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Abstract West-African countries have been exposed to changes in rainfall pat-
terns over the last decades, including a significant negative trend. This causes
adverse effects on water resources of the region, for instance, reduced freshwater
availability. Assessing and predicting large-scale total water storage (TWS) varia-
tions is necessary for West Africa, due to its environmental, social, and economical
impacts. Hydrological models, however, may perform poorly over West Africa due
to data scarcity. This study describes a new statistical, data-driven approach for
predicting West African TWS changes from (past) gravity data obtained from the
Gravity Recovery and Climate Experiment (GRACE), and (concurrent) rainfall
data from the Tropical Rainfall Measuring Mission (TRMM) and sea surface tem-
perature (SST) data over the Atlantic, Pacific, and Indian Oceans. The proposed
method, therefore, capitalizes on the availability of remotely sensed observations
for predicting monthly TWS, a quantity which is hard to observe in the field but
important for measuring regional energy balance, as well as for agricultural, and
water resource management. Major teleconnections within these data sets were
identified using independent component analysis (ICA) and linked via low-degree
autoregressive models to build a predictive framework. After a learning phase of
72 months, our approach predicted TWS from rainfall and SST data alone that
fitted to the observed GRACE-TWS better than that from a global hydrological
model. Our results indicated a fit of 79% and 67% for the first year prediction
of the two dominant annual and inter-annual modes of TWS variations. This fit
reduces to 62% and 57% for the second year of projection. The proposed approach,
therefore, represents strong potential to predict the TWS over West Africa up to
two years. It also has the potential to bridge the present GRACE data gaps of one
month about each 162 days as well as a - hopefully - limited gap between GRACE
and the GRACE follow-on mission over West Africa. The presented method could
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also be used to generate a near-real time GRACE forecast over the regions that
exhibit strong teleconnections.

Keywords Predicting GRACE-TWS · West Africa · Autoregressive model ·
ICA · GRACE gap filling

1 Introduction1

West African climate is highly variable, ranging from tropical to semi-arid and arid2

over a limited 1500-km North-South gradient. The main source of precipitation3

over a large part of West Africa (WA) is driven by the WA monsoon system and4

tightly linked to large-scale pattern of ocean-atmosphere-land interaction (Gian-5

nini et al., 2003, 2008). Inter-decadal rainfall decrease over WA was highlighted as6

one of the largest precipitation patterns on the planet over the last half century7

(Ali and Lebel, 2009), leading to high risks of prolonged droughts, as in the 1970s8

and 1980s. Moreover, global warming adds up multiple threats to the region, with9

the duration and magnitude of droughts and floods expected to increase (Nichol-10

son, 2000, Speth et al., 2011). It is of critical importance to understand and predict11

the impact of the WA climatic system on water resources over timescales of several12

months, as the livelihoods of roughly 70% of the region’s population depend on13

uncertain rainfall and exposure to climate risk (Hansen et al., 2011).14

Drought severity is classically expressed in terms of the Palmer drought index,15

based on moisture data only (Heim 2002). However, this index does not explicitly16

account for the state of all water storage compartments (Long et al., 2013), as17

prolonged drought conditions may have an impact on deeper groundwater sys-18

tems even with limited anthropic pumping (Chen et al., 2010). Houborg et al.19

(2012) showed significant interest in incorporating total water storage observa-20

tions (TWS), defined as the sum of all available water storage on and below the21

surface of the Earth, to be used for drought monitoring. Its applicability is due to22

the fact that TWS can represent all available forms of water resource (Scanlon et23

al., 2012, Schuol et al., 2008), thus, might be a better representative of drought24

compared to soil moisture or groundwater compartment alone.25

Importance of quantifying TWS variations goes beyond its application in water26

resource studies. In general, the internal states of storage compartments determine27

their reaction to imposed boundary conditions. Runoff is driven by water stored in28

soil compartment and groundwater systems. Soil moisture layers - and groundwa-29

ter to a lesser extend - also control evapotranspiration, cooling the land surface and30

regulating local energy and water balances (Koster et al., 2004). In this sense, WA31

has been highlighted as a ‘hot spot’, where the land-atmosphere coupling could32

play an important role, through the recycling of precipitation and the modulation33

of rainfall gradients (Douville et al., 2006). Main processes affecting rainfall and34

water availability in WA at seasonal to decadal time scales have been extensively35

studied within the framework of international efforts under the AMMA1 initiative36

(e.g. Redelsperger et al. 2006). Beside land-atmosphere coupling, WA monsoon37

variability coincides with other overlapping shifts like those in global tempera-38

ture and natural sea surface temperature (SST) oscillations in all tropical oceans,39

1 African Monsoon Multidisciplinary Analysis
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Multivariate Prediction of Water Storage 3

showing remote (Pacific) or local (Atlantic and Indian) influences (see Rodŕıguez-40

Fonseca et al., 2011 and references therein, Mohino et al., 2011). Diatta and Fink41

(2014) studied the relationships between climate indices and monsoon rainfall, de-42

rived from rain gauge data, over West Africa, covering 1921 to 2009, and reported43

positive correlations between Sahel rainfall and the Atlantic Multi-decadal Oscil-44

lation (AMO), as well as the Atlantic Meridional Mode (AMM). Their results also45

indicated a significant impact of ENSO on inter-annual variability of precipita-46

tion over WA. Up to now, however, complex coupled ocean-atmosphere models47

represented limited skills to accurately simulate the main SST-WA monsoon tele-48

connections, both at inter-annual and decadal scales. This is reported to be caused49

by the simplification of different aspects of the climate system and of persistent50

biases (e.g., Rodŕıguez-Fonseca et al., 2011).51

Land surface models (LSMs) and hydrological models are commonly applied52

to simulate the impact of climate on storage compartments (e.g., Döll et al., 2003,53

Rodell et al., 2004, van Dijk et al., 2013). However, the quality of the models54

strongly depends on model structure, boundary conditions (rainfall and evapo-55

transpiration) and data availability, and also on model calibration/parametrization56

(Güntner et al., 2007). Over WA, modeling the impact of the monsoon on water57

resources is restricted by limited data for calibration/validation purposes (Boone58

et al., 2009, Schuol and Abbaspour, 2006), leading to large magnitude of uncer-59

tainties on the water balance and TWS.60

Time-variable gravity solution of the Gravity And Climate Experiment (GRACE)61

mission offers an opportunity to remotely measure large-scale TWS changes on re-62

gional and global scale (Tapley et al. 2004, Schmidt et al., 2008a). A few studies63

have highlighted the critical interest of GRACE-TWS observations in WA due to64

the sparse distribution of in situ observation network with respect to the size of65

the region (Xie et al., 2012). Nahmani et al. (2012) showed that GRACE accu-66

rately estimates the annual variability of WS over WA, when compared to the67

output of hydrological models and GPS observations. Grippa et al. (2011) carried68

out a model comparison study between various GRACE products and nine land69

surface models (LSMs) and showed substantial differences between GRACE-TWS70

and LSMs. The differences were mainly ascribed to the weakness of the LSMs to71

correctly simulate water in surface reservoirs and evapotranspiration during the72

dry seasons.73

This study presents a multivariate statistical TWS forecasting approach for74

West Africa (WA). Our goal is to capitalize on the availability of homogeneously75

processed, remotely sensed observations of gravity from GRACE, sea surface tem-76

perature (SST) from satellite data, as well as rainfall data from the Tropical Rain-77

fall Measuring Mission (TRMM), and predict large-scale annual and inter-annual78

variability of West-African TWS changes up to a few years. Therefore, the term79

‘prediction’ or ‘forecast’ in this study refers to estimation of the TWS quantity, for80

the period that TWS has not been observed, using its indicators, which in our case81

are SST and precipitation changes. A statistical approach, based on ‘system iden-82

tification’ framework (Ljung, 1987), is chosen here for our predictions (see Section83

3) since we are interested in accurate final monthly values of TWS rather than84

exploring the mechanism of changes in TWS compartments (e.g., soil moisture85

and groundwater) and their interactions. A similar concept has already been used,86

e.g., by the USA’s National Oceanic and Atmospheric Administration (NOAA)87

for predicting climatic parameters (http://www.cpc.ncep.noaa.gov/). We should88
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4 Ehsan Forootan et al.

mention here that one could also alternatively use ‘gap-filler’ approaches (e.g.,89

Rietbroek et al., 2014) to estimate (or predict) surface load or TWS over a re-90

gion of interest. We will show later that the prediction approach here provides up91

to two years TWS predictions, while retaining the spatial resolution of GRACE92

products. Reager and Famiglietti (2013) presented an experimental predictions93

approach that relates water storage changes to precipitation forcing and then gen-94

eralize the relation based on large-scale basin characteristics. Unlike our proposed95

method, this approach requires extra information about basin characteristics.96

The predictability skill of the proposed statistical approach would be optimal if97

major physical processes over the region of study are included in the learning phase.98

Thus, both ocean-atmosphere and land-atmosphere processes are represented as99

predictors of West African TWS changes: (i) SST variations over the major oceanic100

basins of the Atlantic, Pacific, and Indian Oceans (ii) TRMM rainfall observation101

over West Africa. Although other predictors might also improve the forecasting102

results (evapotranspiration, soil moisture changes), model quality is related to103

parsimony and data homogeneity. Here, we only rely on SST and rainfall data since104

they are more accurately derived from remote sensing observations compared to105

the other possible indicators (see, e.g., Reynolds et al., 2002, Huffman and Bolvin,106

2012, Wang and Dickinson, 2012).107

Time-variable maps of predictors (SST and rainfall data) and predictands108

(TWS data) include large temporal and spatial correlations. This requires ap-109

plication of a dimension reduction method before constructing the mathematical110

relationship between predictors and predictands (e.g., Kaplan et al., 1997). This111

considerably improves the skill of the forecasting approach (see e.g., Westra et al.,112

2008). The statistical method of independent component analysis (ICA) was ap-113

plied to extract individual modes of variability that are mutually independent and114

successively explain the maximum amount of existing variance in the data (Fo-115

rootan and Kusche, 2012, 2013). An optimum autoregressive model with exogenous116

variables (ARX) (Ljung, 1987) was then used to relate independent components117

(ICs) of predictands to ICs of predictors. In the end, the model allows a thor-118

ough representation of complex processes in a highly efficient way as compared119

to physical models. The combination of ICA/ARX modeling can be generalized120

worldwide, with an adequate identification of likely forcing recalibration of the121

model, with respect to the region of interest. Examples include the regions such122

as North America and the Australian continent, which exhibit strong ocean-land-123

atmosphere interactions (Douville et al., 2006, Forootan et al., 2012).124

From a methodological point of view, we prefer the ICA algorithm for dimen-125

sion reduction over, e.g., principal component analysis (PCA, Preisendorfer, 1988);126

this view is rooted in the improved performance of ICA in extracting trends, an-127

nual patterns, as well as slow dynamic patterns such as the El Niño-Southern128

Oscillation (ENSO) from climate observations (e.g., Aires et al., 2002, Ilin et al.,129

2005)). In a preliminary study, Forootan and Kusche (2012) and Forootan et al.130

(2012) applied the ICA method to global and local GRACE-TWS time series, and131

demonstrated its value in extracting climate related patterns. We also evaluated132

the use of PCA in our proposed statistical TWS forecast (results are not shown133

here), and found that ICA improves the extraction of teleconnections, e.g., ENSO134

and the Indian Ocean Dipole (IOD) patterns, as well as the performance of the135

prediction. A similar conclusion was reached, e.g., by Westra et al. (2007), who136

assessed the performance of ICA and PCA for simulating hydrological time series.137
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Multivariate Prediction of Water Storage 5

Finally, we prefer the ARX model over the common canonical correlation anal-138

ysis (CCA) approach (e.g., von Storch and Navara, 1999) for relating predictors139

and predictands since ARX offers more flexibility to relate multiple parameters as140

exemplified e.g., in Westra et al. (2008).141

To implement our prediction approach, first, we begin by decomposing the142

following data sets individually into statistically independent modes: (i) GRACE-143

TWS changes over West Africa, to provide the dominant independent patterns of144

total water storage (TWS) that are subsequently identified with the predictands145

of the ARX process; (ii) SSTs over the Atlantic, Pacific, and Indian Ocean basins,146

in order to extract ocean-atmospheric interactions and teleconnections; and (iii)147

TRMM data over West Africa, for extracting the main patterns of rainfall over148

the region. Then, the modes found by analyzing (ii) and (iii) are introduced as149

predictors of (i) within the ARX process model, while using the first 72 months150

of (i), (ii) and (iii) for the training step (statistical simulation). The fitted ARX151

model, along with the independent modes of SST and rainfall (i.e. the predictors152

of the ARX model) after the 72’th month are then used to predict TWS after153

the simulation period. The prediction is evaluated using those GRACE-derived154

TWS anomalies that are available after the simulation period. Forecasting error155

levels are also predicted using a Monte Carlo error estimation process. We should156

mention here that to decompose water storage and rainfall data in (i) and (iii), we157

introduced the West Africa region as a simple box (latitude between 0◦ to 25◦N158

and longitude between −20◦ to 10◦E). The method, however, can be extended to159

grids delineated by basin shape or basin-averaged time series.160

This contribution is organized as follows; in Section 2, we briefly present the161

data sets used in the study. The dimension reduction and the ARX forecasting162

methods are introduced in Section 3, followed in Section 4 by a discussion of the163

leading independent modes found in the total water storage (TWS), sea surface164

temperature (SST) and rainfall data sets. In Section 5, we discuss the results of165

ARX-TWS simulations and forecasts over West Africa. The study is concluded in166

Section 6. The paper also contains two appendices. In Appendix A, the details of167

GRACE-TWS estimations over West Africa are described, and in Appendix B, we168

present the details of mathematical methods, used in this study, including ICA,169

and the ARX model as well as their uncertainty estimations.170

2 Data171

2.1 Total Water Storage from GRACE and WGHM172

The GRACE mission consists of two low-earth orbiting satellites in the same or-173

bital plane at the current altitude of ∼ 450 km and in an inclination of 89.5◦. The174

separation distance between the two satellites is measured precisely by a K-band175

ranging system and the location of each satellite is determined by GPS receivers176

on-board the spacecraft (Tapley et al., 2004). These data, after application of sev-177

eral corrections, are then used by a number of analysis to generate time-variable178

(usually monthly) Level-2 gravity field products (Flechtner, 2007). In this study,179

we used monthly GRACE products from the German Research Centre (GFZ)180

Potsdam (Flechtner, 2007) for computing TWS fields, covering August 2002 to181

May 2011. We did not interpolate the missing data of January 2003, 2004, May182
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6 Ehsan Forootan et al.

2003, and December 2008 in order to avoid creating artifacts. For comparison, we183

also used monthly GRACE-ITG2010 products from Bonn University, Germany184

(Mayer-Gürr et al., 2010), which are available for the period between September185

2002 and August 2009, and are provided together with full variance-covariance186

information. The covariance matrices were used to estimate the accuracy of the187

GRACE-TWS grids. Total water storage from GRACE are also compared with188

TWS output from the WGHM model (Döll et al., 2003), covering the years 2003189

to 2010. WGHM represents the major hydrological components, such as soil mois-190

ture, rainfall, snow accumulation, melting, evaporation, runoff, and the lateral191

transport of water within river networks. For this study, we prefer WGHM over192

using land surface models (LSM) since it also contains a groundwater simulation193

model and, therefore, its vertically aggregated storage can be directly compared194

to GRACE TWS. The details of data preparation are described in Appendix A.195

2.2 SST196

Monthly reconstructed global 1◦ × 1◦ Reynolds sea surface temperature (SST)197

data (Reynolds et al., 2002) were used over the period 2002 to 2012. The Reynolds198

SST has been frequently used for climate studies, including some addressing African199

rainfall variability in relation to SST (e.g., Mohino et al., 2011, Omondi et al.,200

2012). Similar to Omondi et al. (2012), the SST data cover three major ocean201

basins: we include an Atlantic Ocean box (-66◦ to 13◦ E and -20◦ to 31◦ N), a202

Pacific Ocean box (159◦ to 275◦ E and -30◦ to 19◦ N) and an Indian Ocean box203

(34◦ to 114◦ E and -50◦ to 1◦ N). Sea surface temperatures in these regions are204

then extracted and analyzed through the ICA approach (Section 4). We found that205

a slight difference in the size of the selected boxes would not change the results of206

ICA significantly.207

2.3 TRMM208

Version 7 of TRMM-3B42 products (Huffman and Bolvin, 2012) covering 2002 to209

2012 (http://mirador.gsfc.nasa.gov/) was used. The downloaded 3-hourly rainfall210

rates have been converted to rainfall amount and aggregated to monthly basis.211

TRMM was previously used e.g., by Nicholson et al. (2003) to study the patterns212

of precipitation over West Africa. Huffman and Bolvin (2012) and Fleming and213

Awange (2013) reported a significant improvement of version 7 over version 6,214

likely as a result of including more microwave sounding and imagery records as215

well as implementing better processing algorithms.216

3 Methodology217

3.1 Identifying Dominant Independent Patterns from Available Data218

In order to keep the problem of identifying independent modes on a grid, in-219

cluding the statistical relationships between them, numerically manageable, it is220

mandatory to first apply a dimension reduction method before constructing the221
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Multivariate Prediction of Water Storage 7

mathematical relationship between predictors and predictands (e.g., Kaplan et al.,222

1997). This improves the prediction skills of the statistical approach, since the re-223

dundant information within the data sets, both predictors and predictands, will224

be reduced. Dimension reduction is implemented here by applying a 2-step inde-225

pendent component analysis (ICA) algorithm (Forootan and Kusche, 2012, 2013)226

to the TWS, rainfall, and SST data sets. Forootan and Kusche (2012) formulate227

two alternative ways of applying ICA, in which either temporally independent228

components or spatially independent components are constructed. The temporal229

ICA method, which we simply abbreviate here as ICA, is preferred in this study230

since it provides temporally independent components that allow the development231

of a prediction model that is univariate in the predictand (see Section 3.2).232

Let us assume that GRACE-TWS anomalies (in mm), after removing the tem-233

poral mean, are stored in the matrix XTWS = XTWS(s, t), where t is the time,234

and s stands for spatial coordinate (grid points). Applying ICA means that XTWS235

is decomposed into spatial and temporal components as236

XTWS = YjA
T
j , (1)

where the columns of Yj contain the j dominant unit-less temporally independent237

components (ICs) of TWS, and the columns of Aj represent the corresponding238

spatial maps. Each temporal pattern (i.e. a column of Yj) along with the cor-239

responding spatial pattern (a column of Aj) represent an independent mode of240

variability. Likewise, the temporally centered maps of rainfall over West Africa241

XRainfall, and of SST over the major oceans XSST can separately be written as242

XSSTorRainfall = Uj′B
T
j′ , (2)

where Uj′ stores the j′ dominant unit-less temporally independent components of243

SST or rainfall, and the columns of B′j contain the associated spatial maps. We244

used different indices j and j′ in Eqs. (1) and (2) to emphasize that the number245

of retained modes from different data sets are not necessarily the same. Selecting246

a proper subset (j or j′) is addressed in Appendix B.247

In our analysis, we found the spatial patterns associated with independent248

modes of total water storage anomalies, i.e. the columns of Aj (Eq. (1)) to be249

sufficiently stable. This means that, for instance, the spatial patterns (Aj) derived250

from 10 years of TWS data do not differ significantly from those derived from 8251

or 12 years of data. Therefore, for building the forecasting model, we only link252

the temporal components (ICs) of the predictor data sets (all columns of Uj′253

derived from SSTs and TRMM-rainfall) to individual ICs of the predictand (each254

column of Yj in Eq. (1)). Finally, we will use the Aj derived from TWS in order255

to reconstruct the forecasting maps. Details of the ICA decomposition and the256

corresponding error estimation are addressed in Appendix B.257

3.2 Prediction using an Autoregressive Model with Exogenous Variables (ARX)258

An ARX process is governed by a system of linear equations, which describe the259

relationship between the current and previous values of the system output and the260

values of inputs. In our case, the ARX model is formulated as a multiple-input261
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8 Ehsan Forootan et al.

(the independent modes or ICs of SST and rainfall all together) and single-output262

(each IC of TWS) model (Ljung, 1987):263

y(t) +

na∑
i=1

aiy(t− i) =
m∑

q=1

nb∑
l=1

bq,luq(t− kq − (l − 1)) + ξ(t), (3)

where y represents a particular mode of TWS, i.e. y(t), t = 1, . . . , n, represent264

a column of Yj in Eq. (1). In Eq. (3), na is the order of the ARX model with265

respect to the predictand, uq(t), q = 1, · · · ,m, and t = 1, . . . , n, are ICs of SSTs266

and rainfall from Uj′ in Eq. (2), while m is the number of predictors. The order of267

the ARX model with respect to the predictors is nb, and kq denotes the number of268

time-steps before the q’th input (predictor) affects the output y, i.e. the dead time269

of the system. Finally, ξ allows for a white-noise random input. The coefficients270

of the ARX models ai, i = 1, · · · , na, and bq,l, q = 1, · · · ,m, and l = 1, · · · , nb,271

have to be derived in the simulation step, using both predictand and predictors272

(Ljung, 1987). Once the coefficients are computed, in the forecasting step only273

the predictors (ICs of SST and rainfall) are used to estimate the values of TWS274

after the simulation period. Details of the computations and error propagation are275

addressed in Appendix B.276

4 Dominant Independent Modes of TWS, SST, and Rainfall277

When following the decomposition procedure as described in Section 3.1, we iden-278

tify two independent, statistically significant, modes in GRACE GFZ-TWS (ab-279

breviated as GFZ-TWS), four independent modes in SST changes over the Atlantic280

Ocean, three modes over the Pacific Ocean, and four modes over the Indian Ocean.281

For the rainfall changes, also four significant independent modes were obtained.282

Our approach for separating significant modes from the insignificant ones is also283

presented in Appendix B. Finally, Table 1 summarizes the variance percentage of284

the modes discussed so far.285

Table 1 List of the variance percentage that each of the independent mode in Section 4
represents. Independent modes of GRACE GFZ-TWS are shown in Fig. 1, a and b, those of
the Atlantic, Pacific and Indian Ocean-SST are shown in Fig. 2. Fig. 3 contains the independent
modes of TRMM-rainfall.

First Independent Mode Second Independent Mode Third Independent Mode Fourth Independent Mode
GRACE GFZ-TWS 62.4% 20.4%
WGHM-TWS 60.4% 16.4%
Atlantic Ocean-SST 46.4% 25.4% 11.7% 4.1%
Pacific Ocean-SST 55.6% 15.4% 14.6%
Indian Ocean-SST 47.8% 15.4% 14.3% 11.1%
TRMM-rainfall 44.2% 12.3% 6.9% 6.4%

Dominant Independent Modes Identified in Total Water Storage Variability286

The first and second independent modes the from TWS anomalies derived from287

GRACE (GFZ solutions) are shown in Fig. 1,a. The first dominant independent288

mode, which explains 62.4% of variance, represents the annual water variability289

over West Africa. Here a damping of the signal magnitude can be seen in the year290
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Multivariate Prediction of Water Storage 9

2005 (temporal IC1 of GRACE GFZ-TWS). From the spatial pattern of IC1, a291

concentration of annual variability appears to be dominant over the tropic and292

coastal regions. The second mode of GRACE-TWS contains inter-annual varia-293

tions, along with periodic components of ∼ 3 and 5 years period. Nicholson (2000)294

found a similar period in rainfall variations over West Africa. The second inde-295

pendent mode represents 20.4% of the GRACE-TWS variance, thus, the first two296

leading modes in Fig. 1 represent more than 80% of the TWS variance over West297

Africs. In fact, the dominanting annual and inter-annual variability of TWS are298

found well separated, and thus can be treated separately within the ARX simula-299

tion and prediction steps. We attribute this behavior to the properties of the ICA300

decomposition method.301

The separate treatments of the two annual and inter-annual variability of wa-302

ter storage components seems to be reasonable since they are likely due to differ-303

ent physical influences from environment (here the indicators SST and rainfall).304

Therefore, the mathematical relationship between TWS and its indicators must305

be separately weighted (i.e. coefficients ai, i = 1, · · · , na, and bq,l, q = 1, · · · ,m of306

IC1-GRACE and IC2-GRACE will be separately computed in Eq. 3). We would307

like to mention here that the oscillations that exist in the extracted dominant308

independent modes are not necessarily explained by a fundamental annual or309

inter-annual cycle and its overtones. Therefore, for the decomposition and pre-310

diction procedures, we chose not to reduce any such pre-defined oscillations (see311

also Schmidt et al. 2008b).312

For comparison, we then projected WGHM-TWS and ITG2010-TWS on to the313

spatial patterns of Fig. 1,a, using Eq. (B2) (Appendix B). The results are shown314

by the black and gray lines in Fig. 1,a. The temporal patterns indicate that the315

annual TWS changes from WGHM (IC1 in Fig. 1,a) are comparable to those seen316

by GRACE, whereas at the inter-annual time scale they are different (see IC2 in317

Fig. 1,a). To confirm this finding, we also applied ICA (Eq. (1)) to the WGHM-318

TWS data, individually, with the results shown in Fig. 1,b. The first independent319

mode of WGHM-TWS (60.4% of variance) is comparable to that of GRACE-TWS,320

while the second mode of WGHM-TWS (spatial and temporal pattern of IC2-321

WGHM) that accounts for 16.4% of variance is found quite different from those322

of GRACE-TWS (both GFZ and ITG2010). This finding shows that WGHM-323

TWS and GRACE-TWS are not consistent at inter-annual time scale; compare324

Fig. 1,a with Fig. 1,b. We hypothesize that the difference could be attributed to325

the possible miss-modeling of surface water storage or water withdrawals over the326

region. Further research will be needed to address the exact cause of differences,327

but this is outside the scope of the current study.328

Dominant Independent Modes of Sea Surface Temperature and Rainfall Data329

Applying the ICA approach (Eq. (2)) to SST changes over the three ocean boxes330

shows that their first two independent modes are related to the annual variability331

of SST (IC1 and IC2 in Fig. 2,a,b, and c). Over the Atlantic, for instance, IC1332

and IC2 are related to the annual dipole structure, which also correlate very much333

with IC1 of GFZ-TWS. The same damping of the annual amplitude in the year334

2005 is seen for IC2-Atlantic SST, similar as with IC1 of GFZ-TWS. Our result335

confirms that the recent annual variability of total water storage over West Africa336

is highly correlated with the Atlantic ocean-atmospheric interactions, reflected in337
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10 Ehsan Forootan et al.

Fig. 1 Overview of the ICA decomposition of TWS changes over West Africa (counted as
predictands). a) ICA decomposition of GRACE GFZ-TWS data (GFZ-TWS). For compar-
isons, WGHM-TWS and ITG2010-TWS changes are projected on the spatial patterns of IC1
and IC2, using Eq. B2 in Appendix B. The results are presented along with temporal ICs of
GFZ-TWS. b) ICA decomposition of WGHM-TWS maps. The variance fraction of each inde-
pendent mode is presented in Table 1. Uncertainties are shown by error-bars around temporal
components. Details of uncertainty computations can be found in Appendix B.

the SST data (see similar findings in e.g., Mohino et al., 2011). For the variance338

percentages that each mode represents, we refer to Table 1.339

We find that the third mode of SST changes over the Atlantic and Indian340

Ocean boxes represents semi-annual variability, while IC3-Pacific SST represents341

the ENSO pattern; we compared IC3-Pacific SST with the monthly ENSO pat-342

tern (shown by the Southern Oscillation Index (SOI)) provided by the Australian343
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Multivariate Prediction of Water Storage 11

Bureau of Meteorology (http://www.bom.gov.au/climate/enso/). A high correla-344

tion of 0.84 was obtained, suggesting that the pattern is physically meaningful345

(IC3 in Fig. 2,b). We also found a significant correlation of 0.68 between IC2 of346

GRACE-TWS (Fig. 1,a) and SOI, revealing a relationship between total water347

storage variability over West Africa and ENSO.348

IC4-Atlantic SST represents a complicated pattern, which we do not attempt349

to interpret here. IC4-Indian SST (Fig. 2,c) follows the Indian Ocean Dipole (IOD)350

pattern (see e.g., Saji et al., 1999). Comparing our results to the IOD index derived351

from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC,352

http://www.jamstec.go.jp/frcgc/research/353

d1/iod/HTML/Dipole%20Mode%20Index.html) represents a significant corre-354

lation of 0.73. This shows that ICA extracts teleconnection patterns from SST355

data fairly well.356

Four independent modes were extracted from TRMM-rainfall data, from which357

IC1-TRMM and IC2-TRMM relate to the annual rainfall variability with three358

months phase differences (Fig. 3). In 2005, a damping of the signal magnitude can359

be seen in IC2-TRMM, but it is less pronounced compared to that of IC2-Atlantic360

SST. This might be due to the fact that IC2-TRMM represents a local impact,361

compared to the large-scale interaction that IC2-Atlantic SST represents. IC3-362

TRMM and IC4-TRMM apparently represent the semi-annual rainfall variations.363

We found a lag of two months between the ICs of rainfall and those of TWS.364
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12 Ehsan Forootan et al.

Fig. 2 Overview of ICA decomposition applied to the SST changes over (a) the Atlantic, (b)
Pacific, and (c) Indian Oceans. The variance fraction of each independent mode is presented in
Table 1. Uncertainties are shown by error-bars around temporal components. The smoothed
temporal patterns in (a) and (b) are derived by applying a 12-month moving average filter.
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Multivariate Prediction of Water Storage 13

Fig. 3 Overview of ICA decomposition applied on rainfall changes over West Africa. The
variance fraction of each independent mode is presented in Table 1. Uncertainties are shown
by error-bars around temporal components.
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14 Ehsan Forootan et al.

5 Predicting Total Water Storage with an Autoregressive Model365

Training Step366

To compute the best-fitting ARX model, we have inserted the first 72 months367

of each mode of GRACE GFZ-TWS (IC1 and IC2 in Fig. 1,a) and the first 72368

months of all temporal modes of SST and rainfall (ICs of Figs. 2 and 3) in Eq.369

(3). Before performing the training step of the ARX model, the data for January370

2003, 2004, May 2003 and December 2008 were excluded from the input time series371

(ICs of SSTs and rainfall) to synchronize them with the GFZ-TWS time series.372

Then, we had to choose optimum na and nb; these were found experimentally by373

varying them between one to three. The time delay kq was searched for between374

zero and three months. This was then followed by running the ARX simulation375

step (Eq. (3)). We did not consider higher orders for na and nb since we would376

like to keep the forecasting model as simple as possible (e.g., Westra et al., 2008).377

For kq, previous studies (e.g., Ahmed et al., 2011) found a delay of up to three378

months between SST-rainfall and TWS changes. The required coefficients for each379

ARX model Θ̂ were computed using Eq. (B5) in Appendix B.380

Our numerically simulated results for both IC1 and IC2 of GFZ-TWS suggest381

that an ARX model with na=1 and nb=3 provides the best fit with the residuals382

passing the normality test. The RMS of differences between the simulated TWS383

values from the ARX process and the ICs of GFZ-TWS (Eq. (B6) in Appendix384

B) was used as the fit criterion. Two sets of kq corresponding to the simulations385

of the IC1 and IC2 of GFZ-TWS were found and are presented in Table 2. Our386

simulation results indicate that the ARX models provide a fit of 93% and 83%387

for simulating the two dominant components of GFZ-TWS (IC1 and IC2 in Fig.388

1,a), respectively. The simulation fit of ARX corresponding to IC2 of GFZ-TWS389

is, however, lower than that of IC1 since its temporal pattern appears much more390

complicated than the annual pattern in IC1. Therefore, it might not have been391

fully captured by the predictors (see Fig. 4).392

Table 2 Time delays kq derived from simulation of IC1-GRACE GFZ-TWS and IC2-GRACE
GFZ-TWS. The values are in month and denote the number of time-steps before each predictor
(ICs of SSTs and ICs of TRMM-rainfall respectively in Figs. 2 and 3) affect the output (each
individual IC of GRACE GFZ-TWS in Fig. 1, a).

IC1 IC2 IC3 IC4 IC1 IC2 IC3 IC1 IC2 IC3 IC4 IC1 IC2 IC3 IC4
SST SST SST SST SST SST SST SST SST SST SST TRMM TRMM TRMM TRMM

Atlantic Atlantic Atlantic Atlantic Pacific Pacific Pacific Indian Indian Indian Indian West West West West
Ocean Ocean Ocean Ocean Ocean Ocean Ocean Ocean Ocean Ocean Ocean Africa Africa Africa Africa

kq related to 1 0 2 1 0 3 1 1 0 1 0 0 3 3 1
IC1 of GFZ-TWS
kq related to 1 0 1 1 0 0 1 1 0 1 0 1 3 1 3
IC2 of GFZ-TWS

To assess the sensitivity of the ARX models (Eq. (3)) with respect to each393

input, first, for each IC of GFZ-TWS, each IC of Figs. 2 and 3 was individually394

inserted in Eq. (3) and the ARX model evaluated. For each IC of GFZ-TWS,395

therefore, an ensemble of 15 ARX-modeled TWS outputs was generated, and the396

correlations of these outputs and the ICs of GFZ-TWS were then computed. From397

the 15 ARX-generated TWS, those that represented the largest correlations with398

their corresponding IC of GFZ-TWS were likely to have the most influence on the399

prediction. Our results show that the ARX-outputs generated by IC1, IC2-Atlantic400
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Multivariate Prediction of Water Storage 15

SST, and IC1-rainfall had the largest influences on the ARX model of IC1 GFZ-401

TWS. The prediction of IC2 GFZ-TWS was found to be sensitive to IC3-Pacific402

SST, IC3-Atlantic SST, and IC3-rainfall. The most sensitive indicators and the403

correlations of the associated outputs with the ICs of GFZ-TWS are presented404

in Table 3. One might use these results for model reduction of the original ARX405

process (see e.g., Westra et al., 2008), however, such a reduction was not applied406

in this study since (i) the fit derived from each of the 15 model run was smaller407

than that of original ARX run, and (ii) the ARX models apparently possessed408

sufficient degree of freedom to be computed based on the current indicators.409

Table 3 List of the most sensitive indicators derived from the ARX models for each input and
the computed correlation of the output with IC1 and IC2 of GRACE GFZ-TWS. Correlations
are derived at 95% level of confidence.

Rank: 1 2 3
Model run by: IC1 IC2 IC1

SST SST TRMM-rainfall
Atlantic Atlantic West

Ocean Ocean Africa
Correlation with 0.81 0.61 0.52
IC1 of GFZ-TWS
Model run by: IC3 IC3 IC3

SST SST TRMM-rainfall
Pacific Atlantic West

Ocean (ENSO) Ocean Africa
Correlation with 0.59 0.46 0.42
IC2 of GFZ-TWS

ARX Forecasting Step and Validation410

Having simulated the ARX model parameters for the two dominant independent411

modes of GFZ-TWS (Θ̂ is known from Eq. (B5), within the training step), we used412

the indicator time series, i.e. all ICs shown in Figs. 2 and 3 after the 72-months413

training period alone to predict ICs of GRACE GFZ-TWS changes for the years414

2010 and 2011. The predictions were derived from Eq. (B8), and their uncertainties415

were evaluated using the Monte Carlo approach described in Appendix B. Training416

and forecast results are shown in Fig. 4a,b. Our prediction approach, therefore,417

uses only the process structure described in Section 3.2 and the determined lag418

relation between the predictors and ICs of GFZ-TWS changes (i.e. Table 2). The419

fit of the forecast for the first leading mode of total water storage, when compared420

to the observed GFZ-TWS values, after one year was found 79%, while after two421

years this reduced to 62%. As Fig. 4a also shows, after two years, the standard422

deviation of the propagated uncertainty is quite large. This suggests that the423

proposed approach is more or less reliable for predictions of up to two years. Fig.424

4b shows that the fit of the forecast for the second leading independent pattern of425

total water storage after one year was reduced to 67%. After two years, a fit of 57%426

was found. Comparing projected values of WGHM-TWS (black lines in Fig. 1a)427

with the ICs of GFZ-TWS, during the first year of forecast, we found a fit of 78%428
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16 Ehsan Forootan et al.

Table 4 List of the computed fit values (Eq. B6) derived from comparing the ARX-TWS
outputs with the IC1 and IC2 of GRACE GFZ-TWS. We also compared the projected values
of WGHM-TWS in Fig. 1 with the IC1 and IC2 of GRACE GFZ-TWS. The values indicate
that the ARX outputs are closer to that of GRACE GFZ-TWS.

Simulation period First year of the forecast Second year of the forecast
(72 months)

Fit values of
the ARX model with respect
to IC1 of GFZ-TWS: 93% 79% 62%
Fit values of
the ARX model with respect
to IC2 of GFZ-TWS: 83% 67% 57%
Fit values of
the WGHM model with respect
to IC1 of GFZ-TWS: 91% 78% 43%
Fit values of
the WGHM model with respect
to IC2 of GFZ-TWS: 54% 53% 31%

for the annual and a moderate fit of 53% for the inter-annual pattern. This result429

indicates that the TWS prediction from the proposed statistical method is indeed430

closer to the observed GFZ-TWS changes over West Africa, when compared to431

hydrological modeling. See the fit values in Table 4.432

Comparing the ARX-derived TWS predictions with the ICs of GFZ-TWS, dur-433

ing the forecast period, we found no apparent deviations between TWS time series434

(see Fig. 4a,b), thus, the reported fit values are significant. For the inter-annual435

time-scale, however, specific care should be taken since the simulation and pre-436

diction of the ARX-TWS method is very much sensitive to the temporal patterns437

of the input parameters. When the ICs of SSTs or rainfall are not well defined,438

the inter-annual forecast of ARX-TWS might perform poorly or be biased. This439

has been tested by replacing the ICs of SSTs and TRMM-rainfall with temporal440

components derived e.g., from the principal component analysis (PCA) decompo-441

sition for running the ARX predictions (results are not shown). A bias was found442

in the prediction of IC2 GFZ-TWS, which was most likely due to the fact that the443

PCA-derived indicators (PCs of SST and rainfall) do not reflect the inter-annual444

TWS changes sufficiently.445

In order to assess the robustness of the performed forecast with respect to the446

training period, we performed a backward simulation and forecast, i.e. the last447

72 months of both indicators (ICs of SSTs and TRMM-rainfall) and predictands448

(individual ICs of GFZ-TWS) were used in the simulation step to predict the first449

two years of GFZ-TWS. The results, summarized in Fig. 5, show a fit similar to450

the forward forecast in Table 4. Therefore, even though the training step was quite451

short, no temporally variable bias was found in both forward and backward predic-452

tions. This confirms the robust performance of the proposed ICA-ARX approach,453

at least, with respect to the performed tests.454

Inserting the time series of the prediction and the spatial components of Fig.455

1,a in Eq. (1), one may reconstruct the TWS maps for the period when the ARX456

model and their inputs are available. In this case, our prediction values provide Y457

and the spatial maps of Fig 1,a provide A in Eq. (1). Fig. 6 compares the original458

GRACE GFZ-TWS values of the year 2010, after removing the temporal mean of459

2003 to 2011 and the contribution of Lake Volta (as discussed in Section 3 and460

Appendix A), with the values of the ARX-TWS forecast. The predictions fit quite461

well to GFZ-TWS fields. Fig. 6,c shows the difference between GFZ-TWS and the462

predicted ARX-TWS. The patterns of the differences are similar to the striping463
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Multivariate Prediction of Water Storage 17

noise of GRACE solutions (Kusche, 2007). Our results, therefore, support the idea464

of using the presented statistical approach to forecast TWS changes over West465

Africa.466

Fig. 4 Results of simulations and forecasts of IC1 and IC2 of GRACE GFZ-TWS (Fig. 1,a),
using the ARX models (shown by black-lines). Fig. 4a(top) represents the results for IC1 of
GRACE GFZ-TWS while assuming the ICs of Figs. 2 and 3 as indicators. Fig. 4a(bottom)
shows the uncertainty of the forecast on top. Fig. 4b(top) represents the same results as (a)
but corresponding to IC2 of GRACE GFZ-TWS. Fig. 4b(bottom) indicates the uncertainty
of the forecast on top. For simulation, the first 72 months of TWS are used (shown in blue).
TWS values after the 72th month are then used for evaluating the forecasts (shown in red).
Reconstructing the forecast for the year 2010, and its comparison with the original GRACE
GFZ-TWS fields are presented in Fig. 6.
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18 Ehsan Forootan et al.

Fig. 5 Backward simulations and forecasts of IC1 and IC2 of GRACE GFZ-TWS (Fig. 1,a),
using the ARX models (shown by black-lines). The results are similar to those of Fig. 4,
however here, the last 72 months of both indicators (ICs of SSTs and TRMM-rainfall) and
predictands (individual ICs of GRACE GFZ-TWS) are used in the simulations and the first
two years of IC1 and IC2 of GRACE GFZ-TWS predicted. Fig. 5a(top) represents the results
for IC1 of GRACE GFZ-TWS. Fig. 5a(bottom) shows uncertainty of the forecast on top. Fig.
5b(top) represents the same results as (a) but corresponding to IC2 of GRACE GFZ-TWS.
Fig. 5b(bottom) indicates the uncertainty of the forecast on top.
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Multivariate Prediction of Water Storage 19

Fig. 6 Overview of TWS maps for the year 2010 over West Africa, without the signal of Volta,
and after removing the temporal mean of 2003 to 2011. (a) TWS maps derived from GRACE
(GFZ RL04 data), (b) TWS maps derived from the statistical forecast (the ARX models and
ICA results), and (c) the differences between (a) and (b).
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6 Conclusions and Outlooks467

This study suggests and investigates a new statistical multivariate seasonal fore-468

casting approach for total water storage (TWS), which uses sea surface tempera-469

ture and rainfall data alone to estimate TWS changes over West Africa. The pro-470

posed ICA/ARX approach does not directly simulate the complex physical process471

of ocean-land-atmosphere, but instead, it statistically learns the relationships be-472

tween main known physical processes of the region (such as teleconnections and473

the soil-precipitation feedback) and uses it to predict TWS (the parameter of in-474

terest). The successful implementation of the proposed ICA/ARX approach relies475

on the proper selection of TWS indicators and avoiding over-parametrization of476

the model, data homogeneity and a learning phase that contains a thorough range477

of processes and impacts. Therefore, the dependence of the statistical model on the478

climate characteristics of the calibration period is often referred as a lack of model479

robustness. To investigate this issue, we performed a numerical validation, which480

showed that the seasonal forecast of TWS is close to TWS that is actually mea-481

sured by GRACE, see Table 4. Both forward and backward predictions indicate482

that the proposed approach provides relatively stable large-scale seasonal TWS483

forecast over West Africa. We also carried out an extensive uncertainty analysis484

and were able to show that the predictability skills of the model is stable. However,485

due to the estimated uncertainties, the results might not be significant after about486

one year of forecast. We would like to mention here that the proposed method487

is only able to provide predictions of total water storage, therefore, hydrological488

modeling would still be required to partition TWS into different compartments.489

Since the prediction method relies on the relationships between SST and rainfall as490

indicators of TWS, we expect that the ICA/ARX method, with its current param-491

eterization, is most appropriate to be used over those regions that exhibit strong492

interactions between ocean-atmosphere and land water storage changes, which is493

the case over West Africa.494

Since the proposed method is trained on GRACE products, it provides rela-495

tively coarse resolution TWS maps. The approach also assumes that the spatial496

pattern of TWS changes remains stationary within the two years of the forecast.497

Before application, one should therefore analyze whether this assumption is ful-498

filled for different time frames. This can be achieved by applying the ICA technique499

to TWS time series of different length, and evaluating whether the dominant spa-500

tial patterns appear indeed invariant. Another issue is that the training of the501

ARX model was performed based on six years of the data. Since SST and rain-502

fall are available for a longer period (e.g., for TRMM, since 1998), one could use503

TWS outputs of models for the time before 2002.8 and extend the training period.504

Addressing the impact of such extension in terms of the quality of the ARX coeffi-505

cients and the consistency of the model-derived TWS with GRACE-TWS requires506

further research.507

Our numerical results lead us to the hope that the presented statistical method508

could be helpful for filling the current gaps of the GRACE products (once every509

162 days, with one or two months of data is missing) and a possible gap period510

between GRACE and its successor mission GRACE-FO at least for certain regions511

such as West Africa. Another application of the presented approach could be the512

generation of near-real time GRACE forecasts. Product latency time of GRACE513

fields is currently two to three months, while using the suggested approach, one514
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could be able to forecast GRACE total water storage maps immediately as soon515

as rainfall and sea surface temperature data become available. Such near-real time516

predictions could be used for various drought/flood monitoring applications. Gen-517

erating total water storage predictions, close to GRACE products, would also518

be possible by calibrating and/or assimilating GRACE products in hydrological519

models. Models improved in this way could then be used to simulate total water520

storage. Examples of such implementations can be found in studies, e.g., Zaitchik521

et al. (2008), Werth et al. (2009b), Houborg et al. (2012), and Xie et al. (2012).522

The computational load of such approaches is however much more heavier than523

with the proposed statistical ICA/ARX approach.524
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Appendix A (Computational Details of Total Water Storage Fields)739

In order to prepare the data sets for analysis, the following processing steps were740

applied.741

– The GRACE Level-2 data that are used here, are derived in terms of fully nor-742

malized spherical harmonic (SH) coefficients of the geopotential fields (Flecht-743

ner, 2007). Firstly, the fields were augmented by the degree-1 term from Ri-744

etbroek et al. (2009) in order to include the variation of the Earth’s center of745

mass with respect to a crust-fixed reference system.746

– GRACE SHs at higher degrees are affected by correlated noise and are, there-747

fore, smoothed by applying the DDK2 decorrelation filter (Kusche et al., 2009).748

Werth et al. (2009a) found that the DDK2-filtered GRACE solutions are gen-749

erally in good agreement with the output of global hydrological models. How-750

ever, GRACE solutions are also contaminated by errors due to incomplete751

reduction of short-term mass variations by de-aliasing models (Forootan et al.,752

2013, 2014). We found that the impact of atmospheric de-aliasing errors on the753

GRACE-derived TWS over West Africa is negligible (see atmospheric errors754

over the Niger Basin in Forootan et al., 2014).755

– GRACE DDK2 filtered solutions up to degree and order 120 were then used756

to generate the global TWS values according to the approach of Wahr et al.757

(1998).758

– Similar to the GRACE products above, the DDK2 filter was applied to the759

gridded WGHM-TWS data set in order to preserve exactly the same spectral760

content as with the filtered GRACE products.761

– After filtering, all data sets were converted to 0.5◦ × 0.5◦ grids similar to the762

WGHM-TWS outputs.763

– From each data set, a rectangular region that includes West Africa (latitude764

between 0◦ to 25◦N and longitude between −20◦ to 10◦E) was selected.765

Lake Volta (see Fig. A1) is one of the largest man-made reservoirs in the world,766

created by the Akosombo Dam, which holds back the water for generating hydro-767

electric power (for details see Speth et al., 2011). Satellite altimetry observations768

indicate a sharp increase of water level since mid 2007, where much of the excess769

water resulted from heavy rainfall within the catchment (Crétaux et al., 2011).770

This introduces an artificial TWS anomaly located over the lake, which is removed771

to avoid its misinterpretation as a part of subsurface TWS changes. The equivalent772

water height (EWH) change of Volta was computed by assuming a grid mask773

representing a unit change in EWH of 1 mm over the entire lake surface and zero774

elsewhere. The grid mask has been converted into a set of spherical harmonic775

coefficients up to degree 120 and subsequently filtered using the same DDK2 filter776

used for filtering the original GRACE-TWS data. Then, each field was scaled777

using the lake height time-series (in mm) derived from the results of Crétaux et al.778

(2011). The averaged storage changes derived from GRACE-TWS (from GFZ) and779

altimetry are shown in Fig. A1. Both altimetry and GRACE GFZ-TWS indicate780

an increase of water storage within the lake. The amplitude of the signal derived781

from GRACE GFZ-TWS is larger than that of the altimetry likely since GRACE-782

TWS also reflects the groundwater signal of the surrounding area of the lake. For783

the lake area, we estimate a TWS increase of 2.95 ± 1.32 km3.yr−1, during 2003784
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to 2010. The time series of Lake Volta water storage changes were then removed785

from GRACE-TWS fields (including both GFZ and ITG2010).786

Figure A1: Overview of water storage changes of Volta Lake. The graph on top shows the
location of the lake, while that of the bottom-left compares the averaged contribution of Volta
lake level changes (derived from altimetry in black) with the averaged TWS variations derived
from GRACE (GFZ-TWS products, in red). The bottom-right graph shows the GRACE
GFZ-TWS signal after removing the water storage signal of Lake Volta.

In order to compare the signal strength over the region, the signal root-mean-787

square value (RMS) and the linear trend of the three mentioned TWS data sets788

(GFZ, ITG2010 and WGHM) are computed for the period January 2003 to August789

2009, in which the three data sets were available (see Fig. A2). From the RMS, one790

concludes that all the three data sets show a strong variability over the tropical791

and the Gulf of Guinea coastal regions. The computed linear trends, however,792

are not consistent. Particularly, GRACE-derived TWS changes show a mass gain793

over Volta Lake, which we remove from the GRACE-TWS fields before performing794

decomposition. Removing such artificial anomaly is necessary, since otherwise the795

amplitude of TWS forecast over the lake will be overestimated.796
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Figure A2: Comparing the signal variability (RMS) and linear trends of TWS data used in
this study after smoothing using the Kusche et al. [2009]’s DDK2 filter. (A) TWS data of
GRACE GFZ RL04, (B) TWS data of GRACE ITG2010, and (C) TWS of WGHM.

Appendix B (Details of ICA and ARX Methods)797

This appendix provides details of computations regarding to the methodology798

described in Section 3.799
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The ICA Computations800

ICA decomposition is performed here by applying a 2-step algorithm (Forootan801

and Kusche, 2012) on the available data sets, where step 1 consists of data decor-802

relation using principal component analysis (PCA). In step 2, the j-dominant803

components of PCA are rotated to be as independent from each other as possible.804

Storing the available data in a n×p data matrix X, after removing their temporal805

mean, where n is the number of months and p is the number of grid points, ICA806

decomposes X as807

X ' Xj= P̄jRjΛjR
T
j ĒT

j . (B1)

In Eq. (B1), P̄jΛjĒ
T
j is derived from the PCA decomposition of X in step 1.808

Therefore, Λj is an j × j diagonal matrix that stores the singular values arranged809

with respect to the magnitude, Ēj (j × p) contains the corresponding unit-length810

spatial eigenvectors, P̄j (n× j) contains the associated normalized temporal com-811

ponents, and j < n is the number of retained dominant modes (Preisendorfer,812

1988). The orthogonal rotation matrix R̂j (j × j) is defined in step 2, so that it813

rotates PCs and make them as statistically independent as possible. The method814

equals to temporal ICA (Forootan and Kusche, 2012), which is simply called ICA815

in the paper. Considering Eqs. (1) and (2), Y and U are equivalent to P̄R, while816

A and B are equivalent to ΛĒR. An optimum R was found by digonalization817

of the fourth-order cross cumulants of the dominant temporal components P̄ (see818

details in Forootan and Kusche, 2012).819

For properly selecting the subspace dimension j or j′, we used a Monte Carlo820

approach which simulates data from a random distribution N(0,Σ), with Σ con-821

taining the column variance of X. The null hypothesis is that X is drawn from822

such a distribution (see also Preisendorfer, 1988, pages 199 to 205). To apply823

the rule, 100 time series realizations of N(0,Σ) are generated, their eigenvalues824

computed and placed in decreasing order. The 95th and 5th percentile of the cu-825

mulative distribution are then plotted (red lines in Fig. B1). Eigenvalues from the826

actual data sets that are above the derived confidence boundaries are unlikely to827

result from a data set consisting of only noise. To estimate the uncertainties of828

the eigenvalues, we randomly selected a subsample of X and applied PCA, then829

selected another subsample and repeated this operation 200 times. This approach830

follows the ‘bootstrapping’ method as presented, e.g., in Efron (1979) and yields831

uncertainty estimates (see error-bars in Fig. B1). The repeat number of 200 is cho-832

sen experimentally to be sure that the distribution of the estimated eigenvalues is833

independent from the selections of the subsamples.834

To illustrate what we describe above, Fig. B1 shows the eigenvalue spectrum of835

the centered time series of GRACE GFZ-derived TWS, SST and rainfall computed836

using PCA. The significance levels are shown by red lines and the error-bars show837

the uncertainties of eigenvalues. The eigenvalues above the red lines are statistically838

significant. The significant eigenvalues along with their orthogonal components are839

rotated towards independence using Eq. (B1) and interpreted in Section 4.840

Based on the uncertainties of the PCA results (Fig. B1), in order to estimate the841

uncertainty of the ICs (Eq. (B1)), we generated 100 realizations of X, reconstructed842

by P̄j , Λj , and Ēj along with 100 realizations of their errors. Then, applying Eq.843
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Figure B1: Eigenvalue results derived from implementing the PCA method on (a) time series
of GRACE GFZ-TWS maps, (b) maps of SST over the Atlantic, (c) maps of SST over the
Pacific, (d) maps of SST over the Indian Ocean basins, and (e) West-African rainfall maps
from TRMM. Uncertainties are shown by error-bars around each eigenvalues. The red lines
correspond to the significant test, described in Appendix B. The variance fractions of the
dominant eigenvalues are represented in each graph.

(B1) to the realizations allows the estimation of uncertainties (see, e.g., error-bars844

in Figs. 1, 2, and 3).845

The projection of the data X onto the i’th spatial pattern of the ICA p̂i = Xêi,846

provides its corresponding temporal evolution847

p̂i(t) =

p∑
s=1

x(t, s) êi(s), (B2)

where t is time (1, · · · , n) and s is the number of grid points (1, · · · , p).848

The ARX Computations849

Considering Eq. (3) as the ARX model, the ARX-forecast requires two steps:850

(i) The coefficients (a1, · · · , ana) and (bq,1, bq,2, · · · , bq,nb), q = 1, · · · ,m are es-851

timated, e.g., using a least squares approach. This step is usually referred to as852

‘simulation’ or ‘training step’ in literature (see, e.g., Ljung, 1987). Step (i) is per-853

formed under the assumption that the output and inputs up to the time t = tn−1854

are known. Furthermore, the outputs and exogenous values on the right hand side855
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of Eq. (3) are not stochastic. To avoid negative indices, one might consider the ob-856

servations y(t) = [y(t), y(t−1), · · · , y(c)]T , where c = max(na, nb) +max(kq) + 1.857

Eq. (3) is expanded as858

y =


−y(t − 1) · · · −y(t − na) uq(t − kq) · · · uq(t − kq − nb + 1)
−y(t − 2) · · · −y(t − na − 1) uq(t − kq − 1) · · · uq(t − kq − nb)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−y(c − 1) · · · −y(c − na) uq(c − kq) · · · uq(c − kq − nb + 1)





a1

.

.

.
ana
bq,1

.

.

.
bq,nb


+ Ξ(t), (B3)

where q = 1, · · · ,m and Ξ(t) = [ξ(t), ξ(t − 1), · · · , ξ(c)]T . Eq. (B3) can be re-859

written compactly as860

y(t) = Φ(t)Θ + Ξ(t). (B4)

The least squares estimation of the unknown coefficients is derived from861

Θ̂ =
(
Φ(t)TΦ(t)

)−1
Φ(t)T y(t). (B5)

The quality of the fit (η) can be assessed by computing the signal-to-noise ratio862

as863

η = 1− y(t)TΦ(t)Θ̂

y(t)Ty(t)
. (B6)

The residual of the ARX model (Ξ̂(t) = [ξ̂(t), ξ̂(t−1), · · · , ξ̂(c)]T ) can be estimated864

as865

Ξ̂(t) = y(t)−Φ(t) Θ̂. (B7)

In step (ii), based on Θ̂ =
[
â1 . . . âna b̂q,1 b̂q,2 · · · b̂q,nb

]T
, when the inputs uq(t)866

are known, one can forecast the output ŷ(tn) at time tn using867

ŷ(tn) = −
na∑
i=1

âiy(tn − i) +
m∑

q=1

nb∑
l=1

b̂q,luq(tn − kq − (l − 1)). (B8)

To estimate the uncertainty of the ARX simulation, using Monte Carlo sampling,868

we numerically generate several realizations of the ICs (described before). By in-869

serting them into Eq. (3) and fitting ARX models, we are able to perform an error870

assessment of the fitted model up to the time tn. For error estimation of the fore-871

cast (the ARX value at the time tn + 1 and later), however, one should compute872

an accumulated error, since there is no observed value for the output y at time873

tn + 1 and later.874
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