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Highlights 
 

Untreated and bio-treated samples of building limestone were subjected to water 

imbibition tests. 
 

Changes to the water transfer properties of the stone, attributable to the bio-

treatment, were measured and quantified. 
 

A model for water transfer under these conditions is proposed, differing from the 

standard Washburn law. 
 

Bio-treatment has a limited service life over the period of the experimental run. 
 

Abstract 

Water transfers have been recognized as the main vectors of alteration and are responsible for 

pore network modifications in building stone. Among the techniques used to limit or stop the 

penetration of water into the stone, the calcification properties of bacteria have been 

investigated and used to treat buildings. In this article we study the effect of such a treatment 

following a protocol used in situ. The effects of this biotreatment on limestone (here tuffeau) 

were measured over a large number of drying–imbibition cycles. As the imbibition curves did 

not follow the usual Washburn law, a model based on a space-dependent permeability 

coefficient is proposed. It leads to a non-linear diffusion model which accounts for the 

deviation from the standard Washburn model. 
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1. Introduction 

The causes of building stone decay are both numerous and varied, covering physical, 

chemical and biological actions [1], [2] and [3]. Among the most devastating causes, air 

pollution, salts and biodeterioration are the most frequently cited in the recent literature (e.g. 

[1] and references therein). The feature common to these three mechanisms is the presence of 

water and/or the causal role of water transfers (liquid and gas phases). The action of water 

within the stones is notably exacerbated by the “time of wetness” and the “time of deep 

wetness” as noted recently by McCabe et al. [4] due to more prolonged periods of winter 

wetness associated with climate changes. As water is involved in many types of stone decay 

[1], different surface treatments aimed at avoiding or limiting these fluxes of liquid water 

[5] and [6] have been developed. The most widely used are water repellents that form a film 

at the surface of the stone and hence exert a protective action ([1] and references therein). 

They give rather good results for low porosity stone as liquid water ingress is strongly limited 

and water impacting the stone surface drips down without causing damage [7]. However, for 

high porosity stones, the water repellents penetrate the pores, completely filling them up [8]. 

This is a real problem because gaseous and liquid water inside the stone can no longer escape 

but remains trapped within the porous lattice, just behind the water-repellent film, inducing 

alteration by frost damage for example [6], [9] and [7]. This leads to aesthetic problems and in 

extreme cases poses the problem of the solidity of the monument. 

It is therefore necessary to prevent the intrusion of water into the stone but it is also crucial to 

maintain a gaseous exchange between the stone and its environment [6]. In addition, 

physicochemical compatibility with the treated surface is also required. For such a goal other 

treatments have been proposed such as organic treatments [10]. Once the role of bacteria in 

carbonatogenesis had been recognized, the idea was to use this property for the 

bioremediation of stone surfaces in historical buildings [11], [12] and [13]. One of these 

bioprocesses creates a calcite biocoating, the nature of which is appropriate to the substrate 

itself [14]. The so-called Microbially Induced Carbonate Precipitation (MICP) has been 

studied by several groups with the aim of reducing the surface porosity of the stones ([15] and 

references therein). As a result, gaseous exchange from the inside to the outside of the stone is 

still possible while water transfer from the outside to the inside of the stone is reduced [16]. 

In order to reproduce as closely as possible the real conditions of applications on monuments, 

in this study the stones were sprayed by a treatment (i.e. in accordance with industrial 

requirements) and not immersed within the treatment solution [15]. Laboratory treatment by 

immersion is favorable to bacterial development but is unexploitable in situ by stone restorers. 

To our knowledge only a few studies have been conducted using spraying to treat the surface 

stone [14]. We selected an industrial protocol developed by the Biocalcite Concept company. 

The aim of this treatment is to create a calcite biocoating by the bacterium Bacillus Cereus 

[17] and [16] that partially fills the pores at the stone surface. This protocol was developed 

mainly to protect building limestones. The creators of this process claim that their coating 

“ensures the protection of limestones by restricting exchange between the interior of the rock 

inside and external atmosphere and, additionally, by limiting the penetration of degrading 

agents into the stone” [16]. This process is therefore rather unclassifiable amongst stone 

treatment tools: on the one hand, it is not a consolidant, neither in terms of hardness nor in 

terms of mechanical resistance; on the other hand, it is not a hydro-repellent either, even if the 

bio-coating increases the liquid water time penetration (J.F. Loubière, personal 

communication). Note that the choice of this bacterium is not restrictive as the nature of the 

bacterium does not appear to be decisive for the results; the substrate has a greater influence 



[14]. Like other biotreatments, the Biocalcite Concept treatment limits (but does not 

completely stop) the penetration of water from the exterior, while allowing gaseous fluxes in 

both directions. 

In a previous article we characterized and analyzed the phase mineralogy produced by this 

biotreatment [18]. To be able to distinguish the newly formed biolayer from the substrate, the 

biotreatment was sprayed in the laboratory on plaster samples. The coating produced was 

observed by SEM, and analyzed by microprobe X and GIXD. It was shown that the 

composition of the coating was calcite i.e. a polymorphic state of calcium carbonate. The 

thickness of the coating was evaluated by SEM and X-ray microprobe and was found to be 

close to 20 μm on plasters and on a limestone [19]. Despite this result, the penetration depth 

of the treatment and the coating thickness are generally rather substrate dependent [20]. 

Nevertheless, all the stones used in the present article were the same as in [18] and [19] and 

the previously evaluated thickness remains valid. 

In the present article, the objectives are to quantify the modifications in the water transfer 

properties due to the biotreatment and to put forward a model of water transfer on a building 

limestone. In situ, the hydraulic properties of building stones and/or the effects of treatments 

are often evaluated by the Karsten pipe method [8]. However, since the objective of this work 

is not only to submit the stone to wetting/drying cycles in order to test and degrade (if 

possible) the coating, but also to quantify hydraulic modifications of the porous media, the 

hydraulic measurement properties were done with the imbibition method [21]. It should be 

mentioned that imbibition is very aggressive for the treatment, giving a lower limit of coating 

resistance. 

The paper is organized as follows. Section 2 describes the biotreatment and the stones on 

which it was applied. It presents the protocol and the method used to characterize the water 

properties. Section 3 discusses the experimental results and proposes a model to recover them. 

Finally, Section 4 presents the conclusions that can be drawn from this work. 

2. Materials and methods 

2.1. Material and biotreatment 

The material support for the biotreatment used in this article is a tuffeau stone [22] that was 

collected in a quarry located near the village of Saint-Cyr-en-Bourg (France). In the past, this 

stone was used to build most houses, churches, cathedrals and chateaux along the Loire 

valley. It is a rather soft stone and is therefore an easily workable building material. 

Nowadays, it is mainly used to restore these monuments. Tuffeau stone is a yellowish-white 

porous limestone, mainly composed of calcite (0.503 g g
−1

), silica (0.452 g g
−1

) in the form of 

opal cristobalite–tridymite and quartz, and some secondary minerals such as clays and micas. 

The total porosity of the tuffeau stone studied here was 48.1%. It is a multi-scale porous 

medium since the equivalent pore size distribution ranged from 0.01 to 50 μm [22].The reader 

is referred to the article by Beck et al. [23] for further details about the characteristics and 

properties of the stone. 

Imbibition measurements were performed on cylindrical samples (diameter: 30 mm) that were 

small enough for the gravity effect to be neglected (height: 60 mm) [24]. The cylinders were 

all cut parallel to the sediment bedding in order to avoid undesirable anisotropic effects. 

Before treatment, the samples were oven-dried during 96 h at 50 °C in order to remove all 



residual water. They were then placed in a desiccator with phosphorous anhydrite in order to 

reach room temperature while maintaining a dry environment. The capillary coefficients were 

calculated using three samples (three for the treated and three for the untreated samples) in 

order to average the local inhomogeneities of the pore lattice. 

The biotreatment used in this work involves a bacterium (Bacillus cereus) that is particularly 

well-suited for limestones [17] and [16]. This technique was patented (Calcite Bioconcept 

firm) and has often been used on limestones [18] since it generates a calcite coating i.e. a 

material of the same nature as the stone substrate, thus ensuring optimal compatibility. It 

should be mentioned that this biomineralization treatment was optimized in order to be 

completed within one week, which is one of the restorers’ requirements. 

For obvious reasons of conservation, transport and implementation on a restoration building 

site, the bacteria were lyophilized by the manufacturer. Fifteen hours before use on the site, 

the freeze-dried bacteria were re-hydrated with a nutrient solution developed by the Calcite 

Bioconcept firm (peptones, yeast, salts, antifungus). After this lapse of time, the culture 

medium was sprayed onto a statue or part of a monument (about 1 L/m
2
). The bacteria were 

fed with a nutrient solution 24, 32, 48 and 72 h after spraying. The bacterial colony increased 

exponentially during these three days. For this study, this protocol was strictly reproduced on 

the cylinders described previously in this section by spraying one face (one cross-section) 

only. In order to be certain that the treatment was complete, the imbibition measurements 

presented in this work were done 40 days after the treatment. This curing time was selected as 

measurements done 40, 90 and 110 days after the treatment (SEM, microprobe, GIXD and 

imbibitions measurements) did not show any difference. The reader is referred to [18] and 

references therein for more details concerning the development of the process. 

SEM micrographs for untreated tuffeau (Fig. 1a and b) showed sparitic and micritic calcite 

and spherolits of opal. After biotreatment (Fig. 2a and b) the surface was strongly modified 

and far less rough. Crusts covering the raw tuffeau generated a smoother surface with 

numerous cracks (Fig. 2b). These cracks were probably an artefact due to the high vacuum 

needed in the SEM chamber [18] and [19]. 

 

Fig. 1.  : SEM image (secondary electron) of a tuffeau surface before biotreatment (a) 

500×500× magnification and (b) 4000×4000× magnification. 

 



 

Fig. 2.  : SEM image (secondary electron) of a tuffeau surface after biotreatment (a) 

500×500× magnification and (b) 4000×4000× magnification. 

2.2. Imbibition measurements 

Imbibition experiments are used to describe the transfer properties of a material via the 

imbibition coefficients [24], [21], [25] and [26]. The lower surface of the material is placed in 

contact with water and due to capillary forces, the water fills the pores, pushing the air inside 

the pores out of the sample. The water mass uptake and the height of the capillary front can be 

measured as a function of time. Neglecting the gravity effect on water and assuming 

cylindrical pores, the Washburn law predicts an evolution that is a function of the square root 

of time t   for both the mass uptake ΔmΔm per surface area unit S   and the capillary fringe 

height h  : 

tA
S

m
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tBh             (2) 

where the imbibition coefficients A   and B   are defined as follows: 
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with r   the radius of the capillary, η the water viscosity, γ the superficial tension and α the 

angle between the solid and fluid. Hence, mass uptake and height of the capillary front are 

usually represented versus the square root of time. Thus, according to Eqs. (1) and (2), it was 

expected that for homogeneous stones (A   and B   constant) a linear increase in Δm/S and 

h   with respect to t√ [24], [21] and [25] would be recorded. In the following only the mass 

uptake will be presented as the capillary height gives rather redundant information. 



From a practical point of view, mass uptakes were measured each minute during the first 

30 min followed by larger time intervals, until stable masses were obtained. During each 

measure the stones were not in contact with the water tank (for about 7 s). This could lead to 

slight experimental errors during the first minutes as water mass uptake is important during 

this lapse of time. 

3. Measurements and modeling 

The effect of the treatment was assessed by comparing the imbibition curves for treated and 

untreated samples. Twelve imbibition–drying cycles were performed for all the samples with 

distilled water to determine the long term behavior of the treatment. These imbibition–drying 

cycles are similar to the wet–dry ageing test. After imbibition the samples were put in an oven 

at 50 °C until total drying. Once the mass was constant, the sample was ready for a new 

imbibition–drying cycle. During the drying period, the sample was wrapped in an aluminum 

sheet, except for the surface which was in contact with water during imbibition. To sum up, 

water entered or exited the sample via the same surface. 

3.1. Imbibition–drying cycles on untreated samples 

Fig. 3 shows the time evolution of the mass uptake of water during the imbibition cycles (for 

cycles 1–12). In spite of the cylindrical capillary hypothesis and despite the slight 

experimental errors mentioned above, the imbibition curves recorded for all the untreated 

stone samples showed a quasi linear increase (Δ/m=At√) within a first zone going from 0 to 

ts (ts is hereafter called the saturation time). The saturation time varied from one cycle to 

another, but covered approximately the [35; 45] min range. This behavior, similar to that 

found in [21], indicates a homogeneous porous lattice [24] and [25]. Within the following 

zone (t√>6.5min1/2), the mass uptake continued very slowly and corresponds to the infilling 

of the trapped porosity thanks to air diffusion through water. In the first zone (i.e.   in the 

range [0,ts]), the slopes of the curves decreased progressively as the cycle number increased. 

Hence the coefficient of water absorption A decreased slightly with the number of 

imbibition/drying cycles. In other words, the mass uptake was longer and water saturation was 

reached later as the number of cycles increased. Therefore, a slight modification in the water 

transfer properties was observed, indicating a slight modification in the porous lattice [27]. 

 

 

 



 

Fig. 3.  : Imbibition curves for an untreated sample. The enclosed figure is an enlargement of 

the range t√∈[0,8] for cycles 1, 6 and 12. The same symbols are used in both figures. 

3.2. Imbibition–drying cycles on treated samples 

The imbibition curves (Fig. 4) for the treated samples were radically different from the 

untreated imbibition curves (mainly the first two cycles). Above all, the time ts necessary to 

reach the saturation zone for the first cycle was considerably increased: ts=680min (in 

comparison, it took approximately 40 min for the untreated cycles). But the saturation time ts 

decreased for the other cycles: ts=400min for the second cycle and ts=220min for the third 

cycle. After the third cycle, the time ts decreased slightly, reaching 140 min for the last cycle. 

Hence, ts still remained higher (whatever the cycle number) than the ts times for the untreated 

samples (40 min). Furthermore, while the imbibition curves increased linearly in the first zone 

for the untreated samples (Δm/S=At1/2), the imbibition curves for the treated samples 

presented a rather different behavior for (at least) the first two cycles. This behavior has also 

been observed for other treatments [10] and [28]. In view of these differences, it seems 

necessary to develop another model. We therefore propose a power law behavior in the 

following section (∼tα). 

 

 



 

Fig. 4. : Imbibition curves for a treated sample. The imbibition curve obtained for the first 

cycle of an untreated sample has been plotted (stars) for comparison. 

 

The imbibition coefficient A which is given by the slope of the imbibition curves ( Fig. 

3 and Fig. 4) was computed and is plotted in Fig. 5. As expected, the values of A are smaller 

for the treated sample but increase with the cycle number. Nevertheless A is still lower than 

the coefficient obtained for untreated samples even for cycle 12. The coefficient A computed 

for untreated samples decreases slightly with the cycle number. So for both cases, the lattices 

change with the cycle number. Coefficient A was determined only if the imbibition curves 

nearly follow a square root of time evolution. This is not the case for the first two cycles of 

the treated samples, meaning that the assumptions made by the Washburn equation are no 

longer valid. Because the treatment modifies the surface of the samples, a non homogeneous 

lattice will be assumed. 

 

 

Fig. 5. : Coefficient A as a function of the cycle number for untreated and treated samples. 



3.3. Modeling 

As shown in Fig. 4 for the treated samples, while the mass uptake for the last cycles seems to 

be proportional to the square root of time, this is clearly not the case for the first two cycles. 

The log–log representation (Fig. 6) of the data of Fig. 4 shows a power law behavior. The first 

part (before saturation) is roughly linear and the slope gives the power index that depends on 

the cycle number. We therefore looked for a model which gives such an evolution. Following 

the work of Laurent [29] and [30], the conservative equation of the water uptake c(t,z) at 

time t   and location z   reads 

0
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where no border effects were considered, so a one-dimensional model was used. The 

z   coordinate stands for the distance from the water surface. The flux J   is given by Darcy’s 

law: 
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This yields 
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which is a diffusion equation of coefficient D  . As the samples are initially dried, c(0,z)=0 

and as the bottom of the sample is in contact with free water, the boundary condition is 

c(t,0)=1. D   usually depends on the moisture c  , but then the Boltzmann transformation gives 

solutions which are a function of the square root of time t  . Taking into account the 

modification induced by the biotreatment, the dependence on z   is assumed. As power-law 

solutions are sought after, the following equation is considered: 

z

D
D 0            (8) 

With this choice, Eq. (7) is a classical model of an anomalous diffusion process [31]. The 

sample is assumed to be high enough for the system to be considered as semi-infinite. The 

solution to Eq. (7) depends only on the variable y   defined by O’Shaughnessy and Procaccia 

[32]: 

)2/(1 


t

z
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If λ=0, the usual variable used in the Boltzmann transformation is recovered. The solution to 

Eq. (7), taking into account the initial condition and boundary condition reads c(z,t)=f(y). 

Integrating from z   = 0 to infinity, the mass uptake Δm(t) of water by the sample during time 

t   is obtained 
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and consequently Δm(t)∼tα with α=1/(2+λ). If λ=0, the usual square root of time dependence 

is recovered. A linear regression was performed on the curves in Fig. 6 before the saturation 

time ts. It gives the index α whose evolution as a function of the cycles is given in Fig. 7. The 

index obtained for untreated samples was also determined and is plotted for comparison. 

 

 

Fig. 6. : Log–log plot of the imbibition curves for a treated sample and the first cycle of a 

untreated sample (stars). 

 

 

Fig. 7. : Power index α as a function of the imbibition–drying cycle for biotreated and 

untreated samples. 

For the untreated samples, the power index is around 0.5 which is the value expected for a 

homogeneous porous lattice [25] and [24]. However, the power index increases slightly with 

the cycle number. This suggests that the lattice has been modified by the imbibition–drying 

cycles. This was shown previously by Beck [27] who argued that dissolution and 



recrystallization processes took place within the stone. The index of treated samples is around 

0.7 for the first cycle. It decreases to reach a value that still remains higher than the index 

obtained for the untreated samples. Hence the biotreatment considerably modified the water 

transfer properties of the stone. But as the imbibition test is aggressive (compared to natural 

rain for example) the effect of the treatment is reduced after a few cycles. As previously 

mentioned, even for the last cycles, water transfer into the lattice of the biotreated sample is 

still lower than that of the untreated samples. This shows the combination of two effects: (i) 

the durability of a porous lattice modification induced by the biotreatment, and (ii) the lattice 

modification induced by the imbibition–drying cycles. With α>0.5, the index λ=(1−2α)/α 

is negative, so the diffusion coefficient increases with z. This tendency is in accordance with 

the observation that the biotreatment, applied on the surface samples, slows down water 

intrusion. 

4. Discussion and conclusion 

The water transfer behavior of a biotreatment process applied on a building limestone was 

studied. Treated and untreated samples were submitted to a large number of imbibition–

drying cycles. It has been shown that the treatment slows down liquid water penetration into 

the stone (imbibition phase) while gaseous vapor can move easily from the inside to the 

outside of the stone (drying phase). These destructive tests also showed that the biocoating 

has a limited lifetime. This has been checked in situ on Thouard church (France) since 1993 

where the biotreatment needed to be renewed every ten years (J.F. Loubière, personal 

communication). 

While this removal of the coating by natural processes is one of the requirements necessary to 

define the treatment reversibility [33], it should be underlined that this notion of reversibility 

is not totally shared by a part of the conservation community as discussed by [34], [35], 

[36] and [37] and it demands particular care for a conservation study. 

Moreover the first imbibition tests on treated samples did not follow the classical law function 

(i.e. mass uptake proportional to the square root of time). A power law model has been 

proposed here which takes into account the local modification of the porous lattice. It gives 

power law solutions which fitted the imbibition curves of all the samples studied here. 

Furthermore power index evolutions were observed for the treated and untreated samples 

showing stone evolutions (dissolution and re-crystallization) for the untreated samples and 

evolution of both the stone and the coating for the treated samples. Modifications of water 

transfer properties are mainly due to open porosity reductions on the surface [38] and to the 

changes in contact angle and/or interfacial energy associated with the formation of bacterial 

biofilms [39]. 

As mentioned above, the imbibition curves presented in this paper do not fit the usual 

Washburn law, in contrast to those presented in the literature (e.g. [40]). This is due to 

differences in the protocols followed in the studies. Firstly, they differ by the choice of the 

bacteria even if this choice is not the main factor impacting the results [14]. Secondly the 

practical applications of the biotreatment process are not the same: in our study the treatment 

was sprayed onto a given surface of the stone while in De Muynck et al. [40], samples were 

immersed within the liquid treatment. In the latter case, one can expect to obtain an in-depth 

treatment with a more homogeneous biodeposition in the whole volume of the porous matrix, 

whereas the spray treatment is more localized to the surface of the stone as pointed out by 



Anne et al. [18]. Consequently, the model developed in the present article is perfectly suitable 

for the spray treatment i.e. with a coefficient of diffusion D depending on the depth. 

It should be mentioned that power law imbibition curves are also recovered when dealing 

with fractal porous media (see [41] and references therein). In that case, the pore space 

distribution is also a power law [42]. 

This simple and feasible approach has some drawbacks. First, the coefficient D(z) is free 

scale. Then, no information on the treatment depth is available. Furthermore, the first two 

cycles of the treated sample reveal more than one scaling range (see the two distinct zones in 

Fig. 4). Hence, a single index is insufficient to monitor the time evolution of the mass uptake 

m  . This may be related to a time evolution of the biocoating itself during imbibition which is 

manifested as a time dependence of the coefficient D  . Nevertheless the index α gives highly 

sensitive information on the change in porous media properties. We believe that this index 

could be profitably used in other studies. 

This preliminary study was conducted in favorable growing conditions for the bacteria 

development (controlled temperature and relative humidity) and future trials should be carried 

out in real environments. These studies will be conducted using the same protocol and the 

same sort of stone presented in this paper but under varying thermo-hygrometric conditions. 

This should enable us to observe and to characterize the development of Bacillus Cereus 

following varying conditions (or in situ conditions) on a given stone. For the moment, the 

only monitoring that has been carried out concerns Thouard church (built with another kind of 

stone) without complete characterization of the coating. 

The characterization of the bio-coating effect could be completed by a set of experimental 

measurements such as gas permeability (preliminary results showed a permeability reduction 

of 35% caused by the coating), free water absorption, forced water absorption and drying 

measurements [43] on untreated and treated samples. 

Finally, these results were obtained for a high porosity limestone and precautions should be 

taken for lower porosity stones. This aspect needs to be addressed in a future study. 
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