G280 which shows 

0.86 log 
2Of  unit difference). In detail, the 

2Of  values of our reduced (i.e., sulfide-saturated) 

charges are better reproduced by the calibration of Médard et al. (2008) (when using the 

original calibration of Grove (1981) for the solution model of FeO in silicate melt in 

equilibrium with PtFe alloy, instead of the Kessel et al. (2001) Pt-Fe solution model), 

whereas the calibration of Balta et al. (2011) reproduces the 
2Of  values of our oxidized (i.e., 

anhydrite-saturated) experiments more closely. This divergence between the two calibrations 

can be explained as follows: (1) Although the model of Balta et al. (2011) was calibrated 

over a wide range of 
2Of  (from log 

2Of = -11 to -5), the model of Médard et al. (2008) was 

calibrated in reducing conditions only (log 
2Of < -7.5); (2) both calibrations were determined 

for S-free systems. However, Pt is much less chalcophile than Au. As a consequence, in our 

reducing experiments, a negligible amount of S
2-

 may have dissolved into the Pt-wire 

whereas a small but detectable quantity of S
2-

 may have been incorporated in the AuPd-

capsule walls. Therefore, the Pt-Fe calibration would not be affected by the presence of sulfur 

in a reduced system, unlike the AuPd-Fe calibration. 

 Thus, the agreement observed between 
2Of  estimates calculated from independent 
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methods and theoretical 
2Of  conditions gives confidence in the real redox state of our 

experiments. However, considering the difference in the 
2Of  estimates between the three 

methods employed here, we think that the uncertainty in the 
2Of  value of each of our 

experiment is as much as 0.5-1.0 log units. While describing phase compositional variations 

as a function of 
2Of , we use those obtained using Equation 5. For the CCO-buffered 

experiment G264, however, we use the non-corrected 
2Of  value corresponding to the CCO 

buffer at 3 GPa and 1050 °C, which is in good agreement with the calibration of Médard et 

al. (2008); it is worth noting that this non-corrected 
2Of  value represents a maximum 

2Of  

estimate for this run. 

 For comparison purpose, we tested an alternative method of calculating 
2H Oa  values 

from Equation 5 by using the log 
2Of  charge values estimated from the calibrations of Médard 

et al. (2008) (for pyrrhotite-saturated charges) and Balta et al. (2011) (for anhydrite-saturated 

charges). Apart from experiments G260 and G264 (for which this method is not valid since 

log 
2Of  charge > log 

2Of  buffer), it appears that the resulting 
2H Oa  values range between 0.15 and 

0.54 with a mean of 0.33 ± 0.14. Although slightly greater on average, these water activities 

are still low and compare well with the 
2H Oa  values calculated from the model of Burnham 

(1979). This observation brings further evidence that the experiments approached chemical 

equilibrium. Nonetheless, for consistency, we use 
2H Oa  estimates obtained from our melt H2O 

concentrations in the following considerations. 

 

3.5. Fugacities of gas species 

  

In order to estimate the relative importance of the different gaseous components present 

inside the inner capsule, we calculated the fugacities of the main gas species at 
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thermodynamic equilibrium, i.e., 
2H Of , 

2Hf , 
2Sf , 

2H Sf  and 
2SOf  (reported in Table 8 and 

plotted as a function of the oxygen fugacity in Fig. 7). To estimate 
2H Of , we used the 

experimental study of Zhang (1999) who provides a model of H2O solubility in silicate melt 

that considers the speciation of water (i.e., H2Ototal = H2O + OH
-
). Log 

2H Of  proves to be very 

constant in our study (all data average = 3.92 ± 0.34) along the investigated 
2Of  range, 

although the HM-buffered experiments show that fH2O tends to decrease with increasing 

temperature and increase with increasing pressure. fH2 was calculated from 
2H Of  and 

2Of  

according to the relation: 

                 
2Hf  = 

2H Of  / [K.( 
2Of )

0.5
]      (Eqn. 6) 

where K is the equilibrium constant of the reaction at P and T. Except for the most reduced 

charge where 
2Hf  ≈ 

2H Of , 
2Hf  values are significantly lower than 

2H Of  values over the whole 

2Of  range and decrease by three orders of magnitude with increasing 
2Of , from log 

2Hf  = 

2.44 at ~FMQ-2 to -0.34 at ~FMQ+3.4. 

 In our reduced experiments, the small size of pyrrhotite crystals prevented their 

accurate chemical analysis and the determination of the fugacity of sulfur (
2Sf ) from their 

composition. Therefore we used the empirical method of Bockrath et al. (2004) which 

considers the composition of a basaltic melt saturated with a sulfide phase at 1 atm and high 

temperature (1200-1400 °C), according to the reaction: 

  2 FeOmelt + S2 gas = 2 FeSsulfide + O2 gas      (Eqn. 7) 

The original expression of Bockrath et al. (2004) derived from Eqn. 7 for the calculation of 

2Sf  was later modified by Liu et al. (2007) to extend its applicability to high pressures. These 

authors proposed to estimate sulfur fugacities in pressurized experiments by: 

 log 
2Sf  = 6.7 – 12800/T – 2log XFeO + ∆FMQ + 0.904(P-1)/2.303RT   (Eqn. 8) 

where T is in K, P is in bar, XFeO is the mole fraction of FeO in the silicate melt, and ∆FMQ is 



 

26 

the 
2Of  expressed relative to the fayalite-quartz-magnetite solid buffer. Liu et al. (2007) 

demonstrated that this expression allows a reliable estimation of 
2Sf  to within an uncertainty 

of 0.7 log unit for a wide range of silicate melt compositions, temperatures, pressures, and 

water concentrations. Hence, we applied Eqn. 8 to our pyrrhotite-saturated experiments. 

The 
2Sf  in our anhydrite-saturated experiments was estimated from mineral-melt equilibria 

involving the anhydrite (anh: CaSO4) ± magnetite (mt: Fe3O4) assemblage. The calculation is 

conceptually identical to that performed by Luhr (1990) and Jégo & Pichavant (2012). The 

equilibrium reactions are written in terms of the silicate components of the melt: 

CaSiO3(melt) + 2/3 Fe3O4(mt) + 1/2 S2(fluid) + 7/6 O2(fluid) = CaSO4(anh) + Fe2SiO4(melt)   (Eqn. 9) 

CaSiO3(melt) + 1/2 S2(fluid) + 3/2 O2(gas) = CaSO4(anh) + SiO2(melt)         (Eqn. 10) 

where Eqn. 9 applies to Run no. G243, G246 and G249, which contain both anhydrite and 

magnetite, whereas Eqn. 10 applies to Run no. G251, which does not contain magnetite. The 

corresponding equilibrium constants are: 

 K9 = (        
        

) (  (   
       

          
   ))        (Eqn. 11) 

 K10 = (     
        

) (  (   
       

   ))               (Eqn. 12) 

where         
,        

 and      
 are the activities of the components Fe2SiO4, CaSiO3 and 

SiO2 in the silicate melt, respectively, and       
 is the activity of the component Fe3O4 in 

magnetite. Anhydrite is considered to be a pure phase (i.e.,       
 = 1). Then the 

2Sf  can be 

expressed as: 

log       
 = 2(          (

        

       

)  
 

 
   (   

)     (      
   ))       (Eqn. 13) 

log        
 = 2(           (

     

       

)  
 

 
   (   

))              (Eqn. 14) 

The activities of the melt components and of Fe3O4 in magnetite under our experimental 

conditions can be estimated by using the MELTS software (Ghiorso & Sack, 1995; Asimow 
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& Ghiorso, 1998), using compositional data for silicate melt and magnetite from Tables 2 and 

5. The equilibrium constants K9 and K10 can also be written as: 

 ln K =       
  / RT              (Eqn. 15) 

where the Gibbs free energies for the melt components and Fe3O4 in magnetite are calculated 

using MELTS. For anhydrite, S2 and O2, the Gibbs free energies are calculated from Majzlan 

et al. (2002) and Robie & Hemingway (1995), respectively. Once the log K value is known, 

log 
2Sf  can be determined as a function of 

2Of  using compositional data (Tables 2 and 5) and 

2Of  specific to each charge. It is worth noting that this approach is valid because the silicate 

components of the melt are representative of the thermodynamic equilibrium between the 

silicate melt and the silicate mineral phases (i.e., cpx and garnet). Log 
2Sf  values calculated 

for all charges are reported in Table 8 and plotted as a function of the oxygen fugacity in Fig. 

7. For comparison, the fugacity of pure S2 gas at 3 GPa and 950 °C – as calculated from Shi 

& Saxena (1992) – is also reported in Fig. 7; this value represents the maximum limit of 
2Sf  

in a S-bearing, fluid-saturated magmatic system at P and T. 

 In Fig. 7, it appears that 
2Sf  significantly increases with increasing 

2Of  in reducing 

conditions, from log 
2Sf  = 0.5 to 3.0. Then, in intermediate 

2Of  conditions, log 
2Sf  reaches a 

plateau but varies between ~2 and 4 as a result of a competition between 
2Of  and XFeO in 

melt. In oxidized charges, log 
2Sf  is noticeably lower, being comprised between -1.6 and 0.6, 

i.e., comparable to log 
2Hf . In detail, it can be observed from the HM-buffered charges that 

the 
2Sf  tends to rise with increasing pressure and decreasing temperature.  Importantly, the 

fact that the maximum log 
2Sf  value of this study is no more than 4, i.e., over three orders of 

magnitude lower than the fugacity of pure S2 gas at the experimental P and T, and that our 

range of 
2Sf  values is directly comparable to that reported in previous experimental studies 
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(e.g., Prouteau & Scaillet, 2013; Clemente et al., 2004) suggests that, in spite of the use of S 

concentrations likely greater than average natural concentrations in the downgoing slab, our 

experimental results are directly applicable to nature, and the presence of sulfur in the system 

does not lower the activity of water in an artificial manner. 

 H2S and SO2 form at equilibrium according to the reactions: 

     H2O + ½ S2 = H2S + ½ O2   (Eqn. 16) 

            ½ S2 + O2 = SO2    (Eqn. 17) 

Therefore, 
2H Sf  and 

2SOf  can be expressed as follows: 

          
2H Sf  = [K16. 

2H Of .( 
2Sf )

0.5
] / (

2Of )
0.5

  (Eqn. 18) 

       
2SOf  = K17. 

2Of .( 
2Sf )

0.5
   (Eqn. 19) 

where K16 and K17 are the equilibrium constants of the reactions in Eqns. 16 and 17, 

respectively. Ohmoto & Kerrick (1977) used experimental data to calibrate these reactions 

over a P-T range of 0.2-1.0 GPa and 300-1000 °C, and expressed the equilibrium constants as 

a function of T (K) as: 

   log K16 = (-8117/T) + (0.188 logT) - 0.352        (Eqn. 20) 

   log K17 = (18929/T) - 3.783          (Eqn. 21) 

Although our experiments were conducted at higher pressures, we used these calibrations to 

estimate 
2H Sf  and 

2SOf  in our charges. Both 
2H Sf  and 

2SOf  are dependent on
2Of  and are 

critically sensitive to variations of 
2Sf . Thus, 

2H Sf  continuously increases with 
2Of  in 

reducing conditions, then slightly decreases above FMQ due to the influence of 
2Hf  but still 

remains at high levels (log 
2H Sf  > 3.5). Interestingly, over the whole sulfide-saturated 

2Of  

range, 
2H Sf  is strictly comparable to 

2H Of . In oxidized charges, log 
2H Sf  is much lower (-0.2-

1.3), influenced by the effects of both 
2Hf  and 

2Sf , and decreases with increasing 
2Of . 

Similar to 
2Sf , log 

2SOf  rapidly increases with 
2Of in reducing conditions, from -0.3 to 2.2. 
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But unlike 
2Sf , log 

2SOf  keeps increasing above FMQ to reach 5.3 at FMQ+1.Then, 
2SOf  is 

maintained at very high levels (i.e., above 
2H Of ) in oxidizing conditions, owing to a greater 

influence of 
2Of  over 

2Sf . This evolution of 
2H Sf  and 

2SOf  with 
2Of  is very similar to that 

observed by Clemente et al. (2004), who reported that the crossover between 
2H Sf  and 

2SOf  

occurs around NNO+1 (i.e., ∆FMQ~0) (cf. Fig. 7). Importantly, it can be observed that H2O 

never dominates the composition of the fluid phase, and either 
2H Sf  or 

2SOf  (or both in 

moderately oxidizing conditions) reaches similar magnitude to that of 
2H Of , or even becomes 

higher. This helps explain why melt H2O concentrations and activities are low in our 

experiments. Experiment G261 (at 
2Of  = FMQ+0.55) illustrates well this mechanism; 

because this experiment has substantially lower fugacities of S2, H2S and SO2 compared with 

that of H2O, it shows the highest melt H2O content and activity of the dataset. 

 In summary, at 
2Of  below FMQ, the fluid phase composition is dominated by both 

H2O and H2S, whereas in oxidizing conditions, SO2 and H2O are the main gas species; in 

intermediate 
2Of  conditions, there is a competition between all gas species (except H2, which 

is much lower). Therefore, the fluid composition varies dramatically along with the 
2Of , 

which is likely to influence strongly the partitioning of S between aqueous fluid and silicate 

melt. 

 

3.6. Sulfur concentration in melt 

 

Sulfur concentrations in silicate partial melts ([S]melt), which represent sulfur concentration at 

sulfide saturation (SCSS) or at anhydrite saturation (SCAS), are reported in Table 1 and 

plotted as a function of 
2Of  in Fig. 8a and 

2Sf  in Fig. 8b. The first-order observation is that 
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[S]melt increases with 
2Of  at constant P and T, in agreement with previous experimental 

studies (e.g. Baker & Moretti, 2011) and natural observations (e.g. Wallace & Edmonds, 

2011), from ~ 30 ppm S in reducing conditions up to ~ 3000 ppm S in oxidizing conditions. 

In detail, [S]melt varies between 28 and 59 ppm S at 
2Of  < FMQ and, at intermediate 

2Of  (~ 

FMQ+0.5-1.0), close to the sulfide-sulfate transition, [S]melt reaches significantly greater 

values of ~400-500 ppm S. At anhydrite saturation and 3 GPa/1050 °C, [S]melt is as high as ~ 

2900 ppm S. In addition, the oxidized experiments show that [S]melt increases greatly with 

temperature at a given 
2Of , from ~1500 to 2900 ppm S at 3 GPa and from ~700 to 2600 ppm 

S at 2 GPa (Fig. 8a inset), while decreasing with increasing pressure, as previously reported 

for silicate melts of a wide range of compositions (Wendlandt, 1982; Mavrogenes & O‟Neill, 

1999; Holzheid & Grove, 2002; Ding et al., in press). 

  [S]melt does not appear to be directly correlated with 
2Sf  (Fig. 8b), in contrast to its 

dependence on 
2Of . Nevertheless, most of reduced experiments, which have very low melt S 

contents, show low 
2Sf  values (log 

2Sf  < 2), likely related to low XFeO in melt. The two 

experiments performed at intermediate 
2Of  conditions, which led to noticeably higher [S]melt, 

also show higher 
2Sf  values. However, the increase of log 

2Sf  between G261 and G280 

(from 2.4 to 4.0) is not followed by an increase in [S]melt, suggesting that 
2Sf  does not exert a 

primary control on sulfur solubility under moderately oxidizing conditions. As expected, the 

anhydrite-bearing experiments have, on average, the lowest 
2Sf  values of the dataset, 

although they show the highest melt S concentrations. This observation confirms that in 

oxidizing conditions sulfur does not dissolve in silicate melt as S
2-

. In summary, it seems that 

S solubility in melt is chiefly controlled by 
2Of , and that the influence of 

2Sf  is secondary 

compared to the fugacity of other S-bearing species, namely H2S and SO2, as previously 

observed (e.g., Clemente et al., 2004). 
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 In Fig. 9, [S]melt is plotted as a function of FeOT (a) and CaO (b) in silicate melt. Melt 

FeOT concentration is very low in reducing conditions (≤ 0.6 wt.%), which may explain the 

very low S solubility values. At intermediate 
2Of , melt FeOT varies from 0.6 to 2.4 wt.% 

without significant increase of [S]melt, suggesting that melt S solubility may not be primarily 

controlled by melt FeOT content under 
2Of  conditions near the sulfide-sulfate transition. In 

anhydrite-saturated charges, [S]melt and melt FeOT seem positively correlated, but this 

represents an artifact related to the effect of temperature (and increasing melting degree) on 

both S and FeOT concentrations in silicate melt. In contrast, the correlation observed with 

melt CaO content (Fig. 9b) in oxidizing conditions is meaningful since S is expected to 

dissolve as SO4
2-

 by complexation with Ca
2+

 in the silicate melt. In reducing and intermediate 

2Of  conditions, melt CaO concentration is greater than at higher 
2Of  owing to the absence of 

anhydrite crystallization but, consistently, [S]melt shows no clear correlation. Hence, sulfur 

content of silicate melt near the sulfide-sulfate transition may be influenced by a complex 

interplay of melt FeOT, Fe
3+

/∑Fe, and CaO contents. 

 

 

4. DISCUSSION 

4.1. Effect of varying redox state on silicate melt proportion and composition 

 

As described in the Results section, some variations in phase proportions and compositions 

can be ascribed to the effect of 
2Of  at given P and T. From our results, the 

2Of  range 

investigated in this study can be divided in three distinct 
2Of  domains: (1) very reducing (

2Of  

< FMQ-2.5); (2) reducing and moderately oxidizing (FMQ-2 ≤ 
2Of  ≤ FMQ+1.1); (3) 

oxidizing (
2Of  > FMQ+2.5). It is worth noting that domains (1) and (2) are characterised by 
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the presence of pyrrhotite, whereas domain (3) is defined by the presence of anhydrite, 

implying that sulfide/sulfate transition occurs between domains (2) and (3). 

 In domain (1), the silicate melt proportion and H2O content are relatively low and the 

aqueous fluid phase proportion is high. This is related to a low 
2H Of /

2Hf  ratio under such 

reducing conditions, which tends to lower the activity of water. As a consequence, the 

solubility of water in melt is decreased, so is the isobaric melt productivity. Therefore, the 

silicate melt shows a more felsic composition, with high SiO2, Na2O and K2O contents, and 

low CaO, FeOT and TiO2 concentrations. The melt FeOT content is lowered further owing to 

the high stability of pyrrhotite. 

 In domain (2), the opposite is observed. The silicate melt proportion and H2O content 

are high and the aqueous fluid phase proportion is relatively low. This is explained by a high 

2H Of /
2Hf  ratio and a high water activity which promotes water dissolution in silicate melt and 

isobaric melt productivity. Hence, the silicate melt composition tends to be less felsic, 

showing lower SiO2, Na2O and K2O contents, and high CaO and TiO2 concentrations. Melt 

FeOT contents remain very low, though, as a result of pyrrhotite stability. 

 In domain (3), the situation appears to be intermediate (at similar P and T). The 

silicate melt proportion and H2O content are lower and the aqueous fluid phase proportion is 

higher than in domain (2). Under such oxidizing conditions, the ratio 
2H Of /

2Hf  is very high 

but the activity of water is maintained at relatively low values by the influence of high 
2SOf  

inside the inner capsule. This limits dissolution of water in silicate melt and lowers to some 

extent the isobaric melt productivity. However, the most obvious effect of increased 
2Of on 

melt composition is the elevated FeOT. In addition, the fact that the stable S-bearing mineral 

phase is anhydrite instead of pyrrhotite leads to a modification of the distribution of cations 

between silicate melt and major silicate phases (cpx, garnet). Thus, the silicate melt 
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composition differs significantly from that in domain (2), with higher SiO2, FeOT, MgO and 

K2O, and lower CaO, TiO2, Na2O and Al2O3 contents. 

  

4.2. Sulfur content at sulfide and sulfate saturation in hydrous slab partial melts: 

comparison with previous studies 

 

Most of previous experimental studies of melt S solubility at sulfide- or anhydrite-saturation 

were conducted at low pressures, from 0.15 to 1.0 GPa, in order to constrain the behavior of 

S in arc magmas at pre-eruptive conditions (e.g. Luhr, 1990; Scaillet et al., 1998; Keppler, 

1999; 2010; Scaillet & Pichavant, 2003; 2005; Clemente et al., 2004; Jugo et al., 2005a,b; Li 

& Ripley, 2005; 2009; Scaillet & Macdonald, 2006; Liu et al., 2007), or were performed at 

higher pressures but for mafic compositions (Wendlandt, 1982; Marvogenes & O‟Neill, 

1999; Holzheid & Grove, 2002; Ding et al., in press). Only two recent studies report S 

solubility values in hydrous felsic melts at sub-arc mantle depths (Jégo & Dasgupta, 2013; 

Prouteau & Scaillet, 2013), directly comparable with the data presented here. Jégo & 

Dasgupta (2013) report very low melt S concentrations (110 ± 50 ppm S) in H2O- and 

pyrrhotite-saturated rhyolitic melts under reducing conditions (
2Of < FMQ) at 850-1050 °C. 

Their data compare well with our results obtained at similar 
2Of conditions (from 28 ± 2 to 59 

± 31 ppm S) although a factor of two difference is observed, likely owing to somewhat lower 

melt FeOT contents in the reduced experiments of the present study (Fig. 9a; lower melt FeOT 

contents being possibly related to limited Fe loss into the AuPd capsule walls and the Pt wire 

present among the silicate charge). Prouteau & Scaillet (2013), on the other hand, report a 

wide range of melt S concentrations in spite of a similar amount of bulk S added to the 

starting material (i.e., 1.1 wt.% S). At 2 GPa, they show a constant melt S content between 

800 and 900 °C, around 300 ppm S, under 
2Of  conditions close to NNO+1. These values are 
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comparable to our results obtained at intermediate 
2Of  (from 389 ± 58 to 518 ± 136 ppm S), 

and the discrepancies may be attributed to differences in pressure and temperature, both 

higher in the present study. However, at 3 GPa, Prouteau & Scaillet (2013) report ~100 ppm 

S in melt at 800 °C, and over 1200 ppm S at 900 °C. Such values are difficult to explain at 

2Of  around NNO+1, so is the dramatic increase of melt S concentration over a limited range 

of temperature. Prouteau & Scaillet (2013) also conducted a single experiment at 3 GPa/900 

°C under reducing conditions (
2Of < NNO-2) with 2 wt.% bulk S, which led to ~200 ppm S in 

melt. This result is in agreement with our findings under similar redox conditions, given the 

difference in bulk S amount, hence 
2Sf . 

  In Fig. 10a, we compared our SCSS data with SCSS predicted by the empirical model 

of Liu et al. (2007) and our SCAS data with SCAS predicted by the models of Baker & 

Moretti (2011) and Li & Ripley (2009) at the experimental P-T-
2Of  conditions and our 

measured melt compositions. It appears that in reducing conditions (
2Of  < FMQ-1), our data 

are well reproduced by the SCSS model of Liu et al. (2007) within a factor two. In contrast, 

our data obtained under intermediate 
2Of  conditions overestimate by a factor of ~4 to 8 the 

SCSS predicted by Liu et al. (2007). It is worth mentioning that this model, which is 

primarily based upon the silicate melt composition, takes the 
2Of  effect into account only 

through the ratio Fe
2+

/Fe
3+

 (or Fe
3+

/∑Fe). Therefore, according to Liu et al. (2007) model, 

while 
2Of  increases (at sulfide saturation), the ratio Fe

2+
/Fe

3+
 decreases, so does the amount 

of S dissolved in the melt through complexation with Fe
2+

. However, it has been shown (e.g. 

Clemente et al., 2004; Jugo, 2009; Jugo et al., 2010; Jégo & Pichavant, 2012) that SCSS 

increases with 
2Of  at 

2Of > FMQ (or ~NNO+1), i.e., near the sulfide/sulfate transition, by 

increase of the ratio S
6+

/∑S (leading to progressive sulfide destabilization) and progressive 

dissolution of S as SO4
2-

 in silicate melt. The present results are in agreement with these latter 
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studies. Moreover, the fact that (1) the melt FeOT content has a negligible effect on SCSS 

under intermediate 
2Of  conditions (Fig. 9a) and (2) SCSS is significantly higher above FMQ 

than in more reducing conditions despite a continuous increase of the ratio Fe
3+

/∑Fe in 

silicate melt (Fig. 10b) suggests that, above FMQ, the SCSS is predominantly controlled by 

the ratio S
6+

/∑S, independently of Fe
3+

/∑Fe. Although the model of Liu et al. (2007) is 

probably the most accurate empirical model for SCSS in reducing conditions, these 

observations stress the need for improvements of the empirical reproduction of the increase 

of SCSS under 
2Of  conditions close to the sulfide/sulfate transition, as predicted by the 

thermodynamic model of Moretti & Baker (2008). 

  In oxidizing conditions, the empirical SCAS models of Li & Ripley (2009) and Baker 

& Moretti (2011), which are also based upon the silicate melt composition, give results very 

similar to each other, and our SCAS data are reproduced by both models within a factor of 

two (Fig. 10a). 

 

 4.3. Sulfur concentration of the fluid phase 

 

Sulfur concentrations in the aqueous fluid phase ([S]fluid), as estimated by mass balance 

calculations, are reported in Table 9 and Fig. 11. [S]fluid values are relatively high and vary 

between 5 and 15 wt.% S. Although most of apparent uncertainties are reasonably low (1σ < 

4 wt.%), we warn the readers that these [S]fluid values were not measured directly and, 

therefore, we acknowledge that they may not be fully representative of the real S solubility 

values of the aqueous fluid phase in equilibrium with the experimental assemblage at P and 

T. They compare well, however, with [S]fluid values reported by Jégo & Dasgupta (2013) at 

similar P and T in reducing conditions (10-15 wt.% S; Fig. 11b), also obtained from mass 

balance calculations though. Very few other experimental studies investigated the solubility 
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of sulfur in high pressure-high temperature aqueous fluids, but Newton & Manning (2005) 

report anhydrite (CaSO4) solubility data in H2O-NaCl solutions (NaCl mole fraction, XNaCl, 

up to 0.3). We therefore converted our [S]fluid data (expressed as wt.% S) into CaSO4 molality 

(m; moles CaSO4 per kg H2O) to allow comparison with Newton & Manning (2005) results 

(independently of 
2Of  and S speciation). Our [S]fluid values range from log m(CaSO4) = 0.84 

to 1.36, whereas Newton & Manning (2005) report log m(CaSO4) values increasing from -1.8 

to -1.5 between 600 and 800 °C at 1.0 GPa and XNaCl = 0, and show that log m(CaSO4) goes 

up to 0.13 at 1.4 GPa and XNaCl = 0.1, and reaches 0.73 at 1.0 GPa and XNaCl = 0.3. They 

interpret the positive effect of NaCl on CaSO4 solubility as occurring according to a solvent 

dissolution reaction similar to: 

  CaSO4 + 2 NaCl = CaCl2 + Na2SO4          (Eqn. 22) 

where the salts on the right-hand side are very soluble in aqueous fluids. Although our 

experiments are Cl-free, it may be expected that the aqueous fluid phase contains a non-

negligible amount of Na, which could promote to the dissolution of S in oxidizing conditions. 

In this case, a possible dissolution mechanism could be: 

 CaSO4(anhydrite) + 2 Na(OH)(fluid) = Ca(OH)2(fluid) + Na2SO4(fluid)        (Eqn. 23) 

Thus, our calculated log m(CaSO4) values may not be unreasonable if the Newton & 

Manning (2005) results are extrapolated to higher P and T. 

  In Fig. 11a, a clear tendency of the evolution of [S]fluid with varying redox state can be 

observed over the 
2Of  range investigated. In reducing and intermediate conditions (i.e., FMQ-

2 ≤ 
2Of  ≤ FMQ+1), [S]fluid is the highest and remains constant within error bars around 13.1 

± 1.3 wt.% S. The most reduced charge (at ~FMQ-3), however, shows a slightly lower [S]fluid 

around 9.4 wt.% S. In contrast, the oxidized charges (at ∆FMQ> 2) show [S]fluid values 

around 6.7 ± 1.4 wt.% S, i.e., a factor of two lower than in reducing experiments. 
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  These observations imply that the solubility of sulfur in the aqueous fluid phase at 

given P and T may be higher at pyrrhotite saturation than at anhydrite saturation. Therefore, 

the sulfur capacity of the fluid phase must be related to the speciation of S, i.e., the evolution 

of the ratio S
6+

/∑S as a function of 
2Of . In reducing and intermediate conditions (∆FMQ ≤ 

1.1), S
6+

/∑S ~ 0 and S is almost totally expressed as S
2-

. In this case, sulfur is expected to 

dissolve predominantly as H2S and HS
-
 in the aqueous fluid phase, which is consistent with 

the elevated values of fH2S estimated inside the inner capsule at those redox conditions (cf. 

Fig. 7). The fact that H2S and HS
-
 likely account for the quasi-totality of [S]fluid at 

2Of  ≤ 

FMQ+1.1 highlights the very high solubility of these species in aqueous phases. This is in 

agreement with the observations made by Jégo & Dasgupta (2013) in similar 
2Of  conditions 

(i.e., at pyrrhotite saturation), who interpreted the similarity of [S]fluid at CCO and NNO as a 

result of the dissolution of S in fluid mainly as H2S over the fO2 range. In the most reduced 

experiment, however, the ratio 
2Hf /

2H Sf  is a bit higher than at FMQ-2, which may explain the 

slightly lower [S]fluid observed at FMQ-2.8. In anhydrite-saturated experiments, at ∆FMQ ≥ 

2.5, sulfur is expressed as oxidized forms (S
4+

, S
6+

) and can be dissolved in the aqueous fluid 

phase predominantly as SO2 and SO4
2-

, and to a lesser extent SO3 (e.g. Oppenheimer et al., 

2011; Webster & Botcharnikov, 2011). Despite this multiplicity of possible sulfur species 

dissolved in fluid (i.e., SO4
2-

 can be integrated as H2SO4, but also as alkali-sulfate and Ca-

sulfate components, notably in Cl-bearing fluids; Webster et al., 2009), it appears that the 

sulfur capacity of Cl-free aqueous fluids is lower in oxidizing conditions than when S is 

reduced. Nevertheless, 5 wt.% S in slab-derived fluids at 2 GPa and 950 °C represents an 

important inventory of sulfur in subduction zones, similar to previous [S]fluid estimates in 

reducing conditions in the same P-T conditions (Fig. 11b), and over one order of magnitude 

larger than the amount of S carried by silicate melts. 
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  Besides, in contrast to previous observations made in reducing conditions (Jégo & 

Dasgupta 2013), there is no tendency of [S]fluid to increase with temperature at anhydrite 

saturation (Fig. 11b). This suggests that in oxidizing conditions the evolution of [S]fluid is not 

related to the consumption (or dissolution) of anhydrite, which is consistent with the fact that 

anhydrite proportion does not systematically decrease with increasing temperature (cf. Table 

1). Instead, [S]fluid might be primarily controlled by the composition (e.g., alkalis, volatile 

elements such as Cl, F, C) of the aqueous fluid phase. 

   

4.4. Sulfur partitioning between fluid and melt 

 

Partition coefficients of sulfur between fluid and melt ( fluid/melt

SD ), are reported in Table 9 and 

Figs. 12 and 13. They show considerable variations along the 
2Of  range investigated, 

spanning more than two orders of magnitude between reducing and oxidizing conditions. At 

2Of  below FMQ, fluid/melt

SD  range from ~1800 ± 700 to 4600 ± 1800, stressing the fact that S 

partitions very little to the silicate melt under reducing conditions (the large error bars reflect 

the uncertainties in S contents in both fluid and melt, accentuated by the very low melt S 

concentrations). Previously, fluid/melt

SD  values as high as 1700 ± 700 were reported at 3 

GPa/1050 °C in experiments buffered at NNO (Jégo & Dasgupta 2013), similar to our most 

reduced charge. The two other very high fluid/melt

SD  partially reflect the very low melt S 

concentrations, close to EPMA detection limits, but also the slightly higher [S]fluid compared 

to the most reduced charge. Thus, due to the fact that 
2H Sf /

2Hf  and 
2H Sf /

2H Of  ratios are 

higher in moderately reducing conditions (i.e., 
2Of  ~FMQ-1 to FMQ-2) than in the most 

reduced charge, it might be hypothesized that fluid/melt

SD  will reach maximum values over this 

2Of  range. At intermediate 
2Of  conditions, fluid/melt

SD  are much lower (~230-380), suggesting 
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that subducting oceanic crust partial melts have a non-negligible potential as carriers for S at 

2Of > FMQ, despite pyrrhotite saturation and very low melt FeOT contents (Fig. 12b). In 

oxidizing conditions fluid/melt

SD  values are even lower, ranging from 22 at 3 GPa/1050 °C to 75 

at 2 GPa/950 °C. Our results show that, at anhydrite saturation, fluid/melt

SD  decreases with 

increasing temperature, and to a lesser extent with increasing pressure (Fig. 13), implying 

that the hotter (and deeper) the slab partial melting the more efficient the transport of 

oxidized S via slab partial melts. This is in contrast to the observations made in reducing 

conditions by Jégo & Dasgupta (2013). Therefore, by extrapolating the trend described by 

our oxidized charges toward lower temperatures (≤ 900 °C) typical of top slab temperatures 

in modern subduction zones, fluid/melt

SD  tends to approach values experimentally determined at 

pyrrhotite saturation. This suggests that, in the context of modern subduction zones, the 

partitioning of S between fluid and melt is not so much dependent on redox conditions and 

the nature of the S-bearing mineral phase at saturation. As a consequence, during hydrous 

slab partial melting at T ≤ 900 °C, fluid/melt

SD  may be expected to range between ~100 and 300, 

independent of 
2Of . 

 

4.5. Redox state of the downgoing slab and mode of sulfur storage 

 

Our experiments place direct constraints on the 
2Of  range at which anhydrite to pyrrhotite 

transition occurs in subducted crust. Figure 8a shows that sulfide to sulfate transition, in 

equilibrium with residual eclogite mineralogy, takes place between FMQ+1.1 and FMQ+2.5. 

Interestingly, the 
2Of  of anhydrite to pyrrhotite transformation at 2-3 GPa range (this study) 

is similar to that of the observed change in sulfur speciation in basaltic glasses (Jugo et al., 

2010) and comparable to the 
2Of of S speciation change modeled in hydrous rhyolitic melts at 
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high pressure by Baker & Moretti (2011). It is however, distinctly higher than the S 

speciation change reported in hydrous rhyolitic glasses by Klimm et al. (2012). Given this 

constraint, the key question is what is the redox state of the subducting ocean crust at sub-arc 

depths; is it above or below 
2Of of FMQ+1.1-FMQ+2.5? 

 There are very little direct constraints on the 
2Of  conditions prevailing in subduction 

zones in general and in downgoing slab in particular. Most assumptions and constraints on 

the actual 
2Of  of the slab come from observations of the natural mineralogy of the altered 

oceanic crust, the overlying sediments, and the underlying serpentinized lithospheric mantle 

sampled by drilling or studied in ophiolites as well as oxidation state of arc magmas. Several 

studies (e.g., Ballhaus, 1993; Brandon & Draper, 1996; Luhr & Aranda-Gómez, 1997; 

Parkinson & Arculus, 1999; Mungall, 2002; Kelley & Cottrell, 2009) proposed that the sub-

arc mantle is relatively oxidized compared with other settings (i.e., BAB, MOR) as a result of 

the addition of subduction-released oxidizing fluids or melts. For example, Evans (2012) and 

Evans & Tomkins (2011) recently performed redox budget calculations that quantify the 

inputs and outputs to subduction zones. These workers conclude that subduction is likely to 

continuously oxidize the mantle through addition of Fe, C and S that are oxidized relative to 

the Fe, C and S in the mantle. Similarly, Lécuyer & Ricard (1999) estimated the net flux of 

ferric iron from the subducted oceanic crust to the mantle, through production of magnetite 

during hydrothermal alteration of the basaltic crust. They concluded that the transfer of Fe2O3 

from the slab to the mantle contributes from 10 to 25% in the global budget of Fe
3+

/∑Fe of 

the mantle. However, there are many other lines of evidence that primitive arc magmas 

globally are no more oxidized than MORBs (Lee et al., 2005, 2010, 2012; Dauphas et al., 

2009; Mallmann & O‟Neill, 2009). Hence these latter observations may indirectly imply that 

slab-derived fluids/melts may not be particularly oxidizing or that their effects is offset by 

metasomatic reactions occurring in the mantle wedge.  
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 Average 
2Of  of MORB glasses is estimated to be between FMQ-0.4 and FMQ+0.1 

(Bézos & Humler, 2005; Cottrell & Kelley, 2011). Thus one may expect that owing to iron 

oxidation during hydrothermal alteration, the altered upper ocean crust entering subduction 

zone is even more oxidized. However, it is unclear whether ocean floor metamorphism leads 

to net increase in oxidation state. For example, other studies (e.g., Berndt et al., 1996; 

Andreani et al., 2013) showed that serpentinization of ultramafic rocks at mid-ocean ridges 

results in the conversion of ferrous iron contained in primary minerals to ferric iron contained 

in secondary minerals, through production of H2 and reduced-C species, with the latter likely 

residing within the crust itself. Mottl et al. (2004), however, reported that aqueous fluids 

formed through devolatilization of the serpentinized subducting plate are sulfate and 

carbonate-bearing, therefore suggesting that the serpentinization may at least locally be an 

oxidative process. Furthermore, Ague et al. (2001) estimated a metamorphic 
2Of  of ~FMQ+2 

from the composition of ilmenite-hematite and magnetite-bearing metasediments subducted 

down to the sillimanite zone, and SiO2-rich hydrous fluid inclusions found in high pressure 

eclogite vein assemblages were shown to contain anhydrite and iron oxides (Sun et al., 2007; 

Zhang et al., 2008), suggesting the oxidized nature of exhumed metamorphic terranes that are 

associated with subduction. 

 Although many studies find evidence of oxidation during ocean-floor metamorphism, 

it is commonly observed that smaller scales alteration haloes, veins, or other fluid pathways 

recording oxidized 
2Of , occur next to local stockwork-mineralized zones of sulfides (Alt et 

al., 1986, 1989, 2012, 2013; Alt & Shanks, 2011). Alt and co-workers actually report greater 

abundances of sulfide minerals (mainly pyrite) than anhydrite in the bulk altered oceanic 

crust, indicating that reduced-S species may be more dominant in the slab entering 

subduction. 

 The key criteria are not only the oxidation states of ocean crust entering subduction 
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zone, but its 
2Of  state prevailing at sub-arc depths. The chief consideration here is that 

isochemical compression of mafic silicate assemblages is known to lead to reduction with 

depth (e.g., Ballhaus, 1995; Stagno et al., 2013). Therefore it is expected that 
2Of  range of 

subducting slab at sub-arc depths is more reduced than what observed at ocean floor. Indeed 

there is evidence of reduction of crustal volatile species such as carbon during subduction 

(e.g., Galvez et al., 2013). Thus it is not implausible that most of sulfur present during fluid-

present melting of ocean crust at sub-arc depths is in the form of pyrrhotite. 

 

IMPLICATIONS 

 

The cycle of sulfur in subduction zones is poorly constrained, principally because constraints 

on the extent of S transfer from the subducting slab to the mantle wedge remains limited. 

Global estimates of S input at subduction trenches (~6.4-8.0×10
13

) (Jégo & Dasgupta 2013) 

and S output from arc volcanoes and magmas (~2.1±1.9×10
13

 g/yr; Wallace & Edmonds, 

2011; Jégo & Dasgupta, 2013) suggest that ~70-85 % of S entering subduction zones is 

recycled to deeper depths and recent experiments of Jégo & Dasgupta (2013) suggest that 

pyrrhotite is indeed abundantly stable in subducting basaltic crust. It is also argued that the 

mantle source of arc magmas is S-enriched compared to other parts of the mantle such as the 

source of MORBs and the primitive mantle, suggesting an effective transfer of S from the 

subducting slab to the mantle wedge. Thereby, estimates of de Hoog et al. (2001a) and 

Métrich et al. (1999) lead to a range of 250-500 ppm S for the arc-source mantle. In addition, 

since differentiated arc magmas appear to be more oxidized than MORBs, OIBs, and intra-

continental mafic magmas, it is often argued that the sub-arc mantle is characterized by an 

oxidizing redox state, with 
2Of  conditions typically above FMQ (e.g., Frost & McCammon 

2008). It has been suggested (Mungall 2002; Kelley & Cottrell 2009) that slab-derived sulfate 
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(SO4
2-

) species are responsible for oxidizing the mantle wedge, implying that the apparent S 

enrichment of the sub-arc mantle would derive from an oxidized downgoing slab. However, 

Jégo & Dasgupta (2013) showed that during fluid-present partial melting of a sulfide-

saturated subducting oceanic crust under reducing conditions (i.e., 
2Of < FMQ), the amount 

of S transferred to the silicate partial melts is negligible and unable to contribute to the 

enrichment of the mantle wedge in S, whereas the aqueous fluid phase at equilibrium may 

contain up to 5 wt.% S at temperatures typical of top slabs in modern subduction zones (i.e., 

≤ 900 ºC). With such S concentrations in reduced slab-derived fluids, Jégo & Dasgupta 

(2013) calculated that the amount of metasomatic fluids needed to produce the mantle source 

of arc magmas in S would be ~0.3 to 1.5 wt.% of the mass of the mantle wedge, suggesting 

that S enrichment of the arc-source mantle does not call for a transfer of S as sulfate species 

but can be achieved through sulfide species in the fluid. Results of the present study obtained 

in reducing conditions at pyrrhotite saturation are in good agreement with these findings and 

confirm the conclusions of Jégo & Dasgupta (2013). In addition, the present study shows that 

at intermediate 
2Of  conditions (FMQ+1.5 > 

2Of  > FMQ) at pyrrhotite saturation, fluid S 

concentration during hydrous partial melting of the subducting oceanic crust remains very 

high (~13.5 wt.% S). Moreover, under oxidizing conditions (
2Of  ≥ FMQ+3) at anhydrite 

saturation, our results show that the amount of S dissolved in the fluid phase may be 

somewhat lower (~6.7 wt.% S) but still represents a major carrier of S, even at relatively low 

T (because of the apparent absence of significant temperature effect on [S]fluid), able to 

promote efficient transfer of oxidized S from the slab to the mantle wedge. Therefore, there is 

virtually no 
2Of  limitation to the enrichment of the mantle wedge in S via slab-derived fluids, 

meaning that the slab-released sulfur might not be in the form of oxidizing species. 

 An important result of the present study is, however, that unlike in reducing 

conditions, some S can be carried by the melt during hydrous slab partial melting under 
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oxidizing conditions, and anhydrite-saturated silicate partial melts may dissolve as much as 

~3000 ppm S at 1050 °C and ~1500 ppm S at 950 °C. Because there is a positive temperature 

dependence of sulfur solubility for anhydrite-saturated hydrous partial melts, extrapolation of 

our data to slab-surface conditions of 750-850 °C, however, suggests that oxidized, i.e., 

sulfate-saturated, slab partial melts may carry no more than ~500-1000 ppm S (by 

extrapolation of the trends defined by the anhydrite-saturated experiments to ~1 wt.% CaO in 

partial melt in Fig. 9b). We note that this concentration is not vastly different from sulfur 

content at pyrrhotite saturation, especially at intermediate 
2Of  (between FMQ and FMQ+1.5) 

conditions. Therefore, hydrous partial melts of oceanic crust cannot account for the 

metasomatism of the whole mantle wedge, but such S-enriched melts could locally impact 

the S budget of the arc-source mantle. Slab partial melts percolating through the mantle 

section in contact with the downgoing slab will rapidly freeze by reactions with the 

surrounding mantle, leading to crystallization of orthopyroxene-rich assemblages (Rapp et 

al., 1999) and precipitating an S-bearing mineral phase, probably sulfide.  

 The estimated range of S budget of the arc-source mantle is 250-500 ppm S, but a pre-

slab modified mantle wedge is supposed to have S contents similar to the MORB-source 

upper mantle (i.e., 110-180 ppm S; Saal et al., 2002). Then, the slab contribution to the arc 

basalt mantle domains needs to be no more than 70-390 ppm S. Considering hydrous slab 

partial melts with 1000 ppm S, this would require addition of 7 to 39 wt.%  of slab-derived 

silicate melts to enrich the mantle domain modified by the MORB-eclogite partial melt. Thus, 

although the apparent S enrichment of the arc-source mantle can be achieved by partial melt 

derived from anhydrite-saturated oceanic crust, its capacity to alter the sulfur budget of the 

entire mantle wedge remains limited and H-O-S fluid appears to be the most efficient agent 

of sulfur transfer from the downgoing slab to the overlying mantle wedge, even in oxidized 

conditions. 
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 Our experiments were conducted with 1 wt.% bulk S in the starting material. 

Although such high S concentrations can be reached locally in alteration halos of the 

subducting oceanic crust, the average S content of the altered slab is believed to be around 

0.1 wt.% (1000 ppm S; Alt & Shanks, 2011). For 1 wt.% bulk sulfur in the crust, with the 

entire budget of S stored in anhydrite (~23.55 wt.% S) or pyrrhotite (~38-40 wt.% S; Jégo & 

Dasgupta, 2013) at subsolidus conditions, the proportion of the two phases should be ~4 

wt.% and 2.5-2.6 wt.%, respectively. However, with only 0.1 wt.% bulk S, subsolidus mass 

fractions of anhydrite or pyrrhotite in ocean crust should be only 0.4 and 0.25-0.26 wt.%, 

respectively. Therefore in order to evaluate whether sulfur-bearing residual phases can 

survive hydrous partial melting during subduction of oceanic crust, it needs to be evaluated 

whether pyrrhotite (at low 
2Of ) or anhydrite (at high 

2Of ) can remain stable not only in high 

bulk-S domains but also in background crust, i.e., where the bulk S is ~1000 ppm. Because 

the concentrations of S in the partial melt of subducting crust can never exceed those fixed by 

SCSS or SCAS values, as long as pyrrhotite or anhydrite is stable in the residue, the near 

solidus melt cannot be infinitely enriched in S. But with increasing degree of partial melting, 

once the residual sulfides are exhausted, the S content of the partial melt can follow the 

behavior of a perfectly incompatible trace element, i.e., to get diluted to approach the bulk S 

content with increasing melting degree. In Fig. 14, we calculated the S content in silicate 

partial melt assuming that S is perfectly incompatible (i.e., partition coefficient solid/liquid = 

0) during fluid-absent partial melting of a subducting oceanic crust with an initial S 

concentration of 1000 ppm S as a function of partial melting degree, and compared it with the 

theoretical SCSS and SCAS values at 2-4 GPa based on the hydrous partial melt 

compositions of basaltic crust from experimental literature data at 2-4 GPa (Rapp & Watson, 

1995; Kessel et al., 2005; Jégo & Dasgupta, 2013; This Study). We also plot, in Fig. 14, the 

directly measured SCSS and SCAS values determined in this study and in the recent study of 
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Jégo & Dasgupta (2013) at conditions relevant for slab surface conditions at sub-arc depths 

and at known 
2Of  values. It appears that, for a bulk S content of 1000 ppm, partial melting 

degree of ~50% or higher is necessary to exhaust residual pyrrhotite, i.e., if the 
2Of  

conditions of subducting crust are equivalent to ≤FMQ+1. Because of higher solubility of 

sulfur in the hydrous silicate melt at anhydrite saturation, it is possible to exhaust anhydrite 

during subduction, however, even in this case ≥~20 wt.% partial melting is necessary. Such 

high extent of partial melting, i.e, >20-50 wt.%, can only be achieved in hot subduction zones 

and/or in the presence of abundant excess hydrous fluid. In the view of recent 2-D slab 

thermal models (e.g. Syracuse et al., 2010), temperatures ≥1000 °C are approached at the slab 

surface only at depths of ≥~200 km or deeper, that are much deeper than the region of 

formation of arc magmas. However, it is worth noting that there is some uncertainty about 

slab-surface temperatures (SST) derived from 2-D thermal models. In particular, depending 

on the region considered, there might be some 3-D component to the mantle flow in 

subduction zone which would lead 2-D models to underestimate the true SST by up to ~200 

°C (e.g., Bengtson & van Keken, 2012).  

 Beyond sub-arc depths subducted oceanic crust is expected to be fluid-absent (e.g. 

Schmidt & Poli, 1998; van Keken et al., 2011), hence is unable to undergo further melting 

and dehydration, thus it may be expected that consumption of anhydrite would no longer take 

place. Thus it appears unlikely that major fractions of the initial S budget of the crust can be 

released by partial melting, if sulfate or sulfide phases survive shallow dehydration at 

relatively lower temperatures. Our measured SCSS and SCAS values allow us further to 

calculate the sulfur content of the residual crust as a function of melting degree. For SCAS 

value of ~1000 ppm and 20 wt.% melting, 80% of the 0.1 wt.% bulk S would remain in the 

crust and subduct deeper. Whereas, if the entire sulfur budget of 0.1 wt.% is present as 

pyrrhotite, SCSS values would apply and with SCSS value of ~100 ppm and 20 wt.% 
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melting, 98% of the initial sulfur budget would remain in the crust and subduct deeper. 

 Therefore, if the initial bulk S in the slab is as high as 1 wt.% S or hydrous-fluid-

present partial melting of crust at sub-arc depths is limited in extent of melting, the amount of 

residual anhydrite in or pyrrhotite the dehydrated slab below the region of formation of arc 

magmas is likely to be significant, and could account for a major part of the estimated flux of 

S returned to the mantle. Therefore, our present data along with those reported in Jégo & 

Dasgupta (2013) suggest that deep subduction of sulfur is inevitable, irrespective of oxygen 

fugacity conditions of the downgoing slab. In order to exhaust the residual sulfide or sulfate 

phases, significant fluid fluxing would be necessary. It remains unclear whether such high 

water flux and pervasive fluid flow can be realized in deeply subducted crust at sub-arc 

depths and deeper. 

 

CONCLUDING REMARKS 

  

 The new experimental data presented here provide a number of important constraints 

on the fate of sulfur during fluid-present partial melting of downgoing subducting crust, 

which in turn is critically linked to the oxidation state of the subducting slab and sub-arc 

mantle wedge and volatile fluxes at arcs. 

(1) During subduction of a hydrated sulfide-saturated basaltic crust, at P-T conditions 

favorable to hydrous slab partial melting, variable amounts of sulfur are transferred to the 

partial melts depending on 
2Of . At pyrrhotite saturation, silicate melt S contents range from 

~30 ppm S at 
2Of < FMQ-1 to ~500 ppm S at FMQ < 

2Of  ≤ FMQ+1.1, whereas at anhydrite 

saturation (
2Of  ≥ FMQ+2.5) melt S concentrations range between ~700 ppm S (at 2 GPa/950 

°C) up to 3000 ppm S (at 3 GPa/1050 °C).  

(2) Mass balance calculations suggest that the aqueous fluid phase in equilibrium with 
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eclogitic residue may contain as much as ~15 wt.% S at 1050 °C at pyrrhotite saturation (
2Of  

≤ FMQ+1.1), in agreement with previous estimates, and up to 8 wt.% S at anhydrite 

saturation. Although fluid S content appears to be lower in oxidizing conditions, suggesting 

that the solubility of oxidized S species (SO2, SO4
2-

, SO3) in aqueous fluid phase is lower 

than the solubility of reduced S species (H2S, HS
-
), it still represents the most efficient vector 

of sulfur transport from slab to mantle wedge. Moreover, contrary to previous estimates at 

pyrrhotite saturation, fluid S content at anhydrite saturation does not seem to decrease with 

decreasing temperature. Therefore, it might be expected that the fluid coming off the slab at 

temperatures relevant to the subducting slab surface (≤ 900 ºC) will be at least as S-enriched 

in oxidizing conditions as in reducing conditions. 

(3) fluid/melt

SD  decreases markedly with increasing 
2Of  at pyrrhotite saturation, from several 

thousands at 
2Of  < FMQ-1 to ~200-400 at FMQ < 

2Of  ≤ FMQ+1.1, owing to the increase of 

melt S content. At anhydrite saturation, fluid/melt

SD  is very low (< 100) but increases with 

decreasing temperature (and to a lesser extent with decreasing pressure), which is opposite to 

the trend previously estimated at pyrrhotite saturation. As a consequence, it might be 

expected that at T ≤ 900 ºC, fluid/melt

SD  is in the range 200 ± 100, irrespective of 
2Of . 

(4) The present study confirms that slab partial melts saturated with pyrrhotite are unable 

to efficiently transport S from slab to mantle wedge. This study also suggests that although 

siliceous partial melts in equilibrium with anhydrite is richer (~500-1000 ppm) in sulfur at 

slab surface P-T conditions, its capacity to alter the sulfur budget of the entire sub-arc mantle 

is limited. 

(5) Importantly, our data suggest that slab-derived aqueous fluids are likely efficient 

vectors of sulfur transfer from slab to mantle wedge at all 
2Of s, and less than 1.5 wt.% of 

metasomatic fluids are required to account for the enrichment of the mantle source of arc 
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magmas in S under any 
2Of . Therefore, there is virtually no 

2Of  limitation to the enrichment 

of the mantle wedge in S via slab-derived fluids. In other words, if aqueous fluids (and 

silicate melts) are derived from the slab at pyrrhotite saturation, sulfur transfer from 

subducting crust to sub-arc mantle could take place without causing any oxidation to the 

mantle. 

(6) If hydrous partial melt is the only available agent to mobilize S from the crust, extent 

of melting as much as 20-40 wt.% is required to complete exhaust anhydrite from the melting 

residue whereas eliminating pyrrhotite from the eclogitic residue requires even greater extent 

of melting. Thus, without the availability of significant amount of excess fluid and depending 

on the initial amount of sulfur in the slab, the proportion of residual anhydrite (or pyrrhotite) 

in the dehydrated slab below the region of formation of arc magmas is likely to be significant. 

 

FUNDING 

This research received support from a Packard Fellowship for Science and Engineering, 

awarded to RD. 

 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge Ray Guillemette (Texas A&M University) for help with 

the electron microprobe analyses, and Katherine A. Kelley and Don Baker for their 

constructive formal reviews. Associate editor Richard Price is also thanked for his comments 

and editorial handling of the manuscript. 

 

REFERENCES 

 

Ague, J.J., Baxter, E.F. & Eckert Jr., J.O. (2001). High 
2Of  during sillimanite zone 



 

50 

metamorphism of part of the Barrovian type locality, Glen Clova, Scotland. Journal 

of Petrology 42, 1301-1320. 

Alt, J.C. & Shanks, W.C. (2011). Microbial sulfate reduction and the sulfur budget for a 

complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). 

Earth and Planetary Science Letters 310, 73-83. 

Alt, J.C., Honnorez, J., Laverne, C. & Emmermann, R. (1986). Hydrothermal alteration of a 1 

km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B : 

Mineralogy, chemistry, and evolution of seawater-basalt interactions. Journal of 

Geophysical Research 91, 10309-10335. 

Alt, J.C., Anderson, T.F. & Bonnell, L. (1989). The geochemistry of sulfur in a 1.3 km 

section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochimica et 

Cosmochimica Acta 53, 1011-1023. 

Alt, J.C., Shanks III, W.C. & Jackson, M.C. (1993). Cycling of sulfur in subduction zones: 

The geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth and 

Planetary Science Letters 119, 477-494. 

Alt, J.C., Garrido, C.J., Shanks III, W.C., Turchyn, A., Padrón-Navarta, J.A., López Sánchez-

Vizcaíno, V., Gómez Pugnaire, M.T. & Marchesi, C. (2012). Recycling of water, 

carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro 

del Almirez, Spain. Earth and Planetary Science Letters 327-328, 50-60. 

Alt, J.C., Schwarzenbach, E.M., Früh-Green, G.L., Shanks III, W.C., Bernasconi, S.M., 

Garrido, C.J., Crispini, L., Gaggero, L., Padrón-Navarta, J.A. & Marchesi, C. (2013). 

The role of serpentinites in cycling of carbon and sulfur : Seafloor serpentinization 

and subduction metamorphism. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.12.006. 

Andreani, M., Muñoz, M., Marcaillou, C. & Delacour, A. (2013). µXANES study of iron 

redox state in serpentine during oceanic serpentinization. Lithos 178, 70-83. 

Asimow, P.D. & Ghiorso, M.S. (1998). Algorithmic modifications extending MELTS to 

calculate subsolidus phase relations. American Mineralogist 83, 1127-1131. 

Baker, D.R. & Alletti, M. (2012). Fluid saturation and volatile partitioning between melts and 

hydrous fluids in crustal magmatic systems: The contribution of experimental 

measurements and solubility models. Earth-Science Reviews 114, 298-324. 

Baker, D.R. & Moretti, R. (2011). Modeling the solubility of sulfur in magmas: A 50-year 

old geochemical challenge. Reviews in Mineralogy and Geochemistry 73, 167-213. 

Ballhaus, C. (1993). Oxidation states of the lithospheric and asthenospheric upper mantle. 

Contributions to Mineralogy and Petrology 114, 331-348. 

Ballhaus, C. (1995). Is the upper mantle metal saturated? Earth and Planetary Science 

Letters 132, 75-86. 

Balta, J.B., Beckett, J.R. & Asimow, P.D. (2011). Thermodynamic properties of alloys of 

gold-74/palladium-26 with variable amounts of iron and the use of Au-Pd-Fe alloys as 

containers for experimental petrology. American Mineralogist 96, 1467-1474. 

Bell, A.S., Simon, A. & Guillong, M. (2009). Experimental constraints on Pt, Pd and Au 

partitioning and fractionation in silicate melt-sulfide-oxide-aqueous fluid systems at 

800 ºC, 150 MPa and variable sulfur fugacity. Geochimica et Cosmochimica Acta 73, 

5778-5792. 

Bengtson, A.K. & van Keken, P.E. (2012). Three-dimensional thermal structure of 

subduction zones: effects of obliquity and curvature. Solid Earth 3, 365-373. 

Berndt, M.E., Allen, D.E. & Seyfried, W.E. (1996). Reduction of CO2 during serpentinization 

of olivine at 300 ºC and 500 bar. Geology 24, 351-354. 

Berndt, J., Koepke, J. & Holtz, F. (2005). An experimental investigation of the influence of 

water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of 

Petrology 46, 135-167. 



 

51 

Bézos, A. & Humler, E. (2005). The Fe
3+

/∑Fe ratios of MORB glasses and their implications 

for mantle melting. Geochimica et Cosmochimica Acta 69, 711-725. 

Blundy, J.D., Falloon, T.J., Wood, B.J. & Dalton, J.A. (1995). Sodium partitioning between 

clinopyroxene and silicate melts. Journal of Geophysical Research 100,15501-15515.  

Bockrath, C., Ballhaus, C. & Holzheid, A. (2004). Stabilities of laurite RuS2 and monosulfide 

liquid solution at magmatic temperature. Chemical Geology 208, 265-271. 

Brandon, A.D. & Draper, D.S. (1996). Constraints on the origin of the oxidation state of 

mantle overlying subduction zones: an example from Simcoe, Washington, USA. 

Geochimica et Cosmochimica Acta 60, 1739-1749. 

Burnham, C.W. (1979). The importance of volatile constituents. In: The Evolution of the 

Igneous Rocks. Princeton University Press, Princeton, NJ, 1077-1084. 

Carroll, M.R. & Webster, J.D. (1994). Solubilities of sulfur, noble gases, nitrogen, chlorine, 

and fluorine in magmas. Reviews in Mineralogy 30, 231-279. 

Cervantes, P. & Wallace, P. (2003). Role of H2O in subduction-zone magmatism: new 

insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 

235-238. 

Clemente, B., Scaillet, B. & Pichavant, M. (2004). The solubility of sulphur in hydrous 

rhyolitic melts. Journal of Petrology 45, 2171-2196. 

Cottrell, E. & Kelley, K.A. (2011). The oxidation state of Fe in MORB glasses and the 

oxygen fugacity of the upper mantle. Earth and Planetary Science Letters 305, 270-

282. 

Dauphas, N., Craddock, P.R., Asimow, P.D., Bennett, V.C., Nutman, A.P. & Ohnenstetter, 

D. (2009). Iron isotopes may reveal the redox conditions of mantle melting from 

Archean to Present. Earth and Planetary Science Letters 288, 255-267. 

de Hoog, J.C.M., Mason, P.R.D. & van Bergen, M.J. (2001a). Sulfur and chalcophile 

elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt 

inclusions from Galunggung Volcano, Indonesia. Geochimica et Cosmochimica Acta 

65, 3147-3164. 

de Hoog, J.C.M., Taylor, B.E. & van Bergen, M.J. (2001b). Sulfur isotope systematics of 

basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones. 

Earth and Planetary Science Letters 189, 237-252. 

Ding, S., Dasgupta, R. & Tsuno, K. (in press). Sulfur concentration of martian basalts at 

sulfide saturation at high pressures and temperatures – implications for deep sulfur 

cycle on Mars. Geochimica et Cosmochimica Acta 

Dixon, J.E., Clague, D.A. & Stolper, E.M. (1991). Degassing history of water, sulfur, and 

carbon in submarine lavas from Kilauea Volcano, Hawaii. Journal of Geology 99, 

371-394. 

Evans, K.A. (2012). The redox budget of subduction zones. Earth-Science Reviews 113, 11-

32. 

Evans, K.A. & Tomkins, A. (2011). The relationship between subduction zone redox budget 

and arc magma fertility. Earth and Planetary Science Letters 308, 401-409. 

Feig, S.T., Koepke, J. & Snow, J.E. (2006). Effect of water on tholeiitic basalt phase 

equilibria: an experimental study under oxidizing conditions. Contributions to 

Mineralogy and Petrology 152, 611-638. 

Feig, S.T., Koepke, J. & Snow, J.E. (2010). Effect of oxygen fugacity and water on phase 

equilibria of a hydrous tholeiitic basalt. Contributions to Mineralogy and Petrology 

160, 551-568. 

Froese, E. & Gunter, A.E. (1976). A note on the pyrrhotite-sulfur vapour equilibrium. 

Economic Geology 71, 1589-1594. 



 

52 

Frost, D.J. & McCammon, C.A. (2008). The redox state of earth‟s mantle. Annual Review of 

Earth and Planetary Sciences 36, 389-420. 

Galvez, M.E., Beyssac, O., Martinez, I., Benzerara, K., Chaduteau, C., Malvoisin, B. & 

Malavieille, J. (2013). Graphite formation by carbonate reduction during subduction. 

Nature Geoscience 6, 473-477. 

Ghiorso, M.S. & Sack, R.O. (1995). Chemical mass transfer in magmatic processes. IV. A 

revised and internally consistent thermodynamic model for the interpolation and 

extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures 

and pressures. Contributions to Mineralogy and Petrology 119, 197-212. 

Green, T.H., Blundy, J.D., Adam, J. & Yaxley, G.M. (2000). SIMS determination of trace 

element partition coefficients between garnet, clinopyroxene and hydrous basaltic 

liquids at 2-7.5 GPa and 1080-1200 °C. Lithos 53, 165-187. 

Grove, T.L. (1981). Use of PtFe alloys to eliminate the iron-loss problem in 1 atmosphere gas 

mixing experiments: Theoretical and practical considerations. Contributions to 

Mineralogy and Petrology 78, 298-304. 

Holzheid, A. & Grove, T.L. (2002). Sulfur saturation limits in silicate melts and their 

implications for core formation scenarios for terrestrial planets. American 

Mineralogist 87, 227-237. 

Jakobsson, S. (2012). Oxygen fugacity control in piston-cylinder experiments. Contributions 

to Mineralogy and Petrology, doi: 10.1007/s00410-012-0743-7, 

Jarosewich, E. (2002). Smithsonian microbeam standards. Journal of Research of the 

National Institute of Standards and Technology 107, 681-685. 

Jarosewich, E., Nelen, J.A. & Norberg, J.A. (1980). Reference samples for electron 

microprobe analysis. Geostandards Newsletter 4, 43-47. 

Jégo, S. & Pichavant, M. (2012). Gold solubility in arc magmas: Experimental determination 

of the effect of sulfur at 1000 °C and 0.4 GPa. Geochimica et Cosmochimica Acta 84, 

560-592. 

Jégo, S. & Dasgupta, R. (2013). Fluid-present melting of sulfide-bearing ocean-crust: 

Experimental constraints on the transport of sulfur from subducting slab to mantle 

wedge. Geochimica et Cosmochimica Acta 110, 106-134. 

Jugo, P.J. (2009). Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415-

418. 

Jugo, P.J., Luth, R.W. & Richards, J.P. (2005a). Experimental data on the speciation of sulfur 

as a function of oxygen fugacity in basaltic melts. Geochimica et Cosmochimica Acta 

69, 497-503. 

Jugo, P.J., Luth, R.W. & Richards, J.P. (2005b). An experimental study of the sulfur content 

in basaltic melts saturated with immiscible sulphide or sulfate liquids at 1300 °C and 

1.0 GPa. Journal of Petrology 46, 783-798. 

Jugo, P.J., Wilke, M. & Botcharnikov, R.E. (2010) Sulfur K-edge XANES analysis of natural 

and synthetic basaltic glasses: Implications for S speciation and S content as function 

of oxygen fugacity. Geochimica et Cosmochimica Acta 74, 5926-5938. 

Kelley, K.A. & Cottrell, E. (2009). Water and the oxidation state of subduction zone 

magmas. Science 325, 605-607. 

Keppler, H. (1999). Experimental evidence for the source of excess sulfur in explosive 

volcanic eruptions. Science 284, 1652-1654. 

Keppler, H. (2010). The distribution of sulfur between haplogranitic melts and aqueous 

fluids. Geochimica et Cosmochimica Acta 74, 645-660. 

Kessel, R., Beckett, J.R. & Stolper, E.M. (2001). Thermodynamic properties of the Pt-Fe 

system. American Mineralogist 86, 1003-1014. 

Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W. and Thompson, A.B. (2005). The water-



 

53 

basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free 

eclogite at 700 to 1400 °C. Earth and Planetary Science Letters 237, 873-892. 

Klein, M., Stosch, H.-G., Seck, H.A. & Shimizu, N. (2000). Experimental partitioning of 

high field strength and rare earth elements between clinopyroxene and garnet in 

andesitic to tonalitic systems. Geochimica et Cosmochimica Acta 64, 99-115. 

Klimm, K., Kohn, S.C. & Botcharnikov, R.E. (2012). The dissolution mechanism of sulphur 

in hydrous silicate melts. II: Solubility and speciation of sulphur in hydrous silicate 

melts as a function of fO2. Chemical Geology 322-323, 250-267. 

Lécuyer, C. & Ricard, Y. (1999). Long-term fluxes and budget of ferric iron: implication for 

the redox states of the Earth‟s mantle and atmosphere. Earth and Planetary Science 

Letters 165, 197-211. 

Lee, C.T.A., Leeman, W.P., Canil, D. & Li, Z.X.A. (2005). Similar V/Sc systematics in 

MORB and arc basalts: Implications for the oxygen fugacities of their mantle source 

regions. Journal of Petrology 46, 2313-2336. 

Lee, C.T.A., Luffi, P., Le Roux, V., Dasgupta, R., Albarede, F. & Leeman, W.P. (2010). The 

redox state of arc mantle using Zn/Fe systematics. Nature 468, 681-685. 

Lee, C-T. A., Luffi, P., Chin, E. J., Bouchet, R., Dasgupta, R., Morton, D. M., Le Roux, V., 

Yin, Q-z. & Jin, D. (2012). Copper systematics in arc magmas and implications for 

crust-mantle differentiation. Science 336, 64-68. 

Li, C. & Ripley, E.M. (2005). Empirical equations to predict the sulfur content of mafic 

magmas at sulfide saturation and applications to magmatic sulfide deposits. 

Mineralium Deposita 40, 218-230. 

Li, C. & Ripley, E.M. (2009). Sulfur contents at sulfide-liquid or anhydrite saturation in 

silicate melts: Empirical equations and example applications. Economic Geology 104, 

405-412. 

Liu, Y., Samaha, N.T. & Baker, D.R. (2007). Sulfur concentration at sulfide saturation 

(SCSS) in magmatic silicate melts. Geochimica et Cosmochimica Acta 71, 1783-

1799. 

Luhr, J.F. (1990). Experimental phase relations of water- and sulfur-saturated arc magmas 

and the 1982 eruptions of El Chichón volcano. Journal of Petrology 31, 1071-1114. 

Luhr, J.F. & Aranda-Gómez, J.J. (1997). Mexican peridotite xenoliths and tectonic terranes: 

correlations among vent location, texture, temperature, pressure and oxygen fugacity. 

Journal of Petrology 38, 1075-1112. 

Majzlan, J., Navrotsky, A. & Neil, J.M. (2002). Energetics of anhydrite, barite, celestine, and 

anglesite: a high-temperature and differential scanning calorimetry study. Geochimica 

et Cosmochimica Acta 66, 1839-1850. 

Mallmann, G. & O‟Neill, H.S.C. (2009). The crystal/melt partitioning of V during mantle 

melting as a function of oxygen fugacity compared with some other elements (Al, P, 

Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology 50, 1765-1794. 

Manning, C.E. (2004). The chemistry of subduction-zone fluids. Earth and Planetary Science 

Letters 223, 1-16. 

Marini, L., Moretti, R. & Accornero, M. (2011). Sulfur isotopes in magmatic-hydrothermal 

systems, melts, and magmas. Reviews in Mineralogy and Geochemistry 73, 423-492. 

Mavrogenes, J.A. & O‟Neill, H.S.C. (1999). The relative effects of pressure, temperature and 

oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et 

Cosmochimica Acta 63, 1173-1180. 

McInnes, B.I.A., McBride, J.S., Evans, N.J., Lambert, D.D. & Andrew, A.S. (1999). Osmium 

isotope constraints on ore metal recycling in subduction zones. Science 286, 512-515. 

McInnes, B.I.A., Grégoire, J., Binns, R.A., Herzig, P.M. & Hannington, M.D. (2001). 

Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: 



 

54 

petrology and geochemistry of fluid-metasomatized mantle wedge xenoliths. Earth 

and Planetary Science Letters 188, 169-183. 

Médard, E., McCammon, C.A., Barr, J.A. & Grove, T.L. (2008). Oxygen fugacity, 

temperature reproducibility, and H2O contents of nominally anhydrous piston-

cylinder experiments using graphite capsules. American Mineralogist 93, 1838-1844. 

Métrich, N., Schiano, P., Clocchiatti, R. & Maury, R.C. (1999). Transfer of sulfur in 

subduction zone settings: an example from Batan Island (Luzon volcanic arc, 

Philippines). Earth and Planetary Science Letters 167, 1-14. 

Moretti, R. & Baker, D.R. (2008). Modeling of the interplay of fO2 and fS2 along the FeS-

Silicate Melt equilibrium. Chemical Geology 256, 286-298. 

Mottl, M.J., Wheat, C.G., Fryer, P., Gharib, J. & Martin, J.B. (2004). Chemistry of springs 

across the Mariana forearc shows progressive devolatilization of the subducting plate. 

Geochimica et Cosmochimica Acta 68, 4915-4933. 

Mungall, J.E. (2002). Roasting the mantle: Slab melting and the genesis of major Au and Au-

rich Cu deposits. Geology 30, 915-918. 

Nakamura, D. (2009). A new formulation of garnet-clinopyroxene geothermometer based on 

accumulation and statistical analysis of a large experimental data set. Journal of 

Metamorphic Geology 27, 495-508. 

Newton, R.C. & Manning, C.E. (2005). Solubility of anhydrite, CaSO4, in NaCl-H2O 

solutions at high pressures and temperatures: Applications to fluid-rock interaction. 

Journal of Petrology 46, 701-716. 

Ohmoto, H. & Kerrick, D.M. (1977). Devolatilisation equilibria in graphitic systems. 

American Journal of Science 277, 1013-1044. 

O‟Neill, H.St.C. & Pownceby, M.I. (1993). Thermodynamic data from redox reactions at 

high temperatures. I. An experimental and theoretical assessment of the 

electrochemical method using stabilized zirconia electrolytes, with revised values for 

the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the 

W-WO2 buffer. Contributions to Mineralogy and Petrology 114, 296-314. 

Oppenheimer, C., Scaillet, B. & Martin, R.S. (2011). Sulfur degassing from volcanoes: 

source conditions, surveillance, plume chemistry and earth system impacts. Reviews 

in Mineralogy and Geochemistry 73, 363-421. 

Parkinson, I.J. & Arculus, R.J. (1999). The redox state of subduction zones: insights from 

arc-peridotites. Chemical Geology 160, 409-423. 

Peacock, S.M., Rushmer, T. & Thompson, A.B. (1994). Partial melting of subducting oceanic 

crust. Earth and Planetary Science Letters 121, 227-244. 

Prouteau, G. & Scaillet, B. (2013). Experimental constraints on sulphur behaviour in 

subduction zones: Implications for TTG and adakite production and the global 

sulphur cycle since the Archean. Journal of Petrology 54, 183-213. 

Rapp, R.P. & Watson, E.B. (1995). Dehydration melting of metabasalt at 8-32 kbar: 

Implications for continental growth and crust-mantle recycling. Journal of Petrology 

36, 891-931. 

Rapp, R.P., Shimizu, N., Norman, M.D. & Applegate, G.S. (1999). Reaction between slab-

derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. 

Chemical Geology 160, 335-356. 

Ravna, E.K. (2000). The garnet-clinopyroxene Fe
2+

-Mg geothermometer: an updated 

calibration. Journal of Metamorphic Geology 18, 211-219. 

Robie, R.A. & Hemingway, B.S. (1995). Thermodynamic properties of minerals and related 

substances at 298.15 K and 1 bar (10
5
 Pascals) pressure and at higher temperatures. 

US Geological Survey Bulletin 2131, 461. 

Saal, A.E., Hauri, E.H., Langmuir, C.H. & Perfit, M.R. (2002). Vapor undersaturation in 



 

55 

primitive mid-ocean ridge basalt and the volatile content of Earth‟s upper mantle. 

Nature 419, 451-455. 

Scaillet, B. & Pichavant, M. (2003). Experimental constraints on volatile abundances in arc 

magmas and their implications for degassing processes. Geological Society, London, 

Special Publications 213, 23-52. 

Scaillet, B. & Pichavant, M. (2005). A model of sulphur solubility for hydrous mafic melts: 

application to the determination of magmatic fluid compositions of Italian volcanoes. 

Annals of Geophysics 48, 671-698. 

Scaillet, B. & Macdonald, R. (2006). Experimental and thermodynamic constraints on the 

sulphur yield of peralkaline and metaluminous silicic flood eruptions. Journal of 

Petrology 47, 1413-1437. 

Scaillet, B., Clemente, B., Evans, B.W. & Pichavant, M. (1998). Redox control of sulfur 

degassing in silicic magmas. Journal of Geophysical Research 103, 23937-23949. 

Scaillet, B., Luhr, J.F. & Carroll, M.R. (2003). Petrological and volcanological constraints 

on volcanic sulfur emissions to the atmosphere. In: Robock, A. & Oppenheimer, C. 

(eds.) Volcanism and the Earth’s Atmosphere. American Geophysical Union, 

Geophysical Monograph 139, 11-40. 

Schmidt, M.W. & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs 

and consequences for arc magma generation. Earth and Planetary Science Letters 

163, 361-379. 

Schwab, R.G. & Küstner, D. (1981). The equilibrium fugacities of important oxygen buffers 

in technology and petrology. Neues Jahrbuch für Mineralogie 140, 111-142. 

Sen, C. & Dunn, T. (1994). Dehydration melting of a basaltic composition amphibolite at 1.5 

and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and 

Petrology 117, 394-409. 

Shi, P. & Saxena, S.K. (1992). Thermodynamic modelling of the C-H-O-S fluid system. 

American Mineralogist 77, 1038-1049. 

Stagno, V. & Frost, D.J. (2010). Carbon speciation in the asthenosphere: Experimental 

measurements of the redox conditions at which carbonate-bearing melts coexist with 

graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters 

300, 72-84. 

Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. (2013). The oxidation state of 

the mantle and the extraction of carbon from Earth‟s interior. Nature 493, 84-88. 

Sun, X.M., Tang, Q., Sun, W.D., Xu, L., Zhai, W., Liang, J.L., Liang, Y.H., Shen, K., Zhang, 

Z.M., Zhou, B. & Wang, F.Y. (2007). Monazite, iron oxide and barite exsolutions in 

apatite aggregates from CCSD drillhole eclogites and their geological implications. 

Geochimica et Cosmochimica Acta 71, 2896-2905. 

Syracuse, E.M., van Keken, P.E. & Abers, G.A. (2010). The global range of subduction zone 

thermal models. Physics of the Earth and Planetary Interiors 183, 73-90. 

Taylor, J.R., Wall, V.J. & Pownceby, M.I. (1992). The calibration and application of accurate 

redox sensors. American Mineralogist 77, 284-295. 

Tsuno, K. & Dasgupta, R. (2011). Melting phase relation of nominally anhydrous, carbonated 

pelitic-eclogite at 2.5-3.0 GPa and deep cycling of sedimentary carbon. Contributions 

to Mineralogy and Petrology 161, 743-763. 

van Keken, P.E., Hacker, B.R., Syracuse, E.M. & Abers, G.A. (2011). Subduction factory: 4. 

Depth-dependent flux of H2O from subducting slabs worldwide. Journal of 

Geophysical Research 116, B01401, doi:10.1029/2010jb007922. 

Wallace, P.J. (2001). Volcanic SO2 emissions and the abundance and distribution of exsolved 

gas in magma bodies. Journal of Volcanology and Geothermal Research 108, 85-106. 



 

56 

Wallace, P.J. (2005). Volatiles in subduction zone magmas: concentrations and fluxes based 

on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal 

Research 140, 217-240. 

Wallace, P.J. & Edmonds, M. (2011). The sulfur budget in magmas: Evidence from melt 

inclusions, submarine glasses, and volcanic gas emissions. Reviews in Mineralogy 

and Geochemistry 73, 215-246. 

Webster, J.D. & Botcharnikov, R.E. (2011). Distribution of sulfur between melt and fluid in 

S-O-H-C-Cl-bearing magmatic systems at shallow crustal pressures and temperatures. 

Reviews in Mineralogy and Geochemistry 73, 247-283. 

Wendlandt, R.F. (1982). Sulfide saturation of basalt and andesite melts at high pressures and 

temperatures. American Mineralogist 67, 877-885. 

Witter, J.B., Kress, V.C. & Newhall, C.G. (2005). Volcán Popocatépetl, Mexico: Petrology, 

magma mixing, and immediate sources of volatiles for the 1994-present eruption. 

Journal of Petrology 46, 2337-2366. 

Wykes, J. & Mavrogenes, J. (2005). Hydrous sulfide melting: experimental evidence for the 

solubility of H2O in sulfide melts. Economic Geology, Bulletin of the Society of 

Economic Geology 100, 157-164. 

Xiong, X.L., Adam, J. & Green, T.H. (2005). Rutile stability and rutile/melt HFSE 

partitioning during partial melting of hydrous basalt: Implications for TTG genesis. 

Chemical Geology 218, 339-359. 

Xiong, X., Keppler, H., Audétat, A., Gudfinnsson, G., Sun, W., Song, M., Xiao, W. & Yuan, 

L. (2009). Experimental constraints on rutile saturation during partial melting of 

metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. 

American Mineralogist 94, 1175-1186. 

Yaxley, G.M. & Green, D.H. (1994). Experimental demonstration of refractory carbonate-

bearing eclogite and siliceous melt in the subduction regime. Earth and Planetary 

Science Letters 128, 313-325. 

Zhang, Y. (1999). H2O in rhyolitic glasses and melts: measurement, speciation, solubility, 

and diffusion. Reviews in Geophysics 37, 493-516. 

Zhang, Z.M., Shen, K., Sun, W.D., Liu, Y.S., Liou, J.G., Shi, C. & Wang, J.L. (2008). Fluids 

in deeply subducted continental crust : petrology, mineral chemistry and fluid 

inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. 

Geochimica et Cosmochimica Acta 72, 3200-3228. 

 

 

 

 

FIGURE CAPTIONS 
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Fig. 1. Back-scattered electron (BSE) images of representative experimental charges showing 

typical phase assemblages and textures. (a) Run no. G277 (3 GPa, 1050 °C): Double-capsule 

design used in this study, showing the inner AuPd capsule containing the silicate charge and 

a Pt wire, separated from the outer Pt capsule by Al2O3 powder. At the bottom of the outer 

capsule, a layer of oxygen fugacity (
2Of ) buffer mix powder saturated with H2O is placed and 

separated from Al2O3 powder by a thin Pt foil. (b) Run no. G281 (3 GPa, 1050 °C) Detail of a 

mineral and melt assemblage saturated with pyrrhotite (Pyrrh). Melt pools quenched to glass 

(Gl) systematically contain a bubble suggesting saturation of the melt with respect to a fluid 

phase (Fl) in the experimental conditions. (c) Run no. G246 (2 GPa, 950 °C): Detail of a 

mineral and melt assemblage saturated with anhydrite (Anh). Cpx: clinopyroxene; Grt: 

garnet; Rt: rutile. 
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Fig. 2. Phase proportions (in wt.%) calculated by mass balance as a function of 
2Of  
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expressed relatively to the FMQ (fayalite-magnetite-quartz) oxygen buffer. (a) Silicate melt 

proportion; (b) Aqueous fluid phase proportion; (c) S-bearing mineral phase (black and grey 

circles: pyrrhotite; other symbols: anhydrite) proportion. Data points are represented 

according to the pressure, temperature, and 
2Of  range (red: reducing; int: intermediate; oxi: 

oxidizing). Error bars, ±1σ (wt.%), are obtained by propagating the errors in phase 

compositions based on replicate microprobe analyses. Experimental data from Jégo & 

Dasgupta (2013) (JD13) obtained in reducing conditions between 850 and 1050 °C are 

plotted for comparison (black crosses) 
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Fig. 3. Major element oxide concentrations (normalized to 100 wt.%) of the experimental 



 

61 

partial melts together with melt H2O content (by difference to 100 wt.% after correction for 

Na2O and K2O) as a function of 
2Of  expressed relatively to the FMQ buffer. Error bars, ±1σ 

(wt.%), are based on replicate microprobe analyses. Data symbols are the same as in Fig. 2. 

 

Fig. 4. Major element oxide concentrations for clinopyroxene as a function of 
2Of  expressed 

relatively to the FMQ buffer. Error bars, ±1σ (wt.%), are based on replicate microprobe 

analyses. Data symbols are the same as in Fig. 2. 
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Fig. 5. Major element oxide concentrations for garnet (normalized to 100 wt.%) as a function 

of 
2Of  expressed relatively to the FMQ buffer. Error bars, ±1σ (wt.%), are based on replicate 

microprobe analyses. Data symbols are the same as in Fig. 2. 
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Fig. 6. Absolute 
2Of  values of the experiments. Black squares: theoretical 

2Of  conditions 

imposed by the 
2Of  buffer, calculated from the composition of the final buffer mixture (cf. 

Table 6) and the calibrations of Taylor et al. (1992), O‟Neill & Pownceby (1993), and 

Schwab & Kustner (1981). Grey squares: buffer 
2Of  values corrected from the experimental 

water activity (
2H Oa ; cf. text). White circles: 

2Of  estimates from Fe concentration in the Pt 

wire placed inside the inner capsule (cf. Table 7), calculated from the calibration of Médard 

et al. (2008) using the equation of Grove (1981) (M08-G81). White triangles: 
2Of  estimates 

from Fe concentration in the inner AuPd capsule walls (cf. Table 7), calculated from the 

calibration of Balta et al. (2011) (B11). Horizontal black line segments represent the position 

of the FMQ buffer. 
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Fig. 7. Estimated fugacities of gas species H2O, H2, S2, H2S, and SO2 as a function of 
2Of  

expressed relatively to the FMQ buffer. The fugacity of pure S2 gas at 3 GPa and 950 °C is 

included for comparison. See text for calculation methods. 

 

Fig. 8. Sulfur concentration in silicate melt at sulfide- (SCSS) or sulfate-saturation (SCAS) 

(a) as a function of 
2Of  expressed relatively to the FMQ buffer; (b) as a function of sulfur 

fugacity (
2Sf ).  Also shown in (a) using a vertical dotted line and a shaded band is the 

2Of



 

65 

value over which pyrrhotite to anhydrite transformation is observed to happen in our 

experiments.
2Sf is calculated using the calibration of Bockrath et al. (2004) modified by Liu 

et al. (2007) for the pyrrhotite-bearing experiments, and from mineral-melt equilibria 

involving the anhydrite ± magnetite assemblage for the anhydrite-bearing experiments (see 

text for details). Inset in (a) shows SCAS data as a function of temperature. Error bars, ±1σ 

(wt.%), are based on replicate microprobe analyses. Data symbols are the same as in Fig. 2. 

 

Fig. 9. Sulfur concentration in silicate melt at sulfide- (SCSS) or sulfate-saturation (SCAS) 

(a) as a function of the melt FeOT concentration (in wt.%) and (b) as a function of the melt 

CaO concentration (in wt.%). Error bars, ±1σ (wt.%), are based on replicate microprobe 

analyses. Data symbols are the same as in Fig. 2. 
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Fig. 10. (a) Comparison between the SCSS or SCAS measured in our experimental silicate 

melts with SCSS calculated with the model of Liu et al. (2007) (L07) and the SCAS 

calculated with the models of Baker & Moretti (2011) (BM11) and Li & Ripley (2009) 

(LR09), as a function of 
2Of  expressed relatively to the FMQ buffer. (b) Fe

3+
/∑Fe ratio in 
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silicate melt calculated from Kress & Carmichael (1991) as a function of 
2Of  expressed 

relatively to the FMQ buffer. Data symbols are the same as in Fig. 2. 

 

Fig. 11. (a) Sulfur concentration in the aqueous fluid phase (in wt.%) estimated by mass-

balance calculations (cf. text) as a function of 
2Of  expressed relatively to the FMQ buffer. (b) 

Sulfur concentration in the aqueous fluid phase as a function of temperature. Error bars, ±1σ 

(wt.%), are obtained by propagating the errors in phase compositions based on replicate 

microprobe analyses. Data symbols are the same as in Fig. 2. 

 

Fig. 12. Partition coefficient of sulfur between aqueous fluid phase and silicate melt, fluid/melt

SD

, (a) as a function of 
2Of  expressed relatively to the FMQ buffer. (b) as a function of melt 

FeOT content (in wt.%). Error bars, ±1σ (wt.%), are based on mass-balance calculation 

results. Data symbols are the same as in Fig. 2. 
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Fig. 13. Partition coefficient of sulfur between aqueous fluid phase and silicate melt, fluid/melt

SD

, as a function of temperature. Error bars, ±1σ (wt.%), are based on mass-balance calculation 

results. Data symbols are the same as in Fig. 2. 
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Fig. 14. Illustration of the maximum concentration of sulfur dissolved in silicate melt (SCSS 
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or SCAS) as a function of the extent of partial melting (F). The black curve (solid and 

dashed) represents the sulfur content in partial silicate melt assuming that S is perfectly 

incompatible (partition coefficient, rock/melt = 0) during fluid-absent partial melting of a 

subducting oceanic crust with an initial S concentration of 1000 ppm S. Grey diamonds 

represent the theoretical SCSS values (calculated using the model of Liu et al., 2007) and 

black squares and diamonds represent the theoretical SCAS values (calculated using the 

model of Baker & Moretti (2011) and Li & Ripley (2009), respectively) based on the hydrous 

partial melt compositions of basaltic crust from experimental literature data at 2-4 GPa and 

850-1200 °C (Rapp & Watson, 1995; Kessel et al., 2005; Jégo & Dasgupta 2013; This 

Study). Thin dotted and dashed lines are hand-drawn fits of the calculated SCAS and SCSS 

values, respectively, from individual studies at a given pressure. The directly measured SCSS 

and SCAS values determined in this study (same symbols as in Fig. 2) and in the study of 

Jégo & Dasgupta (2013) (JD13: black crosses) at conditions relevant for slab surface 

conditions at sub-arc depths are also plotted. The dark and light grey areas represent possible 

arrays of melt S concentrations with F at anhydrite and pyrrhotite saturation, respectively. 

The intersections of the grey bands with the black S-dilution line give the melt fractions at 

which S-bearing phases are expected to be exhausted during fluid-absent melting. The white 

area in between the two grey bands can be seen as the region corresponding to the sulfide-

sulfate transition. See text for discussion. 

 


