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Abstract 

 

Well-preserved acritarchs are documented from Upper Ordovician and lower Silurian sections 

in the Qusaiba-1 shallow core hole of central Saudi Arabia. Sixty-nine genera comprising 68 

named species and 62 forms under open nomenclature were recorded from forty core samples. 

 

At the base of the Upper Ordovician and lower Silurian succession in Qusaiba-1 is the 

Quwarah Member of the Qasim Formation. This is overlain by glacio-marine deposits of the 

Sarah Formation, which are overlain in turn by the Qusaiba Member of the Qalibah 

Formation. Four distinct acritarch assemblages are informally numbered 1 to 4 from the base 

of the core upwards. Assemblage 1 is from the Quwarah Member, and is independently dated 

by Chitinozoa as being late Katian to early Hirnantian in age (Late Ordovician). The 

assemblage contains a number of new species, plus species reported from low-latitude Late 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 

 

Ordovician Laurentia and Baltica as well as the Gondwanan margin. Assemblage 2 is from a 

glacitectonite at the base of the Sarah Formation and is early Hirnantian in age. Assemblage 

3, from the Baq’a Shale Member of the Sarah Formation, is also Hirnantian in age and is 

characterized by a stratigraphically admixed Ordovician palynoflora. Assemblage 4 is 

restricted to three samples from the Qusaiba Member in the lowermost part of the Qalibah 

Formation and is dated as Rhuddanian (earliest Silurian). The highest of the three samples 

that comprise Assemblage 4 is from the same level as a gamma ray peak at 254.8 ft. 

 

Reworking of Middle Ordovician forms is evident in Assemblage 3 and is attributed to 

processes of glacial erosion and resedimentation during glacial melting. Reworked specimens 

are probably from the Hanadir Member and possibly also the Kahfah Member of the Qasim 

Formation. The extent of later Ordovician reworking in Assemblage 3, for example reworking 

from the Quwarah Member, is unclear. However, given that glacial erosion extended to levels 

below the Quwarah Member, Late Ordovician palynomorphs present in Assemblage 3 might 

also be reworked. The extent of any reworking in assemblages 1 and 2 is uncertain. There is 

no evidence for reworking in Assemblage 4. 

 

Two new acritarch genera, five new species and one new combination are proposed: 

Dorsennidium polorum (Miller and Eames, 1982) comb. nov., Falavia magniretifera gen. et 

sp. nov., Inflatarium trilobatum gen. et sp. nov., Nexosarium mansouri sp. nov., 

Orthosphaeridium orthogonium sp. nov. and Tunisphaeridium bicaudatum sp. nov. Samples 

from the same set were used for chitinozoan, scolecodont and miospore studies (this volume). 

Eurypterid and graptolite remains are also present. 

 

Key words:  
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Biostratigraphy, Taxonomy, Acritarchs, Late Ordovician, Early Silurian, Saudi Arabia 

 

 

1. Introduction 

 

The acritarchs, as defined by Evitt (1963), are an artificial incertae sedis group of organic-

walled microfossils with unknown biological affinities. Palaeozoic acritarchs have been 

recorded mainly from marine deposits, and they probably include microorganisms with 

different biological affinities, although many are thought to be the resting stages of marine 

phytoplankton (Tappan, 1980; Martin, 1993; Strother, 1996). The group possibly includes 

dinoflagellate cysts that lack diagnostic morphological features, but this hypothesis remains to 

be tested for the majority of genera (Sarjeant and Taylor, 1999). As the biological affinities of 

many forms included in the group remain unresolved, we continue to use the informal term 

acritarchs, rather than any of the alternatives terms that have been proposed such as organic-

walled microphytoplankton. 

 

Acritarchs were first reported from the Lower Palaeozoic succession in Saudi Arabia by 

Hemer (1968). Some of the forms illustrated by Hemer (1968) were attributed to named 

species such as Baltisphaeridium [now Evittia or Diexallophasis] denticulatum, Leiofusa 

[Eupoikilofusa] striatifera, Veryhachium [Neoveryhachium] carminae and 

Peteinosphaeridium bergstroemii. Other forms were unnamed at the time and were recorded 

under open nomenclature using terms such as ‘Incertae sedis Form B’ or ‘Acritarch sp. X’. 

From Hemer’s (1968) illustrations, these are now recognizable as actual or probable species 

of Aremoricanium, Baltisphaeridium, Cymatiogalea or Stelliferidium, Dicrodiacrodium and 

Veryhachium. Since then, Lower Palaeozoic acritarchs from Saudi Arabia have been studied 
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in more detail and with greater stratigraphic precision (McClure, 1988; Vaslet, 1989; 

Jachowicz, 1995; Le Hérissé et al., 1995; Al-Ruwaili, 2000; Le Hérissé, 2000; Molyneux and 

Al-Hajri, 2000; Miller and Melvin, 2005; Le Hérissé et al., 2007; Miller and Al-Ruwaili, 

2007). 

 

The present study investigates assemblages of Late Ordovician (Katian–Hirnantian) and early 

Silurian (Rhuddanian) acritarchs from the Qusaiba-1 shallow core section in the Qasim region 

of central Saudi Arabia (Fig. 1). They are very abundant, well preserved and form diverse 

assemblages throughout. The acritarchs of this interval are of interest for two reasons. First, 

Upper Ordovician–lower Silurian strata in North Africa and the Middle East are of economic 

importance. The Upper Ordovician glacial and related deposits constitute significant 

reservoirs (Le Héron et al., 2009) and the lower Silurian organic-rich (‘hot’) shales are the 

most important Palaeozoic petroleum source rocks in the region (Lüning et al., 2003). Second, 

acritarch records across the Ordovician–Silurian boundary document in part the probable 

phytoplankton response to climate-related environmental changes through a mass extinction 

event (Beuf et al., 1971; Deynoux et al., 1985; Vaslet, 1989; Ghienne et al., 2007; Le Heron 

and Craig, 2008). The clearest evidence for Late Ordovician glaciation and deglaciation (e.g. 

glacially related sediments, striated surfaces) comes from the Hirnantian, immediately before, 

during and immediately after the Late Ordovician ice maximum (Le Heron and Craig, 2008). 

Recent work, however, suggests that climate change in the Ordovician was gradual, with a 

cooling trend from the Early Ordovician onwards (Trotter et al., 2008; Vandenbroucke et al., 

2010), and that ice-sheets could have formed as early as the early–middle Katian in Central 

and West Africa and eastern South America (Loi et al., 2010, fig. 14; Ghienne, 2011). 

Biostratigraphic and palaeoenvironmental studies are important for confirmation of this 

hypothesis. In addition, the Late Ordovician concluded with the oldest of the so-called ‘Big 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5 

 

Five’ extinction events, with extinction among marine families and genera at the end of the 

Ordovician being the second largest after the end-Permian extinction (Sepkoski, 1996; 

Sheehan, 2001). Two phases of faunal extinction and turnover have been recognized in the 

Hirnantian. The first is linked to the onset of the glaciation. The second is related to the 

melting of the Gondwanan ice sheet and the associated transgression that followed 

deglaciation (Delabroye and Vecoli, 2010). The mechanics of the end-Ordovician extinction 

and its relationship to the glaciation remain subjects of debate and research. 

 

 

2. Stratigraphy 

 

Qusaiba-1 was drilled to a total depth of 551.0 ft in the Qasim area, NNW of the abandoned 

Qusaiba village in central Saudi Arabia (Fig. 1). Graptolites collected from the core between 

253.3 ft and 133.5 ft indicate a mid-Llandovery, Aeronian, convolutus Biozone age 

(Zalasiewicz et al., 2007), and hence the presence of MFS S10 of Sharland et al. (2001). 

 

The detailed lithostratigraphy and depositional history of the Upper Ordovician and 

lowermost Silurian rocks in the core have been described by Melvin (this volume). At the 

base of the core is the Quwarah Member of the Qasim Formation. The base of the member 

was not reached in the borehole. The Quwarah Member comprises a lower interval, 74.2 ft 

thick, from 551.0 ft to 476.8 ft, and an upper interval of 15.5 ft from 476.8 ft to 461.3 ft. The 

contact between the lower and upper intervals is tentatively identified as a possible 

transgressive surface of erosion (Melvin, this volume). The lower interval consists of 

mudstone, sandstone and silty sandstone deposited in pro-delta, delta-front and non-deltaic, 

shallow marine, lower shoreface to offshore settings. The upper interval of the Quwarah 
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Member commences with a thin transgressive pebble-lag deposit overlain by sandstones with 

subordinate mudstones, and is interpreted as a prograding shoreface sequence. 

 

Resting unconformably on the Quwarah Member, the Sarah Formation begins with a basal 

pebble conglomerate that is overlain by a grey-green sandy siltstone. These lithologies 

comprise a basal disrupted facies of the Sarah Formation between 461.3 ft and 436.0 ft (Fig. 

2). The grey-green sandy siltstone is characterized by intense disruption, severe brecciation 

and rotation of bedding, and is interpreted as a glacitectonite that formed during the initial 

advance of the South Polar ice sheets in Arabia, at the onset of the Late Ordovician 

(Hirnantian) glaciation. The glaciogenic nature of the basal disrupted facies was noted by 

McClure (1978) and Young (1981). 

 

Overlying the glacitectonite are thick sandstones of the Sarah Sandstone Member (436.0–

351.4 ft), deposited subaqueously from glacial outwash during a phase (or phases) of glacial 

retreat. The Sarah Sandstone Member is succeeded by the Baq’a Shale Member (351.4–293.5 

ft). The lower 2.4 ft of the Baq’a Shale Member comprises laminated sandy siltstone, 

interpreted as glaciogenic stratified diamictites deposited during initial terminal melting of the 

Hirnantian ice sheets. The succeeding 55.5 ft of the Baq’a Shale consists of silty mudstones 

with thin, fine-grained sandstones deposited from gravity flows from a prograding prodelta 

wedge. 

 

Elsewhere in Saudi Arabia, the Hawban Member of the Sarah Formation, as restricted by 

Senalp et al. (2002), occupies a stratigraphical position above the Sarah Sandstone Member in 

some sections, but is interpreted as a glacial advance facies as opposed to the glacial retreat 
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facies of the Baq’a Shale Member (Melvin, this volume). The Hawban Member was not 

identified in the Qusaiba-1 core. 

 

The Baq’a Sandstone Member (293.5–257.0 ft) is the stratigraphically highest unit of the 

Sarah Formation and consists of two distinct sandstone units. The lower unit was possibly 

deposited in a delta-front setting whereas the upper unit comprises fluvial deposits. The basal 

contact of the fluvial sandstones with the underlying delta-front deposits is tentatively 

identified as an isostatic rebound unconformity. 

 

Overlying the Baq’a Sandstone Member, the lowermost deposits of the Silurian Qusaiba 

Member of the Qalibah Formation comprise mudstone of Rhuddanian age. The Rhuddanian 

mudstone occupies a 3.5 ft thick interval from 257.0 ft to 253.5 ft, beneath the graptolitic 

mudstones of Aeronian age referred to above (Zalasiewicz et al., 2007). The Rhuddanian 

section might be a condensed section, deposited during marine flooding that followed the 

retreat of the ice sheets in Saudi Arabia. The overlying Aeronian beds were deposited in a 

marine shelf setting. 

 

 

3. Material and methods 

 

Samples from Qusaiba-1 were analysed to document and calibrate changes in the 

palynological record of acritarchs, chitinozoans, scolecodonts and miospores across the 

Ordovician–Silurian boundary. For the most part, the samples used to study each group were 

from the same depths. Forty core samples were collected below the Aeronian section in 

Qusaiba-1 for the study of acritarchs, and were prepared in the Palaeobiogeology, 
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Palaeobotany and Palaeopalynology (PPP) Research Unit, University of Liège, Belgium. 

Twelve samples were collected and prepared from marine deposits of the Quwarah Member 

between 551.0 ft and 476.7 ft. Eleven samples are from the lower interval of the Quwarah 

Member in Qusaiba-1, and the remaining sample, from 476.7 ft, is just above the base of the 

upper interval. Four samples were collected and prepared from the basal disrupted facies of 

the Sarah Formation between 458.4 ft and 436.0 ft, and 21 samples from the Baq’a Shale 

Member between 350.6 ft and 292.3 ft. Three samples were collected and prepared from the 

Rhuddanian section of the Qusaiba Member, from 256.4 ft, 255.75 ft and 254.8 ft. 

 

4. Acritarch assemblages 

 

Microfloras comprising well-preserved acritarchs were recovered from all samples. The 

stratigraphic occurrence of genera and species in Qusaiba-1 is shown in Figure 2. The 

microfloras can be described in terms of four discrete assemblages, each of which 

corresponds to a sampled lithostratigraphic unit. Assemblage 1 comprises microfloras from 

the Quwarah Member of the Qasim Formation between 551.0 ft and 476.7 ft (cores 49 to 56). 

Assemblage 2 is from the basal glacitectonite deposits of the Sarah Formation between 458.4 

ft and 436.0 ft (cores 45, 47). Assemblage 3 is from the Baq’a Shale Member of the Sarah 

Formation between 350.6 ft and 294.8 ft (cores 31 to 36). Assemblage 4 is from the 

Rhuddanian part of the Qusaiba Member of the Qalibah Formation and comprises acritarchs 

from the three samples between 256.4 ft and 254.8 ft (core 27). 

 

Many Late Ordovician species recorded from the Quwarah Member and Sarah Formation 

have also been recorded from Late Ordovician assemblages of Laurentia (Loeblich and 

Tappan, 1978; Wright and Meyers, 1981; Jacobson and Achab, 1985; Wicander et al., 1999; 
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Playford and Wicander, 2006; Wicander and Playford, 2008). Their occurrence in Saudi 

Arabia supports suggestions (Vecoli and Le Hérissé, 2004) of cosmopolitanism among Late 

Ordovician acritarch assemblages. 

 

4.1. Assemblage 1 (Quwarah Member, 551.0–476.7 ft) 

 

Assemblage 1 comprises microfloras of generally high diversity and abundance. In the eleven 

samples from the lower Quwarah interval recognized by Melvin (this volume), between 551.0 

ft and 479.4 ft, diversity ranges from 23 to 46 species per sample, with a mean of 35. Above 

this interval, the microflora from a single sample from the upper Quwarah interval of Melvin 

(this volume), from 476.7 ft, comprises 14 taxa. The lower diversity in this sample possibly 

reflects the postulated change in the environment of deposition from a lower shoreface or 

offshore setting to a prograding shoreface environment. 

 

Microfloras from the Quwarah Member are dominated by veryhachid acritarchs (species of 

Neoveryhachium, Striatotheca, Veryhachium and Villosacapsula) and leiospheres 

(Leiosphaeridia spp.). The veryhachids account for between 40% and 61% of counted 

specimens in some samples, with Veryhachium being the dominant genus. Leiospheres 

comprise between 26% and 43% in the same samples, but in all cases are less numerous than 

the veryhachids. Leiofusa is also relatively common, and particularly so in the lowest sample, 

from 551.0 ft, where the genus comprises 15% of counted specimens. 

 

Stratigraphically important forms include Actinotodissus longitaleosus, Actipilion druggii, 

Anomaloplaisium lumariacuspis, Cheleutochroa spp., Dactylofusa cucurbita, D. 

striatogranulata, Dorsennidium hamii, Fractoricoronula trirhetica, Leprotolypa evexa, 
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Multiplicisphaeridium bifurcatum, M. irregulare, Neoveryhachium carminae s.l., 

Ordovicidium elegantulum, Orthosphaeridium spp., Safirotheca safira, Sylvanidium? 

hawbanense, Veryhachium subglobosum, Villosacapsula irrorata and V. setosapellicula. Of 

these, Anomaloplaisium lumariacuspis, Dactylofusa cucurbita, D. striatogranulata and 

Safirotheca safira are restricted to the Hirnantian Stage on the range charts published by 

Vecoli and Le Hérissé (2004), based on data from eastern Avalonia (England, Wales and 

north Germany) and the mid- to high-palaeolatitude Gondwanan margin (southern Europe, 

North Africa, Saudi Arabia, southeast Turkey). However, the range of D. striatogranulata 

extends in Algeria from the Upper Ordovician into the lower Silurian (zones F and G1 of 

Jardiné et al., 1974), and recent work on microfloras from Chad (Le Hérissé et al., 2013) has 

confirmed that D. striatogranulata ranges into the lower Silurian there as well. In addition, 

forms attributed to D. striatogranulata have been recorded from the Early Ordovician of 

northwest Argentina (Achab et al., 2006) and South China (Azygograptus suecicus Graptolite 

Biozone: Tongiorgi et al., 2003), and from the Middle Ordovician (Darriwilian) of the 

Canning Basin, Australia (Playford and Martin, 1984; Quintavalle and Playford, 2006a, b). 

 

Sylvanidium? hawbanense, first recorded by Miller and Al-Ruwaili (2007) from the Hawban 

and Baq’a Shale members of the Sarah Formation, is well represented in the Quwarah 

Member in Qusaiba-1. It occurs in nine out of the 12 samples collected from that unit, and 

comprises more than 2% of counted specimens in samples from 528.3 ft and 488.3 ft, and 

more than 3% of counted specimens in the lowermost sample from 551.0 ft. 

 

A number of species have their last appearance datums (LADs) in Assemblage 1 and 

therefore have the potential to distinguish Quwarah assemblages from those of overlying 

deposits. These include Actinotodissus longitaleosus, Cheleutochroa clandestina?, 
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Fractoricoronula trirhetica, Petaloferidium spp., Striatotheca aff. monorugulata and 

Villosacapsula irrorata. First and last appearance datums within the Quwarah Member might 

also be biostratigraphically significant. Actinotodissus longitaleosus, Ampululla? sp. and 

Fractoricoronula trirhetica, for example, do not occur above the lower part of the Quwarah 

Member in Qusaiba-1, whereas Anomaloplaisium lumariacuspis, Caelatosphaera cerebella 

and Orthosphaeridium cf. chondrododora have FADs higher in the member, at or above 

488.3 ft. The FADs of a number of other species at 536.7 ft, 535.2 ft and 528.3 ft in the 

Quwarah Member (Fig. 2), notably those of Inflatarium trilobatum gen. et sp. nov., 

Orthosphaeridium orthogonium sp. nov. and Safirotheca safira, might serve to distinguish the 

upper part of the Quwarah Member from the lowermost sample at 551.0 ft. There are no 

FADs to distinguish the highest sample from the upper Quwarah interval in Qusaiba-1 from 

underlying samples, but only the reduction in diversity noted above. 

 

Age. Assemblage 1 is typical of Late Ordovician acritarch assemblages from Gondwanan and 

Perigondwanan regions. The Quwarah assemblage is similar in some respects to the 

Hirnantian assemblage described from the Hawban Member of the Sarah Formation (Miller 

and Al-Ruwaili, 2007). That assemblage also has a high percentage of veryhachid acritarchs 

(about 50% of the assemblage) with leiospheres being the next most common forms. The 

occurrences of Dactylofusa cucurbita, Safirotheca safira and Sylvanidium? hawbanense in 

Assemblage 1 also suggest a Late Ordovician, possibly Hirnantian age. However, Miller and 

Al-Ruwaili (2007) have pointed out that acritarch ranges from the Ordovician of Arabia are 

too incompletely known to restrict species such as Sylvanidium? hawbanense to the 

Hirnantian. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

12 

 

In contrast, Actinotodissus longitaleosus and Fractoricoronula trirhetica are restricted largely 

to the Katian Stage in Vecoli and Le Hérissé’s (2004) compilation of ranges, equivalent to the 

upper Caradoc Series and pre-Hirnantian Ashgill Series of the Anglo-Welsh succession, 

possibly just ranging into the base of the Hirnantian. Dorsennidium hamii, Orthosphaeridium 

rectangulare and Veryhachium subglobosum are also shown by those authors to have first 

appearance datums (FADs) in the upper Katian (= Ashgill) before ranging into the Hirnantian. 

 

Chitinozoan assemblages from the Quwarah Member in Qusaiba-1 are attributed to the 

Ancyrochitina merga Biozone by Paris et al. (this volume), who also argue that much of the 

Quwarah Member in the borehole is late Katian–early Hirnantian in age, with a late Katian 

age suggested for the lowest sample (551.0 ft). Acritarch Assemblage 1 is accordingly 

considered to be of late Katian–early Hirnantian age. 

 

Other species recorded from Assemblage 1 are potential stratigraphic markers for the upper 

Katian–lower Hirnantian in Saudi Arabia, but some are new and others have not yet been 

formally described. Consequently, their ranges are unknown. They include Falavia 

magniretifera gen. et sp. nov., Striatotheca aff. monorugulata, which resembles S. 

monorugulata recorded from the upper Floian to lower Darriwilian stages (i.e. the Anglo-

Welsh Arenig Series) of South China and Pakistan (Yin et al., 1998; Quintavalle et al., 2000; 

Tongiorgi et al., 2003; Yan et al., 2011), and Tunisphaeridium bicaudatum sp. nov. These 

forms are described below in the discussion of Systematic Palaeontology. 

 

4.2. Assemblage 2 (Sarah Formation, basal disrupted facies, 458.4–436.0 ft) 
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Assemblage 2 occurs in the basal disrupted facies of the Sarah Formation and comprises 42 

forms, 35 of which are also present in Assemblage 1 (Fig. 2). Diversity per sample tends to be 

slightly lower than that of Assemblage 1, with between 21 and 24 species per sample (mean 

23), but the representation of certain groups such as the veryhachid or leiofusid acritarchs 

(principally species of Eupoikilofusa, Leiofusa and Poikilofusa) is comparable with that in the 

Quwarah Member. 

 

Assemblage 2 is distinguished from Assemblage 1 by the first appearances in the Qusaiba-1 

core of Eupoikilofusa platynetrella, Moyeria cabottii, Oppilatala cf. frondis, a large 

Poikilofusa sp. and Veryhachium mareki. Of these, Eupoikilofusa platynetrella, Oppilatala cf. 

frondis and Veryhachium mareki are present in at least two of the four samples. A number of 

other species have their last appearance datums in Assemblage 1, as noted above, and 

therefore have the potential to distinguish that assemblage from Assemblage 2. 

 

Forms that were recorded from the Quwarah Member and are present in at least three samples 

from the basal Sarah Formation include Actinotodissus crassus, Eupoikilofusa spp. (including 

Eupoikilofusa striatifera), Evittia denticulata denticulata, Ferromia pellita, Leprotolypa 

evexa, Lophosphaeridium spp., Neoveryhachium carminae constricta, Safirotheca safira, 

Veryhachium europaeum, Veryhachium lairdii, Veryhachium oklahomense, Veryhachium 

subglobosum, Veryhachium trispinosum and Villosacapsula setosapellicula. Veryhachid 

acritarchs (species of Neoveryhachium, Veryhachium and Villosacapsula) are well 

represented. 

 

A number of forms recorded from the basal Sarah Formation are present in the lower interval 

of the Quwarah Member, but not in the upper interval of that member from 476.8 ft to 461.3 
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ft (Fig. 2). These include Actinotodissus crassus, Actipilion druggii, Baltisphaeridium 

perclarum, Caelatosphaera cerebella, Cheleutochroa gymnobrachiata, Eupoikilofusa spp., 

Evittia denticulata denticulata, Ferromia pellita, Leprotolypa evexa, Nexosarium parvum, 

Pirea spp., Safirotheca safira and Tunisphaeridium spp. However, only one sample was 

included from the upper Quwarah interval (476.7 ft), and no samples were collected from the 

uppermost part of the member between 476.7 ft and 461.3 ft. In view of this, it is difficult to 

evaluate the significance, or otherwise, of the absence of these forms from the upper Quwarah 

Member and their reappearance in the basal Sarah Formation. The possibility that they might 

be reworked in the basal Sarah Formation is discussed below. 

 

Age and discussion. Assemblage 2 has a number of taxa in common with Assemblage 1, 

indicating a Late Ordovician, late Katian–Hirnantian age. The large Veryhachium mareki, 

which appears for the first time in the succession, was previously described from the Prague 

Basin of Bohemia (Vavrdová, 1989), where it is present in pre-glacial (Kraluv Dvur 

Formation), glacial and post-glacial deposits (Kosov Formation), i.e. in the Asghill Series 

(late Katian to Hirnantian). The species has also been recorded in many Late Ordovician high 

palaeolatitude Gondwanan sections, but is only associated with the major Hirnantian glacial 

advance (Vecoli and Le Hérissé, 2004). The Chitinozoa from this interval (Paris et al., this 

volume) indicate an early Hirnantian age. 

 

 

4.3. Assemblage 3 (Baq’a Shale Member, 350.6–292.3 ft) 

 

Assemblage 3 is from the Baq’a Shale Member of the Sarah Formation and is characterized 

by stratigraphic admixing of Middle and Late Ordovician taxa. The Baq’a Shale Member is 
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the most intensively sampled part of the core from Qusaiba-1. Twenty-one samples were 

collected between 350.6 ft and 292.3 ft. 

 

Excluding recognizably reworked Middle Ordovician forms, the number of taxa recorded per 

sample ranges from nine to 25, with a mean of 18. Many range up from the Quwarah Member 

and/or the basal Sarah Formation (Fig. 2). Taxa that have FADs in the Baq’a Shale include 

Cymbosphaeridium spp., Disparifusa sp. A, Dorsennidium spp., Evittia sp. 1, Leiofusa sp. A, 

Leiofusa sp. B, Multiplicisphaeridium paraguaferum, Multiplicisphaeridium ramusculosum 

and Sol sp. 2, although the last might be another form that is reworked from the Middle 

Ordovician. Most of these are present in no more than three or four samples, although 

Dorsennidium spp. occur more frequently. Cymbosphaeridium spp., Multiplicisphaeridium 

paraguaferum and Multiplicisphaeridium ramusculosum, which are more characteristic of 

Silurian assemblages, have FADs in the upper half of the sampled section. 

 

Of the other forms recorded, leiofusid (Eupoikilofusa spp., including E. platynetrella, 

Leiofusa spp.) and veryhachid acritarchs (Neoveryhachium carminae sl, Veryhachium spp., 

including V. lairdii, V. subglobosum and V. trispinosum) are present in most samples, together 

with leiospheres (Leiosphaeridia spp.). Sylvanidium? hawbanense is also present in most 

samples from the Baq’a Shale, despite being absent from Assemblage 2, and Veryhachium 

oklahomense and Villosacapsula setosapellicula occur in nearly 50% of samples. 

 

A distinguishing feature of Assemblage 3 is the large number of reworked Middle Ordovician 

forms. Between 12% and 38% of species in each sample from the Baq’a Shale Member are 

considered to be reworked from the Middle Ordovician, and they outnumber Late Ordovician 

forms in terms of abundance. The occurrence of reworked Middle Ordovician taxa is 
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attributed to glacial erosion and re-deposition during final melting of the Hirnantian 

Gondwanan ice sheets. Reworked Chitinozoa, including Middle Ordovician species, are also 

present in the Baq’a Shale Member (Paris et al., this volume). Erosion of older Ordovician 

strata during the Hirnantian glaciation has been previously documented in Saudi Arabia 

(Miller and Al-Ruwaili, 2007; Melvin and Miller, 2009) and other high-palaeolatitude 

Gondwanan localities (Vecoli and Le Hérissé, 2004; Videt et al., 2010). The evidence for 

such erosion, probably the result of both deep glacial incisions and erosion by meltwater, 

includes admixed palynological assemblages. 

 

A number of taxa, including Beromia clipeata and Saharidia munfarida, which are important 

in high palaeolatitude Gondwanan assemblages associated with the second phase of 

Hirnantian glacial advance, and particularly with final melting, were not recorded in this 

study. Their absence might indicate palaeobiogeographical differences in composition 

between Saudi Arabian and other high palaeolatitude Gondwanan assemblages. Alternatively, 

their absence could reflect different palaeoenvironmental conditions, with perhaps a more 

brackish environment for the Baq’a Shale Member (Paris et al., this volume) in contrast to 

more marine conditions elsewhere, for example in the Late Hirnantian Hassi el Hadjar 

Formation in the Algerian Sahara (Paris et al., 2000; Vecoli and Le Hérissé, 2004). 

 

4.4. Assemblage 4 (Qusaiba Member, 256.4–254.8 ft) 

 

The highest assemblage is based on the three samples collected from 256.4 ft, 255.75 ft and 

254.8 ft. The succession consists of grey fissile mudstones deposited during the earliest stage 

of the Silurian marine transgression on the Late Ordovician Baq’a Sandstone Member 

(Melvin, this volume). The palynofacies are variable in the three samples, but the higher two 
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samples, and particularly the highest from 254.8 ft, contain abundant clumps of amorphous 

organic matter that dilute the acritarchs on the slides. This latter sample is from the same 

depth as a gamma ray peak in the borehole. 

 

Abundance and diversity are both relatively low in Assemblage 4. In terms of diversity, there 

are between 7 and 13 species per sample (mean 10). The assemblage is also distinct from the 

underlying assemblages in its composition. It contains several Multiplicisphaeridium species, 

including Multiplicisphaeridium irregulare and Multiplicisphaeridium raspum (the latter 

included in Multiplicisphaeridium spp. in Fig. 2), Evittia denticulata denticulata 

morphotypes, simple Micrhystridium species, rare Leprotolypa evexa and Salopidium spp. 

The genus Salopidium has not been reported below the Silurian. 

 

The presence in two samples of Dorsennidium polorum comb. nov. is of particular interest. 

This species, described as Micrhystridium? polorum by Miller and Eames, 1982, has a 

rectangular to quadrangular vesicle with more processes concentrated on one side of the 

vesicle than the other and a process-free area on the centre of the vesicle. The species was 

described from the early Silurian (Rhuddanian) Medina Group of the Niagara Gorge, New 

York, USA. Recently, it has also been described in a cored succession in northern Chad, in an 

interval referred to a post-elongata, pre-fragilis chitinozoan biozone of latest Hirnantian to 

earliest Rhuddanian age (Le Hérissé et al., 2013). 

 

Other characteristic elements encountered in this interval are Nexosarium mansouri sp. nov. 

and a single specimen of Hoegklintia attributed to Hoegklintia aff. digitata. The assemblage 

also contains leiofusid acritarchs, Leiosphaeridia spp. and a few triapsidate and quadrangular 

veryhachid acritarchs. A few rounded forms are referred to Veryhachium aff. subglobosum 
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because of their strongly convex vesicle sides, but they have shorter processes than true V. 

subglobosum. Nexosarium mansouri sp. nov. resembles a species from the early Silurian 

acuminatus Graptolite Biozone in the Zelkovice Formation of Bohemia, described as 

Oppilatala cf. frondis (Dufka and Fatka, 1993), but the latter is too poorly preserved to be 

certain that they are the same species. 

 

Among the leiofusid acritarchs, Leiofusa sp. B (Plate XIV, 10) is a large fusiform species with 

a slightly asymmetrical vesicle, a thin vesicle wall that is commonly folded, and short polar 

processes. The vesicle is 90 µm long by 50 µm wide, and the processes are 30 µm long. A 

second form, Leiofusa sp. C (Plate XIV, 11), is a very thin-walled and folded leiofusid with a 

total length of 230–250 µm and a width of 42–45 µm.  

 

Age and significance. The occurrence of Dorsennidium polorum and the absence of species 

with true Ordovician character constitute the best evidence to suggest a Rhuddanian age, and 

possibly earliest Rhuddanian, for Assemblage 4 in Qusaiba-1. This is consistent with the 

conclusion reached from the study of Chitinozoa (Paris et al., this volume). The lowest 

graptolites identified in the Qusaiba-1 core are assigned to the mid-Aeronian convolutus 

Biozone, at 253.3 ft, only 1.5 ft above the highest sample studied here (Zalasiewicz et al., 

2007).  

 

Publications that document the abundance and diversity of acritarchs at high palaeolatitudes 

in Rhuddanian sections with independent stratigraphic control (e.g. by graptolites of the 

persculptus-ascensus–acuminatus biozones or Chitinozoa) are rare. In Saudi Arabia, 

assemblages from 8171.0–9468.9 ft in well HWTH-1, for which an early Rhuddanian age was 

proposed by Le Hérissé et al. (1995), yielded only long ranging species of little stratigraphic 
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value. Subsequently, a tentative Ordovician age was suggested by Molyneux and Al-Hajri 

(2000) for a sample from 8549.0 ft. The other reference to earliest Rhuddanian acritarchs in 

Saudi Arabia (Le Hérissé, 2000), with independent age control provided by Chitinozoa, was 

concerned with an interval in the lower part of core 12 in well MKSR-1. This has since been 

re-interpreted as being late Hirnantian in age, following re-attribution of Spinachitina fragilis 

to S. oulebsiri (Paris et al., this volume). The assemblage of acritarchs described by Le 

Hérissé (2000), rich in sphaeromorph acritarchs (leiospheres), is different from the 

assemblage described in Qusaiba-1, which is richer in acanthomorphic acritarchs with taxa of 

better biostratigraphic value.  

 

Other relevant data come from Libya, Tunisia and Bohemia. The assemblage from the Ll1 

Local Biozone in northeast Libya and dated as Rhuddanian s.l. (Hill and Molyneux, 1988) 

does not enable precise correlation with Qusaiba-1. In Tunisia, acritarch-poor samples have 

been recorded from a Rhuddanian interval below and within a ‘hot-shale’ (Vecoli et al., 

2009), but are attributed to the vesiculosus and younger graptolite biozones and are apparently 

younger than the interval studied here. Results of palynological studies across the Ordovician-

Silurian boundary in Bohemia (the local boundary between the Kosov and Llandovery series) 

were published by Dufka and Fatka (1993). Oppilatala cf. frondis, from the acuminatus 

Graptolite Biozone in the Zelkovice Formation of Bohemia, is possibly comparable to 

Nexosarium mansouri sp. nov. recorded herein, but no acritarch species were described from 

the ascensus Graptolite Biozone of Bohemia. 

 

Environmental conditions under which beds across the Ordovician–Silurian boundary were 

deposited varied along the Gondwanan margin, controlled, for example, by position in 

relation to the continental margin, position in each basin, and isostatic readjustments during 
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deglaciation. Variable environmental conditions explain variations in the composition of 

assemblages. The Qusaiba-1 assemblage most closely resembles an assemblage from the late 

Hirnantian to earliest Rhuddanian in northern Chad (Le Hérissé et al., 2013), which also 

contains Dorsennidium polorum comb. nov., even though the deposits in northern Chad are 

from a marginal-marine environment whereas those from Qusaiba-1 are from a more open 

marine setting. 

 

Phytoplankton dynamics across the Ordovician–Silurian boundary and from the early Silurian 

at low palaeolatitudes, with reference to acritarch data, have also been discussed (Delabroye 

et al., 2011; Johnson, 1985; Hill and Dorning, 1984; Masiak et al., 2003; Martin, 1988; Miller 

and Eames, 1982). For the Rhuddanian, the closest similarity is with western New York State 

(Miller and Eames, 1982). 

 

 

5. Reworking 

 

Reworking of Middle Ordovician acritarchs is evident in the Baq’a Shale Member in the 

Qusaiba-1 core, and is attributed to processes of glacial erosion and resedimentation during 

glacial melting. The extent of reworking at other levels in the Qusaiba-1 core is uncertain. 

Three questions arise in connection with this. 1. Are Late Ordovician forms reworked in the 

Baq’a Shale Member as well as Middle Ordovician forms, or are the Late Ordovician forms in 

place? 2. Is there any evidence for reworking in the basal Sarah Formation? 3. Is there any 

evidence for reworking in the Quwarah Member? 

 

5.1. Baq’a Shale Member 
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Species of Acanthodiacrodium, Arkonia, Cymatiogalea, Dicrodiacrodium, Frankea, 

Peteinosphaeridium, Stelliferidium and Uncinisphaera, together with Aremoricanium 

rigaudae, Dasydorus cirritus, Stellechinatum celestum, Striatotheca quieta and S. 

rarirrugulata, are all known from the Middle Ordovician (Darriwilian) Hanadir Member of 

the Qasim Formation (Le Hérissé et al., 2007). They are considered to be reworked in the 

Baq’a Shale Member (Fig. 2), probably from the Hanadir Member and possibly also from 

higher members of the Qasim Formation such as the Kahfah Member. They were most likely 

reworked during the second phase of Hirnantian glaciation and re-deposited in the Baq’a 

Shale Member during deglaciation (Melvin, this volume). The Middle Ordovician origin of 

these forms is consistent with the derivation of reworked chitinozoans in the same deposits 

(Paris et al., this volume). 

 

Determining whether any of the Late Ordovician taxa recorded from the Baq’a Shale Member 

are reworked is more difficult, especially as there is no difference in preservation to 

distinguish possible reworked forms. Excluding those forms considered to be reworked from 

the Middle Ordovician, 64 acritarch taxa were recorded from the Baq’a Shale Member. The 

majority (33) were also recorded from the Quwarah Member and basal Sarah Formation. A 

further 15 taxa were recorded from the Baq’a Shale and the Quwarah members but not from 

the basal Sarah Formation. Six taxa were recorded from the Baq’a Shale Member and the 

basal Sarah Formation, but not from the Quwarah Member. The remaining 10 forms were not 

recorded below the Baq’a Shale. 

 

Paris et al. (this volume) have postulated that the environment of deposition of the Baq’a 

Shale was unfavourable for the development of an indigenous chitinozoan fauna, and that it 
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was not an open marine environment, but was possibly brackish due to the influx of glacial 

meltwater. If so, the environment of deposition would have been quite different from that of 

the Quwarah Member, with the implication that many of the forms recorded from that 

member would be out of their optimum environment in the Baq’a Shale. In this context, it 

might be significant that Miller and Al-Ruwaili (2007) recorded leiosphere-dominated 

assemblages in shales of the Baq’a Member, and these would be more consistent with a 

brackish environment of deposition. 

 

Furthermore, as there is reworking from the Hanadir Member into the Baq’a Shale Member, 

reworking might also be expected from higher members of the Qasim Formation as a result of 

glacial erosion and redeposition. Miller and Al-Ruwaili (2007) reported subordinate numbers 

of reworked Ordovician palynomorphs in the leiosphere-dominated Baq’a assemblages, and 

several distinct assemblages of reworked Ordovician acritarchs in the Hawban Member. The 

latter comprised genera and species from the Hanadir, Kahfah and Quwarah members of the 

Qasim Formation.  

 

Interpretation of the environment of deposition as possibly brackish, coupled with the 

likelihood that glacial erosion down to Middle Ordovician levels would have also affected 

Upper Ordovician beds, supports the interpretation that many Late Ordovician genera and 

species recorded from the Baq’a Shale are reworked. Nevertheless, Multiplicisphaeridium 

paraguaferum, which has its first appearance in Qusaiba-1 in the Baq’a Shale but is more 

typical of Silurian assemblages, suggests that conditions were not entirely inimical to non-

leiospherid acritarchs, and that some component of the non-leiosphere assemblage is in place. 

Hence, although it is quite likely that Late Ordovician taxa are reworked in the Baq’a Shale 

Member, the extent of any such reworking remains uncertain. 
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5.2. Basal Sarah Formation 

 

A number of forms are present in the lower interval of the Quwarah Member and in the basal 

disrupted facies of the Sarah Formation, but are absent from the upper interval of the 

Quwarah Member between 476.8 ft and 461.3 ft (Fig. 2). Given that only one sample was 

examined from the upper Quwarah interval, the significance of their absence from the upper 

part of the member is unclear. However, the possibility that their reappearance in the basal 

Sarah Formation is due to reworking must be considered. 

 

The basal disrupted facies of the Sarah Formation is interpreted as a glacitectonite (Melvin, 

this volume), a subglacially sheared deposit that retains some of the structure and 

characteristics of the parent material (Benn and Evans, 1998; Evans et al., 2006). In this case, 

the parent material of the facies between 461.1 ft and 436.0 ft comprises grey-green sandy 

siltstone. Where the original depositional fabric of the rock can be recognized, it is 

comparable with Facies 1 of the Quwarah Member (Melvin, this volume). 

 

Interpretation of the basal disrupted facies as a glacitectonite raises the question of which pre-

glacial sedimentary units might have been incorporated. Three possibilities are considered. 

The first is that shearing at the base of the ice sheet incorporated sediment from sub-Sarah 

Formation units such as the Quwarah Member. This could explain why many of the taxa 

found in Assemblage 1 are also recorded from Assemblage 2, why the chitinozoans from the 

basal disrupted facies are included in the same assemblage as those from the upper Quwarah 

Member, and why the sediments incorporated in the basal disrupted facies are comparable 

with facies recognized in the Quwarah Member. The implication is that many of the forms 
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found in Assemblage 2 are reworked from pre-Sarah Formation, pre-glacial deposits along 

with the sediment in which they are contained. 

 

The second possibility is that the sediments incorporated into the basal disrupted facies of the 

Sarah Formation represent a post-Quwarah but pre-glacial depositional unit. In this scenario, 

deposition of the basal Sarah Formation followed post-Quwarah erosion, with the basal 

pebble conglomerate of the former overlying an eroded surface of the Quwarah Member 

(Melvin, this volume). The basal conglomerate is succeeded by siltstone that was 

subsequently sheared, brecciated and and rotated as the ice sheet rode over it. The implication 

of this scenario is that Assemblage 2 could be an in place, post-Quwarah, pre-glacial 

assemblage contained within sediments that were subsequently deformed subglacially. 

 

The third possibility is some combination of the previous two, in which a post-Quwarah 

component is admixed with older reworked elements. Discriminating between these three 

scenarios is beyond the scope of the present work and requires further investigation to 

understand the processes leading to the occurrence of Assemblage 2 in the basal Sarah 

Formation. Hence, there remains uncertainty over whether Assemblage 2 comprises taxa that 

are reworked, in place, or a combination of the two. 

 

5.3. Quwarah Member 

 

A very few forms recorded from the Quwarah Member, notably Ferromia pellita, 

Impluviculus? sp., Pirea spp. and Baltisphaeridium ternatum, might be reworked, but there is 

no obvious stratigraphic admixing at this level and the forms listed are all rare. The alternative 

hypothesis is that they are in place in the late Katian or early Hirnantian. 
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Paris et al. (2007) reported Baltisphaeridium ternatum, Ferromia pellita and Pirea spp. to be 

reworked in Late Ordovician deposits in Turkey, but in these instances there is more evidence 

for stratigraphic admixing. Baltisphaeridium ternatum, for example, was reported to be 

reworked in a late Sandbian–early Katian assemblage from the Sort Tepe Formation of the 

Taurus Range, and is accompanied there by species of Acanthodiacrodium, Arkonia, 

Dicrodiacrodium, Stelliferidium and Striatotheca. Similarly, Ferromia pellita and Pirea spp. 

were recorded by Paris et al. (2007) as reworked in Hirnantian glacio-marine sediments of the 

Border Folds in Turkey, along with Cymatiogalea spp., Dasydorus cirritus, Frankea 

longiuscula, the late Cambrian form Lusatia dendroidea (see Albani et al., 2007) and the late 

Cambrian–Early Ordovician genus Vulcanisphaera. 

 

The extent of reworking in pre-glacial Ordovician sedimentary rocks elsewhere in Saudi 

Arabia is unclear. Jachowicz (1995) reported reworking in acritarch assemblages from central 

and northwestern Saudi Arabia, and at the time the assemblages were considered to be from 

rocks of early Caradoc (Sandbian) and early Ashgill (late Katian) age. In both cases, 

Tremadocian forms were reported to dominate or to be the most common elements in the 

reworked component of the assemblages. Miller and Al-Ruwaili (2007), however, have 

pointed out that Jachowicz’s (1995) study did not benefit from parallel sedimentological 

work, which would have identified the sampled units as being glacial in origin. 

 

5.4. Discussion 

 

There is no clear answer to any of the three questions posed at the beginning of this section. It 

is evident that Middle Ordovician forms are reworked into the Baq’a Shale Member, probably 
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from the Hanadir Member and perhaps also from the Kahfah Member of the Qasim 

Formation, and this fits the pattern of reworking seen regionally in Late Ordovician 

glaciogenic successions. It is also consistent with the reworking of chitinozoans in Qusaiba-1. 

Whether any of the Late Ordovician taxa recorded from the Baq’a Shale are reworked is less 

clear, although it seems likely. Interpretation of the environment of Baq’a Shale deposition as 

brackish suggests that many forms might be reworked as they would be out of their normal 

environmental range. Furthermore, reworking should be expected from higher members of the 

Qasim Formation, given that glacial erosion cut down through lower levels in the formation. 

Nevertheless, there remains some uncertainty over the extent of Late Ordovician reworking in 

the Baq’a Shale Member, especially as some non-leiosphere acritarchs such as 

Multiplicisphaeridium paraguaferum appear to be in place in the Baq’a Shale. 

 

The extent of any reworking in assemblages from the basal Sarah Formation and the Quwarah 

Member is even less certain. The absence of genera and species from the upper part of the 

Quwarah Member and their reappearance in the basal Sarah Formation might indicate 

reworking in the latter. Alternatively, their absence from the upper Quwarah interval could 

indicate no more than normal fluctuations in taxon occurrences controlled by shifting 

palaeoenvironmental conditions, compounded by sampling bias. 

 

The problem of determining whether occurrences in the basal Sarah Formation might be due 

to reworking is exemplified by Aremoricanium squarrosum. This species was not recorded 

from the Quwarah Member in Qusaiba-1, and its occurrences in Hirnantian deposits 

elsewhere (e.g. in Bohemia, as Aremoricanium syringosagis, by Vavrdová, 1982; see also 

Vecoli and Le Hérissé, 2004, fig. 6) have been attributed to reworking. Consequently, it might 

be regarded as reworked in the basal disrupted facies of the Sarah Formation. On the other 
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hand, Aremoricanium squarrosum has been recorded from the Quwarah Member in several 

wells by one of us (M.M.), which suggests that its absence from the Quwarah Member in 

Qusaiba-1 might be due to local environmental factors. 

 

Reworking in the Quwarah Member is uncertain, especially as there is no conclusive evidence 

for stratigraphic admixing. Previous suggestions of reworking in pre-glacial, early Caradoc 

(Sandbian) and early Ashgill (late Katian) assemblages in Saudi Arabia have been discounted 

(Miller and Al-Ruwaili, 2007).  

 

 

6. Systematic Palaeontology 

 

Two new acritarch genera, five new species and one new combination are described and 

discussed below: Dorsennidium polorum (Miller and Eames, 1982) comb. nov., Falavia 

magniretifera gen. et sp. nov., Inflatarium trilobatum gen. et sp. nov., Nexosarium mansouri 

sp. nov., Orthosphaeridium orthogonium sp. nov. and Tunisphaeridium bicaudatum sp. nov. 

The palynomorphs described herein are fossil-taxa under the terms of the International Code 

of Nomenclature for algae, fungi, and plants (formerly the International Code of Botanical 

Nomenclature [I.C.B.N.]; McNeill et al., 2012), and are arranged alphabetically by genera in 

the informal incertae sedis group Acritarcha. The material is housed in the palynological 

collections of the Department of Geology, “Laboratoire de Paléontologie de Brest” (LPB), 

University of Brest, France, with the prefix LPB, and repository numbers LPB 13200 to LPB 

13231. England finder co-ordinates are provided for all illustrated specimens.  

 

Group Acritarcha Evitt, 1963 
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Genus Actipilion Loeblich, 1970 

 

Type species: Actipilion druggii Loeblich, 1970, by original designation. 

 

Actipilion druggii Loeblich, 1970 (Plate IV, 8–9; Plate V, 1) 

 

1970 Actipilion druggii Loeblich, p. 711, fig. 3A–E 

 

Description: The vesicle is large, subcircular in outline, and has a relatively thick wall. It 

bears a variable number of cylindrical, fibrous, thin-walled, diaphanous processes. The 

processes are distributed at random and are clearly differentiated from the vesicle. 

Dimensions (22 specimens): 

Vesicle diameter: 36–70 µm (mean 49.6 µm, median 50 µm). 

Process length: 15–40 µm (mean 28.5 µm, median 28 µm). 

Process number: 7–21 (mean and median 14). 

Comparison: The thin-walled, diaphanous, fibrous processes are a characteristic feature of 

Actipilion druggii. The holotype of A. druggii Loeblich, 1970, is larger than the Quwarah 

specimens and has longer processes (Fig. 3). The number of processes on the holotype, 

however, approximately 14, falls within the range recorded on specimens from the Quwarah 

Member. Two of the isotypes (Loeblich, 1970, isotype 1, isotype 2), the specimen recorded 

from northeast Libya by Molyneux (1988), and several of the specimens figured by Playford 

and Wicander (2006) all fall within or around the range of variation of the Quwarah 

specimens in terms of vesicle diameter, process length and process number (Fig. 3). 
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Occurrence: Actipilion druggii is present in the lower interval of the Quwarah Member, in the 

basal disrupted facies of the Sarah Formation, and in the Baq’a Shale Member. 

 

Genus Dorsennidium Wicander, 1974 emend. Sarjeant and Stancliffe, 1994 

 

Type species: Dorsennidium patulum Wicander, 1974, by original designation. 

 

Dorsennidium polorum (Miller and Eames 1982) comb. nov. (Plate XIV, 1–2) 

 

Basionym: Micrhystridium? polorum Miller and Eames, 1982, Palynology, v. 6, p. 239-240, 

pl. 2, figs. 10-12. 

 

1982 Micrhystridium? polorum Miller and Eames, pp. 239–240, pl. 2, figs. 10–12. 

2013 “Dorsennidium polorum Miller and Eames 1982 nov. comb.” in Le Hérissé et al., fig. 

8I, J, M. 

 

Remarks: Miller and Eames (1982) originally placed this species tentatively in the genus 

Micrhystridium. The original diagnosis refers to the vesicle as having a subrectangular to 

subquadrate outline, with acuminate homomorphic processes that are generally distributed 

around the vesicle margin. More processes may be concentrated on one side of the vesicle 

than on the other. The disposition of the processes recalls the supplementary processes drawn 

out from the vesicles faces of Dorsennidium hamii (Loeblich, 1970) Sarjeant and Stancliffe, 

1994.  

The recombined species name, Dorsennidium polorum, was used by Le Hérissé et al. (2013), 

who recorded the species in an assemblage of latest Ordovician–earliest Silurian age from 
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northern Chad. However, Le Hérissé et al. (2013) did not cite the basionym and did not 

provide a full and direct reference to the authors and place of valid publication, with page, 

plate reference and date. The new combination was therefore not validly published in Le 

Hérissé et al. (2013) under Article 41.5 of the International Code of Nomenclature for algae, 

fungi, and plants (McNeill et al., 2012), and so is validated here. 

 

Genus Falavia gen. nov. 

 

Type species: Falavia magniretifera sp. nov. 

Derivation of name: Latin fallus, false, and avis, bird, referring to the superficial resemblance 

to a shuttlecock used in badminton. 

Diagnosis: Vesicle spherical. The processes are restricted to one half of the vesicle and bear a 

network of anastomosing filaments that arise along their lengths and from their distal 

terminations, and which connect the processes. 

Comparison: The distinguishing feature of Falavia gen. nov. is the restriction of its major 

ornament to one half of the vesicle. Other genera that also have processes or other major 

structures restricted to one half of the vesicle are Chuttecloska Loeblich and Wicander, 1976, 

Hemibaltisphaeridium Cramer, 1971, and Ooidium Timofeev, 1957. Chuttecloska, described 

from the Lower Devonian (Gedinnian) of Oklahoma (Loeblich and Wicander, 1976), has a 

vesicle that is pear-shaped, subovate, ovate or subcircular in outline, with one pole surrounded 

by a thin, flaring, skirt-like vellum or membrane that extends beyond the vesicle. 

Hemibaltisphaeridium, described from the middle and upper Silurian of Spain (Cramer, 

1971), has a subspherical to ellipsoidal vesicle, with one smooth pole and the other bearing a 

number of ramusculose processes (3–10 in the type and only species, H. dedosmuertos 

(Cramer) Cramer, 1971). Ooidium, originally described by Timofeev (1957) from the Lower 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

31 

 

Ordovician of Baltic Russia, has subcircular, ovate or elongate vesicles, one pole of which is 

crowned with anastomosing trabeculae. Of the three genera, Ooidium is morphologically 

closest to Falavia gen. nov. because of its anastomosing ornament, but in Ooidium this is a 

comparatively low structure and is not supported by stout processes. Species of Ooidium also 

commonly have striate vesicles, with the striations extending between the poles. 

 

Falavia magniretifera gen et sp. nov. (Plate VI, 8–9) 

 

Derivation of name: From Latin magnus, large, and retiferum, net-bearing, referring to the 

large net-like structure that the vesicle bears at one pole. 

 

Type locality: Qusaiba-1 core hole, Qusaiba, central Saudi Arabia. 

 

Stratum typicum: Quwarah Member of the Qasim Formation, cores 56 to 50, 551.0–488.3 ft, 

Late Ordovician, late Katian–early Hirnantian. 

 

Holotype: Qusaiba-1, Quwarah Member, Qasim Formation, core 50, 488.3 ft, slide 64143, 

England Finder co-ordinate T42/1 (Plate VI, 8), LPB 13221. Late Katian–early Hirnantian. 

 

Paratype: Qusaiba-1, Quwarah Member, Qasim Formation, core 52, 503.1 ft, slide 64089, 

England Finder co-ordinate U39/2-U40/1 (Plate VI, 9), LPB 13223. Late Katian–early 

Hirnantian. 

 

Diagnosis: The vesicle is subcircular in outline and is inferred to have been originally 

spherical. It is thin-walled and bears an ornament of fine grana. Processes are restricted to one 
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half of the vesicle. About 25 stout, apparently solid, rod-like processes that taper distally are 

present. The processes bear a network of anastomosing filaments that arise along their lengths 

and from their distal terminations, and these connect the processes. The height of the 

filamentous net is approximately 1.5 × the maximum vesicle diameter. 

 

Dimensions (6 specimens): 

Vesicle diameter: 28–35 µm (mean 31.7 µm, median 32 µm) × 18–33 µm (mean 27.2 µm, 

median 27.5 µm). 

Net height: 40–53 µm (mean 48 µm, median 50 µm). 

Ratio of net height:maximum vesicle diameter: 1.38–1.79 (mean 1.52, median 1.49). 

 

Occurrence: Quwarah Member, Qasim Formation. This form is very rare. Only six specimens 

were recorded, one each from 551.0 ft, 536.7 ft, 535.2 ft, 528.3 ft, 503.1 ft and 488.3 ft.  

 

 

Genus Ferromia Vavrdová, 1979 

 

Type species: Ferromia pellita (Martin) Martin, 1996, originally designated as Ferromia 

filosa Vavrdová, 1979, by Vavrdová (1979, p. 62). 

 

Ferromia pellita (Martin) Martin, 1996 (Plate IV, 3–5) 

 

1977 Micrhystridium pellitum Martin, pp. 7–8, pl. II, fig. 18, pl. IV, figs. 7, 16, figs. 5, 6 in 

the text. 

1979 Ferromia filosa Vavrdová, p. 64, pl. 11, fig. 9, pl. 12, figs. 3–5, pl. 13, figs. 1–3. 
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1996 Ferromia pellita (Martin); Martin, pp. 27–30, pl. I, figs. 1-3, 5, 6, 9-12, 14-21, pl. II, 

figs. 1–12. 

 

Description: The vesicle is subcircular to subpolygonal in outline, bearing between 9 and 23 

processes. The processes are narrow, rigid and conical, taper to acuminate tips, and have 

angular proximal contacts. They are hollow and communicate with the vesicle cavity. In 

addition to the processes, the vesicle bears an ornament of short spines, about 1µm long, that 

are stout and thorn-like with apparently simple distal terminations. 

Dimensions (12 specimens): 

Vesicle diameter: 14–21 µm (mean 17.2 µm, median 17 µm). 

Process length: 10–15 µm (mean 13.3 µm, median 14.5 µm). 

Process length/vesicle diameter: 0.59–0.94 (mean 0.78, median 0.76). 

Process number: 9–23 (mean 15, median 14). 

Comparison: The specimens from the Qusaiba-1 core differ in some respects from the 

specimens of F. pellita recorded by Martin (1996) and from the synonymous F. filosa of 

Vavrdová (1979). Vesicle dimensions of F. pellita in Martin (1996) and F. filosa in Vavrdová 

(1979) are slightly smaller than those of the Qusaiba-1 specimens, although with a degree of 

overlap. Martin (1996) gave a range of 8–18 µm for the vesicle diameter, with a mean of 13 

µm, and Vavrdová (1979) recorded vesicle diameters of 8–16 µm. In contrast, the processes 

of F. pellita in Martin (1996) and F. filosa in Vavrdová (1979) are slightly longer in both 

absolute and relative terms than those of the specimens from Qusaiba-1, but again with some 

overlap. Martin (1996) indicated process lengths of 10–22 µm, and process length:vesicle 

diameter ratios of 0.75–1.20, and Vavrdová (1979) recorded process lengths of 10–20 µm for 

F. filosa. Also, the number of processes on some specimens from the Qusaiba-1 core exceeds 

the number of seven to about 15 specified in the emended diagnosis (Martin, 1996).  
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In the emended diagnosis, Martin (1996) described the secondary ornament of F. pellita as 

being a dense, hair-like ornamentation showing minute, possible anastomosed lateral 

ramifications, although under the heading of remarks and comparisons she also noted that the 

hair-like ornament might appear simple under the light microscope. Vavrdová (1979) 

described the secondary ornament as a thick cover of echinate to capitate hair-like 

outgrowths. In comparison, the ornament on the Qusaiba-1 specimens comprises relatively 

short, stout, conical, thorn-like elements with simple terminations. There is no indication 

under the light microscope, including under differential interference contrast, of branching or 

capitate tips. 

Remarks: Martin (1996) commented that the last appearance datum of F. pellita as an 

autochthonous element of acritarch assemblages was probably pre-Caradoc (pre-Sandbian). If 

so, the range of the species would have to be extended upwards to accommodate the 

specimens from Qusaiba-1, or else they might be interpreted as reworked. Given the 

differences outlined above, however, it is also possible that the Qusaiba-1 specimens 

represent a distinct Late Ordovician morphotype, but one that is closely similar to F. pellita. 

Occurrence: Specimens of Ferromia pellita were recorded from the Quwarah Member at 

551.0 ft, 536.7 ft, 535.2 ft, 528.3 ft, 507.15 ft and 488.3 ft, from the basal disrupted facies of 

the Sarah Formation at 458.4 ft, 438.7 ft and 436.0 ft, and from the Baq’a Shale Member at 

338.4 ft, 335.7 ft, 302.4 ft, 301.1 ft and 292.3 ft. 

 

Genus Glyptosphaera Kiryanov, 1978 

 

Type species: Glyptosphaera speciosa Kiryanov, 1978, by original designation. 

 

Glyptosphaera? sp. (Plate VI, 5, 7) 
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Description: The vesicle is large, oval to subcircular in outline, and is inferred to have been 

originally spherical. The vesicle walls are thick and bear an ornament of low, angular ridges 

that form an irregular zigzag pattern on the surface, giving it the appearance of a maze. 

Segments of adjacent ridges can be parallel to each other, although the pattern is complex and 

adjacent ridges are generally not parallel for their entire lengths. Ridges might also bifurcate, 

with branches apparently terminating abruptly. 

Dimensions: The vesicle dimensions of the two specimens recorded are 50×34 µm and 59×44 

µm. 

Remarks: The diagnosis of Glyptosphaera Kiryanov, 1978, stipulates that the surface of the 

vesicle be covered by low crests or ridges that form a characteristic pattern, reminiscent of 

subparallel meanders (Mullins, 2001). In the type species, G. speciosa Kiryanov, 1978, the 

vesicle surface is covered by low ridges that are arranged in a manner described as being 

reminiscent of the folds of a brain and as forming a characteristic labyrinth-like pattern 

(Mullins, 2001, p. 46). Glyptosphaera helterskelter Mullins, 2001, has membranes that appear 

crenulate along their length and swirl around the vesicle in a concentric pattern. The ornament 

on the Quwarah specimens is more irregular and maze-like than the ornament on either of 

these species. 

Occurrence: Two specimens from the Quwarah Member at 535.2 ft. 

 

Genus Impluviculus Loeblich and Tappan, 1969 

 

Type species: Impluviculus milonii (Deunff) Loeblich and Tappan, 1969. 

 

Impluviculus? sp. (Plate V, 2–4) 
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Description: Small, hollow, thin-walled vesicle, bearing 7 or 8, long, slender, tapering, 

hollow, variably flexible and acuminate processes that communicate with the vesicle cavity. 

The vesicle is polygonal or rounded–polygonal in outline, and in the case of the three 

specimens recorded is perhaps best described as irregularly octagonal or heptagonal. 

Processes arise from the angles of the polygon and extend in the same plane as the vesicle. 

Processes tend to be clustered in pairs, with a short side between each process in a pair, and a 

longer side between adjacent pairs, i.e. the sides of each polygon alternate between short and 

long. The shorter vesicle sides tend to be straight to slightly concave. Longer sides are straight 

to slightly concave or slightly convex. 

Dimensions: 

Specimen 1 (Plate V, 2). Vesicle: octagonal, 10×9 µm; process length: 10 µm; process 

number: 8. 

Specimen 2 (Plate V, 3). Vesicle: octagonal, 11×11 µm; process length: 11 µm; process 

number: 8. 

Specimen 3 (Plate V, 4). Vesicle: heptagonal, 11×11 µm; process length: 9 µm; process 

number 7. 

Remarks: The original diagnosis of Impluviculus Loeblich and Tappan, 1969, refers to a 

flattened subquadrate vesicle with a process extending from each corner, vesicle sides that are 

slightly concave between processes, and a quadrangular or rounded opening in the centre of 

the vesicle that resembles a skylight. The diagnosis was emended by Martin (1977) to refer to 

the number of processes (4–12) and to encompass the variability of the vesicle morphology 

(lenticular, polygonal or nearly circular, generally <20 µm). The overall morphology of the 

three specimens recorded from Qusaiba-1 is that of Impluvuculus; they have small, polygonal 

vesicles with simple processes arising from the angles of the polygon and extending in the 
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same plane as the vesicle. There is no clear evidence for an opening on any specimen. It might 

be represented by an indistinct structure on the upper surface of the vesicle of one specimen 

(Plate V, 2), and by indistinct folds on the surface of the vesicles of the other two specimens, 

but this is far from certain. 

The occurrence of specimens assigned to Impluviculus, albeit questionably, is unusual for 

Late Ordovician assemblages. Impluviculus is more characteristic of late Cambrian and Early 

Ordovician assemblages (Loeblich and Tappan, 1969; Martin, 1977; Rasul, 1979; Pittau, 

1985; Volkova, 1990; Vecoli and Playford, 1997; Parsons and Anderson, 2000). It is possible 

that these three specimens are reworked into the Quwarah Member. Alternatively, they might 

be a rare morphotype that is characteristic of the lower part of the Quwarah Member in 

Qusaiba-1 (see discussion of Reworking, above). 

Impluviculus lenticularis Martin, 1977, from the Tremadocian of the Brabant Massif, 

Belgium, resembles the specimens recorded here in that it has a small polygonal vesicle (8–10 

sides) with the processes arising from the angles of the polygon. However, it also has a 

distinctive operculum in the centre of the flattened vesicle surface, and has less regularly 

distributed and possibly also relatively shorter processes. 

Occurrence: Three specimens from the lowermost cores in Qusaiba-1 (cores 56, 55), one each 

from 551.0 ft, 536.7 ft and 535.2 ft. 

 

Genus Inflatarium gen. nov. 

 

Type species: Inflatarium trilobatum sp. nov. 

Derivation of name: Latin inflatus, swollen, distended, referring to the morphology of the 

vesicle. 
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Diagnosis: Vesicle lobate, formed by the coalescence of a number of lobes. The rounded 

terminations of the lobes bear one or several short spines. The surface of the vesicle is 

smooth. 

Comparison: The genus Inflatarium differs from Pulvinosphaeridium Eisenack, 1954, in 

having a distinct ornament on the distal part of the lobes. Rhiptosocherma Loeblich and 

Tappan, 1978, has a stellate outline with elongate processes, a clear differentiation of 

processes from vesicle, and no spinose ornamentation on the processes. 

 

Inflatarium trilobatum sp. nov. (Plate X, 3–7) 

 

Derivation of name: From Latin tres, tria, trium, three and lobatum, lobed, referring to the 

predominantly three-lobed morphology of the species. 

Type locality: Qusaiba-1 core hole, Qusaiba, central Saudi Arabia. 

Stratum typicum: Quwarah Member of the Qasim Formation, cores 55 to 49, 536.7–476.7 ft, 

Late Ordovician, late Katian–early Hirnantian. 

Holotype: Qusaiba-1, Quwarah Member, Qasim Formation, core 53, 518.5 ft, slide 64036, 

England Finder co-ordinates G50/3 (Plate X, 3). Late Katian–early Hirnantian. 

Paratype: Qusaiba-1, Quwarah Member, Qasim Formation, core 52, 507.15 ft, slide 64193, 

England Finder co-ordinates C34/1 (Plate X, 4). Late Katian–early Hirnantian. 

Diagnosis: The vesicle is hollow, inflated and formed from three bluntly rounded, lingulate 

lobes, all lying in the same plane. One of the lobes is usually longer and more pronounced 

than the other two, with the axes of the two shorter lobes extending more or less 

perpendicular to the axis of the longer lobe. The vesicle wall is thin and smooth. An ornament 

of short spines, variable in number, is developed mainly on the distal part of the two shorter 

lobes, but can be observed also on the longer one. 
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Dimensions (8 specimens):  

Longer lobe length: 38–65 µm. 

Shorter lobe length: 18–22 µm. 

Lobe width: 22–28 µm. 

Spinose ornament length: 3–6 µm.  

Occurrence: Qasim Formation, Quwarah Member: 536.7 ft, 518.5 ft, 507.15 ft, 503.1 ft, 

479.4 ft and 476.7 ft; Sarah Formation, Baq’a Shale Member: 341.0 ft, possibly reworked. 

 

Genus Leiofusa Eisenack, 1938 

 

Type species: Leiofusa fusiformis (Eisenack, 1934) Eisenack, 1938. 

 

Leiofusa litotes Loeblich and Tappan, 1978 (Plate I, 6–7) 

 

1978 Leiofusa litotes Loeblich and Tappan, p. 1271, pl. 12, figs. 1, 2. 

aff. 1988 Leiofusa aff. litotes Loeblich and Tappan; Molyneux, p. 49, pl. 9, figs. 8, 9, pl. 10, 

fig. 1. 

?1988 Leiofusa aff. fusiformis (Eisenack 1934) Eisenack 1938; Molyneux, p. 49, pl. 9, 

figs. 1, 6. 

 

Description: Large, slender, elongate leiofusid acritarchs in which the processes are poorly 

differentiated from the vesicle. The vesicle extends into the processes through a zone of very 

gradual narrowing. The walls of the vesicle and processes are uniformly and moderately 

thick. 

Dimensions (14 specimens): 
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Length: 180–400 µm (mean 270 µm, median 275 µm). 

Width: 12–30 µm (mean 19.6 µm, median 20 µm). 

Length/width: 9.60–22.22 (mean 14.3, median 15.0). 

Comparison: The specimens from the Quwarah Member resemble Leiofusa litotes in that the 

vesicle extends gradually into the processes so that the boundary between them is difficult to 

determine. This is a diagnostic feature of the species. The original diagnosis and description 

of L. litotes by Loeblich and Tappan (1978) was based on only two specimens. A much 

greater range of variability was recorded among the Quwarah specimens in terms of overall 

length, maximum width and the ratio between them. Nevertheless, the holotype and the 

second of Loeblich and Tappan’s (1978) specimens fall within the range of variation shown 

by the Quwarah specimens and plot close to Quwarah specimens on bivariate plots of overall 

length against maximum width (Fig. 4). Loeblich and Tappan’s (1978) specimens of L. litotes 

have lengths of 208 µm and 235 µm, and widths of 18 µm and 25 µm. 

Specimens of L. aff. litotes recorded by Molyneux (1988) from the Late Ordovician of 

northeast Libya are generally shorter than the Quwarah specimens (length 125–185 µm, mean 

160 µm; Fig. 4), but are comparable in width, although with a greater mean (15–30 µm, mean 

26 µm). Leiofusa aff. fusiformis in Molyneux (1988), from the Late Ordovician of Libya, is 

similar, but is generally larger (length: 250–470 µm; width: 20–35 µm) with a greater mean 

length and width (360 µm and 30 µm, respectively). Nevertheless, there is overlap in the 

dimensions of Leiofusa aff. fusiformis from Libya and L. litotes from Qusaiba-1, and the 

length/width ratio of the Libyan specimens is 12 and close to that of the specimens from the 

Quwarah Member (Fig. 4). 

Occurrence: Large leiofusid acritarchs assigned to Leiofusa litotes are common in the 

Quwarah Member. They comprise 15% of counted specimens in the sample from 551.0 ft and 

between 3.3% and 8.4% of specimens in samples from 536.7 ft to 448.3 ft. 
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Leiofusa aff. tumida Downie, 1959 (Plate I, 2–3, 5) 

 

aff. 1959 Leiofusa tumida Downie, p. 65, pl. 11, fig. 5. 

?1988  Leiofusa aff. tumida Downie 1959; Molyneux, p. 49, pl. 9, fig. 5. 

 

Description: Vesicles are small, oval in outline and have smooth, thin walls. Processes are 

differentiated from the vesicle but the contact is gradual. Processes are long, slender and 

flexible with acuminate distal terminations. They are hollow, at least proximally, and are in 

communication with the vesicle cavity. 

Dimensions (19 specimens): 

Vesicle length: 16–30 µm (mean 20.3 µm, median 20 µm). 

Vesicle width: 8–13 µm (mean 11.6 µm, median 12 µm). 

Process length: 20–50 µm (mean 32 µm, median 30 µm). 

Process length/vesicle length: 1–2.35 (mean 1.59, median 1.67). 

Overall length: 57–125 µm (mean 80.2 µm, median 78 µm). 

Remarks: Specimens are variable in terms of the length of their processes relative to the 

length of the vesicle (Fig. 5), but are characterized by their small, oval vesicles and long, 

slender, flexible processes that are clearly differentiated from the vesicle. 

Comparison: Specimens recorded by Molyneux (1988) as Leiofusa aff. tumida from the Late 

Ordovician of northeast Libya are similar in having an oval vesicle that is drawn out into two 

long, flexible processes. Among the Libyan specimens are some that are larger than those 

from the Quwarah Member, although the ranges overlap. Vesicle lengths of the Libyan 

specimens are 25–35 µm (mean 29 µm), vesicle widths are 7–25 µm (mean 15 µm), and 

process lengths are 25–45 µm (mean 33 µm). The type material of Leiofusa tumida Downie, 
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1959, has an overall length of about 110 µm, and each process was reported to be about one-

third of the total length (i.e. process length is equal to vesicle length). 

Similar morphospecies include Leiofusa banderillae Cramer, 1964a, and L. bernesgae 

Cramer, 1964a. Leiofusa banderillae has an inflated vesicle, almost oval in outline, with a 

single, very long and thin process at each pole. Specimens figured by Cramer (1971, pl. IV, 

figs. 75, 81) are similar to those from the Quwarah Member considered here, although 

apparently larger given the reported dimensions. Cramer (1971) indicated vesicle lengths of 

30–50 µm for L. banderillae, with process lengths of up to 100 µm and generally about twice 

the vesicle length. Leiofusa bernesgae also has an inflated, almost oval vesicle, but has 

processes of variable length that are generally curved. Measurements of vesicle length 

provided by Cramer (1971) are 25–45 µm, and process lengths were reported to be between 

10% and 200% of vesicle length. Processes on specimens figured by Cramer (1971, pl. III, 

figs. 55–57, 63, pl. IV, figs. 76–80) are variable in length, although those on the specimen in 

pl. IV, fig. 80 are relatively long and flexible. Some of these specimens also show an 

equatorial split. 

Occurrence: Small leiofusid acritarchs recorded here as Leiofusa aff. tumida occur in the 

Quwarah Member (Qasim Formation) in samples from 536.7 ft, 535.2 ft, 528.3 ft, 518.5 ft, 

507.15 ft, 503.1 ft, 497.8 ft and 488.3 ft, but are uncommon (≤1.0% of counted specimens). 

 

Genus Leprotolypa Colbath, 1979 

 

Type species: Leprotolypa evexa Colbath, 1979, by original designation. 

 

Leprotolypa evexa Colbath, 1979 (Plate IV, 2) 
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1979 Leprotolypa evexa Colbath, pp. 16–17, pl. 6, figs. 1–3, 5. 

 

Description: The vesicle is subcircular in outline, and the vesicle wall is relatively thin but has 

a wrinkled appearance. The processes are stout, hollow, simple, and cylindrical to conical, 

with evexate distal terminations and angular contacts with the vesicle. They communicate 

freely with the vesicle cavity. The process walls are thin and usually bear faint striae parallel 

to the process length, especially on the proximal parts of the processes. In some cases, they 

might also appear faintly granulate. 

Dimensions (10 specimens):  

Vesicle diameter: 15–31 µm (mean 22.6 µm, median 22.5 µm). 

Process length: 8–28 µm (mean 17.9 µm, median 18 µm). 

Process width (base): 3–6 µm (mean 4.3 µm, median 4 µm). 

Process length/vesicle diameter: 0.53–1.12 (mean 0.79, median 0.82). 

Process number: 3–7 (mean and median 5). 

Comparison: The original description of Leprotolypa evexa was based on 11 specimens. The 

wrinkled appearance of the vesicle wall and the stout, broad-based, bluntly rounded processes 

are characteristic of the species. Some specimens from the Quwarah Member fall within the 

range of variation recorded by Colbath (1979) for the type material (vesicle diameter: 17–25 

µm, mean 21 µm; process length: 8–15 µm; process width (base): 2–4 µm; process 

length/vesicle diameter: approximately 0.5; process number: 5–11, mean 8). The Quwarah 

specimens have, on average, fewer processes than the type material, although with some 

overlap. Colbath (1979) reported process length of the type material to be roughly half of the 

vesicle diameter, whereas the processes on some Quwarah specimens are greater than the 

vesicle diameter. The basal widths of the processes on the type material, 2–4 µm, also tend to 

be narrower than those of the Quwarah specimens, although they overlap. Finally, the process 
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walls of at least some of the Quwarah specimens appear to be faintly striate rather than 

granulate, although in some instances faint grana were also observed. Given that some 

Quwarah specimens fall within the range of variation reported for the type material, none of 

these differences is considered to be significant. They most probably reflect morphological 

variation within a single taxon. 

Occurrence: Leprotolypa evexa was recorded from the lower interval of the Quwarah 

Member, the basal disrupted facies of the Sarah Formation, the Baq’a Shale Member, and the 

Qusaiba Member of the Qalibah Formation. 

 

Genus Lophosphaeridium Timofeev, 1959 ex Downie, 1963 emend. Lister, 1970 

 

Lophosphaeridium? sp. 1 (Plate VI, 2–4) 

 

Description: The vesicle is generally oval, rarely subcircular in outline and is inferred to have 

been originally spherical. It has a relatively thick wall and bears an ornament of closely 

spaced, coarse grana. Many of the grana have a shallow pit or dimple on their top surface, 

giving them a crater-like appearance. 

Dimensions (15 specimens): 

Vesicle diameter (longer dimension): 34–58 µm (mean 45.1 µm, median 45 µm). 

Vesicle diameter (shorter dimension): 27–55 µm (mean 39.3 µm, median 37 µm). 

Ornament height: 0.5–1.5 µm (mean 1.2 µm, median 1.3 µm). 

Ornament width: 1–2 µm (mean 1.5 µm, median 1.8 µm). 

Remarks: The coarseness of the grana and the presence of pits on their summits are 

characteristic of these specimens. 
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Occurrence: Twenty specimens of this distinctive form were recorded from the Quwarah 

Member at 551.0 ft, 536.7 ft, 535.2 ft, 528.3 ft, 507.15 ft, 503.1 ft, 497.8 ft and 488.3 ft. 

 

Genus Nexosarium Turner, 1984 

 

Type species: Nexosarium parvum Turner, 1984. 

 

Nexosarium mansouri sp. nov. (Plate XIV, 4–6) 

 

Derivation of name: In honour of Mansour Al-Ruwaili, for his contributions to Saudi Arabian 

palynology. 

Type locality: Qusaiba-1 core hole, Qusaiba, central Saudi Arabia. 

Stratum typicum: Qusaiba Member of the Qalibah Formation, core 27, 256.4–255.75 ft, 

earliest Rhuddanian. 

Holotype: Qusaiba-1, Qusaiba Member, Qalibah Formation, core 27, 256.4 ft, slide 64376, 

England Finder co-ordinates P45/1 (Plate XIV, 4), LPB 13202. Rhuddanian. 

Paratypes: Qusaiba-1, Qusaiba Member, Qalibah Formation, core 27, 255.75 ft, slide 64379, 

England Finder co-ordinates O39, J56/1 (Plate XIV, 5–6), LPB 13201. 

Diagnosis: Vesicle circular in outline, with 12–18 slender processes, simple or multifurcate, 

clearly differentiated from the vesicle. Processes are plugged for a short distance above the 

vesicle surface and so do not communicate with the vesicle interior. The distal surfaces of the 

plugs form concave depressions. Vesicle wall granulate to granulo-reticulate. 

Dimensions (15 specimens):  

Vesicle diameter: 19–24 µm. 

Process length: 8–12 µm. 
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Process width: 1.5 µm. 

Comparison: This species has characteristics of the genus Nexosarium, which is, by 

definition, differentiated from the genus Oppilatala by the absence of a constriction at the 

base of the processes and the lack of a double-layered vesicle wall. The type species, 

Nexosarium parvum, has a similar vesicle ornament and heteromorphic processes, but 

Nexosarium mansouri has more numerous and shorter processes. Branches are only in the 

distal part of the processes. Some specimens illustrated as Oppilatala cf. frondis by Dufka and 

Fatka (1993), from the Rhuddanian of Bohemia, are similar to the material found here, but the 

poor preservation of the Bohemian specimens makes it difficult to determine whether they 

might be conspecific. 

Remarks: The genus Nexosarium was described from the Caradoc Series (Sandbian to Katian 

stages) of Great Britain (Turner, 1984), but is also found in the Katian of the Baltic area (Le 

Hérissé, unpublished). We propose an extension of the range of the genus into the basal 

Silurian with the creation of this new species. 

Occurrence: Qusaiba Member of the Qalibah Formation, core 27, 256.4–255.75 ft, earliest 

Rhuddanian.  

 

Genus Orthosphaeridium Eisenack, 1968 

 

Type species: Orthosphaeridium rectangulare (Eisenack, 1963) Eisenack, 1968, by original 

designation. 

 

Orthosphaeridium orthogonium sp. nov. (Plate X, 1–2) 
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Derivation of name: Latin orthogonium, rectangle, referring to the elongate rectangular 

outline of the vesicle. 

Type locality: Qusaiba-1 core hole, Qusaiba, central Saudi Arabia. 

Stratum typicum: Quwarah Member of the Qasim Formation, cores 49 to 55, 536.7–476.7 ft, 

Late Ordovician, late Katian–early Hirnantian. 

Holotype: Qusaiba-1, Quwarah Member, Qasim Formation, core 52, 503.1 ft, slide 64197, 

England Finder co-ordinate K34/2 (Plate X, 1), LPB 13222. Late Katian–early Hirnantian. 

Paratype: Qusaiba-1, Quwarah Member, Qasim Formation, core 52, 503.1 ft, slide 64197 

England Finder co-ordinate K55 (Plate X, 2), LPB 13222. Late Katian–early Hirnantian. 

Diagnosis: Vesicle inflated, subrectangular in outline, with 10–12 processes, of which four 

primary processes lie in the plane of the central body and others, variable in length, arise from 

the faces. The processes are subcylindrical with acuminate tips. They do not communicate 

with the central body, but are closed by a solid plug that extends a short distance above the 

base. The vesicle wall is psilate, and the process walls are psilate or covered by small grana. 

Excystment is by median splitting of the vesicle into subequal hemicysts. 

Dimensions (25 specimens):  

Vesicle length: 67–75 µm (mean 71 µm). 

Vesicle width: 39–42 µm (mean 40 µm). 

Process length: 44–55 µm (mean 49 µm). 

Remarks: Orthosphaeridium orthogonium sp. nov. differs from O. octospinosum Eisenack, 

1968, in having a central body of greater length and proportionally shorter processes. It differs 

also in having more secondary processes arising from the faces of the vesicle. 

Occurrence: Qasim Formation, Quwarah Member: 536.7 ft, 528.3 ft, 518.5 ft, 503.1 ft, 497.8 

ft, 484.7 ft and 476.7 ft. Sarah Formation, basal disrupted facies: 458.4 ft and 436.0 ft. Sarah 

Formation, Baq’a Shale Member: 310.2 ft, 307.7 ft and 305.0 ft. Occurrences in the Baq’a 
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Shale Member and basal disrupted facies of the Sarah Formation might be due to reworking, 

and especially so in the Baq’a Shale Member. See discussion of reworking above.  

 

Genus Pirea Vavrdová, 1972 

 

Type species: Pirea dubia Vavrdová, 1972, by original designation. 

 

Pirea? sp. 1 (Plate IV, 7; Plate V, 7) 

 

Description: Vesicle large, elongate, cylindrical, with convex rounded base and straight to 

slightly convex sides. The vesicle narrows towards the apex, extending through a short neck 

into an expanded distal termination. At its tip, the distal expansion appears either to be open 

(e.g. Plate IV, 7) or to have a much thinner wall. Otherwise, the wall of the vesicle, neck and 

lower part of the distal expansion is relatively thick and shagrinate.  

Dimensions (7 specimens): 

Overall length: 80–173 µm (mean 112.6 µm, median 114.5 µm). 

Vesicle width: 29–45 µm (mean 32.7 µm, median 30.5 µm). 

Neck width: 6–12 µm (mean 8.9 µm, median 9 µm). 

Distal termination width: 7–15 µm (mean 11.5 µm, median 11.2 µm). 

Comparison: The specimens resemble Pirea in general morphology, but are characterized and 

possibly distinguished from that genus by their large size and the thin-walled and possibly 

open distal termination.  

Occurrence: Quwarah Member at 551.0 ft, 488.3 ft and 484.7 ft ; the basal disrupted facies of 

the Sarah Formation at 438.7 ft; and the Baq’a Shale Member at 335.7 ft and 333.4 ft. 
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Genus Striatotheca Burmann, 1970 

 

Type species: Striatotheca principalis Burmann, 1970, by original designation. 

 

Striatotheca aff. monorugulata Yin, Di Milia and Tongiorgi, 1998 (Plate II, 5, 8–9, 11–12) 

 

aff. 1998 Striatotheca monorugulata Yin, Di Milia and Tongiorgi, pp. 241–242, pl. IV, figs. 

7, 8, pl. V, fig. 5, pl. VI, figs. 2, 3. 

aff. 2000 Striatotheca monorugulata Yin, Di Milia and Tongiorgi; Quintavalle, Tongiorgi 

and Gaetani, pl. 3, fig. 3. 

aff. 2003 Striatotheca monorugulata Yin, Di Milia and Tongiorgi; Tongiorgi, Yin and Di 

Milia, p. 120, pl. 36, figs. 1, 4. 

 

Description: The vesicle is quadrangular and usually elongate in outline, with a relatively thin 

wall. The shorter sides of the vesicle are more or less straight. The longer sides are generally 

concave, although this might be a function of preservation. The vesicle surface is ornamented 

by one or two closely spaced striae that are parallel to and close to the sides of the vesicle, 

forming a quadrangular pattern just inside the edge of the vesicle. The corners of the vesicle 

extend into low conical projections, generally with rounded distal terminations, and 

sometimes these extend into short hollow processes that have more acuminate distal 

terminations and communicate with the vesicle cavity. 

Dimensions (8 specimens): 

Vesicle length: 23–29 µm (mean and median 26 µm). 

Vesicle width: 12–26 µm (mean 17.3 µm; median 16.5 µm). 

Height of conical projections at vesicle corners: 1.5–2.5 µm (mean and median 2 µm). 
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Comparison: The striations on the vesicle surface are very similar to those of Striatotheca 

monorugulata Yin et al., 1998, in terms of their number and distribution. Unlike the Quwarah 

specimens, however, S. monorugulata has distinct processes, one at each corner, reported by 

Yin et al. (1998) to range from about a third up to almost equal to the length of the longer 

vesicle dimension (Fig. 6). Processes on the holotype of S. monorugulata are 9.9–10.4 µm 

long, and those of the paratypes are 14.5–16.2 µm and 9.8–11.6 µm. Process lengths among 

the population containing the type specimens range from 5.6 µm to 17.3 µm, with a mean of 

10.5 µm. Tongiorgi et al. (2003) recorded process lengths of S. monorugulata ranging from 

3.5 µm to 17.5 µm. The lack of such processes distinguishes the Quwarah specimens from 

Striatotheca monorugulata s. s., and the distinction makes it very unlikely that the Quwarah 

specimens are conspecific with S. monorugulata. 

Occurrence: This morphospecies is rare in the Quwarah Member. Only eight specimens were 

recorded, from 551.0 ft, 536.7 ft, 535.2 ft, 528.3 ft and 488.3 ft. 

Striatotheca monorugulata has been recorded from the Lower–Middle Ordovician of South 

China and Pakistan. It ranges from the Didymograptus deflexus Graptolite Biozone (late 

Floian, early mid-Arenig) to the Undulograptus austrodentatus Graptolite Biozone (early 

Darriwilian, late Arenig) in South China (Yin et al., 1998; Tongiorgi et al., 2003; Yan et al., 

2011) and from the Azygograptus suecicus Graptolite Biozone (late Floian, late mid-Arenig) 

to the austrodentatus Biozone in Pakistan (Quintavalle et al., 2000). 

 

Genus Tunisphaeridium Deunff and Evitt, 1968 
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Type species: Tunisphaeridium tentaculaferum (Martin, 1967) Cramer, 1971, originally 

designated as Tunisphaeridium concentricum Deunff and Evitt, 1968 (junior synonym of T. 

tentaculaferum according to Eisenack et al., 1973, p. 1057–1059). 

 

Tunisphaeridium bicaudatum sp. nov. (Plate VII, 1–2, 4) 

 

Derivation of name: Latin bi-, two, and caudatum, tail, referring to the twin ‘tails’ of elongate 

processes that arise from opposite poles of the vesicle. 

Type locality: Qusaiba-1 core hole, Qusaiba, central Saudi Arabia. 

Stratum typicum: Quwarah Member of the Qasim Formation, cores 55 to 50, 536.7–488.3 ft, 

Late Ordovician, late Katian–early Hirnantian. 

Holotype: Qusaiba-1, Quwarah Member, Qasim Formation, core 50, 488.3 ft, slide 64143, 

England Finder co-ordinate W51/3 (Plate VII, 2), LPB 13221. Late Katian–early Hirnantian. 

Paratypes: Qusaiba-1, Quwarah Member, Qasim Formation, core 50, 488.3 ft, slide 64143, 

England Finder co-ordinate T43/1 (Plate VII, 1), LPB 13221; core 55, 535.2 ft, slide 64076, 

England Finder co-ordinate L22/4 (Plate VII, 4), LPB 13229. Late Katian–early Hirnantian. 

Diagnosis: The vesicle is subcircular in outline and inferred to have been originally spherical, 

with a thin, smooth wall. The vesicle bears numerous, rod-like, solid processes that are 

expanded or capitate at their distal tips and are joined distally by thin filaments or a thin 

diaphanous membrane. Much longer processes are present at opposite poles of the vesicle, 

and in some instances, these appear to be enclosed within a thin diaphanous membrane. The 

presence of groups of longer processes at opposite poles of the vesicle is diagnostic of the 

species. 

Dimensions (based on 6 specimens): 

Vesicle diameter: 18–32 µm (mean 23 µm, median 22.5 µm). 
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Process length: 4.5–11.5 µm (mean 6.9 µm, median 6.3 µm). 

Polar process length: 18–54 µm (mean 29.7 µm, median 20.5 µm). 

Comparison: This form is comparable to Tunisphaeridium caudatum Deunff and Evitt, 1968, 

in terms of vesicle size and in having numerous slender, wiry, rod-like, apparently solid 

processes, the distal terminations of which are evidently connected by a diaphanous 

membrane and/or filaments. Tunisphaeridium caudatum is distinguished by a single process 

or a small group of neighbouring processes that are conspicuously longer than the rest, but the 

specimens from the Quwarah Member have two such groups of longer processes arising from 

opposite poles of the vesicle. 

Tunisphaeridium bicaudatum sp. nov. also resembles the genus Carminella Cramer, 1968, 

particularly the type species, C. maplewoodensis Cramer, 1968. Points of similarity include 

the slender, wiry processes that increase in length at opposite poles and their possible 

enclosure within a membrane. The longer processes at each pole, in particular, seem to 

support a membrane that is stretched between them. The enveloping membrane is much better 

developed in Carminella, however, and the shorter processes on the figured specimens (Plate 

VII, 1–2, 4) all appear to be connected distally by filaments, which is a characteristic of 

Tunisphaeridium rather than Carminella. 

Occurrence: This form is rare in the Quwarah Member. Seven specimens were recorded from 

536.7 ft, 535.2 ft and 488.3 ft. They are most numerous in the highest sample. 

 

Genus Veryhachium Deunff, 1954 

 

Type species: Veryhachium trisulcum (Deunff, 1951) ex Deunff, 1959. Subsequent 

designation by Downie (1959). 
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Veryhachium cf. elongatum Downie, 1963 (Plate III, 1–2, 4) 

 

cf. 1963 Veryhachium elongatum Downie, p. 637, pl. 92, fig. 10. 

 

Description: The vesicle is small and triangular, but distinctly elongate. The longer vesicle 

sides tend to be convex, and the shorter side straight to concave. A single long, narrow, 

flexible process arises gradually from each corner, and tapers to a simple acuminate tip. The 

processes are hollow and in communication with the vesicle cavity. The vesicle and processes 

are unornamented.  

Dimensions (22 specimens):  

Vesicle length: 15–20 µm (mean 17.4 µm, median 17.5 µm). 

Vesicle width: 10–15 µm (mean 11.9 µm, median 11.5 µm). 

Vesicle length:vesicle width: 1.15–1.82 (mean 1.48, median 1.46). 

Process length: 16–45 µm (mean 29.2 µm, median 26.5 µm). 

Process length/vesicle length: 1.00–2.65 (mean 1.68, median 1.52). 

Remarks: This form is characterized by its small, triangular but elongate vesicle and its long 

processes. A histogram of process length/vesicle diameter ratios, however, reveals a possible 

further differentiation into forms with ratios of between 1 and 2, and those with ratios >2 (Fig. 

7). Bivariate plots of process length against vesicle length also show two distinct categories 

(Fig. 8). Given that only 22 specimens were measured, this could be an artefact of the data. 

Nevertheless, within this limited data set, individual samples are characterized by forms with 

process length/vesicle diameter ratios of <2 or >2. For example, all the specimens measured 

from 536.7 ft, 528.3 ft and 488.3 ft, and three of the four specimens measured from 507.15 ft, 

have process length/vesicle diameter ratios of <1.66. Conversely, all the specimens measured 

from 503.1 ft and four of the five specimens measured from 535.2 ft have ratios >2, and the 
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fifth specimen from 535.2 ft has a ratio of 1.73. While we cannot draw any conclusions from 

this, it is nevertheless an observation worth recording as it might signal systematic variation 

in process length/vesicle diameter ratios through the member, perhaps in response to 

fluctuating palaeoenvironmental conditions. 

Comparison: The forms recorded from the Quwarah Member are larger than the specimens of 

Veryhachium elongatum recorded by Downie (1963) from the lower Wenlock Series 

(Silurian) of the Welsh Borderland in the U.K. Downie (1963) recorded vesicle lengths of 10–

16 µm, with a mean of 10 µm, and vesicle widths of 4–7 µm. He also reported the vesicle 

length to be about three times the width, which is greater than the ratio for specimens from the 

Quwarah Member. The small size and elongate triangular vesicle of the specimens from the 

Quwarah Member are comparable with V. elongatum, as is the process length/vesicle length 

ratio, which Downie (1963) reported to be between 1.0 and 2.5 for his specimens. 

Occurrence: Quwarah Member, Qasim Formation. Veryhachium cf. elongatum forms 

between 0.7% and 3.6% of counted specimens in samples from 536.7 ft, 535.2 ft, 528.3 ft, 

518.5 ft, 507.15 ft, 503.1 ft, 497.8 ft and 488.3 ft. The highest percentages, respectively 3.0% 

and 3.6% are from the lowest two samples in this range at 536.7 ft and 535.2 ft. No specimens 

were recorded from the lowermost sample in Qusaiba-1, from 551.0 ft. 

 

Veryhachium oklahomense Loeblich, 1970 (Plate II, 1–3) 

 

1970 Veryhachium oklahomense Loeblich, pp. 742–743, fig. 36F, G. 

 

Description: Veryhachid acritarchs with small (usually <20 µm), quadrangular, generally 

rectangular, thin-walled and smooth vesicles, and four long, thin, flexible, simple and 

unornamented processes, one arising from each corner of the vesicle. The processes have 
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acuminate or evexate distal tips. They are hollow, at least proximally, and communicate with 

the vesicle cavity. 

Dimensions (28 specimens): 

Vesicle length: 12–18 µm (mean 15.6 µm, median 16 µm). 

Vesicle width: 9–15 µm (mean and median 12.5 µm). 

Vesicle length/width: 1–1.6 (mean and median 1.26). 

Process length: 10–45 µm (mean 26.6 µm, median 27 µm). 

Process length/vesicle length: 0.71–2.92 (mean 1.71, median 1.66). 

Remarks: The combination of small vesicle size and long flexible processes is characteristic 

of this veryhachid morphospecies. 

Comparison: Similar forms have been referred in the literature to Veryhachium oklahomense 

Loeblich, 1970. Turner (1984), for example, recorded specimens with vesicle dimensions of 

9–20 × 9–16 µm (mean 14 × 12 µm) and process lengths of 18–33 µm (mean 26 µm) from the 

type Caradoc Series in Shropshire, England, as V. oklahomense. Molyneux (1988) assigned 

similarly small, rectangular forms with long flexible processes from the Upper Ordovician of 

northeast Libya, with vesicle dimensions of 12–24 × 12–20 µm (mean 18 × 15 µm) and 

process lengths of 20–48 µm (mean 35 µm), to the same species. These specimens fall within 

the range of variation seen in the Quwarah Member (Fig. 9). Playford and Wicander (2006), 

however, considered the records of V. oklahomense by Turner (1984) and Molyneux (1988) to 

be “...almost certainly misidentifications, mainly due to their appreciably greater process 

length/vesicle diameter ratio”. 

The original description of Veryhachium oklahomense Loeblich, 1970, records it as having 

relatively long, thin, flexible processes, a vesicle diameter of 16–22 µm, and an overall 

diameter of 61–84 µm. The holotype and paratype of Veryhachium oklahomense Loeblich, 

1970, both have larger vesicles than the specimens recorded from the Quwarah Member, 
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measured from the illustrations in Loeblich (1970) as 25 × 19 µm and 29 × 29 µm 

respectively (longer dimensions plotted in Fig. 9). The process lengths, however, fall within 

the range of variation recorded for the Quwarah specimens, 28 µm for the holotype and 33 

µm for the paratype (Fig. 9), but the vesicle dimensions of the type material means that their 

processes are relatively short compared with the Quwarah specimens. 

Playford and Wicander (2006) recorded vesicle lengths of 17–28 µm (mean 22 µm), process 

lengths of 15–31 µm (mean 22 µm) (Fig. 9), and process length/vesicle diameter ratios of 

0.7–1.1. They also described the processes as being spine-like and straight or curved, 

although their illustrations show them as being perhaps more flexible. Although some of the 

specimens recorded from the Quwarah Member have greater process length/vesicle diameter 

ratios than the ratios of 0.7–1.1 reported by Playford and Wicander (2006), and the Quwarah 

mean and median ratios are both outside the range reported by those authors, there is 

nevertheless some overlap between the Quwarah population and Playford and Wicander’s 

(2006) specimens. 

Veryhachium longispinosum Jardiné et al. (1974) is also comparable with the Quwarah 

specimens in the sense that it has a quadrangular vesicle with relatively long processes, but is 

larger. The type material of V. longispinosum Jardiné et al. (1974) has vesicle dimensions of 

25–40 µm and process lengths of 50–65 µm. Turner (1984) recorded specimens of V. 

longispinosum with vesicle dimensions of 32 × 26 µm and process lengths of 50 µm, and 

22 × 20 µm with process lengths of 80 µm (Fig. 9). 

Occurrence: Small quadrangular veryhachid acritarchs with long flexible processes, assigned 

here to Veryhachium oklahomense, are common in the Quwarah Member. They range from 

5.9% to 11.5% of counted specimens in samples from 551.0 ft, 536.7 ft, 535.2 ft, 528.3 ft, 

507.15 ft, 503.1 ft and 488.3 ft. Veryhachium oklahomense is present throughout the Quwarah 
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Member, and is also found in the basal disrupted facies and the Baq’a Shale Member of the 

Sarah Formation. 

 

Notes on other figured specimens 

 

Actinotodissus spp. (Plate I, 1, 4) 

Two specimens assigned to Actinotodissus are figured. One specimen (Plate I, 1) has a thin-

walled vesicle with straight to slightly convex sides along its length, and more or less straight 

vesicle sides between the process bases, giving it an elongate, subpolygonal outline. The 

processes are long, slender, tapering and flexible, with narrow bases, angular contacts with 

the vesicle, and evexate distal terminations. They are hollow and in communication with the 

vesicle cavity. Nine processes are present at one pole, and fifteen at the other. The vesicle and 

process walls are smooth, apart from six faint, widely spaced striae that are subparallel to the 

long axis of the vesicle. The vesicle is 35 µm long × 25 µm wide; processes are 21–24 µm 

long. The specimen is slightly larger and more elongate than the type material of 

Actinotodissus crassus Loeblich and Tappan, 1978, but is otherwise comparable. 

 

The second specimen (Plate I, 4) has a large, quadrate vesicle with straight to slightly convex 

sides, including the lengths between the process bases at the poles. The processes taper from 

wide bases to acuminate or evexate tips, and are slightly flexible, with angular to curved 

contacts with vesicle. They are hollow and in communication with the vesicle cavity. There 

are nine processes at one pole, and ten at the other. Faint spaced striae are present on the 

surface of the vesicle, subparallel to the long axis. Vesicle and processes bear an ornament of 

fine grana. The vesicle is 41 µm long × 35 µm wide; processes are 28–34 µm long. This 

specimen is much larger than described species of Actinotodissus, particularly A. 
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longitaleosus Loeblich and Tappan, 1978, which was distinguished from A. crassus on the 

basis of its granulate ornament. 

 

Comasphaeridium spp. (Plate IV, 1, 6) 

Two specimens are figured. One (Plate IV, 1) has a vesicle that is ovate to elliptical in outline. 

The vesicle is hollow, with a relatively thin, folded wall, and bears an ornament of short, very 

densely and uniformly distributed hairs that are possibly capitate, possibly solid, and are 

flexible and parallel-sided. The vesicle diameter is 53 × 41 µm and the ornament height <2 

µm. The second specimen (Plate IV, 6) is similar, but is smaller and has a correspondingly 

finer ornament. Its vesicle diameter is 38 × 29 µm, and its ornament height is c. 1 µm. 

 

Dactylofusa cucurbita Jardiné et al., 1974 (Plate VIII, 1–2) 

Dactylofusa cucurbita is characterized by its large, aligned, irregularly spaced tubercles, 

which are evident on this specimen. 

 

Dactylofusa striatogranulata Jardiné et al., 1974 (Plate VIII, 5–7) 

Jardiné et al. (1974) described Dactylofusa striatogranulata as having a fusiform vesicle with 

pointed ends and an ornament of longitudinal striae formed by the alignment of closely 

spaced grana. Specimens recorded have rounded rather than pointed ends. Eupoikilofusa 

rochesterensis Cramer, 1971, is similar in that the central part of its elongately fusiform 

vesicle is covered by stout, digitate sculptural elements, aligned roughly parallel to the long 

axis of the vesicle, but the wall becomes smooth towards the poles through a transition zone. 

 

Dictyotidium sp. (Plate VI, 1) 
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The vesicle is interpreted as being originally spherical, and is now subcircular in outline and 

hollow, with a relatively thick wall that is covered by a network comprising small polygonal 

fields. The polygonal fields are generally pentagonal or hexagonal, and are 2–4 µm in 

diameter. The vesicle diameter is 42 × 34 µm. The specimen differs from D. faviforme 

Schultz, 1967, in having larger fields, and from D. stenodictyum Eisenack, 1965, in lacking 

larger solid projections at the corners of (some) fields (see Mullins, 2001). 

 

Helosphaeridium sp. (Plate VI, 6) 

The vesicle of this specimen is interpreted as being originally spherical, and is subcircular in 

outline, hollow, and relatively thin-walled. It bears a uniformly and densely distributed 

ornament of short, stout elements that are nail or stud-like in cross-section with cylindrical 

stems and a flat distal termination. The vesicle diameter is 57 × 47 µm, and the ornament is c. 

0.6 µm high and 0.6 µm wide. The specimen is similar to Helosphaeridium citrinipeltatum 

Lister, 1970, but is larger and has a relatively smaller ornament. For comparison, H. 

citrinipeltatum has a spherical, hollow, thin-walled vesicle, with a diameter of 30–50 µm, and 

an ornament of dense, peltate, uniformly distributed, apparently solid elements, up to 2 µm 

high and equally wide at the base and top. 

 

Neoveryhachium carminae constricta Le Hérissé et al., 1995 (Plate II, 6, 10) 

Some specimens of Neoveryhachium recorded from the Quwarah Member have the 

constricted vesicles typical of N. carminae constricta. Some of these specimens also appear to 

be enclosed within a thin membrane. 

 

Oppilatala sp. (Plate VII, 5–6) 
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A single specimen was recorded. The vesicle is circular in outline, and was probably 

originally spherical. It has a thick wall with a granulate ornament over most of the surface, but 

has striae at the base of the processes that radiate away from the process bases. The processes 

have thinner walls and are hollow, but are plugged at the base or arise from an outer vesicle 

layer. The process stems are cylindrical and parallel-sided, and have widely diverging 

branches in their distal third. Branching is irregular to the second order. The final branching is 

often a bifurcation. Branches taper to acuminate or narrowly rounded tips. The vesicle 

diameter is c. 28 µm, and processes are c. 22 µm from their contact with the vesicle to the 

first branches. Branches are c. 12 µm long. There are seven processes. 

 

Pirea spp. (Plate III, 5–6) 

In addition to Pirea? sp. 1, more typical specimens of Pirea were recorded from the Quwarah 

Member, from the basal disrupted facies of the Sarah Formation, and from the Baq’a Shale 

Member. The two specimens figured are both from the Quwarah Member at 488.3 ft. One 

specimen (Plate III, 5) has a thin-walled, ovoid vesicle with a fine granulate ornament that is 

distributed uniformly and randomly on the vesicle. The grana diminish towards the process, 

where longitudinal striations extend from the upper part of the vesicle towards the neck. The 

process is smooth. There is a slight constriction at the neck, where the vesicle joins the 

process. The process termination is rounded and capitate. The overall length of this specimen 

is 47 µm, of which the vesicle length is 40 µm and the process length is 7 µm. The vesicle 

width is 24 µm, the neck width is 4 µm, and the width of the process tip is 5 µm. The 

specimen resembles Pirea ornatissima Cramer and Díez, 1977, in having an ornament of 

dense, solid, coarse grana or spines on the 2/3rds of vesicle furthest from process, but reduced 

or not present adjacent to the process or on the process, and in having a few widely spaced 
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striations that extend from the process onto the vesicle. Cramer and Díez (1977), however, 

recorded much greater dimensions for P. ornatissima (length: 110–130 µm). 

 

The second figured specimen (Plate III, 6) has a thin-walled, ovoid vesicle. A fine granulate 

ornament is distributed uniformly and randomly on the vesicle and extends onto the process, 

but there are no longitudinal striations and no constriction at the base of the process. The 

vesicle passes into the process at a slight flexure. The process is rounded distally, but is not 

capitate. The overall length of the specimen is 52 µm, with a vesicle length of 45 µm and a 

process length of 7 µm. The vesicle width is 24 µm, the width of the neck, measured at the 

base of the process is 6 µm, and the process is 4 µm wide at its distal termination. 

 

Striatotheca cf. S. sp. B of Molyneux, 1988 (Plate II, 7) 

A specimen of Striatotheca recorded from 507.15 ft has very fine striations and long flexible 

processes. The vesicle measures 22 × 18 µm and the processes are about 23 µm long (i.e. 

about the same as the maximum vesicle dimension). The specimen resembles Striatotheca sp. 

B of Molyneux (1988), from the Late Ordovician of northeast Libya, which also has fine 

striations and flexible processes that are approximately equal in length to the vesicle 

dimensions (Striatotheca sp. B, vesicle dimensions: 18–20 × 14–16 µm; process length 16–20 

µm). 

 

Veryhachium fakirum? Martin, 1969 (Plate V, 5–6; Plate XIII, 2) 

Rare specimens resembling Veryhachium fakirum Martin, 1969, were recorded from the 

Quwarah Member at 551.0 ft and 448.3 ft, and are also present in the Baq’a Shale Member 

(Plate XIII, 2), where they might be reworked. A specimen illustrated from 551.0 ft (Plate V, 

5) bears an ornament of short hairs on the vesicle and processes that are apparently distributed 
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at random, but are actually aligned in indistinct rows subparallel to the sides of the vesicle. 

Vesicle dimensions are 23 × 19 µm, process length is 10 µm and the processes are about 5 µm 

wide at the base. A second illustrated specimen, from 488.3 ft (Plate V, 6), has relatively long, 

broad-based, narrowly conical processes, and grana rather than hairs. The specimens resemble 

V. fakirum (vesicle dimensions 20–50 µm, process length 13–22 µm, often about 0.5 × vesicle 

sides), which also has a vesicle surface and processes covered by hairs (with robust bases and 

up to 4 µm long). However, the processes of V. fakirum are described as having narrow bases 

and as tapering very gradually to a simple termination, unlike the wider-based processes of 

these specimens. 

 

Veryhachium sp. A (Plate V, 8) 

Large quadrate veryhachids with smooth walls, slightly concave sides and long processes 

with wide bases that arise gradually from the corners of the vesicle and taper to acuminate or 

bluntly rounded tips, are present in small numbers in the Quwarah Member at 528.3 ft, 507.15 

ft, 503.1 ft and 488.3 ft. The vesicle dimensions of the figured specimen are 27 × 24 µm, the 

process length is 25 µm and the process width at the base is 10 µm. For specimens of this type 

as a whole, the vesicle dimensions are 19–27 × 15–24 µm (mean 23 × 19.4 µm, median 

23 × 20 µm), the process length is 16–25 µm (mean 19, median 18), and the process width 

(base) is 4–10 µm (mean 7 µm, median 6 µm). 
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Fig. 1. Location maps for the Qusaiba-1 core hole. (a) Map of the Arabian Peninsula showing 

the location of the north-western part of the Buraydah quadrangle in Qasim region, central 

Saudi Arabia (red box). (b) Geological sketch map of the north-western part of the Buraydah 

quadrangle, showing location of the Qusaiba-1 core hole. Modified after Zalasiewicz et al. 

(2007). 

 

Fig. 2. Ranges of acritarchs in the Late Ordovician (Upper Qasim and Sarah formations) and 

early Silurian, early Rhuddanian (basal Qalibah Formation) succession in the Qusaiba-1 

shallow borehole (parts 1 and 2). Reworked Middle Ordovician forms are plotted separately 

in part 2. It is likely that a number of Late Ordovician taxa are also reworked in the Baq’a 

Shale Member, but reworking of Late Ordovician forms at this level is not so easy to identify. 

 

Fig. 3. Bivariate plot of vesicle diameter against process length for specimens of Actipilion 

druggii Loeblich, 1970, from the Quwarah Member, Qusaiba-1 (black dots). Also plotted for 

comparison are dimensions of the holotype and isotypes of A. druggii, dimensions of 

specimens figured by Playford and Wicander (2006), and the dimensions of Actipilion cf. 

druggii in Molyneux (1988) from the Late Ordovician of Libya. 

 

Fig. 4. Bivariate plot of overall length against maximum width for specimens identified as 

Leiofusa litotes Loeblich and Tappan, 1978, from the Quwarah Member, Qusaiba-1 (black 

dots). Also plotted for comparison are the dimensions of two specimens recorded by Loeblich 

and Tappan (1978), including the holotype, and the mean dimensions of specimens from the 

Late Ordovician of Libya identified by Molyneux (1988) as Leiofusa aff. litotes and Leiofusa 

aff. fusiformis (Eisenack) Eisenack, 1938. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

79 

 

 

Fig. 5. Bivariate plot of vesicle length against overall length for specimens identified as 

Leiofusa aff. tumida Downie, 1959, from the Quwarah Member, Qusaiba-1 (black dots). Also 

plotted are the mean dimensions of specimens recorded by Molyneux (1988) from Libya as 

Leiofusa aff. tumida Downie 1959. 

 

Fig. 6. Bivariate plots of vesicle length against process length for Striatotheca monorugulata 

Yin et al., 1998, (red dots) and Striatotheca aff. monorugulata (black dots) from the Quwarah 

Member in Qusaiba-1. Dimensions of Striatotheca monorugulata are from (1) the holotype, 

(2) the paratypes, (3) the population mean and (4) other figured specimens in Yin et al. 

(1998), and specimens figured by (5) Quintavalle et al. (2000) and (6) Tongiorgi et al. (2003). 

 

Fig. 7. Histogram and kernel density of process length/vesicle length ratios for Veryhachium 

cf. elongatum Downie, 1963, from the Quwarah Member in Qusaiba-1. 

 

Fig. 8. Bivariate plot of vesicle length against process length for Veryhachium cf. elongatum 

Downie, 1963, from the Quwarah Member in Qusaiba-1. Specimens with process 

length/vesicle length ratios of >2 (red dots) are differentiated from those with ratios <2 (black 

dots). 

 

Fig. 9. Bivariate plot of vesicle length against process length for specimens of Veryhachium 

oklahomense Loeblich, 1970, from the Quwarah Member of Qusaiba-1 (black dots). Also 

plotted for comparison are the values of vesicle length against process length for the holotype 

and paratype of Veryhachium oklahomense Loeblich, 1970, the mean values of vesicle length 

against process length for populations of specimens assigned to V. oklahomense by Turner 
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(1984), Molyneux (1988) and Playford and Wicander (2006), and vesicle length against 

process length for specimens of Veryhachium longispinosum Jardiné et al. (1974) recorded by 

Turner (1984). 

 

 

Plate captions 

 

Plate I. Scale bar = 10 µm for Figs. 1–5; 20 µm for Figs. 6–7. 

 

1. Actinotodissus cf. crassus Loeblich & Tappan, 1978, 536.7 ft, slide 64183, LPB 13230, 

C19/1. 

2. Leiofusa aff. tumida Downie, 1959, 528.3 ft, slide 64191, LPB 13227, T28/0. 

3. Leiofusa aff. tumida Downie, 1959, 528.3 ft, slide 64191, LPB 13227, O20/2. 

4. Actinotodissus sp., 503.1 ft, slide 64089, LPB 13223, U40/2. 

5. Leiofusa aff. tumida Downie, 1959, 488.3 ft, slide 64143, LPB 13221, W29/0. 

6. Leiofusa litotes Loeblich and Tappan, 1978, 528.3 ft, slide 64191, LPB 13227, X36/1. 

7. Leiofusa litotes Loeblich and Tappan, 1978, 528.3 ft, slide 64191, LPB 13227, N23/0. 

 

Plate II. Scale bar = 10 µm. 

 

1. Veryhachium oklahomense Loeblich, 1970, 488.3 ft, slide 64143, LPB 13221, T47/0. 

2. Veryhachium oklahomense Loeblich, 1970, 528.3 ft, slide 64191, LPB 13227, M39/0-3. 

3. Veryhachium oklahomense Loeblich, 1970, 528.3 ft, slide 64191, LPB 13227, X35/2. 
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4. Veryhachium lairdii Deflandre ex Loeblich, 1970, 488.3 ft, slide 64143, LPB 13221, 

S24/3-4. 

5. Striatotheca aff. monorugulata Yin Leiming et al., 1998, 551.0 ft, slide 64068, LPB 

13231, N24/1. 

6. Neoveryhachium carminae constricta Le Hérissé et al., 1995, 488.3 ft, slide 64143, LPB 

13221, V38/0. 

7. Striatotheca aff. S. sp. B of Molyneux, 1988, 507.15 ft, slide 64085, LPB 13224, J40/0. 

8. Striatotheca aff. monorugulata Yin Leiming et al., 1998, 488.3 ft, slide 64143, LPB 

13221, S25/0-4. 

9. Striatotheca aff. monorugulata Yin Leiming et al., 1998, 528.3 ft, slide 64191, LPB 

13227, G45/2-4. 

10. Neoveryhachium carminae constricta Le Hérissé et al., 1995, 536.7 ft, slide 64183, LPB 

13230, T34/0. 

11. Striatotheca aff. monorugulata Yin Leiming et al., 1998, 535.2 ft, slide 64076, LPB 

13229, B49/4. 

12. Striatotheca aff. monorugulata Yin Leiming et al., 1998, 536.7 ft, slide 64183, LPB 

13230, K19/2. 

 

Plate III. Scale bar = 10 µm for Figs. 1–8; 20 µm for Figs. 9–11. 

 

1. Veryhachium cf. elongatum Downie, 1963, 528.3 ft, slide 64191, LPB 13227, O24/0. 

2. Veryhachium cf. elongatum Downie, 1963, 528.3 ft, slide 64191, LPB 13227, O33/3. 

3. Sol? sp., 488.3 ft, slide 64143, LPB 13221, X22/0-1-3. 

4. Veryhachium cf. elongatum Downie, 1963, 488.3 ft, slide 64143, LPB 13221, R46/4. 

5. Pirea sp., 488.3 ft, slide 64143, LPB 13221, U46/2. 
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6. Pirea sp., 488.3 ft, slide 64143, LPB 13221, S38/3. 

7. Villosacapsula setosapellicula (Loeblich) Loeblich and Tappan, 1976, 488.3 ft, slide 

64143, LPB 13221, Y42/0. 

8. Villosacapsula setosapellicula (Loeblich) Loeblich and Tappan, 1976, 507.15 ft, slide 

64085, LPB 13224, U38/3. 

9. Fractoricoronula cf. trirhetica? Turner, 1984, 528.3 ft, slide 64191, LPB 13227, R19/1. 

10. Veryhachium subglobosum Jardiné et al., 1974, 507.15 ft, slide 64085, LPB 13224, 

P48/1-P47/2. 

11. Dorsennidium hamii (Loeblich) Sarjeant and Stancliffe, 1994, 536.7 ft, slide 64183, LPB 

13230, G45/0. 

 

Plate IV. Scale bar = 10 µm for Figs. 1-6, 8–9; 12 µm for Fig. 7. 

 

1. Comasphaeridium sp., 488.3 ft, slide 64143, LPB 13221, S36/4. 

2. Leprotolypa evexa Colbath, 1979, 535.2 ft, slide 64076, LPB 13229, K20/0. 

3. Ferromia pellita (Martin) Martin, 1996, 536.7 ft, slide 64183, LPB 13230, M21/4. 

4. Ferromia pellita (Martin) Martin, 1996, 536.7 ft, slide 64183, LPB 13230, M28/0. 

5. Ferromia pellita (Martin) Martin, 1996, 528.3 ft, slide 64191, LPB, 13227, K25/2. 

6. Comasphaeridium sp., 528.3 ft, slide 64191, LPB 13227, E48/4-F48/2. 

7. Pirea? sp. 1, 488.3 ft, slide 64143, LPB 13221, K42/0. 

8. Actipilion druggii Loeblich, 1970, 488.3 ft, slide 64143, LPB 13221, X24/0. 

9. Actipilion druggii Loeblich, 1970, 507.15 ft, slide 64085, LPB 13224, W22/0. 

 

Plate V. Scale bar = 10 µm. 
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1. Actipilion druggii Loeblich, 1970, 488.3 ft, slide 64143, LPB 13221, W25/0-4. 

2. Impluviculus? sp., 535.2 ft, slide 64076, LPB 13229, Y31/4. 

3. Impluviculus? sp., 536.7 ft, slide 64183, LPB 13230, V19/1. 

4. Impluviculus? sp., 551.0 ft, slide 64068, LPB 13231, L38/3. 

5. Veryhachium fakirum? Martin, 1969, 551.0 ft, slide 64068, LPB 13231, J47/2. 

6. Veryhachium fakirum? Martin, 1969, 488.3 ft, slide 64143, LPB 13221, S18/0-4. 

7. Pirea? sp. 1, 488.3 ft, slide 64143, LPB 13221, T41/1. 

8. Veryhachium sp., 488.3 ft, slide 64143, LPB 13221, T48/0. 

 

Plate VI. Scale bar = 10 µm. 

 

1. Dictyotidium sp., 503.1 ft, slide 64089, LPB 13223, W17/0. 

2. Lophosphaeridium? sp. 1, 503.1 ft, slide 64089, LPB 13223, E40/0. 

3. Lophosphaeridium? sp. 1, 536.7 ft, slide 64183, LPB 13220, J45/1. 

4. Lophosphaeridium? sp. 1, 488.3 ft, slide 64143, LPB 13221, R32/3. 

5. Glyptosphaera? sp., 535.2 ft, slide 64076, LPB 13229, X33/4. 

6. Helosphaeridium sp., 528.3 ft, slide 64191, LPB 13228 O21/2. 

7. Glyptosphaera? sp., 535.2 ft, slide 64076, LPB 13229, J47/0. 

8. Falavia magniretifera gen. et sp. nov., Holotype, 488.3 ft, slide 64143, LPB 

13221,T42/1. 

9. Falavia magniretifera gen. et sp. nov., Paratype, 503.1 ft, slide 64089, LPB 13223, 

U39/2-U40/1. 

 

Plate VII. Scale bar = 10 µm for Figs. 1–6; approximately 5.6 µm for Fig. 6 inset. 
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1. Tunisphaeridium bicaudatum sp. nov., Paratype, 488.3 ft, slide 64143, LPB 13221, 

T43/1. 

2. Tunisphaeridium bicaudatum sp. nov., Holotype, 488.3 ft, slide 64143, LPB 13221, 

W51/3. 

3. Stellechinatum helosum Turner, 1984, 488.3 ft, slide 64143, LPB 13221, E21/4. 

4. Tunisphaeridium bicaudatum sp. nov., Paratype, 535.2 ft, slide 64076, LPB 13229, 

L22/4. 

5. Oppilatala sp., 503.1 ft, slide 64089, LPB 13223, Q50/0-3. 

6. Oppilatala sp., 503.1 ft, slide 64089, LPB 13223, Q50/0-3; inset showing details of 

ornament and striations at base of process. 

 

Plate VIII. Scale bar = 10 µm for Figs. 3–4, 7–8; 20 µm for Fig. 1; approximately 5.6 µm for 

Figs. 2, 5–6. 

 

1. Dactylofusa cucurbita Jardiné et al., 1974, 528.3 ft, slide 64191, LPB 13227, W49/0; box 

indicates area of Fig. 2. 

2. Dactylofusa cucurbita Jardiné et al., 1974, 528.3 ft, slide 64191, LPB 13227, W49/0; 

detail of Fig. 1. 

3. Eupoikilofusa striatifera (Cramer) Cramer, 1971, 528.3 ft, slide 64191, LPB 13228, 

X45/0. 

4. Navifusa similis? (Eisenack) Turner, 1984, 528.3 ft, slide 64191, LPB 13228, F38/4. 

5. Dactylofusa striatogranulata Jardiné et al., 1974, 488.3 ft, slide 64143, LPB 13221, 

S43/3-T43/1; detail of Fig. 7. 

6. Dactylofusa striatogranulata Jardiné et al., 1974, 488.3 ft, slide 64143, LPB 13221, 

S43/3-T43/1; detail of Fig. 7. 
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7. Dactylofusa striatogranulata Jardiné et al., 1974, 488.3 ft, slide 64143, LPB 13221, 

S43/3-T43/1; boxes indicate areas of Figs. 5, 6. 

8. Safirotheca safira Vavrdová, 1989, 535.2 ft, slide 64076, LPB 13229, Z41/0-1. 

 

Plate IX. Scale bar = 10 µm for Figs. 1–4, 6; 15 µm for Fig. 5; 20 µm for Fig. 7. 

 

1. Petaloferidium sp. 1, 551.0 ft, slide 64068, LPB 13231, W52/4.  

2. Petaloferidium sp. 2, 551.0 ft, slide 64068, LPB 13231, C28/2.  

3. Nexosarium parvum Turner, 1984, 528.3 ft, slide 64081, LPB 13228, M47. 

4. Sylvanidium? hawbanense Miller and Al-Ruwaili, 2007, 551.0 ft slide 64068, LPB 

13231, C27. 

5. Ordovicidium sp., 535.2 ft, slide 64186, LPB 13229, G35/4.  

6. Coenobium sp. A, 551.0 ft, slide 64068, LPB 13231, J46/1.  

7. Baltisphaeridium ternatum (Burmann) emend. Rauscher, 1973, 507.15 ft, slide 64193, 

LPB 13225, P29.  

 

Plate X. Scale bar = 10 µm. 

 

1 Orthosphaeridium orthogonium sp. nov., Holotype, 503.1 ft, slide 64197, LPB 13222, 

K34/2. 

2. Orthosphaeridium orthogonium sp. nov., Paratype, 503.1 ft, slide 64197, LPB 13222, 

K55. 

3. Inflatarium trilobatum gen. et sp. nov., Holotype, 518.5 ft, slide 64036, LPB 13226, 

G50/3. 

4. Inflatarium trilobatum gen. et sp. nov., Paratype, 507.15 ft, 64193, LPB 13225, C34/1. 
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5. Inflatarium trilobatum gen. et sp. nov., 518.5 ft, slide 64036, LPB 13226, T57/1. 

6. Inflatarium trilobatum gen. et sp. nov., 518.5 ft, slide 64036, LPB 13226, H50. 

7. Inflatarium trilobatum gen. et sp. nov., 503.1 ft, slide 64197, LPB 13222, D40/2. 

 

Plate XI. Scale bar = 10 µm for Figs. 3, 5–7; 15 µm for Fig. 2; 20 µm for Figs. 1, 4. 

 

1. Eupoikilofusa platynetrella Loeblich and Tappan, 1978, 436.0 ft, slide 64234, LPB 

13217, H47.  

2. Veryhachium mareki Vavrdová, 1989, 452.75 ft, slide 64228, LPB 13219, F54.  

3. Oppilatala sp. 1, 438.7 ft, slide 64231, LPB 13218, M26/3. 

4. Aremoricanium squarrosum Loeblich and MacAdam, 1971, 438.7 ft, slide 64231, LPB 

13218, M45/4. 

5. Actinotodissus longitaleosus Loeblich and Tappan, 1978, 528.3 ft, slide 64081, LPB 

13228, U31.  

6. Anomaloplaisium lumariacuspis Tappan and Loeblich, 1971, 476.7 ft, slide 64034, LPB 

13220, N39.  

7. Anomaloplaisium lumariacuspis Tappan and Loeblich, 1971, 488.3 ft, slide 64143, LPB 

13221, R26/1. 

 

Plate XII. Scale bar = 10 µm for Figs. 1–7, 9, 10; 15 µm for Fig. 8. 

 

1. Virgatasporites rudii Combaz, 1967, 342.3 ft, slide 64243, LPB 13214, O48. 

2. Stelliferidium sp., 318.2 ft, slide 64278, LPB 13207, L47/3. 

3. Cheleutochroa gymnobrachiata Loeblich and Tappan, 1978, 341.0 ft, slide 64246, LPB 

13213, N47/2.  
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4. Aremoricanium rigaudae Deunff, 1955, 323.1 ft, slide 64272, LPB 13209, E51.  

5. Peteinosphaeridium cf. velatum Kjellström, 1971 emend. Playford et al., 1995, 345.85 ft, 

slide 64031, LPB 13215, K26/1.  

6. Sphaeromorph with concentric striations in Le Hérissé et al., 2007, 327.9 ft, slide 64028, 

LPB 13211, G42/4. 

7. ?Clypeolus sp. A in Le Hérissé et al., 2007, 323.1 ft, slide 64272, LPB 13209, C27/4. 

8. Baltisphaeridium perclarum Loeblich and Tappan, 1978, 348.8 ft, slide 64240, LPB 

13216, B52/4.  

9. Dicrodiacrodium ancoriforme Burmann, 1968, emend. Servais et al., 1996, 348.8 ft, LPB 

13216, slide 64240, N46/1. 

10. Sol sp. 2. 348.8 ft, slide 64240, LPB 13216, W58/4.  

 

 

Plate XIII. Scale bar = 10 µm. 

 

1. Arkonia virgata Burmann, 1970, 335.7 ft, slide 64260, LPB 13212, S28/1. 

2. Veryhachium fakirum? Martin, 1969, 305.0 ft, slide 64025, LPB 13205, U40/1. 

3. Comasphaeridium cf. denseprocessum Cramer and Diez, 1977, 319.1 ft, slide 64275, 

LPB 13208, R55/4. 

4. Cymbosphaeridium sp., 301.1 ft, slide 64367, LPB 13204, F52. 

5. Oppilatala sp. 2., 294.8 ft, slide 64370, LPB 13203, R40/1. 

6. Leiofusa sp. A, 307.7 ft, slide 64330, LPB 13206, H42/2. 

7. Frankea longiuscula Burmann, 1970, 305.0 ft, slide 64025, LPB 13205, V43/1. 

8. Abnormal form (teratological case) of a Veryhachium sp., 325.4 ft, slide 64269, LPB 

13210, Q41/2. 
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9. Dorsennidium sp. 1, 341.0 ft, slide 64246, LPB 13213, H50/4. 

10. Dorsennidium sp. 1, 341.0 ft, slide 64246, LPB 13213 P46. 

11. Striatotheca quieta (Martin) Rauscher, 1973, 348.8 ft, slide 64240, LPB 13216, D43/2. 

 

Plate XIV. Scale bar = 10 µm for Figs 1–6, 8; 15 µm for Figs 7, 9–11. 

 

1. Dorsennidium polorum Miller and Eames, 1982, comb. nov., 256.4 ft, slide 64376, LPB 

13202, M27/3. 

2. Dorsennidium polorum Miller and Eames, 1982, comb., nov., 254.8 ft, slide 64022, LPB 

13200, K31/4. 

3. Multiplicisphaeridium raspum (Cramer, 1964b) Eisenack et al., 1973, 256.4 ft, slide 

64376, LPB 13202, F30/4. 

4 Nexosarium mansouri sp. nov., Holotype, 256.4 ft, slide 64376, LPB 13202, P45/1. 

5. Nexosarium mansouri sp. nov., Paratype, 255.75 ft, slide 64379, LPB 13201, O39. 

6. Nexosarium mansouri sp. nov., Paratype, 255.75 ft, slide 64379, LPB 13201, J56/1. 

7. Leiosphaeridia cf. acerscrabella Johnson, 1985, 256.4 ft, slide 64376, LPB 13202, J46/2. 

8. Salopidium sp., 256.4 ft, slide 64376, LPB 13202, D40/3. 

9. Hoegklintia aff. H. digitata (Eisenack, 1938) Dorning, 1981, 256.4 ft, slide 64376, LPB 

13202, F50. 

10. Leiofusa sp. B, 256.4 ft, slide 64376, LPB 13202, L38/3. 

11. Leiofusa sp. C, 256.4 ft, slide 64376, LPB 13202, P29. 
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Figure 1  
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Figure 2i  
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Figure 3  
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Plate I  
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Plate XIV
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