

Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite Massif (Burundi): Implication for the Neoproterozoic geodynamic evolution of Central Africa

Gilbert Midende, Philippe Boulvais, Luc Tack, Franck Melcher, Axel Gerdes, Stijn Dewaele, Daniel Demaiffe, Sophie Decrée

▶ To cite this version:

Gilbert Midende, Philippe Boulvais, Luc Tack, Franck Melcher, Axel Gerdes, et al.. Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite Massif (Burundi): Implication for the Neoproterozoic geodynamic evolution of Central Africa. Journal of African Earth Sciences, 2014, 100, pp.656-674. 10.1016/j.jafrearsci.2014.08.010. insu-01068377

HAL Id: insu-01068377 https://insu.hal.science/insu-01068377

Submitted on 25 Sep 2014 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite

2 Massif (Burundi): implication for the Neoproterozoic geodynamic evolution

3 of Central Africa

Gilbert Midende¹, Philippe Boulvais², Luc Tack³, Frank Melcher⁴, Axel Gerdes⁵, Stijn
Dewaele³, Daniel Demaiffe⁶ and Sophie Decrée^{3,7,*}

- 6
- 7 ¹ Université du Burundi, Bujumbura (Burundi). E-mail: <u>midendegilbert@yahoo.com</u>
- 8 ² Géosciences Rennes UMR 6118 Université de Rennes 1 (France). E-mail : philippe.boulvais@univ-
- 9 rennes1.fr
- 10 ³Royal Museum for Central Africa, Tervuren (Belgium). E-mail: <u>luc.tack@africamuseum.be;</u>
- 11 stijn.dewaele@africamuseum.be
- ⁴ Chair of Geology and Economic Geology, University of Leoben (Austria). E-mail:
- 13 frank.melcher@unileoben.ac.at
- ⁵Geozentrum der Goethe-Universität Institut für Geowissenschaften, Frankfurt am Main (Germany). E-mail:
- 15 gerdes@em.uni-frankfurt.de
- ⁶ Université Libre de Bruxelles (Belgium). DSTE CP160/02. E-mail : ddemaif@ulb.ac.be
- ⁷ Belgian Royal Institute of Natural Sciences, Brussels (Belgium).
- 18 * corresponding author. E-mail: sophie.decree@naturalsciences.be
- 19
- 20 Abstract

The Matongo carbonatite intrusion belongs to the Neoproterozoic Upper Ruvubu alkaline plutonic complex (URAPC), that is located in Burundi along the western branch of the East African Rift. Beside the Matongo carbonatite, the URAPC alkaline complex comprises feldspathoidal syenites, diorites, quartz-bearing syenites and granites.

Three main facies have been recognized in the Matongo carbonatite: (1) Sövites represent the dominant facies. Two varieties have been recognized. A scarce coarse-grained

sövite (sövite I), which is altered and poorly enriched in REE ($4 < \Sigma REE < 8 ppm$), is 1 2 encountered in highly fractured zones. A fine-grained sövite (sövite II), which is made of saccharoidal calcite, commonly associated with apatite, aegirine and amphibole, is abundant 3 in the intrusion. Sövite II is enriched in LREE (442 $<\Sigma$ REE<1550ppm, 49<La_N/Yb_N<175). (2) 4 Ferrocarbonatites, that form decimeter-wide veins crosscutting the sövites, are characterized 5 by a LREE enriched patterns (225<ΣREE<1048 ppm, 17<La_N/Yb_N<64). (3) K-feldspar and 6 biotite-rich fenite facies (silicocarbonatites) have been recognized at the contact between the 7 carbonatites and the country rock. They are likewise LREE-enriched (134<ΣREE<681ppm, 8 25<La_N/Yb_N<46). Additionaly, "late" hydrothermal MREE-rich carbonatite veinlets can be 9 found in sovite I. They are characterized by moderate enrichment in REE ($\Sigma REE = 397$ ppm), 10 with a MREE-humped pattern ($La_N/Yb_N = 3.7$). The different facies represent the typical 11 magmatic evolution of a carbonatite, while the silicocarbonatites are interpreted as resulting 12 from the fenitisation of the country host-rocks. In addition, the most REE-depleted and 13 fractionated facies, i.e. the coarse-grained sövite facies and the "late" calcite veinlets testify 14 for hydrothermal processes that occurred after carbonatite emplacement and result from REE 15 mobilization and redistribution. 16

Large idiomorphic zircon crystals (megacrysts), found in the vicinity of the 17 carbonatite can directly be related to the carbonatite evolution. They have been dated at 705.5 18 ± 4.5Ma (U-Pb concordant age, LA-ICP-MS). Similar zircon megacrysts of the Lueshe 19 carbonatite (DRCongo) have been dated and give a concordant age at 798.5 \pm 4.9Ma (U-Pb, 20 LA-ICP-MS). Considering that an extensional tectonic regime occured at that time in Central 21 Africa - what remains debated - both ages could relate to different stages of Rodinia breakup, 22 with uprise of mantle-derived magmas along Palaeoproterozoic lithospheric zones of 23 weakness. 24

2

Keywords: Matongo, Upper Ruvubu, carbonatite, alkaline magmatism, Neoproterozoic,
 Burundi

3

4 **1. Introduction**

More than 850 alkaline complexes and carbonatites have been recognized in Africa 5 (Woolley, 2001; Fig. 1A). They represent about 40% of the world known occurrences. Their 6 ages range from 2 Ga (Phalaborwa, South Africa) to the present (Oldoinyo Lengai, Tanzania), 7 with two abundance peaks during the Lower Paleozoic and the Cretaceous. Half of the 8 African carbonatites are spatially associated to the African rift (Woolley, 2001). In central 9 Africa, Tack et al. (1984) and Kampunzu et al. (1985) have recognized 23 Neoproterozoic 10 alkaline plutonic massifs that are distributed over a distance of 1700 km along the present-11 day Western Rift (i.e. the western branch of the East African Rift) (Fig. 1B). 12

Among these massifs, the Matongo carbonatite in Burundi is part of the Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (URAPC, Fig. 2). This carbonatite does not outcrop and was discovered by drilling in the 80's. It displays a classical magmatic series, with a calciocarbonatite-ferrocarbonatite-fenite suite (Midende, 1984), and shows exceptional mineralization features, including large (> 1cm) zircons (Burke, 1998; Fransolet and Tack, 1992).

The Matongo carbonatite occurs in the central part of the URAPC, which consists of an outer unit of quartz-bearing syenite, granite and gabbro-diorite and an inner unit, characterized by the presence of feldspathoidal syenite and monzonite. The whole complex was dated between ~760 and ~690 Ma (Demaiffe, 2008; Tack et al., 1984; Van den Haute, 1986). Its emplacement has been related to a linear intraplate reactivation event (Tack et al.,

1996), which marked the breakup of the Rodinia Supercontinent (Kampunzu et al., 1997).
 The relationship with Rodinia breakup has already been evoked for other Neoproterozoic
 alkaline massifs in the area, e.g. for the Lueshe complex in RDC (Kampunzu et al., 1998;
 Kramm et al., 1997; Maravic and Morteani, 1980; Maravic et al., 1989; Van Overbeke et al.,
 1996).

6 This study represents a comprehensive petrographical and geochemical study of the Matongo carbonatite (the petrological evolution of the complex is however beyond the scope 7 of the study), together with new LA-ICP-MS U-Th-Pb ages obtained on its zircon megacrysts. 8 For comparison, zircon megacrysts from the Lueshe carbonatite have also been dated. This 9 study is envisaged to describe the (post-)magmatic processes associated with the carbonatite 10 emplacement and to position the Matongo carbonatitic event in the Neoproterozoic 11 geodynamic of Central Africa (Neoproterozoic supercontinent 12 context fragmentation/amalgamation). 13

14

15 **2. Geological setting**

The Matongo carbonatite belongs to the Neoproterozoic Upper Ruvubu Alkaline 16 Plutonic Complex (URAPC), located in the western part of Burundi along the western branch 17 of the East African Rift (Tack et al., 1984). The complex is hosted in rocks belonging to the 18 19 Mesoproterozoic Karagwe-Ankole Belt (KAB; Fernandez-Alonso et al., 2012), which consists of metasedimentary (phyllites, graphitic schists, metaquartzites and dolomite lenses 20 and interbedded metavolcanic rocks of Palaeo- or Mesoproterozoic age (Cahen et al., 21 22 1984;Brinckmann et al., 2001; Fernandez-Alonso et al., 2012). The metasedimentary and metavolcanic rocks of the Western Domain (WD) of the KAB were intruded by S-type 23

granites, which are part of the 1375 Ma old bimodal magmatic "Kibaran event" (U-Pb 1 SHRIMP on zircon; Tack et al., 2010). At 986 ± 10 Ma (U-Pb SHRIMP on zircon; Tack et al. 2 3 2010) "tin granites" were emplaced. The magmatism has been related to the ~ 1.0 Ga Southern Irumides collisional orogeny, corresponding to the Rodinia amalgamation (Fernandez-Alonso 4 et al., 2012). The orogeny is responsible for the general fold-and-thrust-belt geometry of the 5 KAB (Fernandez-Alonso et al., 2012). The tin mineralisation was emplaced in a relaxational 6 setting following the deformation (Dewaele et al., 2011; Melcher et al., 2013). In the URAPC 7 region, pegmatites including feldspar, quartz, muscovite, biotite and more exceptionally black 8 tourmaline, cassiterite and garnet have been dated between 977 \pm 8 Ma (Rb-Sr on muscovite 9 and feldspar; Cahen and Ledent, 1979) and 969 \pm 8 Ma (Rb-Sr on muscovite and whole-rock; 10 Brinckmann and Lehmann, 1983). 11

Later events in the KAB have been related to Panafrican tectonothermal processes in 12 the Western Rift area as (1) brittle reworking of pegmatites along fractures at 628 ± 110 Ma 13 and 622 ± 56 Ma (Romer and Lehmann, 1995), (2) muscovite Ar-Ar resetting ages in Rwanda 14 (Sn-Ta pegmatite at 593Ma; Dewaele et al., 2011), and (3) N-S trending shear-controlled 15 gold mineralization emplacement at 535 in NW Burundi (Brinckmann et al., 2001). Such 16 Panafrican overprint has not been recognized in the URAPC area yet. At ~750 Ma, in 17 18 probable association with the Rodinia Supercontinent breakup (Kampunzu et al., 1997), some 23 alkaline complexes were emplaced along lithosphere-scale shear zones (Tack et al., 1996). 19 The URAPC, roughly NW-SE oriented, is made up of both a silica-oversaturated and silica-20 undersaturated unit as well as a carbonatite (the Matongo carbonatite; Fig. 2). The "outer 21 unit" comprises an intimate association of plutonic rocks from olivine-bearing gabbros and 22 diorites, to granites and quartz-bearing syenites. The "inner unit" comprises feldspathoidal 23 syenites and monzonites. Numerous dykes of feldspathoidal syenite intrude the "outer unit", 24

especially in its western part. The whole complex has undergone extensive supergene
lateritization.Kaolinitization, notably in the region close to Matongo where kaolinite has been
exploited (Inamvumvu), is developed on top of the subsurface carbonatite in a contact aureole
as a result of hydrothermal alteration of the host quartz-bearing syenites.

5 The Matongo carbonatite is only known by drilling in the Matongo area (Fig. 2). It 6 occurs at a depth of about 40-80 m and forms a NNE elongated intrusion of 2750m long and 7 250m wide. Interstingly, another hidden carbonatitic body is inferred in Burundi (Van 8 Wambeke, 1977), in the Gakara-Karonge area (60 km far from Matongo), which is known for 9 its REE hydrothermal deposits (Lehmann et al., 1994

Fine- and coarse-grained calciocarbonatite and a ferrocarbonatite have been identified 10 in the Matongo carbonatite (Demaiffe, 2008; Midende, 1984). "Late" calcite veinlets that 11 12 crosscut the coarse-grained calciocarbonatite have been interpreted to represent a hydrothermal event (Midende, 1984). Fenitization is also well developed in the external part 13 of the carbonatite (Midende, 1984). The Sr and Nd isotope compositions indicate a cogenetic 14 relation between the carbonatite and felspathoidal syenites (Tack et al., 1996). Initial ɛNd 15 values (+0.7 to +5.2) and low initial ⁸⁶Sr/⁸⁷Sr ratios of 0.7025-0.7030 support a mantle-16 derived origin for the URAPC rocks without evidence for significant assimilation of crustal 17 material (Tack et al., 1984). The inferred source appears less depleted in incompatible 18 19 elements than the typical Depleted Mantle (DM) (Demaiffe, 2008).

Available ages on the URAPC show some inconsistency. For the "outer unit" U-Pb on zircon fraction and zircon Pb-evaporation ages at 748 \pm 2 Ma and 741 \pm 2 Ma respectively (Tack et al., 1995) have been obtained, while a Rb-Sr whole rock isochron yielded an age of 707 \pm 17 Ma (Tack et al., 1984). U-Pb on bulk zircon on the "inner unit" of the URAPC gave an age of 739 \pm 7 Ma, while the Rb-Sr isochron age of this unit yielded an age of 699 \pm 13 Ma

(Tack et al., 1984). Also, a fission track age on sphene of 762 ± 33 Ma has been obtained on 1 the "inner unit" (Van den Haute, 1986) and is questionnable as being older than U-Pb zircon 2 age. On the Matongo carbonatite, a Pb-Pb isochron age of 690 ± 32 Ma (Demaiffe, 2008) is 3 consistent with the Rb-Sr age (699Ma) but significantly younger than the U-Pb zircon age 4 (739Ma) of the "inner unit". Concerning the zircon megacrysts, lead-evaporation ages o 5 yielded an age of 738 ± 4 Ma (Tack et al., 1995). For the Lueshe Complex, the 6 7 geochronological data are Rb-Sr isochron ages on whole rocks, varying between 548 - 568 Ma (Kramm et al., 1997), 619 ± 42 Ma (Van Overbeke, 1996) and 822 ± 120 Ma (Kampunzu 8 9 et al., 1998), and a K-Ar biotite age (516 \pm 26 Ma; Bellon and Pouclet, 1980). These ages overlap the URAPC zircon existing ages. 10

11

12 **3.** Zircon megacrysts from Matongo (Burundi) and Lueshe (DRC)

Near Matongo, numerous idiomorphic zircon megacrysts, up to 6 cm in size, in 13 association with ilmenite megacrysts, are disseminated in a dismembered lateritic crust and in 14 the kaolin of the Inamvumvu hill (Fig. 2). Trenching during carbonatite exploration works in 15 the 80's (British Sulphur Company, unpublished internal report), exposed zircon megacrysts 16 in "pegmatitic-like" veinlets intruding supergene weathered rockwith preserved original 17 coarse-grained magmatic texture (quartz-bearing syenite or granite) (Nkurikiye, 1989; Tack, 18 unpublisheddata). No more outcrop still exists. At Kiziba (Fig. 2), a comparable, although 19 smaller (up to 1 cm in size) zircon megacrysts occur in coarse-grained veins within the 20 feldspathoidal syenite (Fransolet and Tack, 1992), in association with alkali feldspar, 21 nepheline, sodalite, fluorite, biotite, aegirine, calcite and ilmenite. 22

7

1 The zircon megacrysts of the Inamvumvu hill, from where our samples come from, are 2 characterized by Th- and U- rich homogeneous cores and partially metamict, oscillatory 3 zoned outer rims (Burke, 1998). They contain ubiquitous primary carbonate inclusions 4 (calcite, magnesian calcite and nahcolite; Burke, 1998) and are thought to have crystallized 5 from the circulation of alkaline fluids associated with the carbonatite-feldspathoidal syenite 6 emplacement (Fransolet and Tack, 1992), i.e. relatively late in the frame of the URAPC 7 emplacement.

Similar zircon megacrysts around 2 cm in size are also known from the Lueshe 8 complex (Fig. 1B), in particular in the silico-sövite parent rock predating the Lueshe 9 carbonatite (Maravic, 1983; Maravic and Morteani, 1980; Philippo, 2005), i.e. relatively early 10 in the frame of the Lueshe emplacement. Isolated zircon megacrysts are also found in the 11 lateritic crust, in association with pyrochlore, ilmenorutile and primary or secondary 12 phosphates. Idiomorphic and well-preserved megacrysts occur in the small Lueshe river 13 (sample RGM 9673, 5-6 mm wide, is one of these). These zircon grains likely derive from the 14 the silico-sövite upstream, with almost no transport. 15

16

17 **4.** Sampling and analytical techniques

Twenty-one samples of the Matongo carbonatite have been studied. The samples
originate from 10 drill cores (from 56 to 291 m depth), from a drilling program performed in
1976-1978 by the United Nations Development Program (location of the boreholes on Figure
2). Other samples studied are surface samples from the rock collection of the Royal Museum
for Central Africa (RMCA), Tervuren (Belgium).

Petrographic description was carried out by polarized light microscopy on thin 1 2 sections. Mineral compositions were measured by electron microprobe analysis (EPMA) at the Université de Louvain (UCL, Belgium). Chemical compositions of rock samples were 3 4 obtained on finely grained powders (about 100g) by X-ray fluorescence (XRF) at the University of Brussels (ULB, Belgium) for major elements analyses and at Liège (ULg, 5 Belgium) for major and trace elements (Rb, Sr, Ba, V and Nb). Other trace element 6 compositions have been determined at the Katholieke Universiteit Leuven (KULeuven, 7 Belgium) by neutron activation analyses (Midende, 1984). Additional chemical analyses were 8 performed by the Actlabs laboratory (Ontario, Canada) using ICP-AES and ICP-MS methods 9 10 for major and trace elements respectively.

The dated zircon megacrysts were mounted in epoxy resin, cut and polished (BGR, 11 Hanover, Germany). Characterization of internal textures was accomplished using back-12 scattered electrons (BSE) and cathodoluminescence (CL) images generated on a CAMECA 13 SX100 electron microprobe at the BGR. Furthermore, zircons were quantitatively analyzed 14 using wavelength-dispersive spectrometry on the same instrument using 15 kV acceleration 15 voltage and 40 nA sample current. The following elements were measured (line, 16 spectrometer, standard, measurement time on peak): SiKa (TAP, zircon, 10); ZrLa (PET, 17 zircon, 10); HfMa (TAP, hafnon, 90); AlKa (TAP, metal, 20); FeKa (LLIF, metal, 60); 18 MnKα (LLIF, metal, 60); PKα(LPET, apatite, 20); CaKα (LPET, apatite, 10); TiKα (LPET, 19 metal, 20); PbMa (LPET, galena, 90); ThMa (PET, metal, 110); UMa(LPET, metal, 100). 20

Uranium, thorium and lead isotope analyzes were carried out by LA-ICP-MS at the Goethe
University of Frankfurt (Germany), using a slightly modified method, as previously described
in Gerdes and Zeh (2006, 2009, 2012). A ThermoScientific Element 2 sector-field ICP-MS
was coupled to a Resolution M-50 (Resonetics) 193 nm ArF Excimer laser (CompexPro 102,

1 Coherent) equipped with a two-volume ablation cell (Laurin Technic, Australia). The laser 2 was fired with 5.5 Hz at a fluence of about 3-4 J cm⁻². Raw data were corrected offline for 3 background signal, common Pb, laser induced elemental fractionation, instrumental mass 4 discrimination and time-dependent elemental fractionation of Pb/U using an in-house MS 5 Excel© spreadsheet program (Gerdes and Zeh, 2006, 2009). Laser-induced elemental 6 fractionation and instrumental mass discrimination were corrected by normalization to the 7 reference zircon GJ-1 (0.0984 \pm 0.0003; ID-TIMS GUF value).

8

9 5. Petrography and mineralogy of the Matongo carbonatite

10 Midende (1984) provided detailed descriptions of the different rocks of the Matongo 11 carbonatite, which are complemented by our observations and new data on mineral 12 composition (see supplementary data).

13 5.1. Magmatic facies

The carbonatite comprises three main magmatic facies (Demaiffe, 2008; Midende, 1984).
The sövite I facies is limited and localized in highly fractured zones of the carbonatite.
Calcite grains are euhedral, up to 2 cm in size (Fig. 3A), and close to pure calcite in
composition (CaO close to 55 wt%), with minor contribution of Mn and Mg (Table 1). At the
contact with the host rocks, sövite I can be silicified, Fe-stained and/or crosscut by fissures
filled with iron oxides and quartz.

The sövite II represents the dominant facies of the carbonatite. It mainly consists of saccharoidal calcite (polygonal mosaic), with grain sizes ranging from 1 to 4 mm in width (Fig. 3B). The calcite contains Fe (FeO between 0.5 and 3 wt. %), Mg (MgO between 0.1 and 1.6%) and Sr (SrO between 0.8 and 1.5). Sövite II commonly contains discrete zones with

vanadiferous aegirine (1.1-1.9 wt.% V₂O₃), occurring as euhedral elongated crystals up to 2 1 2 cm in length (Fig. 3C), and apatite occurring as small grains or small prismatic crystals up to 5 mm in size. Aegirine and apatite may represent local cumulates, in which pyrochlore 3 $((Na,Ca)_2Nb_2O_6(OH,F))$ and K-feldspar are also present. The vanadiferous aegirine is partly 4 transformed into amphibole (Mg-arfvedsonite; see supplementary data), which developed 5 along aegirine cleavages and/or crystal boundaries. Richterite, another alkali amphibole, with 6 8.1-12.4 wt.% Fe₂O₃, 3.2-5.8 wt.% FeO, 14.2-16.6 wt.% MgO, 4.2-6 wt.% CaO, 3.6-5.1 wt.% 7 Na₂O and 0.6-2.0 wt.% K₂O, occurs as cm-long needles (Fig. 3D) and may constitute 30% of 8 the sövite rock volume. It is associated with calcite, apatite, clinopyroxene and phlogopite. 9

10 The ferrocarbonatite facies forms decimeter-wide veins crosscutting the sövites. It 11 consists of fine-grained (< 1 mm in width) dolomite and ankerite (13.7-15.4 wt.% FeO, 11.3-12 13.7 wt.% MgO, 0.3-0.7 wt.% MnO; Fig. 3E), with abundant euhedral V-rich magnetite 13 (V₂O₃,up to 2 wt.%) and ilmenite crystals. Iron-stained silica veins locally crosscut this facies 14 (Fig. 3E).

15 5.2. Metasomatic and hydrothermal facies

Two types of fenite alteration, which are referred to as silicocarbonatites (Demaiffe, 16 2008), have been recognized at the contact between the carbonatites and the Karagwe-17 Ankolan metasediments: biotite-bearing fenite and K-feldspar-bearing fenite (Fig. 3F). The 18 latter occurs as replacement of the mica-bearing facies. In the biotite-bearing fenite, biotite 19 shows well-developed crystals up to 2 cm in size (see supplementary data, Fig. 3G). Biotite is 20 21 partly transformed into phlogopite (see supplementary data), both phyllosilicates being in turn replaced by feldspars (mainly K-feldspar, with accessory albite grains). Other associated 22 minerals are titanite, richterite, calcite and apatite. In K-feldspar-bearing fenite, feldspar 23 constitutes up to 70% of the rock volume, and occurs associated with biotite, zircon, rutile and 24

pyrochlore. Feldspar crystals are present as grains with amoeboidal boundaries or form cm-1 2 long lath-shaped aggregates.

"Late" hydrothermal calcite has been identified in association which sovite I. It occurs 3 as veinlets containing very fine-grained calcite (several tens of um in size), slightly enriched 4 in Fe, Mn and Mg (up to 1.2 wt. %FeO, 0.7 wt. % MgO and 0. 6 wt. % MnO) and coated by 5 NSC iron oxides. 6

7

6. Geochemistry 8

9

6.1. Major and trace element composition (Tables 1, 2 and 3) 10

As expected from the mineralogy, the Matongo carbonatites plot in the sövite and 11 ferrocarbonatite fields of the ternary CaO-MgO-Fe₂O₃(t)+MnO diagram of Le Maitre (2002) 12 (Fig. 4A). The sövite I samples, which consist essentially of pure calcite, plot close to the 13 CaO apex of the triangle. Their MnO, MgO and $Fe_2O_{3(t)}$ concentration is very low: ~0.7 wt. 14 %, ~0.5 wt. % and < 1 wt. % respectively. Their SiO₂ and Al₂O₃ concentration is also very 15 low, < 0.1 wt. %. The sövite II samples are characterized by a wide range of CaO 16 concentrations (25.6-56.9 wt.%) that are inversely correlated with the SiO₂ (0.9-28.7 wt. %), 17 Fe₂O₃ (1.1-16.6 wt. %) and Na₂O (0.1-5.4 wt. %) concentrations. The samples define a rough 18 trend extending from the typical sövite to the ferrocarbonatite field. In the Na₂O+K₂O-19 MgO+Fe₂O₃(t)-CaO ternary diagram (Fig. 4B; Le Bas, 1984), the Matongo sövites define an 20 elongated trend that can be related to clinopyroxene and/or amphibole fractional 21 crystallization during carbonatite magma uprise and emplacement. Ferrocarbonatites also 22 display a wide range of CaO concentrations (29.7-50.5 wt. %) that are inversely correlated 23

with the Fe₂O₃ and MgO contents (1.2-9.5 wt. % and 0.7-3.2 wt. %, respectively). Fe and Mg
enrichments are likely linked to ankerite and dolomite formation. The "late" hydrothermal
carbonatite is characterized by geochemical features close to sövites (50.2 wt. % CaO, 2.5wt.
MgO, 1.2 wt. % Fe₂O₃ and0.6 wt. % MnO). The fenites occur quite scattered in the
Na₂O+K₂O-MgO+Fe₂O₃(t)-CaO ternary diagram (Fig. 4B; Le Bas, 1981, 1984). They show a
trend that likely represents a consequence of alkali enrichment of the host country rocks
(feldspathoidal syenite and metasediments) during the fenitization processes.

The chondrite-normalized rare-earth element (REE) abundance patterns of the various 8 carbonatite facies are heterogeneous (Fig. 5). The sövite I samples have a rather low total 9 REE abundance (SREE: 4-8 ppm) and display flat REE patterns with rather low La_N/Yb_N 10 ratios (3.1 to 4). The sövite II samples and the clinopyroxene-apatite cumulates (less 11 12 commonly amphibole cumulates) are strongly enriched in REE (Σ REE from 442 up to 1550 ppm), with a significant LREE enrichment (La_N/Yb_N ranging from 49 to 175) but no 13 significant Eu anomaly (Eu/Eu* >0.8). The ferrocarbonatites are similar to the sövites II 14 $(225 \le \Sigma REE \le 1048 \text{ ppm}, 17 \le La_N/Yb_N \le 64 \text{ and } 0.8 \le Eu/Eu^* \le 0.9)$. The fenites are also largely 15 similar with Σ REE concentrations varying between 134 and 681 ppm, with LREE-enrichment 16 $(25 < La_N/Yb_N < 46)$ and no significant Eu anomaly. The "late" hydrothermal carbonatite is also 17 enriched in REE (Σ REE= 397 ppm), but displays a peculiar pattern characterized by LREE 18 depletion ($La_N/Sm_N = 0.4$) and well-marked MREE-hump, with a small Eu negative anomaly 19 $(Eu/Eu^* = 0.8)$ and a tetrad effect $((La_N^*Sm_N)/(Ce_N^*Nd_N) = 2.3)$. 20

Primitive mantle-normalized spidergram patterns (Fig. 6) illustrate that most of the Matongo carbonatite and fenite rocks share common characteristics: (1) an overall enrichment compared to the primitive mantle, except for the sövites I; (2) a general enrichment in largeion lithophile elements (LILE) relatively to high-field-strengh elements (HFSE), in particular

1 for the fenites; (3) negative anomalies in Ti, Zr, Hf (and K for the sövites and 2 ferrocarbonatites); and (4) variable enrichments in Th, U, Nb and Ta that can be related to the 3 presence of Nb(-Ta)-rich oxides (pyrochlore, magnetite) and U-Th-bearing minerals 4 (pyrochlore). In general, the patterns observed are quite comparable to the "world average 5 carbonatite" (Chakhmouradian, 2006), except for Th, U, Nb and Ta. It should be mentioned 6 that sövite I samples display atypical patterns, with low global enrichment close to the 7 primitive-mantle level, together with positive Sr and Th anomalies and a negative Ti anomaly.

8

9 6.2. U-Th-Pb data of the Matongo and Lueshe zircon megacrysts

Zircon megacrysts selected for U-Th-Pb geochronology were 1-6 mm in size, euhedral 10 to subeuhedral (with the prevailing presence of the (101) pyramids; Fransolet and Tack, 1992) 11 and frequently show oscillatory zoning (Fig. 7A to D). The zoning can be related to variations 12 in Th (up to 0.34 and 2.2 wt% ThO₂ for Matongo and Lueshe zircon, respectively), U (up to 13 0.12 and 0.09 wt% UO₂, respectively) and Hf (0.36-0.90 and 0.39-1.45 wt%, respectively) 14 contents. The inner zones of the zircons often show darker luminescence colours, whereas in 15 many grains the primary zoning is replaced by cloudy to irregular patchy CL patterns related 16 to alteration. The primary zoning has commonly been obliterated, from inside to outside, 17 probably by a fluid phase entering the grains via small cracks. Sometimes the entire grain is 18 19 affected. The altered CL dark (low-luminescence) areas are characterized by lower total oxides (ca. 95 wt%), higher U and Th contents, and detectable concentrations of Ti, Al, P, Ca, 20 Mn and Fe (up to 1 wt% each), whereas the alteration domains with bright luminescence 21 patterns differ by having low Th and U concentrations, often below detection limit of the 22 EPMA. 23

2 RGM 9672) and Lueshe (sample RGM 9673) are presented in Figure 7E and F and Table 5. Laser spots were set predominantly on the primary, oscillatory-zoned domains. Altered areas 3 were also analyzed: spots A36-A38 for Matongo and A19-A27 for Lueshe zircon. Within 4 analytical error, the results were, however, in both cases - indistinguishable from those of the 5 primary oscillatory domains, exceptfor the slightly discordant analysis A37. 6

Seventeen U-Pb measurements on three zircon megacrysts from Matongo are 7 equivalent and concordant. They yield a concordia age of 705.5 ± 4.5 Ma (Fig. 7E), 8 significantly younger than the Pb-evaporation age of 738 ± 4 Ma (Tack et al., 1995). The 705 9 Ma age is consistent with the weighted average ${}^{206}\text{Pb}/{}^{238}\text{U}$ and ${}^{208}\text{Pb}/{}^{232}\text{Th}$ ages of 705.2 ± 4.6 10 Ma and of 697.3 ± 5.3 Ma, respectively. 11

In the case of Lueshe, twenty-two U-Pb analyses on three megacrysts also give 12 equivalent and concordant values with a Concordia age of 798.5 ± 4.9 Ma (Fig. 7F). This is 13 consistent with the corresponding weighted average ²⁰⁶Pb/²³⁸U and ²⁰⁸Pb/²³²Th ages of 801.0 14 \pm 3.9 Ma and of 802.5 \pm 4.0 Ma, respectively. 15

16

1

7. Discussion 17

7.1. Magmatic processes and sources 18

19 Petrographic observations and geochemical data illustrate that different magmatic processes took place during the emplacement of the Matongo carbonatite: (i) fractionation of 20 clinopyroxene + apatite during carbonatite emplacement; (ii) ankerite formation during late-21 22 stage carbonatite intrusion; and (iii) alkali loss inducing metasomatic fenitisation and the formation of silicocarbonatites. These processes are recorded in the sövites II, the 23

ferrocarbonatite and the fenite (silicocarbonatite), which share similar geochemical 1 2 characteristics. These rocks show LREE and LILE enrichments and similar Sr and Nd isotopic compositions. The initial 87 Sr/ 86 Sr varies between 0.7028 and 0.7040 and initial ϵ Nd 3 values between +0.2 and +5.2 (Demaiffe, 2008; Table 6). These values plot in the mantle 4 array (Fig. 8) and point to a mantle source that is less depleted than the DM (Demaiffe, 2008). 5 The Matongo isotopic compositions are comparable to those reported for Lueshe sövites, 6 recalculated to 800 Ma (Kramm et al., 1997). This suggests that a similar source has been 7 sampled for the two carbonatite magmas, despite a difference in emplacement age of ca. 8 100Ma. A long-lived thermal anomaly could thus have persisted in the mantle beneath Central 9 Africa. The Neoproterozoic Matongo and Lueshe carbonatites differ from the young (< 200 10 Ma) East African carbonatites (Bell and Tilton, 2001), whose isotopic field is displaced 11 towards lower ENd values and which show extended range of Sr isotopic compositions. Their 12 field extends between the HIMU and EMI fields and reflects the heterogeneity of the young 13 East African carbonatite source. Several interpretations have been proposed to explain this 14 heterogeneity: (i) The lithospheric mantle itself is heterogeneous and results from enrichment 15 and/or depletion processes at different times and degrees (Kalt et al., 1997); (ii) Various fluid 16 or melt incursions influenced the lithosphere, at least since the Proterozoic (Bell and Tilton, 17 2001): (iii) Upwelling of a mantle cell or plume of HIMU affinities resulted in a recently 18 metasomatized EMI-type lithosphere (Bell and Simonetti, 1996); (iv) The EMI-HIMU mixing 19 20 trend could be due to the signature of a heterogeneous mantle plume carrying these 21 components from the deep mantle (Bell and Tilton, 2001).

In terms of isotopic compositions, the Proterozoic carbonatites of Matongo, Lueshe and Deerdepoort (1340 Ma, South Africa; Verwoerd, 1967) constitute a rather homogeneous group, significantly different from the recent East African carbonatites, in particular for their

higher εNd values. The mantle source sampled during the Proterozoic by carbonatitic magmas
is likely a deep-seated homogeneous reservoir, possibly contaminated by lithospheric material
rather than a heterogeneous lithosphere as proposed for the African carbonatites by Bell and
Tilton (2001), but rather. However, to confirm this statement complementary analyses of
different Proterozoic African carbonatites are needed.

308

6

7 7.2. Late hydrothermal processes

The geochemical and isotopic characteristics of the sövite II and the ferrocarbonatites, 8 which represent the largest part of the Matongo carbonatite, are clearly distinct from the 9 sövite I and the "late" hydrothermal carbonatite. The sövite I was sampled in a deformed 10 zone with macroscopic fractures. The "late" carbonatite occurs as thin veins of hydrothermal 11 12 origin crosscutting the sövite I (Midende, 1984). Both rock types show petro-geochemical evidence of interaction with hydrothermal fluids. They display peculiar REE patterns with 13 LREE fractionation. In addition, the late calcite (sample Gi17) shows intra-REE fractionation 14 with a significant tetrad effect resulting from the interaction with fluids (Bau, 1994). Also, the 15 very low REE content of sövite samples, illustrated by flat patterns (1 to 5 times the 16 chondrites; Fig. 5), is hardly explicable by magmatic processes. Similarly, the Sr and Nd 17 isotope compositions of the "late" calcite $({}^{87}\text{Sr}/{}^{86}\text{Sr}(i) = 0.71425 \text{ and } \epsilon\text{Nd}(i) = -44$; Fig. 8) 18 suggest the hydrothermal introduction of radiogenic Sr and non-radiogenic Nd from the 19 surrounding country rocks. Moreover, the non-radiogenic signature of the Nd isotope 20 composition indicates disturbance of the Sm-Nd system, possibly during interaction with 21 22 fluids. The particularly low enrichment, if any, of the sövite I in REE and other trace elements indicates that this rock has been altered after the carbonatite emplacement. 23

Despite the close spatial association of the sövite I and late hydrothermal calcite, the 1 2 precise relationships between the REE signatures of these facies still remain incomplete. The timing of hydrothermal fluid circulation responsible for the observed alteration is also not 3 well constrained. However, hot fluids could have circulated during a quite long time span 4 after magmatic intrusion, as illustrated by long-lived (10-30 Ma) hydrothermal systems 5 associated with large granites (e.g. Kontak and Clark, 2002; Zhao et al., 2004).

7

6

7.3. Geodynamic setting of the carbonatite emplacement 8

7.3.1. Significance of the zircon megacryst ages 9

Zircon megacrysts are well-known in carbonatitic systems (e.g. Caruba and Iacconi, 10 1983; Hoskin and Schaltegger, 2003). In the URAPC, the occurrence of the zircon megacrysts 11 close to the Matongo carbonatite and their ubiquitous primary calcite, magnesian calcite, and 12 nahcolite inclusions (Burke, 1998) obviously argue for the carbonatitic affinity of these 13 14 minerals, as already proposed by Fransolet and Tack (1992). The latter authors related the crystallization of these zircons to the circulation of alkaline pegmatitic fluids in the URAPC 15 system. Regardless of the exact origin of these zircon grains (magmatic vs. hydrothermal), 16 17 their crystallization is associated with the carbonatite and, thus, the U-Pb age that we have obtained (705.5 \pm 4.5 Ma) provides a robust age of the carbonatite emplacement and rapid 18 cooling. Regarding the discrepancy of 30 to 40 Ma between this age and older ages obtained 19 on the Massif with other techniques, two explanations are suggested: (1) although unlikely 20 because of the size of the URAPC, the possibility of a long time span between the main 21 22 magmatic building stage of the intrusion and the latest stages of hydrothermal activity around the central Matongo carbonatite remains and (2) previous ages in the range 735 - 750 were 23

not as accurate as the new La-ICP-MS age obtained in this study. New geochronological work
 on the magmatic facies would help to constrain this hypothesis.

For Lueshe, regardless of the exact origin of the zircon megacrysts (magmatic vs. hydrothermal), the age obtained here is significantly different from the La-ICP-MS age of the Matongo megacrysts and also from the ages around 735-750 Ma for the URAPC. Therefore, the crystallization age of the Lueshe zircon dates the emplacement of the Lueshe intrusion at ca. 800 Ma, significantly older than the age of the URAPC-Matongo emplacement.

8

9 7.3.2. Structural reactivation of the present-day region of the Western Rift and relation to
10 Rodinia breakup

As suggested by several authors (Burke et al., 2003; Hanson, 2003; Kampunzu et al., 12 1997, 1998; Tack et al., 1984, 1996), most of the Proterozoic ages obtained for the 23 13 envisaged alkaline complexes and/or carbonatites along the present-day Western Rift seem to 14 reflect uprise of mantle-derived magmas along lithospheric weakness zones in relation with 15 the breakup of Rodinia (Fig. 9). This breakup is recorded at ca. 705Ma at Matongo by the La-16 ICP-MS age of the zircon megacrysts and at ca. 798 Ma at Lueshe by the same method.

In addition to alkaline magmatism, Neoproterozoic reactivation of older structures is also illustrated by the formation of intracratonic basins (Fernandez-Alonso et al., 2012; Tack et al., 1992): (1) the Malagarazi basin located across the Burundi-Tanzania border(Fig. 1B). CFB-type rocks ("Kabuye-Gagwe amygdaloidal basalts"), intercalated in the sedimentary succession of the Neoproterozoic Malagarazi – Nyamuri (formerly Bukoba) Supergroup, yielded a crystallization age of 795 ± 7 Ma (Deblond et al., 2001);and (2) the Itombwe syncline (DRC, Fig. 1B), This narrow N-S elongated structure contains a sedimentary

succession (Neoproterozoic Itombwe Supergroup), with a maximum deposition age of ~ 710
 Ma (Fernandez-Alonso et al., 2012; Villeneuve, 1987; Walemba and Master, 2005).

The considered $\sim 700 - 800$ Ma time-period tracing both endogenic and exogenic 3 extensional processes thus records diachronous reactivation and breakup of Rodinia 4 supercontinent in response to differential intraplate stress, in agreement with geodynamic 5 processes invoked by Li et al. (2008), Eyles and Januszczak (2004) and Eyles (2008). In the 6 nearby Congo Craton and at its margin, the diacronicity of the breakup and the succession of 7 extensional regimes have been evidenced in the time frame ~1 Ga - ~500 Ma by the formation 8 of sedimentary basins (e.g. Delpomdor et al., 2013) and alkaline magmatism (e.g. Pedrosa-9 Soares and Flecha de Alkmim, 2011). 10

However, the configuration, evolution and even existence of the Rodinia 11 supercontinent remain debated. Even though most of the autors consider that the 12 supercontinent fragmentation and dipersal began about 800-750 Ma (Hoffman, 1999; 13 Pisarevsky et al., 2003) or even 1 Ga ago (Eyles, 2008), others argued that (1) Rodinia 14 breakup occurred between 750 and 600 Ma (Eyles and Januszczak, 2004; Li et al., 2008) or 15 even not before 725 Ma (Powell et al., 1993) and (2) the formation of Gondwana by the 16 reassemblage of the dispersed terranes ended at about 550 Ma (Meert and Van der Voo, 17 1997). It has also been proposed that the early Pan-African tectonic phase began around 725 18 Ma (Lenoir et al., 1994). In this context, the emplacement of late mylonitic granites along 19 shear zones at 724 ± 6 Ma (U-Pb age on zircon fraction) in the Ubendian belt of SW Tanzania 20 21 could be the result of a continental collision in the frame of the early Pan-African orogen (Theunissen et al., 1992). On a larger scale, Fritz et al. (2013) have proposed that the 22 23 consolidation of the East African orogen was achieved during distinct phases between ~850 and 550 Ma, with the accretion of microcontinents during the ~850-620 Ma time range. The 24

abundance of granitoid magmatism occurring between ~850 and ~650 Ma in the East Africa 1 2 domain may be related to this continental aggregation leading to the formation of the Gondwana supercontinent (Kröner and Cordani, 2003). If an extensional tectonic setting is 3 considered for that period, what remains debated, the URAPC would represent one of the last 4 episodes of the magmatic activity associated with this event, before the "renewal" of 5 alkaline/carbonatitic activity in the area several hundred millions years later during the 6 Cretaceous (e.g. Chilwa in Malawi; Simonetti and Bell, 1994), in relation with the 7 develoment of the East African rift system. 8

9

10 7.3.3. Early continental rifting in the Rodinia breakup history: the involvement of a plume?

Many alkaline complexes of Central Africa were emplaced between ~750 and 650 Ma. 11 However, some complexes record significantly older ages, in the range ~830-750 Ma, among 12 which the now dated Lueshe complex, of which the zircon megacrysts have been dated at 13 798.5 ± 4.9 Ma. These old emplacement could also be related to the Rodinia breakup, 14 especially to an earlier step of intraplate continental rifting. This could possibly be associated 15 with the presence of a superplume below Rodinia (Li et al., 2008) that eventually led to the 16 breakup of the supercontinent. In the western branch of the East African Rift, the presence of 17 flood basalts spatially and temporally associated with the alkaline complexes favours the 18 involvement of a superplume (Bell, 2001; Ernst and Buchan, 2003). Tholeiitic fissural flood 19 basalts, like the Kabuye-Gagwe amygdoidal lavas, emplaced in the Malagaraszi basin (De 20 21 Paepe et al., 1991) at 822 ± 30 Ma (K-Ar ages; Briden et al., 1971 in Deblond et al., 2001; Fig. 9) and between 815 \pm 14 and 709 \pm 2 Ma (Ar-Ar ages; Deblond et al., 2001; Fig. 9). They 22 are also coeval with the shallow-depth Nyaganza dolerites that are intrusive in the 23 Malgarasian Subgroup (815 ± 14 Ma; K-Ar age; Cahen et al., 1984) and with the doleritic 24

gabbros of Kavumwe, dated at 803 ± 30 Ma, 806 ± 30 Ma (K-Ar method; Briden et al., 1971)
and 795 ± 7 Ma (Deblond et al., 2001). However, additional arguments should be found for a
proper demonstration of a mantle plume involvement in the URAPC genesis; this hypothesis
would be especially challenging if a convergent plate tectonic setting (Pan-African orogeny)
is favoured in the future rather than an extensional setting (Rodinia Breakup).

BCR

6

7 7.3.4. Panafrican overprint

In the present-day Western Rift region, discrete Panafrican tectonic overprint with a 8 climax at ~550 Ma is considered a far-field effect of the distant East African Orogen 9 facilitated by the palaeogeography of the Archean Tanzania Craton, which plays as an 10 indentor squeezing the Proterozoic rocks (De Waele et al., 2008; Fernandez-Alonso et al., 11 2012; Dewaele et al., 2011). Due to the easy diffusion of radiogenic ⁸⁷Sr and ⁴⁰Ar and the 12 high mobility of K, Rb and Sr, this Panafrican overprint resulted in disturbance and partial 13 resetting of the K-Ar, Ar-Ar and Rb-Sr isotopic systems with a huge scatter of apparent ages 14 as documented in Fig. 9, explaining some if not most of the younger 580-450 Ma ages for 15 several alkaline complexes (Fig. 9). It is particularly obvious for the Kirumba complex 16 (RDC), where the Rb-Sr and K-Ar ages are situated between 800 and 240 Ma (Bellon and 17 Pouclet, 1980; Cahen et al., 1979; Cahen and Snelling, 1966; Kampunzu et al., 1998). This 18 could also be the case for Lueshe, where most of the previously obtained ages (see Geological 19 context) are significantly younger than the new LA-ICP-MS age on zircon megracrysts (798.5 20 21 \pm 4.9Ma). This may not be the case for the URAPC for which the U-Pb age on zircon megacryst at 705 Ma is indinstiguishable from the Rb-Sr whole rocks age (699 Ma). 22

23

1 8. Conclusion

Petrographic observation and geochemical data (major and trace element analyses)
show that different magmatic processes occurred at the scale of the Matongo carbonatite:
fractionation of clinopyroxene (and apatite) during carbonatite emplacement, ankeritisation,
and alkali loss inducing fenitisation. "Late" hydrothermal processes developed after
carbonatite emplacement and affected the primary facies of the carbonatite.

7 In the hypothesis of an extensional setting, the ~800and ~705 Ma ages obtained on carbonatite-related zircon crystals from Lueshe (DRC) and Matongo (Burundi) could confirm 8 the relationship between carbonatite emplacement and Rodinia breakup, either during an early 9 stage of the fragmentation (at ~800 Ma, for the Lueshe complex) or at a later stage (at ~705 10 Ma for the Matongo carbonatite). The ages of the alkaline complexes would also illustrate the 11 reactivation of Palaeoproterozoic lithospheric weakness zones during extension. Other 12 expressions of the continental rifting process at that time could be found in the formation of 13 Neoproterozoic intracratonic basins documented in the KAB (Fernandez-Alonso et al., 2012; 14 Tack et al., 1992). Consequently, the major lithospheric weaknesses remain the "key factor" 15 controlling the emplacement/location of the carbonatites and alkaline complexes in the East 16 African Rift system. 17

The Panafrican event (660-550 Ma) induced deformation in the KAB, which could be responsible for the disturbance and partial resetting of some isotopic systems. In the area of the western branch of the East African rift, the URAPC could correspond to one of the last episodes of the magmatic activity associated with Rodinia breakup, before the "renewal" of alkaline/carbonatitic activity during the Cretaceous in Central Africa.

23

24 Acknowledgments

1 This study is a contribution to the GECO project, funded by the Belgian Federal 2 Public Service for Foreign Affairs. Andy Moore and Stefano Salvi are warmly thanked for 3 their helpful comments that contributed to a nice amelioration of this paper. The authors are 4 also grateful to Jean-Paul Liégeois for his constructive comments and editorial handling of the 5 paper.

~
 h
U

7 **References**

Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:
Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology 10 123, 323-333.

C

- Bell, K., Simonetti, A., 1996. Carbonatite magmatism and plume activity: Implications from the Nd, Pb and Sr
 isotope systematics of Oldoinyo Lengai. Journal of Petrology 37, 1321-1339.
- Bell K. 2001. Carbonatites: relationships tomantle-plume activity, in: Ernst, R.E., Buchan, K.L. (Eds.), Mantle
 Plumes: Their Identification Through Time, GSA Am. Spec. Pap. 352, pp. 267–90.
- Bell, K., Tilton, G.R., 2001. Nd, Pb and Sr isotopic compositions of east African carbonatites: Evidence for
 mantle mixing and plume inhomogeneity. Journal of Petrology 42, 1927-1945.
- Bellon, H., Pouclet, A., 1980. Datations K-Ar de quelques laves du rift-ouest de l'Afrique centrale ; implication
 sur l'évolution magmatique et structurale. Geologische Rundschau 69, 49-62.
- Bizimis, M., Salters, V.M.J., Dawson, J.B., 2003. The brevity of carbonatite sources in the mantle: evidence
 from Hf isotopes. Contributions to Mineralogy and Petrology 145, 281-300.
- Briden, J.C., Piper, J.D., Henthorn, D.I., Rex, D.C., 1971. New palaeomagnetic results from Africa and
 relatedpotassium-argon age determinations, in: 15th Annual Report Research Institute African
 Geology, University of Leeds, pp. 46-50.
- Brinckmann, J., Lehmann, B., 1983. Exploration de la bastnaésite-moncite dans la région de Gakara, Burundi.
 Rapport sur la phase I. Unpublished report, Bujumbura/Hannover, 157 p.

1	Brinckmann, J., Lehmann, B., Hein, U., Höhndorf, A., Mussallam, K., Weiser, T., Timm, F., 2001. La Géologie
2	et la minéralisation primaire de l'or De La Chaîne Kibarienne, Nord-Ouest Du Burundi, Afrique
3	Orientale. Geologisches Jahrbuch Reihe D : Heft 101, 195 p.

- Brock, P., 1968. Metasomatic and intrusive nepheline-bearing rocks from the Mbozi syenite-gabbro complex,
 southwestern Tanzania. Canadian Journal of Earth Sciences 5, 387-419.
- 6 Burke, E.A.J., 1998. New data on zircon from Matongo (Burundi). Aardk. Mededel. 8, 1-4.
- Burke, K., Ashwal, L.D., Webb, S.J., 2003, New way to map old sutures using deformed alkaline rocks and
 carbonatites. Geology 31, 391-394
- 9 Cahen, L., Snelling, N., 1966. The geochronology of Equatorial Africa. North-Holland Publishing Cy,
 10 Amsterdam, 195 p.
- Cahen, L., Ledent, D., Snelling, N., 1975. Données géochronologiques dans le Katangien inférieur du Kasaï
 oriental et du Shaba nord-oriental (République du Zaïre). Rapport annuel 1974 du Département de
 Géologie et Minéralogie, Musée royal de l'Afrique centrale, Tervuren, pp. 59-70.
- Cahen, L., Ledent, D., 1979. Précision sur l'âge, la pétrogenèse et la position stratigraphique des « granites à
 étain » dans l'est de l'Afrique centrale. Bulletin de la Société belge de Géologie 88, 33-39.
- 16 Cahen, L., Ledent, D., Villeneuve, M., 1979. Existence d'une chaîne plissée protérozoique supérieur au Kivu
 17 oriental (Zaïre). Données géochronologiques relatives au Supergroupe de l'Itombwe. Bulletin de la
 18 Société belge de Géologie 88, 71-83.
- Cahen, L., Snelling, N.J., Delhal, J., Vail, J.R., Bonhomme, M., Ledent, D., 1984. The geochronology and
 evolution of Africa. Clarendon Press Oxford, 512 p.
- Caruba, R., Iacconi, P., 1983. Les zircons des pegmatites de Narssârssuk (Groënland). L'eau et les groupements
 OH dans les zircons métamictes. Chemical Geology 38, 75-92.
- Chakhmouradian, A.R., 2006. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal
 chemistry and significance for constraining the sources of carbonatites. Chemical Geology 235, 138 160.

- De Paepe, P., Tack, L., Moens, L., Van de Velde, P., 1991. The basic magmatism of the Upper Proterozoic in
 South-East Burundi. Rapport annuel 1989-1990 du Département de Géologie et Minéralogie, Musée
 royal de l'Afrique central, Tervuren (Belgique), pp. 85-104.
- De Waele, B., Johnson, S.P., Pisarevsky, 2008. Palaeoproterozoic to Neoproterozoic growth and evolution of the
 eastern Congo Craton : Its role in the Rodinia puzzle. Precambrian Research 160, 127-141.
- 6 Deblond, A., Punzalan, L.E., Boven, A., Tack, L., 2001. The Malagarazi Supergroup of SE Burundi and its
 7 correlative Bukoban Supergroup of NW Tanzania: Neo and Mesoproterozoic chronostratigraphic
 8 constraints from Ar-Ar ages on mafic intrusive rocks. Journal of African Earth Sciences 32, 435-449.
- 9 Delpomdor, F., Linnemann, U., Boven, A., Gärtner, A., Travin, A., Blanpied, C., Virgone, A., Jelsma, H., Préat,
 10 A., 2013. Depositional age, provenance, and tectonic and paleaclimatic settings of the late
 11 Mesoproterozoic-middle Neoproterozoic Mbuji-Mayi Supergroup, Democratic Republic of Congo.
 12 Palaeogeography, Palaeoclimatology, Palaeoecology 389, 4-34.
- Demaiffe, D., 2008. Le magmatisme alcalin et carbonatitique: synthèse sur la province paléozoïque de Kola
 (Russie) et caractéristiques générales du massif protérozoïque de Matongo (Burundi). Bulletins de
 Séances de l'Académie Royale des Sciences d'Outre-Mer 54, 171-196.
- Dewaele, S., Henjes-Kunst, F., Melcher, F., Sitnikova, M., Burgess, R., Gerdes, A., Fernandez, M.A., De Clerq,
 F., Muchez, P., Lehmann, B., 2011. Late Neoproterozoic overprinting of the cassiterite and columbite tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). Journal of African Earth
 Sciences 61, 10-26.
- Ernst, R.E., and K.L. Buchan, 2003. Recognizing mantle plumes in the geological record. Annual Review of
 Earth and Planetary Sciences 31, 469-523.
- Eyles, N., 2008. Glacio-epochs and the supercontinent cycle after ~3.0 Ga: Tectonic boundary conditions for
 glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 89-129.
- Eyles, N., Januszczak, N., 2004. 'Zipper-rift': a tectonic model for the Neoproterozoic glaciations during the
 breakup of Rodinia after 750 Ma. Earth-Science Reviews 65, 1-73.
- Fernandez-Alonso, M., Cutten, H., De Waele, B., Tack, L., Tahon, A., Baudet, D., Barritt, S.D., 2012. The
 Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged

1	extensional intracratonic basin development punctuated by two short-lived far-field compressional
2	events. Precambrian Research 216, 63-86.
3	Fransolet, A.M., Tack, L. 1992. Les zircons de Matongo (Burundi) et leur signification. Annales de la Société
4	géologique de Belgique 115, 113-118.
5	Fritz, H., Abdelsalam, M., Ali, K.A., Bingen, B., Collins, A.S., Fowler, A.R., Ghebread, W., Hauzenberger,
6	C.A., Johnson, P.R., Kusky, T.M., Macey, P., Muhongo, S., Stem, R.J., Viola, G., 2013. Orogen styles
7	in the East African Orogen : A review of the Neoproterozoic to Cambrian tectonic evolution. Jouranl
8	of African Earth Sciences 86, 65-106.
9	Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons:
10	Comparison with SHRIMP and new constraints for the provenance and age of an Armorican
11	metasediment in Central Germany. Earth and Planetary Sciences Letters 249, 47-61.
12	Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration - new insights from combined U-Pb and
13	Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from
14	the Limpopo Belt. Chemical Geology 261, 230-243.
15	Hanson, R.E., 2003. Proterozoic geochronology and tectonic evolution of southern Africa, in: Yoshida, M. et al.
16	(Eds.), Proterozoic East Gondwana: Supercontinent assembly and breakup, Geological Society,
17	London, Special Publications, 206, pp. 427-463.
18	Hoffman, P.F., 1999. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth.
19	Journal of African earth Sciences 28, 17-33.
20	Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis.
21	Reviews in Mineralogy and Geochemistry 53, 27-62.
22	Kalt, A., Hegner, E., Satir, M., 1997. Nd, Sr, and Pb isotopic evidence for diverse lithospheric mantle sources of
23	East African Rift carbonatites. Tectonophysics 278, 31-45.
24	Kampunzu, A.B., Lubala, R.T., Makutu, M.N., Caron, J.P.H., Rocci, G., Vellutini, P.J., 1985. Alkaline
25	complexes from the interlake region of eastern Zaire and Burundi - An example of anorogenic
26	massifs in the relaxation stage. Journal of African Earth Sciences 3, 151-167.

- Kampunzu, A.B., Kramers, J., Tembo, F., 1997. Neoproterozoic alkaline and carbonatite magmatism along the
 western rift in Central-Eastern Africa: Break-up of Rodinia supercontinent and reconstruction of
 Gondwana. Gondwana Research 1, 155-156.
- Kampunzu, A.B., Kramers, J.D., Makutu, M.N., 1998. Rb-Sr whole rock ages of the Lueshe, Kirumba and
 Numbi igneous complexes (Kivu, Democratic Republic of Congo) and the break-up of the Rodinia
 supercontinent. Journal of African Earth Sciences 26, 29-36.
- Kampunzu, A.B., Mohr, P., 1991. Magmatic evolution and petrogenesis in the east African Rift System, in:
 Kampunzu, A.B., Lubala, R.T. (Eds.), Magmatism in extensional structural settings: The Phanerozoic
 African plate. Springer-Verlag, Berlin, pp. 85-136.
- Kontak, D.J., Clark, A.H., 2002. Genesis of the giant, bonanza San Rafael Lode tin deposit, Peru: origin and
 significance of pervasive alteration. Economic Geology 97, 1741–1777.
- Kramm, U., Maravic, H.v., Morteani, G., 1997. Neodynium and Sr isotopic constraints on the petrogenetic
 relationships between carbonatites and cancrinite syenites from the Lueshe Alkaline Complex, east
 Zaire. Journal of African Earth Sciences 25, 55-76.
- Kröner, A., Cordani, U., 2003. African, southern Indian and South American cratons were not part of the
 Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics 375,
 325-352.
- 18 Le Bas, M.J., 1981. Carbonatite magmas. Mineralogical Magazine 44, 133-140.
- Le Bas, M.J., 1984. Nephelinites and carbonatites, in: Fitton, J.G., Upton, B.G.J. (Eds.), Alkaline Igneous Rocks,
 The Geological Society of London, Special Publication, v.30, pp. 53-83
- Le Maitre, R.W., 2002. A classification of igneous rocks and glossary of terms. Cambridge University Press, 236
 p.
- Lehmann, B., Nakai, S., Höhndorf, A., Brinckmann, J., Dulski, P., Hein, U., Masuda, A., 1994. REE
 mineralization at Gakara, Burundi: Evidence for anomalous upper mantle in the western Rift Valley. Geochimica
 et Cosmochimica Acta 58, 985-992.
- Lenoir, J.L., Liégeois, J.P., Theunissen, K., Klerkx, J., 1994. The Palaeoproterozoic Ubendian shear belt in
 Tanzania: geochronology and structure. Journal of African Earth Sciences 19, 169-184.

1	Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck,
2	R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky,
3	S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia:
4	A synthesis. Precambrian Research 160, 179-210.
5	Maravic, H.v., 1983. Geochemische und petrographische Untersuchungen zur Genese des niobführenden
6	Karbonatit/Cancrcinit-Syenitkomplexes von Lueshe, Kivu. NE Zaïre. Unpublished PhD thesis,
7	Technische Universität Berlin, 330 p.
8	Maravic, H.v., Morteani, G., 1980. Petrology and geochemistry of the carbonatite and syenite complex of Lueshe
9	(NE Zaire). Lithos 13, 159-170.
10	Maravic, H.v., Morteani, G., Roethe, G., 1989. The cancrinite-syenite/carbonatite complex of Lueshe, Kivu/NE-
11	Zaire: petrographic and geochemical studies and its economic significance. Journal of African Earth
12	Sciences 9, 341-355.
13	Mbede, E.I., Kampunzu, A.B., Armstrong, R.A., 2004. Neoproterozoic inheritance during Cainozoic riting in the
14	western and southwestern branches of the East African Rift system: Evidence from carbonatites and
15	alkaline intrusions. International conference "The East African Rift system: Geodynamics, resources,
16	and environment, June 20-24 2004, Addis Ababa (Ethiopia). Abstract book, p. 142.
17	McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth and
18	Planetary Science Letters 101, 1-18.
19	McDonough, W.F., Sun, S.S., Ringwood, A.E., Jagoutz, E., Hofmann, A.W., 1992. Potassium, Rubidium and
20	Cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochimica et
21	Cosmochimica Acta 56, 1001-1012.
22	Meert, J.G., Van der Voo, R., 1997. The assembly of Gondwana 800–550 Ma. Journal of Geodynamics 23, 223-
23	235.
24	Melcher, F., Graupner, T., Gäbler, H.E., Sitnikova, M., Henjes-Kunst, F., Oberthür, T., Gerded, A., Dewaele, S.,
25	2013. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites:
26	Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geology
27	Reviews, in press.

- Midende, G. 1984. La carbonatite de Matongo (Burundi). Unpublished PhD thesis, Université Libre de
 Bruxelles, Bruxelles, 288 p.
- Philippo, S., 1995. Evaluation minéralogique par diffraction des rayons X qualitative et quantitative des
 gisements latéritiques de niobium de la Lueshe et de Bingo dans le cadre de l'optimisation de la
 récupération du pyrochlore. Unpublished PhD thesis. Université Catholique de Louvain, Belgium,
 207p.
- Pisarevsky, S.A., Wingate, M.T.D., Powell, C.McA., Johnson, S.P., Evans, D.A.D., 2003. Models of Rodinia
 assembly and fragmentation, in: Yoshida, M., Windley, B.F., Dasgupta, S. (Eds.), Proterozoic East
 Gondwana: Supercontinent Assembly and Break-up. Geological Society of London, Special
 Publication 206, pp. 35-55.
- Pedrosa-Soares, A.C., Flecha de Alkmim, 2011. How many rifting events preceded the development of the
 Araçuai-West Congo orogen? Geonomos 19, 244-251.
- Powell, C.McA., Li, Z.X., McElhinny, M.W., Meert, J.G., Park, J.K., 1993. Paleomagnetic constraints on timing
 of the Neoproterozoic break-up of Rodinia and the Cambrian formation of Gondwana. Geology 21,
 889-892.
- Ray, G., 1974. The structural and metamorphic geology of northern Malawi. Journal of the Geological Society of
 London 130, 427-440.
- 18 Romer, R.L., Lehmann, B., 1995. U–Pb columbite-tantalite age of Neoproterozoic Ta–Nb mineralisation in
 19 Burundi. Economic Geology 90, 2303–2309.
- Simonetti, A., Bell, K., 1994. Isotopic and geochemical investigation of the Chilwa Island carbonatite complex,
 Malawi: evidence for a depleted mantle source region, liquid immiscibility, and open-system
 behaviour. Journal of Petrology 35,1597-1621.
- Snelling, N., Hamilton, E., Drysdall, A., Stillman, C., 1964. A review of age determinations from Northern
 Rhodesia. Economic Geology, 59: 961-981.
- 25 Songore T 1991. The Matongo phosphate deposit of Burundi. Fertilizer Research 30, 151-153.

1	Stendal, H., Frei, R., Muhongo, S., Rasmussen, T.M., Mnali, S., Petro, F., Temu, E.B., 2004. Gold potential of
2	the Mpanda Mineral Field, SW Tanzania: evaluation based on geological, lead isotopic and
3	aeromagnetic data. Journal of African Earth Sciences 38, 437-447.

- Stracke, A., Bizimis, M., Salters, V.J.M., 2003. Recycling oceanic crust: Quantitative constraints. Geochemidtry,
 Geophysics, Geosystems 4, DOI: 10.1029/2001GC000223.
- Sun, S.S., 1982. Chemical composition and origin of the Earth's primitive mantle. Geochimica et Cosmochimica
 Acta 46, 179–192.
- 8 Tack, L., De Paepe, P., Deutsch, S., Liégeois, J.P., 1984. The alkaline plutonic complexof the Upper Ruvubu
 9 (Burundi): geology, age, isotopic geochemistry and implications for the regional geology of the
 10 Western rift, in: Klerkx, J., Michot, J. (Eds.), African Geology, pp. 91-114.
- Tack., L., Sindayihebura, A., Cimpaye, D., 1992. The Nkoma (SE Burundi) : An episodically reactivated Lower
 Burundian (Middle Proterozoic) siliciclastic sequence, locally overlain by a Malagarasian (Upper
 Proterozoic) sedimentary breccias. IGCP n°255 Newsletter 4, 31-43.
- Tack, L., Liégeois, J.P., André, L., Navez, J., 1995. The Upper Ruvubu alkaline plutonic complex (Burundi).
 Annual Report of the Royal Museum for Central Africa, Tervuren, p. 9.
- Tack, L., Deblond, A., De Paepe, P., Duchesne, J.C., Liégeois, J.P., 1996. Proterozoic alignements of alkaline
 plutons revealing lithospheric discontinuities : evidence from Eastern Africa, in: Demaiffe, D. (Ed.),
 Petrology and Geochemistry of magmatic suites of rocks in the continental and oceanic crusts. A
 volume dedicated to Professor Jean Michot, Université Libre de Bruxelles, Bruxelles, Belgium, pp.
 20 219-226.
- Tack, L., Wingate, M.T.D., De Waele, B., Meert, J., Belousova, E., Griffin, A., Tahon, A., Fernandez-Alonso,
 M., 2010. The 1375 Ma "Kibaran event" in Central Africa: prominent emplacement of bimodal
 magmatism under extensional regime. Precambrian Research 180, 63–84.
- Theunissen, K., Lenoir, J.L., Liégeois, J.P., Delvaus, D., Mruma, A., 1992. Empreinte pan-africane majeure dans
 la chaîne ubendienne de Tanzanie sud-occidentale : géochronologie U-Pb sur zircon et contexte
 structural. Comptes Rendus de l'Académie des Sciences de Paris 314, 1355-1362.

- Van den Haute, P., 1986. Sphene fission-track dating of a precambrian lakaline pluton in Burundi (Central
 Africa). Terra cognita 6, p. 165.
- 3 Van Overbeke, A.C., 1996. Le complexe à carbonatite et syénite de la Lueshe (N-Kivu, Zaïre): pétrogenèse des
 4 roches ignées et caractérisation géochimique des processus métasomatiques (fénitisation).
 5 Unpublished PhD thesis. Université Catholique de Louvain, Louvain-la-Neuve, Belgique. 235 p.
- 6 Van Overbeke, A.C., Demaiffe, D., Verkaeren, J., 1996. The syenite-carbonatite complex of Lueshe (NE Zaire):
 7 petrography, geochemistry and Rb-Sr chronology, in Demaiffe, D. (Ed.), Petrology and
 8 Geochemistry of magmatic suites of rocks in the continental and oceanic crusts. A volume dedicated
 9 to Professor Jean Michot, Université Libre de Bruxelles, Bruxelles, Belgium, pp. 355-370.
- Van Wambeke, L., 1977. The Karonge rare earth deposits, Republic of Burundi: new mineralogical and
 geochemical data and origin of the mineralization. Mineralium Deposita12, 373-380.
- Vellutini, P., Bonhomme, C., Caron, M., Kampunzu, A.B., Lubala, T., 1981. Sur la signification tectonique des
 complexes alcalins acides de Kahuzi et de Biega (Kivu, Zaire). Comptes Rendus de l'Académie des
 Sciences de Paris 292, 1027-1029.
- Verwoerd, 1967. The carbonatites of South Africa and South West Africa. Handbook 6 of the Geological Society
 of South Africa, 452 p.
- 17 Villeneuve, M., 1987. Géologie du synclinal de l'Itombwe (Zaïre oriental) et le problème de l'existence d'un
 18 sillon plissé pan-africain. Journal of African Earth Sciences 6, 869–880.
- Vrana, S., Kachlik, V., Kroner, A., Marheine, D., Seifert, A.V., Zacek, V., Baburek, J., 2004. Ubendian
 basement and its late Mesoproterozoic and early Neoproterozoic structural and metamorphic overprint
 in northeastern Zambia. Journal of African Earth Sciences 38, 1-21.
- Walemba, K., Master, S., 2005. Neoproterozoic diamictites from the ItombweSynclinorium, Kivu Province,
 Democratic Republic of Congo: Palaeoclimaticsignificance and regional correlations. Journal of
 African Earth Sciences 42, 200–210.
- Woolley, A.R., 2001. Alkaline rocks and carbonatites of the world. Part 3: Africa, Geological Society of
 London, 372 p.

- 1 Zeh, A., Gerdes, A., 2012. U-Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the 2 Pietersburg Greenstone Belt (South Africa) - Is there a common provenance with the Witwatersrand 3 Basin? Precambrian Research 204-205, 46-56.
- 4 Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Gong, B., 2004. Temporal relationship between granite cooling and 5 hydrothermal uranium mineralization at Dalongshan in China: a combined radiometric and oxygen 6 isotopic study. Ore Geology Reviews 25, 221-236.
- 7 Zindler, A., Hart, S., 1986. Chemical geodynamics. In: Annual review of earth and planetary sciences. Vol. 14, NUS 8 pp. 493-571.

9

Figures and tables captions 10

11

12 Fig. 1. (A) Carbonatite and alkaline massif occurrences in Africa (redrawn from Woolley, 2001), (B) Alkaline 13 magmatism along the western branch of the East African Rift system (redrawn from Tack et al., 1984 and 14 Kampunzu and Mohr, 1991). The Itombwe "syncline" and Malagarazi basin consist of Neoproterozoic rocks; the 15 Malagarazi Supergroup (Burundi) - formerly known in Tanzania as Bukoba Supergroup - has been renamed 16 Nyamuri Supergfroup (Geology and Mineral map of Tanzania, 1:2.000.000, 2008).

Fig. 2. Geological sketch map of the studied area (modified and redrawn from Tack et al., 1984, and after 17 18 Fernandez-Alonso et al., 2012), with location of the showings/deposits mentioned in the text. The insert 19 illustrates the location of the drill holes.

Fig. 3. Photomacrographs of the various Matongo carbonatite facies: (A) coarse-grained sövite I, cut by a vein of 20 21 "late" hydrothermal calcite (calcite finely admixed with Fe oxides) (sample LT-SI-1), (B) fine-grained sövite II 22 with biotite (sample LT-SII-1), (C) euhedral crystals of aegirine in a sövite II (sample RG 140.280A), (D) 23 richterite needles within a sövite II (sample RG 140.280B), (E) association of ankerite (dark grey on the picture), 24 calcite and iron-stained silica (red on the picture) (sample RG 140.272), (F) fenite comprizing K-feldspar and 25 biotite (sample S1/183.5-184.25) and (G) fenite almost exclusively made up of biotite (sample RG 140.279). 26 Scale bars are in cm.

1 Fig. 4. The Matongo carbonatites in classification/discrimination ternary diagrams: (A) CaO-Fe₂O₃(t)+MnO-

2 MgO(based on Le Maitre et al., 2002) and (B) $Na_2O+K_2O-CaO-MgO+Fe_2O_3$ (Le Bas, 1981, 1984).

Fig. 5. Chondrite-normalized REE abundance patterns of the Matongo carbonatite facies. (A) sövite I, (B) sövite
II and associated cumulates (comprising clinopyroxene, apatite and amphibole), (C) ferrocarbonatite and "late"
hydrothermal calcite, and (D) fenites-silicocarbonatites. Normalization values to the chondrites from Sun (1982)
and McDonough (1990).

Fig. 6. Spidergrams of the Matongo carbonatite facies. (A) sövite I, (B) sövite II and associated cumulates
(comprising clinopyroxene, apatite and amphibole), (C) ferrocarbonatite and "late" hydrothermal calcite, and (D)
fenites-silicocarbonatites. Normalization values to the primitive mantle from McDonough et al. (1992).

Fig. 7. Pictures of the Matongo (A and C) and Lueshe (B and D) zircon megacrysts (A and B: backscattered
electron images, C and D: cathodoluminescence images): red and white dots represent electron microprobe and
LA-MC-ICP-MS analyses, respectively. E and F: concordia plots of LA-MC-ICP-MS U-Pb data, with data
point error ellipses at 2σ..

Fig. 8. Initial εNd-εSr isotopic diagrams for the various Matongo carbonatites (7 samples; Demaiffe, 2008). For
comparison, are reported the fields for the sövites from the Lueshe Neoproterozoic carbonatite (DRCongo;
Kramm et al., 1997) and for the East African carbonatites (dated between 200 and 0 Ma; Bell and Tilton, 2001).
The positions of the main oceanic mantle reservoirs identified by Zindler and Hart (1986) are shown: DM =
depleted mantle, BSE = bulk silicate earth, EMI and EMII = enriched mantle I and II, HIMU = high U/Pb
domain. Outline of the mantle array (dashed line) is drawn after Stracke et al. (2003) and Bizimis et al. (2003).

Fig. 9. Schematic diagram comparing the isotopic ages obtained on carbonatites and alkaline complexes (located
in Fig. 1B) and the new Matongo and Lueshe zircon U-Pb ages. All these ages are considered together and
reinterpreted in the regional geodynamic context. Reference numbering is as follow: (1) This paper; (2) Kramm
et al. 1997; (3) Bellon and Pouclet, 1980; (4) Cahen and Snelling, 1966; (5) Kampunzu et al., 1998; (6) Cahen et
al., 1979; (7) Tack et al., 1984; (8) Vellutini et al., 1981; (9) Cahen et al., 1975; (10) Demaiffe, 2008; (11)
Stendal et al., 2004; (12) Brock, 1968; (13) Mbede et al., 2004; (14) Ray, 1974; (15) Snelling et al., 1964; (16)
Vrana et al., 2004; (17) Van Overbeke, 1996; (18) Van den Haute, 1986; (19) Tack et al., 1995.

27 -----

- **Table 1.** Major element contents (in wt. %) of samples from the Matongo carbonatites.
- 2 **Table 2.** REE contents (ppm) La_N/Yb_N ratios, ΣREE and tetrad effect of samples from the Matongo carbonatites.
- **3 Table 3.** Trace elements (in ppm) of samples from the Matongo carbonatite.
- 4 Table 4. Representative electron probe microanalyses of zircon megacrysts from Lueshe and Matongo
- 5 **Table 5.** Representative U-Th-Pb analyses of zircon megacrysts from Lueshe and Matongo
- 6 Table 6. Sr and Nd isotopic data of samples from the Matongo carbonatites (Demaiffe, 2008).
- 7 -----
- 8 Supplementary data. Representative microprobe analyses (elements in wt. %) of carbonates (A),
- 9 clinopyroxenes, amphiboles (B), feldspars and phyllosilicates (C) from the Matongo carbonatites.
- 10

Sample	Description	Si O₂	Al ₂ O ₃	Fe ₂ O 3(tot)	Mn O	Mg O	Ca O	Na ₂O	K₂ O	TiO 2	P₂ O₅	LOI	Su m
LT-SI-1	sövite I	0.0 9	0.0 1	0.03	0.6 86	0.4	54. 13	0.0 3	0.0 1	0.0 01	0.0 1	#N. A.	79.7 7
RG140.276-S7/62-	o	0.0	0.0		0.6	o =	55.	0.0	0.0	0.0	0.0	#N.	80.9
<u>63m</u>	Sovite I	8	1	0.03	82	0.5	16	2	1	01	1	A.	/
Gi3-ITS4/84-87m	sövite II	8	4.0	1.14	0.2 5	9	72	8	3	0.0	2	30. 16	99.0 6
		2.4	-		0.1	0.4	50.	0.4	0.0	0.0	0.6	34.	80.7
LT-SII-1	sövite II	2	0.7	1.33	34	7	99	1	4	14	2	64	6
		0.9	0.2		0.2	0.1	56.	0.0	0.1	0.0	0.4	34.	84.7
RG 140.273	sovite II	3	6	2.21	21	1	92 42	8	5	08	1	12	1
Gi2-S3/147	sövite II	27	0.9 6	4.48	31	2.2 6	42. 9	7	8	0.3	7	<u> </u>	3
		1.3	0.0		0.2	0.7	48.	· ·	0.0	0.0	10.	36.	99.1
Gi12-S5/121.5m	sövite II with apatite	2	1	1.36	3	5	57	0.2	7	4	45	19	9
	sövite II with apatite		1.7		0.1	3.4	31.	2.8	1.1	0.3	2.4	24.	97.5
LT-cum-1	and px	23	7	11.37	83	4	39	5	7	77	6	99	4
RG 140.280A- S5/121-121 60m	sovite II with apatite	28.	1.3	16 65	0.0	2.4	25.	5.3	0.2	0.3	10.	9.0	98.1
55/121-121.0011	sövite II with apatite	6.4	0.6	10.05	0.1	0.6	42	0.2	0.4	0.1	3.3	40.	98.5
Gi1-S2/171-172m	and px	6	8	3.27	7	2	82	8	4	0	6	39	9
	sövite II with apatite	6.2	0.5		0.1	0.6	42.	0.5	0.3	0.1	4.7	38.	98.7
Gi10-S6/155-156m	and px	8	4	4.27	6	1	74	9	4	1	9	30	3
0:11.00/50	px and apatite	21.	3.2	40.40	0.0	1.7	34.	0.8	2.3	0.4	9.9	15.	100.
GI11-58/56M BC 140 280B-	cumulate	48	2	10.40	9	4	48	1	6	0	6 10	61 5.0	55 80 4
S5/121-121.60m	and amph.	18	0.0	7.76	0.0 61	-1.2	03	3.4	3	65	29	2	09.4 4
		7.7	2.2		0.2	3.1	29.	0.6	0.0	0.4	0.2	32.	54.0
Gi16-S3/121m	ferrocarbonatite	2	8	9.46	1	7	68	5	9	7	8	58	1
		2.3	1.2		0.2	0.6	50.	0.0	0.3	0.0	3.9	28.	83.7
LT-CJ-1	ferrocarbonatite	1	1	2.19	68	8	49	5	4	37	1	38	3
RG 140.272-	forrocarbonatito	9.3	2.8	1 11	1.0	2.4	44. 62	0.0	0.8	0.3	0.2	38.	0.CS
1155/0011	"late" hydrothermal	0.9	0.2	4.11	0.6	2.4	50.	0.0	0.1	0.0	- 0.0	11.	82.9
Gi17-S7/91-95	carbonatite	1	6	1.22	19	7	24	3	2	32	3	03	7
		51.	14.		0.0	0.0	10.	0.7	12.	0.0	0.1	16.	99.5
Gi5-ITS3/291	kfs-fenite	78	5	0.67	64	9	67	1	24	27	1	49	4
Gi14-ITS4/150	kfs-fonito	32.	9.3	2 1 /	0.4 78	0.3	25.	0.9	7.1 5	0.0	0.1	13. 21	88.8 Q
0114-1104/150	KI3-ICIIIC	35	16.	2.14	0.0	4.6	13.	4.4	3.5	1.9	0.1	6.5	3
Gi15-S5/104-106	bt-fenite	26	55	7.9	98	4	19	7	4	72	4	6	98.3
		55.	16.		0.1	0.4	6.0	0.9	12.	0.1	0.6	#N.	100.
S1/183.5-184.25	Kfs-bt-fenite	04	79	2.32	05	1	6	1	56	76	3	Α.	4
R													

Sample	Description	L a	C e	P r	N d	S m	E u	G d	T b	D y	H o	E r	Y b	L u	La _N /Yb _N	Eu */E u	Su mR EE	Tetrad effect (LaN*SmN)/(CeN*Nd N)
LT-SI-1	sövite I	0. 6	1. 1	0. 1 8	0. 8	0. 3	0. 0 6	0. 2	0. 1	0. 2	0. 1	0. 1	0. 1	0. 0 4	4.0 5	0.7 1	3.88	1.6
RG140.2	Sövite I	1. 4	1. 9	0. 3 7	1. 7	0. 8	0. 1 7	0. 7	0. 1	0. 5	0. 1	0. 3	0. 3	0. 0 5	3.1 5	0.6 8	8.39	2.8
Gi3- ITS4/84-	Conter	1 4	2 7		1 0	1	3. 2		0. 9				1. 4	0. 2	67. 1	1.4	539	0.5
87m	sövite II	6 1 5	5 2 5	2	1 8	1	1 3. 1	9.	1 0.	4.	0.	2.	7 1.	4 0. 2	55.	0.8	552	0.7
LT-SII-1	sövite II	6 1	0	5 2	6 7	2	9 2.	7 7.	9 0.	3 3.	8 0.	2	9 1.	8 0.	5 58.	9 0.8		
RG 140.273	sövite II	2 9 2	1 3 4	1. 4	1	0	4 5.	2	7	2	6	6	5	2 3 0.	1	4	461	0.7
Gi2- S3/147	sövite II	3 7	1	4 5	5	2	7 7	5. 9	1. 5	6. 3	1	2. 7	1.	2	89. 0	0.9 1	907	0.6
S5/121.5 m	sövite II with apatite	1 8 8	3 6 5		1 3 1	1 6	4. 2 5		1. 2 3				2. 1 6	0. 3 2	58. 8	1.4 6	707	0.5
LT-cum- 1	sövite II with apatite and px	1 1 4	2 0 3	2 1. 1	7 6	1 1	2. 6 6	6. 5	0. 8	3. 7	0. 6	1. 6	1. 3	0. 2 2	59. 3	0.9 2	442	0.6
RG 140.280	sövite II with	2 3	4 3	4 8.	1 7	2 4	6	1 6	1. 5	6. 3	1	2. 8	2. 1	0. 3	76. 9	0.8 9	950	0.6
А Gi1- S2/171-	sövite II with	9 2 1	2 4 0	Z	1 1 6	2	5. 7		1. 5				1. 7	3 0. 2	80.	1.4 o	807	0.5
172m Gi10- S6/155-	apatite and px sövite II with	0 1 3	7 2 6		0 9	1	1 3. 4		1 1. 0				7 1. 8	8 0. 2	49.	1.4	509	0.5
156m	apatite and px	2 1	1 3		1	2	2 3.		5				2 1.	6 0.	0 94.	9 1.4	600	0.5
S8/56m RG	cumulate sövite II with	7 0 4	2 9 7	7	9 2	4	o 3 8.	2	1		1	2	2 1	9 0.	2 175	7	155	0.5
140.280 B	apatite and amph.	1 5	1 9 2	6. 2	6 2	3	0 9	2. 7	1. 8	7	1	2. 6	1. 6	2 4	.3	6	0	0.6
Gi16- S3/121m	ferrocarbonatit e	4 5	2 9 1		1 2	1 4	3. 8 9		0 3				1. 5 2		64. 5	1.4 8	568	0.5
LT-CJ-1	ferrocarbonatit e	2 9 2	4 7 6	4 8. 8	1 6 3	2 3. 9	6. 0 6	1 7. 8	1. 9	8. 6	1. 5	4. 1	3. 1	0. 4 9	63. 7	0.8 6	104 7	0.7
RG	ferrocarbonatit	6 2.	9 2.	9. 7	3 5	6. 7	1. 6 7	5. 4	0. 7	3. 9	0. 8	2. 3	2. 5	0. 4	16. 9	0.8 2	225	1.0
Gi17-	"late" hydrothermal	3 1.	9 7 2.	1 2.	7 6.	5 0.	1 7.	7 5.	1 0.	3 2.	3. 7	6. 4	5. 8	0. 8	3.6 6	0.8 5	396	2.3
S7/91-95	carbonatite	4 3 8	9 6 2	<u>8</u> 6. 1	2 1 9	7 2.	2 0. 6	5 2.	<u>1</u> 0.	<u>5</u> 1	0.	0.	0.	7 0. 1	37.	0.8	134	0.6
ITS3/291	kfs-fenite	3 1	2	9 3	1 9	4	7 4.	1	2 1.	8.	2 1.	7	7	1 0.	0 25.	9 0.9		0.0
Gi14- ITS4/150 Gi15-	kfs-fenite	8 8 5	1 0 1	0. 2 1	7. 5 5	5. 3	5 3 2.	2. 8 5	6	2	8	5	5	7 4 0.	4	6	681	0.8
S5/104- 106	bt-fenite	4. 3	1 3	4. 1	5. 2	8. 6	3 5	5. 7	0. 7	2. 7	0. 4	1. 1	0. 8	1 5	45. 9	0.9 7	259	0.6
S1/183.5 -184.25	Kfs-bt-fenite	э 4. 6	1 0 7	1. 7	4 2. 5	6. 4	1. 6 5	4. 2	0. 6	2. 9	0. 5	1. 3	1	0. 1 2	36. 9	0.9 2	234	0.6
Normaliza	ation values used	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	_			

in REE diagrams - chondrite	3	8	1	6	2	0	2	0	3	0	2	2	0
concentrations of Sun (1982) and McDonough	1	1	2	0	0	7	6	5	2	7	1	1	3
(1990)													

Acctionter

Sam ple	R b	B a	T h	U	N b	T a	к	L a	C e	P b	P r	S r	N d	Z r	H f	S m	E	T i	G d	T b	D v	Y	H	E r	Y b	L
LT- SI-1	2	8	0. 6	0 1	1	0 1	0. 0 1	0. 6	1. 1	5	0. 1 8	2 4 9 9	0 8	2	0. 4	0. 3	0. 0 6	0. 0 0	0. 2	0 1	0. 2	4	0 1	0 1	0 1	0 0 4
RG14 0.276	2	1 0	1. 8	0 1	1	0. 1	0. 0 1	1. 4	1. 9	5	0. 3 7	1 5 3 1	1 7	1 1	0 2	0. 8	0. 1 7	0. 0 0	0. 7	0. 1	0. 5	5	0. 1	0. 3	0. 3	0. 0 5
Gi3- ITS4/ 84- 87m	1 1. 0 0	8 1 6	1 0. 1	0. 5	1 1. 0	6. 2 0	0. 0 2	1 4 6	2 7 5			5 2 5 6	1 0 1			1 1. 6	3. 2 1	0. 0 0		0. 9 1					1. 4 7	0. 2 4
LT- SII-1	< 2	7 3 4	1. 9	0. 5	8. 0	0. 4	0. 0 2	1 5 6	2 5 0	5	2 5	6 8 0 1	8 6	8 8	0. 9	1 1. 7	3. 1 9	0. 0 1	9. 7	0. 9	4. 3	2 5	0. 8	2. 2	1. 9	0. 2 8
RG 140.2 73	3	9 2 0	0. 4	0. 2	1 0. 0	0. 1	0. 0 9	1 2 9	2 1 3	5	2 1. 4	9 3 8 5	7 1	1 6	0. 2	9. 8	2. 4	0. 0 0	7. 2	0. 7	3. 2	2 1	0. 6	1. 6	1. 5	0. 2 3
Gi2- S3/14 7	2 2	5 6 3	1 1. 7	0. 7	8 8. 0	4. 9	0. 2 9	2 3 7	4 1 1	6	4 5	4 4 9 2	1 5 7	4 9	0. 4	2 1. 8	5. 7 7	0. 1 6	1 5. 9	1. 5	6. 3	3 0	1	2. 7	1. 8	0. 2 6
Gi12- S5/12 1.5m	< 4	5 5 8			1 0. 0		0. 0 4	1 8 8	3 6 5			6 5 1 2	1 3 1	P		1 5. 5	4. 2 5	0. 0 2		1. 2 3					2. 1 6	0. 3 2
LT- cum- 1	7 0	3 9 4	3. 6	2. 7	5 5. 0	5	0. 7 0	1 1 4	2 0 3	5	2 1. 1	3 5 6 0	7 6	2 2 6	1. 4	1 0. 5	2. 6 6	0. 1 6	6. 5	0. 8	3. 7	1 7	0. 6	1. 6	1. 3	0. 2 2
RG 140.2 80A	4	1 6 2	1 6. 8	1 4. 4	1 6 8. 0	1 3. 4	0. 1 7	2 3 9	4 3 2	2 3	4 8. 2	2 3 8 0	1 7 1	3 3 2	2. 3	2 3. 7	6	0. 1 5	1 6	1. 5	6. 3	2 8	1	2. 8	2. 1	0. 3 3
Gi1- S2/17 1- 172m	2 2	5 5 3	2. 8	1 6. 3	3 1. 0	5. 3	0. 2 6	2 1 0	4 0 7			4 2 3 7	1 6 0			2 0. 3	5. 7 1	0. 0 4		1. 5 1					1. 7 7	0. 2 8
Gi10- S6/15 5- 156m	1 4. 0	5 9 1	1 5. 6	5. 4	4 7. 0	4. 0 3	0. 2 0	1 3 2	2 6 1			4 1 0 5	9 7			1 2. 2	3. 4 2	0. 0 5		1. 0 5					1. 8 2	0. 2 6
Gi11- S8/56 m			2. 8 3	4 4. 0	2 4 2 4	2 0. 4	1. 4 1	1 7 0	3 2 9			1 9 1 6	1 1 9			1 3. 8	3. 8 3	0. 1 7		1					1. 2 2	0. 1 9
RG 140.2 80B	7	3 0 1	2 4. 2	3. 8	8 6	6. 2	0. 2 6	4 1 5	7 1 9	7	7 6. 2	4 9 5 5	2 6 2	3 3 9	4. 4	3 2. 8	8. 0 9	0. 0 7	2 2. 7	1. 8	7	3 1	1. 1	2. 6	1. 6	0. 2 4
Gi16- S3/12 1m			7. 8	4. 8	5 7	5. 3	0. 0 5	1 4 5	2 9 1			3 6 0 1	1 1 2			1 4	3. 8 9	0. 2 1		1. 0 3					1. 5 2	
LT- CJ-1	2 0	2 0 3	2 2. 6	0. 7	4 5	0. 1	0. 2 0	2 9 2	4 7 6	1 8	4 8. 8	1 8 4 3	1 6 3	3 2	0. 6	2 3. 9	6. 0 6	0. 0 2	1 7. 8	1. 9	8. 6	4 5	1. 5	4. 1	3. 1	0. 4 9
RG 140.2 72	1 1 6	4 4 3	5 0. 5	1. 4	7 4	1. 9	0. 5 3	6 2. 5	9 2. 9	2 0	9. 7 8	5 5 8	3 5	5 4	0. 8	6. 7	1. 6 7	0. 1 7	5. 4	0. 7	3. 9	2 7	0. 8	2. 3	2. 5	0. 4 1

Gi17- S7/91 -95	1 0	7 9 3	2 0 0 0	4. 6	1 0	0. 1	0. 0 7	3 1. 4	7 2. 9	3 8	1 2. 8	1 2 8 0	7 6 2	3 3	0. 8	5 0. 7	1 7. 2	0. 0 1	7 5. 5	1 0. 1	3 2. 5	9 0	3. 7	6. 4	5. 8	0. 8 7
Gi5- ITS3/ 291	2 8 9	1 4 3 7	1 1. 8	1 5 8	4 6 1	5 6. 3	7. 3 4	3 8. 3	6 2. 2	6 1	6. 1 9	1 9 5 5	1 9 1	2 0 0	1. 6	2. 4	0. 6 7	0. 0 1	2. 1	0. 2	1	7	0. 2	0. 7	0. 7	0. 1 1
Gi14- ITS4/ 150	1 5 0	1 4 6 9	1 3. 7	4 3. 1	1 0 0 0	1 7. 7	4. 2 9	1 8 8	3 1 0	3 3	3 0. 2	4 5 7 2	9 7 5	2 1	0. 4	1 5. 3	4. 5 3	0. 0 1	1 2. 8	1. 6	8. 2	4 7	1. 8	5	5	0. 7 4
Gi15- S5/10 4-106	1 2 5	1 3 5 3	1 6. 8	0. 7	5 4	7. 7	2. 1 2	5 4. 3	1 1 3	5	1 4. 1	1 2 4 3	5 5 2	2 1 6	4. 7	8. 6	2. 3 5	0. 8 6	5. 7	0. 7	2. 7	9	0. 4	1. 1	0. 8	0. 1 5
S1/18 3.5- 184.2 5	2 0 6	2 2 3 6	7. 7	7. 7	5 8 0	1 9. 2	7. 5 3	5 4. 6	1 0 7	8	1 1. 7	6 6 9	4 2 5	1 6	0. 2	6. 4	1. 6 5	0. 0 8	4. 2	0. 6	2. 9	1 4	0. 5	1. 3	1	0. 1 2
Norm alizati on value s used in spide rgram s - primiti ve mantl e conce ntrati ons of McDo noug h et al. (1992)	0 6 3 5	6 .9 8 9	0 .0 8 5	0 .0 2 1	0 .7 1 3	0 0 4 1	0. 0 3 0 1	0 6 8 7	1 .7 5	0 1 8 5	0 2 7 6	2 1 .1	1 .2 5	1 1 2	0 3 0 9	0 4 4 4	0 1 5 4	0.217	0 .5 4 4	0 9 9	0 6 7 4	4 5 5	0 1 4 9	0 4 3 8	0 4 9 3	0 0 6 8

R

			Ма	atongo	o (RGI	M 967	2)						Lue	she (F	RGM 9	673)			
Grain	1	1	2	3	4	6	6	9	10	1	1	2	3	4	4	6	7	9	10
Analysis	2	17 bri	20	27	35 bri	47	51	63	67	4 bri	8	25	40	45	48	56	61	69	76
CL brightness	no ne	gh t	bri ght	no ne	gh t	no ne	ne *	no ne	no ne	gh t	no ne	no ne	ne *	ne *	bri ght	no ne	no ne	no ne	diu m
wt%		20			20	20		22	20	22	20					20	20	20	
SiO ₂	33. 18	32 .7 8 65	33. 05	33. 01	.8 9 66	.8 .8 8 66	30. 39	.1 1 65	.9 6	.0 5 66	.9 .9 1	32. 79	28. 12	30. 41	32. 91	.6 6	.6 6	.4 0 65	32. 71
ZrO ₂	66. 45 0.5	.6 8 0.	67. 19 0.6	66. 23 0.7	.3 1 0.	.3 5 0.	61. 96 0.6	.8 2 0.	.5 3 0.	.1 9 0.	.9 2 0.	64. 65 0.5	57. 10 0.7	61. 58 0.4	65. 87 1.2	.1 9 0.	.3 7 0.	.7 7 0.	65. 71 0.6
HfO ₂	3	67	0	1	67	62 0.	6	36 0.	70 0.	40	62 0.	8	0	1	5	43 0.	69 0.	59 0.	3
ThO₂	0.1 37	<d .I.</d 	<d. I.</d. 	0.0 87	<d .I.</d 	09 8 0.	0.3 09	13 6 0.	27 0 0.	<d .I.</d 	17 1	1.1 51	1.1 98	0.6 99	<d. I.</d. 	46 3	42 9	25 7	0.5 35
UO ₂	0.0 59 <d.< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th>0.0 43 <d.< th=""><th><d .l. <d< th=""><th>04 1 <d< th=""><th>0.1 08 <d.< th=""><th>04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></th></d.<></th></d<></th></d<></d </th></d.<></th></d.<></d. </th></d<></d </th></d.<>	<d .I. <d< th=""><th><d. I. <d.< th=""><th>0.0 43 <d.< th=""><th><d .l. <d< th=""><th>04 1 <d< th=""><th>0.1 08 <d.< th=""><th>04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></th></d.<></th></d<></th></d<></d </th></d.<></th></d.<></d. </th></d<></d 	<d. I. <d.< th=""><th>0.0 43 <d.< th=""><th><d .l. <d< th=""><th>04 1 <d< th=""><th>0.1 08 <d.< th=""><th>04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></th></d.<></th></d<></th></d<></d </th></d.<></th></d.<></d. 	0.0 43 <d.< th=""><th><d .l. <d< th=""><th>04 1 <d< th=""><th>0.1 08 <d.< th=""><th>04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></th></d.<></th></d<></th></d<></d </th></d.<>	<d .l. <d< th=""><th>04 1 <d< th=""><th>0.1 08 <d.< th=""><th>04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></th></d.<></th></d<></th></d<></d 	04 1 <d< th=""><th>0.1 08 <d.< th=""><th>04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></th></d.<></th></d<>	0.1 08 <d.< th=""><th>04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></th></d.<>	04 4 <d< th=""><th>06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<>	06 6 <d< th=""><th><d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<>	<d .l. <d< th=""><th><d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d 	<d .I. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d<></d 	<d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. </th></d.<></d. 	<d. I. <d.< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d.<></d. 	<d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. 	<d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. 	<d .l. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d 	<d .l. <d< th=""><th>0</th><th>0</th></d<></d 	0	0
PbO	l. <d.< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d.<>	.l. <d< th=""><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d<></th></d<></th></d.<></th></d.<></th></d<>	l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d<></th></d<></th></d.<></th></d.<>	l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d<></th></d<></th></d.<>	.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d<></th></d<>	.l. <d< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d<>	l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d.<>	.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<>	.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<></th></d<>	.l. <d< th=""><th>.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<></th></d<>	.l. <d< th=""><th>l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<></th></d<>	l. <d.< th=""><th>l. 0.1</th><th>l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d.<>	l. 0.1	l. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<>	l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<>	.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<>	.l. <d< th=""><th>0</th><th>0</th></d<>	0	0
P ₂ O ₅	Ι. <d.< th=""><th>.l. <d< th=""><th>Ι. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. 0.1</th><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d.<>	.l. <d< th=""><th>Ι. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. 0.1</th><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d.<></th></d<>	Ι. <d.< th=""><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. 0.1</th><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d.<></th></d.<>	l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>l. 0.1</th><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d.<>	.l. <d< th=""><th>.l. <d< th=""><th>l. 0.1</th><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d<>	.l. <d< th=""><th>l. 0.1</th><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<></th></d<>	l. 0.1	.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<></th></d<>	.l. <d< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<></th></d<>	.l. <d< th=""><th>.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<></th></d<>	.l. <d< th=""><th>ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<></th></d<>	ا. <d.< th=""><th>20 0.6</th><th>l. 0.2</th><th>l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<></th></d.<>	20 0.6	l. 0.2	l. <d.< th=""><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d.<>	.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<>	.l. <d< th=""><th>0</th><th>0</th></d<>	0	0
TiO ₂	l. ≤d	.l. <d< th=""><th>l. ≤d</th><th>l. ≺d</th><th>.l. <d< th=""><th>.l. <d< th=""><th>45 0.3</th><th>.l. <d< th=""><th>.l. ≤d</th><th>.l. <d< th=""><th>.l. d></th><th>l. ≤d</th><th>52 0.8</th><th>22 0 4</th><th>l. ∠d</th><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d<></th></d<></th></d<></th></d<></th></d<>	l. ≤d	l. ≺d	.l. <d< th=""><th>.l. <d< th=""><th>45 0.3</th><th>.l. <d< th=""><th>.l. ≤d</th><th>.l. <d< th=""><th>.l. d></th><th>l. ≤d</th><th>52 0.8</th><th>22 0 4</th><th>l. ∠d</th><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d<></th></d<></th></d<></th></d<>	.l. <d< th=""><th>45 0.3</th><th>.l. <d< th=""><th>.l. ≤d</th><th>.l. <d< th=""><th>.l. d></th><th>l. ≤d</th><th>52 0.8</th><th>22 0 4</th><th>l. ∠d</th><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d<></th></d<></th></d<>	45 0.3	.l. <d< th=""><th>.l. ≤d</th><th>.l. <d< th=""><th>.l. d></th><th>l. ≤d</th><th>52 0.8</th><th>22 0 4</th><th>l. ∠d</th><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d<></th></d<>	.l. ≤d	.l. <d< th=""><th>.l. d></th><th>l. ≤d</th><th>52 0.8</th><th>22 0 4</th><th>l. ∠d</th><th>.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<></th></d<>	.l. d>	l. ≤d	52 0.8	22 0 4	l. ∠d	.l. <d< th=""><th>.l. <d< th=""><th>0</th><th>0</th></d<></th></d<>	.l. <d< th=""><th>0</th><th>0</th></d<>	0	0
Al ₂ O ₃	I.	.1.	I.	I.	.l.	.1.	56	.i.	.I.	.1.	.1.	I.	54	11	I.	.1.	.l.	0	0
CaO	0.0 31 <d.< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0.5 39 0.1</th><th><d .l. <d< th=""><th>0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></d </th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d.<>	<d .l. <d< th=""><th><d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0.5 39 0.1</th><th><d .l. <d< th=""><th>0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></d </th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d 	<d. I. <d.< th=""><th><d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0.5 39 0.1</th><th><d .l. <d< th=""><th>0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></d </th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. 	<d. I. <d.< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th>0.5 39 0.1</th><th><d .l. <d< th=""><th>0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></d </th></d<></d </th></d<></d </th></d.<></d. 	<d .l. <d< th=""><th><d .l. <d< th=""><th>0.5 39 0.1</th><th><d .l. <d< th=""><th>0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></d </th></d<></d </th></d<></d 	<d .l. <d< th=""><th>0.5 39 0.1</th><th><d .l. <d< th=""><th>0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></d </th></d<></d 	0.5 39 0.1	<d .l. <d< th=""><th>0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<></th></d<></d 	0. 05 7 <d< th=""><th><d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d </th></d<>	<d .l. <d< th=""><th><d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d </th></d<></d 	<d .l. <d< th=""><th><d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. </th></d<></d 	<d. I. <d.< th=""><th>1.3 62 0.2</th><th>0.7 40 0.0</th><th><d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. </th></d.<></d. 	1.3 62 0.2	0.7 40 0.0	<d. I. <d.< th=""><th><d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d </th></d.<></d. 	<d .I. <d< th=""><th><d .l. <d< th=""><th>0</th><th>0</th></d<></d </th></d<></d 	<d .l. <d< th=""><th>0</th><th>0</th></d<></d 	0	0
MnO	I.	.I.	I.	I.	.l.	.İ.	33	.I.	.l.	.l.	.I.	l.	37	84	Ι.	.l.	.I.	0	0
FeO	<d. I. 10</d. 	<d .I. 99</d 	<d. I. 10</d. 	<d. I. 10</d. 	<d .l. 99</d 	<d .l. 99</d 	0.7 15	<d .l. 99</d 	05 9 99	<d .l. 99</d 	<d .l. 99</d 	31 4	0.6 68	0.7 61	<d. I. 10</d. 	<d .I. 98</d 	<d .l. 99</d 	0 99	0
total Cations per formula units	0.3 9	.1 3	0.8 5	0.0 8	.8 8	.9 9	95. 31	.4 8	.6 4	.6 4	.6 2	99. 20	91. 01	95. 32	0.0 4	.7 4	.1 5	.0 2	99. 58
Si	1.0 09	1. 00 9	1.0 02	1.0 07	1. 00 6	1. 00 5	0.9 81	1. 01 3 0	1. 01 0	1. 01 0	1. 00 8 0	1.0 13	0.9 54	0.9 81	1.0 07	1. 01 0	1. 00 7 0	1. 00 2 0	1.0 06
Zr	0.9 85	98 5 0.	0.9 93	0.9 86	98 9 0.	98 98 9 0.	0.9 75	98 2 0.	0. 98 0 0.	98 6 0.	98 5 0.	0.9 74	0.9 45	0.9 69	0.9 83	98 3 0.	98 3 0.	0. 99 1 0.	0.9 85
Hf	0.0 05	00 6	0.0 05	0.0 06	00 6	00 5 0.	0.0 06	00 3 0.	00 6 0.	00 3	00 5 0.	0.0 05	0.0 07	0.0 04	0.0 11	00 4 0.	00 6 0.	00 5 0.	0.0 06
Th	0.0 01			0.0 01		00 1 0.	0.0 02	00 1 0.	00 2 0.		00 1	0.0 08	0.0 09	0.0 05		00 3	00 3	00 2	0.0 04
U	0.0			0.0 00		00	0.0 01	00	00									0	0
Pb													0.0					0	0
Р							0.0						0.0	0.0				0	0
Ті							0.0 04 0.0						0.0 17 0.0	0.0 05 0.0				0	0
AI							14						34	16				0	0
Ca	0.0						0.0		0.				0.0	0.0				0	0

		²⁰⁷ P b ^a	U ⊳ (p	P b⁵ (p	<u>T</u> <u>h</u> ⊵	P bc c	206 Pb d	± 2 s	207 P b ^d	± 2 s	208 P b	± 2 s	207 Pb d	± 2 s	r h o e	20 6 P b	± 2 s (20 7 <u>P</u> <u>b</u>	±2 s(20 8 P b 23	± 2 s (20 Z P b 20	± 2 s (C O N C. f
		(c ps)	p m)	p m)	U	(%)	238 U	(%)	235 U	(%)	232 T h	(%)	206 Pb	(%)		23 8 U	M a)	23 5 U	M a)	2 T h	M a)	6 P b	M a)	(%)
	sp ot AS 96 73				-		0	/				/	0	/	0			-			,	2		
	A0 5	27 60 7	1 2 7	8 8	1 8	0. 06	0. 13 07 0	1 7	1. 17 6	2 2	0. 04 07	1 7	0. 06 52 4 0	1 3	7 8 0	7 9 2	1 3	7 8 9	1 2	8 0 6	1 3	7 8 2	2 8	1 0 1
	A0 6	35 00 6	1 5 8	1 3 0	2 2	0. 07	0. 12 99 0 0	1 7	1. 17 4	2 1	0. 04 06	1 6	06 55 3 0	1 1	0 8 4 0	7 8 7	1 3	7 8 8	1 1	8 0 5	1 3	7 9 2	2 3	9 9
	A0 7	15 46 2	6 8	2 0 0	8 7	0. 14	0. 13 32 0 0	1 8	1. 20 6	2 4	0. 04 13	1 6	06 56 5 0	1 6	7 5 0	8 0 6	1 4	8 0 3	1 4	8 1 8	1 3	7 9 5	3 4	1 0 1
	A0 8	12 16 1	5 6	9 2	4 7	0. 09	0. 13 08 0 0	1 8	1. 17 5	2 5	0. 04 08	1 6	06 51 6 0	1 7	7 2 0	7 9 2	1 3	7 8 9	1 4	8 0 8	1 3	7 8 0	3 6	1 0 2
	A0 9	16 32 1	7 4	2 2 0	9 0	0. 18	0. 13 24 0 0	1 8	1. 20 0	2 4	0. 04 08	1 7	06 57 4 0	1 5	7 7 0	8 0 2	1 4	8 0 1	1 3	8 0 8	1 4	7 9 8	3 2	1 0 0
	A1 0	23 55 5	1 1 2	9 4	2 4	0. 16	0. 12 83 0	1 9	1. 16 1	2 4	0. 04 03	1 9	06 56 2	1 4	8 0	7 7 8	1 4	7 8 2	1 3	7 9 9	1 5	7 9 4	3 0	9 8
	A1 1	13 56 5	6 4	1 4 0	6 5	0. 14	0. 12 99 0	2 0	1. 17 1	2 5	0. 04 09	1 7	0. 06 53 8	1 5	8 0	7 8 7	1 5	7 8 7	1 4	8 0 9	1 4	7 8 6	3 1	1 0 0
	A1 2	13 12 14	5 9 0	1 6 0	5	0. 10	0. 13 41 0	1 8	1. 21 4	2 0	0. 04 01	1 7	0. 06 56 4	0 9	9 0	8 1 1	1 4	8 0 7	1 1	7 9 5	1 4	7 9 5	1 8	1 0 2
	A1 3	16 82 14	7 5 2	2 1 0	5	0. 05	0. 13 36 0	1 8	1. 20 6	2 0	0. 03 99	1 7	0. 06 54 6	0 8	0 9 1	8 0 8	1 4	8 0 3	1 1	7 9 1	1 3	7 8 9	1 7	1 0 2
	A1 4	36 52 0	1 6 4	1 5 0	2 6	0. 11	0. 13 27 0	1 8	1. 20 0	2 2	0. 03 98	1 7	06 55 9	1 3	0 8 1 0	8 0 3	1 3	8 0 1	1 2	7 8 8	1 3	7 9 3	2 7	1 0 1
	A1 5	25 93 3	1 1 9	1 0 0	2 4	0. 18	0. 13 04 0	1 8	1. 17 6	2 3	0. 03 98	1 8	06 54 3 0	1 5	7 7 0	7 9 0	1 3	7 8 9	1 3	7 8 9	1 4	7 8 8	3 1	1 0 0
	A1 6	80 66 1	3 2 6	5 8 0	4 9	0. 05	0. 13 30 0	2 8	1. 20 2	2 9	0. 04 03	2 1	06 55 7 0	0 9	9 5 0	8 0 5	2 1	8 0 2	1 6	7 9 9	1 6	7 9 3	1 9	1 0 2
	A1 7	32 68 5	1 5 4	2 2 0	4 2	0. 10	0. 13 17 0 0	1 7	1. 19 2	2 1	0. 03 98	1 6	06 56 5 0	1 2	8 2 0	7 9 8	1 3	7 9 7	1 2	7 8 9	1 3	7 9 5	2 5	1 0 0
Lueshe (RGM 9673)	A1 8	51 11 6	2 3 4	2 0 0	2 4	0. 09	13 31 0	1 8	1. 20 3	2 1	0. 04 03	1 6	06 55 1	1 1	8 5	8 0 6	1 3	8 0 2	1 2	7 9 8	1 3	7 9 1	2 3	1 0 2

	A1 9	38 17 8	1 7 9	2 3 0	3 7	0. 11	0. 13 28 0	1 7	1. 19 7	2 1	0. 04 04	1 6	0. 06 53 7	1 2	0 8 3	8 0 4	1 3	7 9 9	1 2	8 0 0	1 3	7 8 6	2 4	1 0 2
	A2 0	79 84 9	3 5 0	5 8 0	4 6	0. 09	0. 13 50 0	1 9	1. 22 1	2 1	0. 04 10	1 7	0. 06 55 6	0 9	0 9 0	8 1 7	1 5	8 1 0	1 2	8 1 1	1 3	7 9 2	1 9	1 0 3
	A2 1	62 75 1	2 8 9	4 7 0	4 8	0. 16	0. 13 29 0 0	2 0	1. 20 5	2 2	0. 04 06	1 8	0. 06 57 5 0	0 9	0 9 0	8 0 4	1 5	8 0 3	1 2	8 0 5	1 4	7 9 8	2 0	1 0 1
	A2 2	68 18 5	2 8 5	5 9 0	5 8	0. 13	0. 13 32 0 0	3 3	1. 20 7	3 4	0. 04 04	1 7	06 57 3 0	1 1	9 5 0	8 0 6	2 5	8 0 4	1 9	8 0 0	1 3	7 9 8	2 2	1 0 1
	A2 3	77 87 6	2 1 0	4 4 0	6 0	0. 10	0. 13 29 0	7 5	1. 20 3	7 6	0. 04 09	1 8	06 56 6 0	1 0	9 9	8 0 4	5 7	8 0 2	4 3	8 1 0	1 4	7 9 6	2 0	1 0 1
	A2 4 A2 5	34 19 0	1 5 5	1 4 0	2 4	0. 19	13 39 0	1 7	1. 21 3	2 2	0. 04 12	1 9	06 56 9	1 4	7 6	8 1 0	1 3	8 0 6	1 2	8 1 6	1 5	7 9 6	3 0	1 0 2
	A2 6	59 34 5	2 5 7	2 9 0	3 2	0. 12	0. 13 32 0	2 1	1. 20 8	2 3	0. 04 04	1 8	0. 06 57 7	0 9	0 9 2 0	8 0 6	1 6	8 0 4	1 3	8 0 1	1 4	7 9 9	1 9	1 0 1
	A2 7 AS 96 72	63 08 6	2 7 9	3 8 0	3 8	0. 08	13 12 0	2 1	1. 18 7	2 4	0. 04 10	2 0	06 56 2	1 0	9 0	7 9 5	1 6	7 9 5	1 3	8 1 3	1 6	7 9 4	2 2	1 0 0
	A2 8	92 90	1 0 2	1 1	0 1 2	0. 14	0. 11 47 0	1 7	0. 98 8	2 7	0. 03 53	3 0	0. 06 24 8	2 1	0 6 2	7 0 0	1 1	6 9 8	1 4	7 0 2	2 1	6 9 1	4 5	1 0 1
	A3 3	17 99 1	1 9 1	3 7	3 1	0. 12	0. 11 91 0	1 6	1. 03 9	2 3	0. 03 42	1 6	0. 06 32 7	1 7	0 6 9	7 2 5	1 1	7 2 3	1 2	6 7 9	1 1	7 1 7	3 6	1 0 1
	A3 4	34 30 6	1 8 4	2 3	0 6 1	0. 12	0. 11 51 0	1 9	0. 99 84	2 2	0. 03 51	2 2	0. 06 29	1 3	0 8 3 0	7 0 2	1 2	7 0 3	1 1	6 9 7	1 5	7 0 5	2 7	1 0 0
	A3 5	32 86 7	9 2	1 2	1 0	0. 07	0. 11 53 0	2 0	1. 00 1	2 4	0. 03 49	2 1	0. 06 29 9	1 3	8 5	7 0 3	1 4	7 0 5	1 2	6 9 3	1 4	7 0 8	2 7	9 9
	A3 6	15 79 4	5	1. 7	7 8	0. 07	0. 11 62 0	1 7	1. 00 7	2 3	0. 03 51	2 2	0. 06 28 9	1 5	7 4	7 0 8	1 1	7 0 7	1 2	6 9 7	1 5	7 0 4	3 3	1 0 1
	A3 7	75 6	3	0. 3 3	1 4	0. 46	0. 10 72 0	2 3	0. 93 3	6 2	0. 03 42	6	0. 06 31 4	5 7	0 3 7	6 5 6	1 4	6 6 9	3 1	6 8 0	3 8	7 1 3	1 2 2	9 2
	A3 8	83 9	5	0. 6 8	0 9 6	3. 98	0. 11 80 0	3 2	1. 02 7	8 0	0. 03 42	5 5	0. 06 31 5	7 3	0 4 1	7 1 9	2 2	7 1 8	4 2	6 8 1	3 7	7 1 3	1 5 5	1 0 1
Matong o (RGM 9672)	A3 9	11 61	3 7 0	4 0	0 0 1	1. 25	0. 11 77 0	2 5	1. 03 1	6 1	0. 03 48	5	0. 06 35 5	5 6	0 4 0	7 1 7	1 7	7 1 9	3 2	6 9 2	3 5	7 2 7	1 1 9	9 9

	A4 0 A4 1 A4 2	66 65 8 58 76 11 34 17 40	3 3 6 4 0 2 4 2	2 5 6 8 7 3	2 3 .6 0 .0 6 7 .1	0. 07 0. 26 0. 09	0. 11 59 0 0. 11 41 0 0. 11 60 0 0. 11	1 .9 1 .9 2 .0 1	1. 00 6 99 77 1. 00 9	2 .1 3 .1 2 .1 2	0. 03 53 0. 03 51 0. 03 60 0.	1 .7 2 .5 1 .7 2	0. 06 29 5 0. 06 34 2 0. 06 30 9 0. 06	1 .0 2 .5 0 .9	0 8 9 0 6 1 0 9 1 0	7 0 7 6 9 6 7 0 8 7	1 3 1 3 1 3	7 0 7 0 3 7 0 8 7	1 1 6 1 1	7 0 2 6 9 8 7 1 4	1 2 1 7 1 2	7 0 7 2 2 7 1 1 7	2 1 5 2 1 9	
	3 A4 4	2 41 16 4	1 6 4 5	3 8 1	1 0 8	08 08 0. 09	0 0. 11 32 0	7 1 6	0. 98 4	0 2 0	0. 03 52	0 1 6	5 0. 06 30 7	1 1 1	4 0 8 2	0 3 6 9 1	1 1	6 9 6	0 1 0	1 7 0 0	4 1 1	3 7 1 1	2 2 4	
	A4 5	11 21 29	2 9 3	8 3	6 5	0. 06	0. 11 50 0 0.	2 0	0. 99 8	2 2	0. 03 46	1 8	0. 06 29 5 0.	0 8	0 9 3 0	7 0 2	1 4	7 0 3	1 1	6 8 7	1 2	7 0 7	1 7	
	A4 6	57 57 9	1 1 7	2 7	4 6	1. 56	11 45 0 0.	1 9	0. 99 35	3 9	0. 03 49	1 9	06 29 4 0.	3 4	4 9 0	6 9 9	1 3	7 0 1	2 0	6 9 3	1 3	7 0 6	7 3	
	A4 7	19 58 5	1 5 8	2 1	1 0	0. 14	11 65 0 0.	1 9	1. 00 8	2 4	0. 03 56	1 8	06 27 4 0.	1 5	7 9 0	7 1 0	1 2	7 0 8	1 2	7 0 7	1 3	6 9 9	3 1	
	A4 8	27 06 7	2 2 4	3 2	1 3	0. 14	11 69 0 0.	1 8	1. 01 3	2 2	0. 03 49	1 8	06 28 6 0.	1 3	8 1 0	7 1 3	1 2	7 1 0	1 1	6 9 4	1 2	7 0 4	2 8	
	A4 9	36 54 0	4 7 1	5 7	0 6	0. 04	11 44 0	2 0	0. 99 51	2 2	0. 03 61	1 9	06 30 7	1 1	8 8	6 9 8	1 3	7 0 1	1 1	7 1 7	1 3	7 1 1	2 2	:
	Ple sov ice	63 69 2	6 2 9	3 2	0 1 4 0	0. 10	0. 05 32 8 0.	1 7	0. 38 66	2 0	0. 01 69	3 6	0. 05 26 3 0.	1 0	0 8 7 0	3 3 5	6	3 3 2	6	3 3 9	1 2	3 1 3	2 2	
	Ple sov ice	61 54 6	6 4 0	3 3	1 3 0	0. 23	05 40 3 0	1 7	0. 39 54	2 0	0. 01 66	3 3	05 30 7 0	1 2	8 1 0	3 3 9	5	3 3 8	6	3 3 2	1 1	3 3 2	2 7	
(Ple sov ice	58 12 8	6 3 6	3 2	1 5	0. 12	05 37 0	1 8	0. 39 05	2 1	0. 01 68	3 0 1	05 27 3 0	1 1	8 4 0	3 3 7	6	3 3 5	6	3 3 6	1 0	3 1 7	2 6	
	IR P	76 40 2	1 7 4	1 6	1 3	14 .5 1	05 64 6	2 9	0. 41 98	6 9	0. 01 75	0 3	05 39 3	6 3	4 2 0	3 5 4	1 0	3 5 6	2 1	3 5 0	3 6	3 6 8	1 4 2	
	IR P	80 59 9	1 5 3	1 4	0 8	18 .2 9	05 74 1	2 8	0. 42 81	7 3	0. 01 80	6 5	05 40 9	6 7	3 8	3 6 0	1 0	3 6 2	2	3 6 1	2 3	3 7 5	1 5 2	

 r
 y
 s
 4
 b
 y
 1
 k
 k1
 3
 80
 5
 9
 7
 8
 0
 0
 2
 2
 1

 Spot size = 28 µm; depth of crater ~20µm.
 ²⁰⁶Pb/²³⁸U error is the quadratic additions of the within run precision (2 SE) and the external reproducibility (2 SD) of the reference zircon.
 ²⁰⁷Pb/²⁰⁶Pb error propagation (²⁰⁷Pb signal dependent) following Gerdes & Zeh (2009).
 ²⁰⁷Pb/²³⁵U error is the quadratic addition of the ²⁰⁷Pb/²⁰⁶Pb and

 ²⁰⁶Pb/²³⁸U uncertainty.
 ^aWithin run background-corrected mean ²⁰⁷Pb signal in core (counts per coccerd)
 ²⁰⁷Pb signal in core (counts per coccerd)

cps (counts per second).

 $^{\scriptscriptstyle b}$ U and Pb content and Th/U ratio were calculated relative to GJ-1 reference zircon. percentage of the common Pb on the ²⁰⁶Pb. b.d. = below dectection limit. ^d corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶Pb/²³⁸U) and common Pb using Stacy Acction and Kramers (1975) model Pb composition and subsequently normalised to GJ-1 (ID-TIMS value/measured value); 207 Pb/ 235 U calculated using 207 Pb/ 206 Pb/ 238 U/ 206 Pb/ 238 U/ 206 Pb/ 238 U/ 207 Pb/ 235 U error

Sample	Description	87Rb/86 Rb	87Sr/86Sr (i)	147Sm/144 Nd	143Nd/144 Nd	143Nd/144N d(i)	εNd(i)
Matongo carbona	atite (Demaiffe, 2008)						
Gi3-ITS4/84-							
87m	sövite II	0.0016	0.70314	0.0784	0.512273	0.511913	5.2
Gi2-S3/147	sövite II	0.0134	0.70311	0.0802	0.512233	0.511865	3.1
Gi12- S5/121.5m Gi1-S2/171-	sövite II with apatite sövite II with apatite and	0.0001	0.70306	#N.A.	#N.A.	#N.A.	#N.A
172m Gi10-S6/155-	px sövite II with apatite and	0.0071	0.70294	0.0725	0.512273	0.511940	4.6 #N A
156m	px	0.0024	0.70357	#N.A.	#N.A.	#N.A.	
Gi11-S8/56m	px and apatite cumulate	0.0061	0.70344	0.0733	0.512052	0.511716	0.2
Gi16-S3/121m	ferrocarbonatite	0.0066	0.70321	0.0790	0.512205	0.511843	2.7
Gi17-S7/91-95	carbonatite	0.0268	0.71425	0.8398	0.513487	0.509634	-44.0
Gi5-ITS3/291	kfs-fenite	0.4031	0.70280	#N.A.	#N.A.	#N.A.	#N.A #N.A
Gi14-ITS4/150 Gi15-S5/104-	kfs-fenite	0.0938	0.70350	#N.A.	#N.A.	#N.A.	#IN.A
106	bt-fenite	0.2747	0.70400	0.0932	0.512303	0.511875	3.3

Uganda

basin

100 km

Lake

Tanzanian craton

Victoria

Rb Ba Th U Nb Ta K La Ce Pb Pr Sr Nd Zr Hf Sm Eu Ti Gd Tb Dy Y Ho Er Yb Lu

Rb Ba Th U Nb Ta K La Ce Pb Pr Sr Nd Zr Hf Sm Eu Ti Gd Tb Dy Y Ho Er Yb Lu

- This study focuses on a Neoproterozoic carbonatite in Burundi, Central Africa _
- Petrographic and geochemical data allow determining several carbonatite facies
- <text>