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he goal of this study was to synthetize and characterize a porous material based on tetraethyl orthosilicate (TEOS) coated
hydroxyapatite (HAph) ater removal experiments of Pb2+ ions from aqueous solutions. In order to study the morphology
and composition, the samples obtained ater removal experiments of Pb2+ ions from aqueous solution with the initial Pb2+ ion
concentrations of the aqueous solutions were 0.1 g⋅L−1 (HAph-50) and 0.9 g⋅L−1 (HAph-450) have been investigated by scanning
electronmicroscopy (SEM) equippedwith an energy dispersive X-ray spectrometer (EDS), Fourier transform infrared spectroscopy
(FTIR), and transmission electronmicroscopy (TEM). Removal experiments of Pb2+ ionswere carried out in aqueous solutionswith
controlled concentration of Pb2+. Ater the removal experiment of Pb2+ ions from solutions, porous hydroxyapatite nanoparticles
were transformed into HAph-50 and HAph-450 due to the adsorption of Pb2+ ions followed by a cation exchange reaction. he
obtained results show that the porous HAph nanopowders could be used for Pb2+ ions removal from aqueous solutions.

1. Introduction

One of the major problems encountered in the public health
area worldwide is the poisoning with various heavy metals.
Researchers around the world have turned their attention to
inding new efective and cost-eicient methods for depol-
lution, considering the fact that heavy metals are nonbio-
degradable, having the tendency to accumulate in living bod-
ies, leading to disorders of diferent functions and to serious
diseases [1, 2]. Lead (Pb) is a very toxic heavy metal, found in
the earth’s crust with an average concentration of 16mg/kg in
soils [3, 4]. On the other hand, lead has been extensively used
in various industries, being a constituent in building materi-
als, pipes, lead-acid batteries, bullets, and paints. In a report
released by the Agency for Toxic Substances and Disease
Registry (ATSDR), in 2007, the harmful efect of lead on the
human nervous and reproductive systems was emphasized.
Contamination of wastewaters represents a major concern

because this is one way of lead bioaccumulation in the food
chain [3]. Recent studies have revealed that children aremore
susceptible to lead poisoning, their bodies being able to
absorb around 50% of inhaled or ingested lead and the
efects beingmore pronounced and long-lasting, compared to
adults [5]. Moreover, the efects of chronic lead exposure to
various functions of the human body have already been
reported [3, 6]. In this context,many researchers have focused
their attention to developing diferentmethods for dangerous
heavymetals removal fromwastewaters. Among themethods
already used, chemical precipitation, membrane iltration,
ion-exchange, and adsorption could be mentioned [7–9]. Of
all these methods, the most preferred one is the adsorption of
heavy metals ions from aqueous solution using cost-eicient
materials [7–9]. Previous studies have revealed that apatites
are able to successfully remove lead from aqueous solu-
tions [4, 10]. he best known member of the apatite
family is hydroxyapatite (HAp). Synthetic hydroxyapatite,
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Ca10(PO4)6(OH)2, has been used in the last decades in many
biomedical applications as coating for orthopedic or dental
implants or as illing material for various injuries or defects,
being similar to the natural mineral component of the human
bones and teeth [11]. Furthermore, two of the most appealing
properties for environmental applications thatHAp possesses
are its ability to adsorb complex organic materials and the
capacity of heavy metals ion-exchanging [11–14]. Previous
studies have shown that Pb2+ ions exchange rapidly with
Ca, this process inducing morphological changes in the
surface region [15–17]. In order to increase the adsorption
ability of hydroxyapatite, an increase in its porosity must be
obtained. herefore, doping hydroxyapatite with silicon ions
may be the key to increase the porosity, thus creating a better
material for lead removal from aqueous solutions. Recent
studies have shown that the addition of tetraethoxysilane
(TEOS) can induce the formation of large textural pores [18].
Consequently, in order to increase the lead adsorption capac-
ity of hydroxyapatite, it must be doped with a silicon based
compound, such as TEOS.

he goal of this study was to synthetize and characterize
new porousmaterial based on tetraethyl orthosilicate (TEOS)
and hydroxyapatite (HAph) ater removal experiment

of Pb2+ ions from aqueous solution. he obtained powders
ater removal experiment of Pb2+ ions from aqueous solution
when the initial Pb2+ ion concentrations of the aqueous
solutions were 0.1 g⋅L−1 (HAph-50) and 0.9 g⋅L−1 (HAph-
450) have been investigated by scanning electronmicroscopy
(SEM), transmission electron microscopy (TEM), and Four-
ier transform infrared spectroscopy (FTIR). Another objec-

tive was to investigate the removal of Pb2+ ions from aqueous
solutions with diferent pH values using HAph nanopow-
ders.

2. Experimental Section

2.1. Materials. All the reagents including ammonium dihy-
drogen phosphate [(NH4)2HPO4] (AlphaAesar), calciumnit-
rate tetrahydrate [Ca(NO3)2⋅4H2O] (Alpha Aesar), ethanol,
and tetraethyl orthosilicate (TEOS) with 99.999% purity were
purchased from Sigma-Aldrich and lead nitrate [Pb(NO3)2]
with 99.5% purity was purchased from Merck and used
without further puriication.

2.2. Synthesis of Hydroxyapatite/TEOS Nanocomposites.
Hydroxyapatite/TEOS nanocomposites (HAph) were
prepared using tetraethyl orthosilicate and hydroxyapatite.
he hydroxyapatite (Ca10(PO4)6(OH)2) nanoparticles were
prepared by setting the atomic ratio of Ca/P at 1.67 in accord
with [19, 20]. he hydroxyapatite (HAp) was immobilized
into a tetraethyl orthosilicate foam using the technique
reported in the literature [20]. HAph was obtained when
tetraethyl orthosilicate solution (1 g HAp/10mL) was
dropped on the HAp powder. he mixtures were then stirred
vigorously for 30min until homogeneity was achieved. Ater
forming stable structures,HAphcompositeswere allowed to
dry at 80∘C for 24 h in a vacuum oven for the excess solvent
to evaporate. Finally, HAph composite samples were then
ground in order to obtain powders.

2.3. Samples Characterization. In order to investigate the
composition and morphology of the samples an equipment
FESEMHITACHI 4700 coupled with an energy dispersive X-
ray attachment (EDAX/2001 device) was used. TEM studies
were carried out using a FEI Tecnai 12 (FEI Company,
Hillsboro,OR,USA) equippedwith a low-dose digital camera
from Gatan Inc. (Pleasanton, CA, USA). Small quantities of
HAph powder were dispersed in deionised water and
deposited on a copper grid coatedwith carbonilm.his tech-
nique allows a good deinition of crystal morphology.

he FTIR spectra were acquired using a Spectrum BX
spectrometer. Pellets of 10mm diameter for FTIR measure-
ments were prepared (1% of the powder was mixed and
ground with 99% KBr) by pressing the powder mixture at a
load of 5 tons for 2min. he spectra were registered in the

range from 400 to 4000 cm−1 with a resolution of 4 and 128
times scanning.

heRaman spectra were registeredwith a Renishaw InVia
dispersive Raman spectrometer (2012), equipped with a Leica
DM microscope and one laser source at 514 nm (gas-type),
Spectra Physics Ar ion laser (20mW). he samples were
analyzed using the 514 nm laser with a power at 0.2mW and
1800 L/mmgratings.he spectral range covered for all spectra

is 100–2000 cm−1 with a resolution below 2 cm−1. Prior to
each reference measurement, the instrument was calibrated
on the internal Si-reference standard (520.6 ± 0.1 cm−1).

he removal performance of Pb2+ ions by the HAph
powders was investigated by batch experiments, monitoring

the change of Pb2+ ion concentration in the aqueous solu-
tions. For these experiments, 5 g of HAph nanocomposites
were added to 500mL aqueous solution with various initial
Pb2+ ion concentrations and pH values in accord with Jang

et al. [21]. he initial Pb2+ ion concentrations of the aqueous
solutions were controlled and the values were set in the range

0.1–1.5 g⋅L−1 by dissolving lead nitrate [Pb(NO3)2] in deion-
ized water. he pH values of aqueous solutions with con-
trolled initial Pb2+ ion concentrations were adjusted from 3
to 6 by adding small amounts of 0.1MHCl standard solution.
For all experiments the solution was stirred constantly for
24 h by a mechanical stirrer at room temperature.

3. Results and Discussions

Scanning electron microscopy (SEM) was used to character-
ize the morphology and elemental composition of synthe-
sized powders ater lead removal experiments. SEM images
presented in Figure 1 showed that lead incorporation into
HAph samples afects the particle shape.he crystal clusters
with needle or rod-like shapes were observed in SEMmicro-
graphs for the HAph-50 and HAph-450 samples.he clus-
ters with needle or rod-like shapes were distinguished when

the Pb2+ ion concentration from the aqueous solutions was
0.9 g⋅L−1 (HAph-450 samples).

he EDX analysis indicates that calcium, phosphorus,
silicon, and oxygen are the major constituents of the samples.
he presence of Pb is also observed.

Figure 2 shows the TEM image of HAph powders ater
the sorption experiment. hese nanoparticles exhibit
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Figure 1: SEM micrographs with EDX spectra for the (a) HAph-50 and (b) HAph-450 samples.
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Figure 2: TEMmicrograph of HAp ater Pb2+ removal experiments for: (a) HAph-50 and (b) HAph-450 samples.

a needle-like morphology usually observed on HAp powders
obtained by coprecipitation method [22]. Moreover, in TEM
images it is easy to observe the formation of a new phase
(pyromorphite) with a plate-like morphology (especially in
the case of HAph-450 samples). his behavior suggests that
the incorporation of lead in the HAph matrix stimulates
local calcium enrichment.

hese images also conirm the hypothesis that the main
mechanism of lead immobilization is irst of all based on the
dissolution of HAph followed by the precipitation of phases
with higher lead content [23].

he Fourier transform infrared spectroscopy provides
valuable information about the short-range ordering of
materials. In Figure 3 are presented the FTIR spectra of the

obtained powders ater Pb2+ removal experiments.he inter-
action between lead (II) and HAph structure led to some
modiications of infrared vibrations of the functional groups.
his behavior can be explained by the reaction mechanism
which involves the HAph dissolution in acid environment
and HAph Pb crystallisation [24].

In all the spectra the presence at around 640 cm−1 of OH
vibration peak could be noticed. he broad peaks in the
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Figure 3: FT-IR spectra of HAph-50 and HAph-450 samples.

regions 1600–1700 cm−1 and 3200–3400 cm−1 are attributed
to the hydroxyl groups [25–27].

he speciic bands of (PO4
3−) phosphate groups char-

acteristic to hydroxyapatite structure were observed at

568 cm−1, 637 cm−1, 605 cm−1, 964 cm−1, and 1000–
1100 cm−1 [28, 29]. he 964 cm−1 band can be associated to
the ]1 nondegenerated symmetric stretching mode of P–O.

he vibrational bands at 605 cm−1 and 568 cm−1 are attri-
buted to the triply degenerated ]4 vibration of O–P–O bond,

and the band at 472 cm−1 may be attributed to the ]2 bending
of O–P–O bond. Moreover, the weak band observed around
1500 cm−1 could be assigned to the A-type carbonate ion

substitutions, whereas the bands at 1422–1456 cm−1 (]3) can
be attributed to B-type CO3

2− substitutions [30–32].
Moreover, it is well known that the vibrations bands

(stretching and bending) assigned to the Si–O–Si bonds

appear in the 1100–900 cm−1 and 550–400 cm−1 spectral
regions. In the FTIR spectra (Figure 3) it is obvious that the
stretching and bending bands of SiO4 groups are overlapping
with the band of the PO4 group [30, 31, 33–37].

According to Ping et al. [38] the vibration band at

806 cm−1 (HAph-450 sample) could be attributed to Si–O
stretching of dimer silicate chains, indicating the start of
silicate polymerization.

he Raman spectra of the HAph-50 and HAph-450
powders are reported in Figure 4. he Raman vibrations

bands at 959 and 924 cm−1 are attributed to the ]1 PO4 vibra-
tion modes. In HAph-50 samples, only the 959 cm−1 band
appears, whereas the HAph-450 samples exhibit two bands,
one strong at 959 cm−1 and the other band at 924 cm−1. his
behavior is caused by the Ag-E2g splitting in the hexagonal
�6h symmetry [38, 39].

For the all samples, the vibrational spectra exhibit a strong
molecular character associated with the internalmodes of the
tetrahedral PO4

3−. he ]2 bands (426 cm
−1 and 450 cm−1)
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Figure 4: Raman spectra for the HAph-50 and HAph-450
samples.

are attributed to the O–P–O bending modes; ]3 vibration
bands (1073 cm−1 and 1045 cm−1) correspond to asymmetric

P–O stretching and the ]4 bands (579 cm
−1, 589 cm−1 and

607 cm−1) are attributed mainly to O–P–O bending.
In order to evaluate the impact of the lead concentration

in the aqueous solution, absorption experiments were per-
formed. HAph solutions with concentration varying from

0.1 to 1.5 g⋅L−1 at pH 5 were used. he measurements were

performed on 500mL solution (pH 5) with an initial Pb2+ ion
concentration of 63mg⋅L−1. In Figure 5 the adsorption ei-

ciency of Pb2+ ions as a function of the Pb2+ concentration in
the solution is presented. It was observed that the removal
eiciency is dependent on the initial Pb2+ concentration. For
a lead concentration of 0.2 g⋅L−1, the removal eiciency
reached 98.6%, showing that the adsorbentmaterial (HAph)

has a strong ainity to Pb2+ ions. For Pb2+ concentration
ranging from 0.4 g⋅L−1 to 1.5 g⋅L−1, the removal eiciency was
around 100%. his behavior could be explained by the fact

that the Pb2+ ions were completely removed from the solu-
tion.

Figure 5 shows the measured lead concentration in the
solution ater the reaction with HAph has taken place. For
the studies on the efect of the solution pH, a solution con-
taining 0.9 g⋅L−1 of lead was selected (Figure 6). A solution

containing 563mg⋅L−1 of Pb2+ ions was obtained from 0.9 g
of Pb(NO3)2 in 1 L of distilled water.

A removal eiciency of 100% was achieved for pH 6.

On the other hand, the removal eiciency of Pb2+ ions was
98.5% at pH 3. he removal eiciency of Pb2+ ions was 99%
for pH 4. When the pH value was set to 5 the removal
eiciency of Pb2+ ions was 99.5%. he present studies have

shown that the removal of Pb2+ ions from aqueous solution
by hydroxyapatite/TEOS nanocomposites was greater than
98.6% at all pH values of the aqueous solution used for the
removal of Pb2+ ions.
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Figure 5: Efect of the Pb2+ concentration on the removal of the Pb2+
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Figure 6: Efect of the solution pH on the removal of Pb2+ ions by
HAph.

According to these results, it can be highlighted the fact

that the HAph can really remove Pb2+ ions from aqueous
solutions.

One of the most important parameters which must be
considered in the absorption experiments is the pH of the
solutions due to the fact that the pH of groundwater and
surface waters varies between 5 and 7 [40]. he results of
our studies have shown that the solid reaction products of
aqueous Pb2+ with theHApharemainly pH-dependent, this
being in good agreement with other results reported in
literature [40].

For the assimilation of diferent metals from aqueous
solutions by hydroxyapatite [17, 41–43] diferent processes
have been proposed, such as metal complexation on the HAp
surface, apatite dissolution followed by a new metal phase
precipitation, and cation exchange. In previous studies [44],
it has been shown that the formation of a stable lead apatite

such as Ca(10−�)Pb�(PO4)6(OH)2 by ion exchange mecha-

nism where Pb2+ present in the solution replaces Ca2+ ions
from the hydroxyapatite lattice is possible. Furthermore, the
Pb(10−�)Ca�(PO4)6(OH)2 crystals with higher content of cal-
cium are unstable [45]. herefore, the HAp should be subject
of a permanent process of dissolution and precipitation in
order to obtain more stable materials with a higher lead
percentage.

4. Conclusions

he main goal of this study was to synthesize a new porous
nanocomposite material based on tetraethyl orthosilicate
(TEOS) coated hydroxyapatite. In this study we investigated

the ability of these new materials to remove Pb2+ ions
from aqueous solutions with diferent concentration and pH
values. Ater HAph reacted with the solution containing

Pb2+ ions, the lead ions were completely removed from the
solution and the dissolution of Ca10 (PO4)6(OH)2 occurred.
he HAph powders exhibited the higher removal eiciency

of Pb2+ ions at pH 6.heTEM studies conirm the hypothesis
that the main mechanism of lead immobilization is irst of all
based on the dissolution of HAp followed by the precipitation
of phases with higher lead content.his study showed that the
HAph nanopowders are promising materials for lead ions
removal from aqueous solutions with diferent pH values,
being able to be used in the future for depollution of
wastewaters.
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