A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology
Résumé
It is widely believed that the Earth was strongly reduced during its early accretion, however, the transition from the reduced state that prevailed during Earth's early period to the modern oxidized crust and mantle has never been captured by geochemical surveys on Earth materials as old as ∼4.0 billion years ago. By combining available trace-elements data of igneous zircons of crustal origin, we show that the Hadean continental crust was significantly more reduced than its modern counterpart and experienced progressive oxidation till ∼3.6 billions years ago. We suggest that the increase in the oxidation state of the Hadean continental crust is related to the progressive decline in the intensity of chondritic addition during the late veneer. Inputs of carbon- and hydrogen-rich chondritic materials during the formation of Hadean granitic crust must have favored strongly reduced magmatism. The conjunction of cold, wet and reduced granitic magmatism during the Hadean implies the production of methane-rich fluids, in addition to the CO- and H2-rich volcanic species produced by degassing of hot reduced basaltic melts as modified by delivered materials during the late veneer. When the late veneer events ended, magma produced by normal decompression melting of the mantle imparted more oxidizing conditions to erupted lavas and the related crust, emitting CO2- and H2O-rich gases. Our model suggests that the Hadean continental crust was possibly much weaker than present-day, facilitating intrusion of underplating magma and thus allowing faster crustal growth in the early Earth.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...