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Volcanism is a substantial process during crustal growth on plane-
tary bodies andwell documented to have occurred in the early Solar
System from the recognition of numerous basaltic meteorites.
Considering the ureilite parent body (UPB), the compositions of
magmas that formed a potential UPB crust and were complemen-
tary to the ultramafic ureilite mantle rocks are poorly constrained.
Among the Almahata Sittameteorites, a unique trachyandesite lava
(with an oxygen isotope composition identical to that of common
ureilites) documents the presence of volatile- and SiO2-rich magmas
on the UPB. The magmawas extracted at low degrees of disequilib-
rium partial melting of the UPB mantle. This trachyandesite extends
the range of known ancient volcanic, crust-forming rocks and docu-
ments that volcanic rocks, similar in composition to trachyandesites
on Earth, also formed on small planetary bodies ∼4.56 billion years
ago. It also extends the volcanic activity on the UPB by ∼1 million
years (Ma) and thus constrains the time of disruption of the body to
later than 6.5 Ma after the formation of Ca–Al-rich inclusions.

differentiation | meteorite parent body | achondrites | differentiated
meteorites

Alarge number of planetary embryos, tens to hundreds of
kilometers in size, accreted within the early Solar System. In

some of these embryos, internal heating triggered melting and
differentiation, giving rise to a varied suite of lithologies as docu-
mented by the achondritic meteorites. Planetary crustal growth
occurs via both volcanic eruptions and plutonic intrusions. Con-
straining these processes and the diversity of crustal materials that
formed the outermost solid shell of planetary bodies is crucial for
understanding Solar System planetary processes and evolution.
Ureilites are among the most common achondrites and rep-

resent remnants of the mantle from a planetary body from which
magmas have been extensively extracted (1−4). Several details of
ureilite petrogenesis (e.g., the mode of melt extraction) remain
controversial (e.g., refs. 1 and 2) because crustal rocks from the
ureilite parent body (UPB) have not yet been discovered. Al-
though tiny remnants of feldspathic and felsic melts from ureilitic
breccias have been interpreted as UPB basalts or products of
partial melting of plagioclase-bearing cumulates (e.g., refs. 5 and
6), it is generally assumed that the complementary melts were lost
to space during explosive eruptions (e.g., refs. 7–9).
A unique opportunity to gain new insights into ureilite pet-

rogenesis was provided by the polymict asteroid 2008 TC3 that
impacted our planet October 7, 2008, in the Nubian Desert,
Sudan, containing various ureilitic and ureilite-related fragments
(10, 11). Among its remnant fragments collected in the strewn
field, collectively named the “Almahata Sitta” meteorites, the
sample ALM-A (Almahata Sitta trachyandesitic meteorite) was
recovered (12). ALM-A weights 24.2 g and is covered with
a greenish and shiny fusion crust (Fig. 1).
The ALM-A sample described here is the only SiO2-rich,

rapidly cooled volcanic rock among the meteorites in our col-
lections. This rock is texturally completely different from the felsic
achondrite Graves Nunatak (GRA) 06128/9 (13) and granitic li-
thologies that occur as fragments in meteorite breccias (14). GRA
06128/9 shows a plutonic, granoblastic texture, 120° triple junctions

between coexisting phases, and chemically equilibrated silicates
(13). ALM-A clearly demonstrates that SiO2-rich lavas were
formed on the UPB and sets new important constraints on
ureilite petrogenesis.

Results
The oxygen isotope compositions of two ALM-A aliquots (Fig. 2)
were constrained to δ18O= 8.1‰, δ17O= 3.2‰,Δ17O=−1.06‰
and δ18O= 8.0‰, δ17O= 3.2‰,Δ17O=−1.04‰ (for details, see
SI Appendix). They fall in the range of other ureilites, including those
from Almahata Sitta (10, 11, 15, 16), but at the 16O-poor end of the
range of oxygen isotopes in ureilites, which is the more common
oxygen isotope composition found among ureilites.
ALM-A (Fig. 1; see SI Appendix, Tables S1− S3 and Figs. S1−

S3 for mineralogical details and the compositions of the constit-
uent phases) is a fine-grained rock rich in feldspars (∼70 vol%;
subhedral, zoned plagioclase with ∼An10–55 and anhedral anor-
thoclase with ∼An5–12) embedding abundant Cr-bearing (Cr2O3:
∼0.8–1 wt%) Ca pyroxene (∼20 vol %; ∼Fs19–25Wo34–41) having
glass inclusions, and low-Ca pyroxene (∼5 vol%; ∼Fs32–42Wo8–14)
without any exsolution lamellae. Anorthoclase was identified by
Raman spectroscopy (SI Appendix, Fig. S4). As accessory phases,
euhedral Cl apatite (with ∼0.3 wt% H2O), merrillite, ilmenite,
Ti,Cr,Fe-spinel, FeS, and Ni-poor Fe metal (Ni <0.10 wt%) are
observed (Fig. 1). Fine-grained intergrowths of albitic feldspar
(An<10), skeletal pyroxene, and a K2O-rich, quartz-normative
glass (with up to ∼4.5 wt% K2O and up to ∼40 μm in size) are
found in interstices between the major minerals. These glasses
are rhyolitic in composition, indicating the possibility for for-
mation of rocks with even higher SiO2 concentrations on the
UPB (granitoids or granites; compare ref. 17). Considering the

Significance

Volcanism is a fundamental geological process on planets and
was substantial during crustal growth on planetary bodies in
the early Solar System, as witnessed by ubiquitous rocks of
basaltic composition, e.g., on Earth, Moon, Mars, and asteroids.
Besides basaltic volcanism, trachyandesite lavas are generated
on Earth. The first occurrence of a trachyandesite lava in the
meteorite collections demonstrates that trachyandesitic, alkali-,
and silica-rich volcanism takes place not only on Earth today but
already occurred on a small planetesimal ∼4.56 billion years
ago. It sets new constraints on mechanisms and styles of early
Solar System volcanism.
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studied thin sections, the ALM-A rock is free of vesicles and
olivine phenocrysts.
ALM-A has a trachyandesitic bulk chemical composition. Tra-

chyandesite is a lava, rich in feldspars and containing—depending
on the concentrations of Na2O +K2O—between 53 wt% SiO2 and
63 wt% SiO2 using the International Union of Geological Sciences
criteria. ALM-A has high concentrations of alkalis (∼7 wt% of
Na2O+K2O), about 60wt%SiO2, and isMg rich (MgO= 4.8wt%;
Table 1). The composition results in a Mg number (mg#)
[=100×Mg/(Mg+Fe)] close to 61, which is similar to, e.g., those of
some terrestrial primitive basalts or Mg-rich andesites. ALM-A
displays enrichments of Ba, Be, Th, U, Nb, Ta, Eu, Ti, Zr, Hf, and
Sr relative to the light rare earth elements (REE) [e.g., (Th/La)n =
1.64, Eu/Eu*= 1.63, (Sr/Ce)n = 1.79, (Hf/Sm)n = 1.70], and a sig-
nificant heavy REE enrichment [(Gd/Lu)n = 0.78] (Fig. 3A and
SI Appendix, Fig. S5).

26Al-26Mg systematics of seven feldspar grains indicate that
ALM-A crystallized 6.5 (+0.5, −0.3) million years (Ma) after
Ca–Al-rich inclusions (CAIs) (Fig. 4 and SI Appendix, Table S4
and Fig. S6) and is thus ∼1 Ma younger than the monomict
Northwest Africa (NWA) 766 ureilite (18) and the albitic clasts
found in polymict ureilites (19).

Discussion
Although ALM-A is unlike all previously described achondrites,
there is clear evidence that the rock originated from the ureilite
parent body: (i) The oxygen isotope composition of ALM-A
(Fig. 2) falls in the field of the ureilites and feldspathic clasts
from polymict ureilites (3, 20, 21); (ii) the feldspar mineralogy is
very similar to the rare feldspathic clasts found in some polymict
ureilites, which are considered as remnants of UPB melts (5);
and (iii) it is most likely part of asteroid 2008 TC3, which was
shown to be a fragment of an asteroid dominated by ureilitic
lithologies (10, 11).
The presence of glass (SI Appendix, Fig. S3) and anorthoclase

(SI Appendix, Fig. S4), a phase occasionally occurring in terrestrial

lava bombs, indicates very rapid cooling of ALM-A (22, 23), in
accordance with a lava origin on the UPB.
Contrary to terrestrial trachyandesites, which are generally

residual melts formed from more mafic magmas by fractional

Fig. 1. (A) Greenish ALM-A hand specimen, (B) overview of the ALM-A thin section (polarized light, crossed nicols) showing high abundances of feldspar
(mainly gray) and displaying a subdoleritic texture. Anhedral anorthoclase and subhedral, zoned plagioclase laths occur. Low-Ca and Ca pyroxene (both
colored) are frequently encountered. (C) Close-up backscattered electron image illustrating the textural relation of feldspar (Fsp) and pyroxenes (Cpx, Ca rich;
Px, low Ca). Ca pyroxene bears abundant inclusions of, e.g., feldspar and SiO2-rich glass. Cl apatite (Ap) is developed as laths. (D) Quartz-normative, alkali-rich
glass inclusions occur within large Ca pyroxene crystals (arrows; polarized light).

Fig. 2. Three-oxygen isotope diagram illustrating the bulk composition
(two aliquots) of ALM-A (yellow stars) in comparison with ureilite data from
Almahata Sitta ureilites (gray dots). The oxygen isotope compositions of two
ALM-A aliquots are compared with data on other ureilitic samples from
Almahata Sitta (10, 11, 15, 16). Green field highlights the compositional
range for oxygen isotope compositions of other ureilites (20). Gray fields
give the compositional ranges for Rumuruti (R) chondrites, ordinary chon-
drites (H, L, LL), and enstatite (E) chondrites. TFL, terrestrial fractionation
line; CCAM, carbonaceous chondrite−anhydrous mineral line.
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crystallization, ALM-A was certainly not affected substantially by
this process. It has been observed that the Δ17O of ureilites
correlates with the FeO in their olivines (SI Appendix, Fig. S7).
Assuming that Δ17O does not change during partial melting,
ALM-A’s source rock (i.e., the UPB mantle) had olivine com-
positions of Fo78–86. Using an olivine/melt distribution coefficient
KD(Fe/Mg) [=(Fe/Mg)olivine/(Fe/Mg)melt] of 0.28 (24), the con-
jugate melts in equilibrium with such sources have mg# numbers
in the range 50–63. ALM-A’s mg# value is 61 and is well in this
range and supports an origin from the UPB.
The compositions of the first melts produced during equilib-

rium melting of typical chondrites at low pressure are controlled
by the enstatite−plagioclase−forsterite peritectic in the olivine−
plagioclase−silica system and would be basaltic in composition (25).
Intermediate melts were suggested by gabbroic, plagioclase-, and
diopside-rich inclusions in the Caddo County iron meteorite (26)
and the felsic achondrite GRA 06128/9 (13), but the inferred

compositions of their parental melts are still a matter of debate (e.g.,
ref. 27). If the melted lithologies are more silica rich, as exemplified
by the FeO-poor enstatite chondrites or other pyroxene-rich source
rocks, the compositions of the melts are controlled by the enstatite−
plagioclase−silica peritectic. Although such melts are more sil-
ica- and plagioclase-rich and have andesitic or trachyandesitic
compositions (28), they will be much poorer in FeO than ALM-A.
Therefore, an origin of ALM-A from an enstatite chondrite-like
parent body is excluded.
The CI1-normalized element abundances in ALM-A show

some anomalies. The concentrations of Sr, Eu, Zr, Hf, and Ti are
slightly higher than expected for equilibrium partial melting of
a source rock of chondritic composition, whereas concentrations
of Rb and K are lower (SI Appendix, Fig. S8). Experimental data
on disequilibrium partial melt compositions (51−56 wt% SiO2,
up to 4.4 wt% Na2O) of an ordinary chondrite starting material
[10–15% melting (29)], however, are close to the observed silica-
and Na-rich composition of ALM-A, and well match the ob-
served Sr, Eu, Zr, and Ti concentrations (Fig. 3). It cannot be
completely ruled out that the Sr, Ba, and Eu concentrations may
result from volatility-related processes during the experiments
and are not an effect of the rapidity of melting. In any case,
ALM-A’s trace element features (Fig. 3) must be genuine
characteristics of the melt. Recent experimental works have
demonstrated that low-degree melting (<5%) of an oxidized
chondrite (R chondrite) even better matches the bulk composi-
tions of ALM-A [and GRA 06128/9 (30)], in terms of major
element chemistry (∼61 wt% SiO2, ∼9 wt% Na2O). Generation
of ALM-A by disequilibrium melting of chondritic source rock
suggests that the ALM-A melt was rapidly extracted. Rapid melt
extraction was also considered in previous models of magma
genesis on the UPB (1, 31).
The abundances of volatiles (F, Cl, and OH) displayed by

ALM-A’s apatites (SI Appendix, Table S3) indicate that these
elements were involved during the melting on the UPB, and have
certainly favored the segregation of the melts from their sources
and their transport to the surface.
The discovery of ALM-A shows that a crust with an in-

termediate composition on the UPB was at least partially pre-
served and that the lavas were not entirely lost to space by
explosive volcanism as generally assumed (e.g., refs. 7–9). Be-
yond that, ALM-A is ∼1 Ma younger than the albitic clasts found
in polymict ureilites [5.5 Ma after CAIs (18)], extending the ig-
neous activity on the ureilite parent body for at least another
1 Ma. Although the duration of the entire magmatic activity of

Fig. 3. (A) Bulk trace element pattern of ALM-A (200-mg aliquot) and (B)
selected trace elements of ALM-A (black line) compared with those of the
experimental melts produced by disequilibrium melting of an ordinary
chondrite [Leedey, L6, red lines (29)] normalized to CI chondrite values (33).

Table 1. Major and trace element abundances in the ALM-A
meteorite

Oxides ALM-A Elements ALM-A Elements ALM-A Elements ALM-A

SiO2 60.07 Li 3.95 Nb 2.57 Ho 0.467
TiO2 0.67 Be 0.23 Mo 0.017 Er 1.40
Al2O3 14.66 Sc 21.4 Cs 1.11 Tm 0.221
Cr2O3 0.28 V 26.1 Ba 22.06 Yb 1.50
FeO 5.57 Co 1.55 La 1.44 Lu 0.224
MnO 0.27 Ni 7.33 Ce 3.54 Hf 1.22
MgO 4.81 Cu 1.44 Pr 0.546 Ta 0.133
CaO 7.29 Zn 148 Nd 2.92 W 0.011
Na2O 6.59 Ga 30.2 Sm 1.01 Pb 0.15
K2O 0.29 Rb 4.57 Eu 0.628 Th 0.284
P2O5 0.52 Sr 85.8 Gd 1.46 U 0.078
Total 101.02 Y 12.63 Tb 0.280

Zr 38.27 Dy 1.96

Oxides in wt%; other elements in micrograms per gram.
Fig. 4. Al-Mg age of ALM-A compared with Al-Mg and Mn-Cr ages obtained
from albitic clasts found in polymict ureilites (19) considering (34) and the
Mn-Cr age of the NWA 766 ureilite (18).

Bischoff et al. PNAS | September 2, 2014 | vol. 111 | no. 35 | 12691

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404799111/-/DCSupplemental/pnas.1404799111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404799111/-/DCSupplemental/pnas.1404799111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404799111/-/DCSupplemental/pnas.1404799111.sapp.pdf


the UPB cannot be directly estimated, the thermal history of the
ureilites indicates that their parent body was impact-disrupted
while still hot [∼1200–1300 °C (32)]. These temperatures are in
the range of temperatures required to produce melts on the
UPB. This implies that magmatic activity was still ongoing on the
UPB at the time, when the planetesimal was destroyed by a giant
collision. The age of the catastrophic event is not known, but
ALM-A constrains the time of disruption to ≥ 6.5 Ma after the
formation of CAIs.
The unique ALM-A trachyandesite demonstrates that silica-

rich magmas were generated on small planetary bodies early in
Solar System history.

Methods
For mineralogical characterization, the sample was studied by optical and
electron microscopy. A JEOL 6610-LV electron microscope (SEM) was used to
resolve the fine-grained textures, and quantitative mineral analyses were
obtained using a JEOL JXA 8900 Superprobe electron microprobe (EPMA)
operated at 15 keV and a probe current of 15 nA at the Westfälische
Wilhelms-Universität Münster. For the bulk chemical analysis, a 200-mg chip
was powdered. An aliquot of 115 mg was used for the determination of

trace elements by inductively coupled plasma (ICP)-MS, and with the
remaining material the major elements were determined by ICP-atomic
emission spectroscopy. The oxygen isotope compositions of two aliquots of
ALM-A were measured by laser fluorination gas mass spectrometry (see SI
Appendix for details). At the CRPG-CNRS (Nancy) the Mg isotopic composi-
tions and Al/Mg concentration ratios were measured with the Cameca IMS
1280-HR2 ion microprobe. Raman spectroscopy was performed at the Insti-
tut für Mineralogie of the Westfälische Wilhelms-Universität Münster. The
spectra of selected areas within grains of interest were acquired on a Horiba
Scientific XploRA confocal Raman microscope. Details on the procedures and
standards are given in SI Appendix.
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Supporting Information 

S1 Text  

Methods 

Scanning electron microscopy and electron microprobe analysis 

The mineralogy and texture of the ALM-A specimen were studied by optical and electron 

microscopy. A JEOL 6610-LV electron microscope (SEM) at the Interdisciplinary Center for 

Electron Microscopy and Microanalysis (ICEM) at the Westfälische Wilhelms-Universität 

Münster was used to resolve the fine-grained textures and for identification of the different 

mineral phases present. The EDS system attached (INCA; Oxford Instruments) was used for 

chemical characterization of the different mineral constituents at 20 keV. The beam current 

was controlled with a Faraday Cup. As natural and synthetic standards (Astimex) olivine (Mg, 

Fe, Si), jadeite (Na), plagioclase (Al), sanidine (K), diopside (Ca), rutile (Ti), chromium-

oxide (Cr), rhodonite (Mn), and pentlandite (Ni) were used. 

Quantitative mineral analyses were obtained using a JEOL JXA 8900 Superprobe electron 

microprobe (EPMA) at the ICEM operated at 15 keV and a probe current of 15 nA. Natural 

and synthetic standards were used for wavelength dispersive spectrometry. For feldspar 

analyses these were jadeite (Na), sanidine (K), diopside (Ca), anorthite (Si), plagioclase (Al), 

and fayalite (Fe). Counting times for feldspar analyses were 5s and 2.5s on the peak and 

background, respectively. Jadeite (Na), kyanite (Al), sanidine (K), chromium oxide (Cr), San 

Carlos olivine (Mg), hypersthene (Si), diopside (Ca), rhodonite (Mn), rutile (Ti), and fayalite 

(Fe) were used as standards when analyzing Ca- and low-Ca pyroxene, Fe,Ti,Cr-spinel, 

ilmenite, and SiO2-rich material. Counting times for all elements were 10s peak and 5s 

background, except for Na and K with 5s peak and 2.5s background. The matrix corrections 

were made according to the Фρ(z) procedure (1). 

Operating conditions during the analyses of the apatites were 15 keV accelerating voltage 

and a beam current of 10 nA with a defocussed beam of 5 µm. In order to cover possible ionic 

substitutions, 15 elements were measured using the subsequent standards: Astimex fluorite 

(Ca, F), Astimex apatite (P), USNM Rockport fayalite (Fe), USNM San Carlos olivine (Mg), 

rhodonite (Mn), celestine (Sr, S), jadeite (Na), sanidine (K), hypersthene (Si), Astimex rutile 

(Ti), kyanite (Al), Astimex chromium oxide (Cr) and Astimex tugtupite (Cl). Both of the 

halogens were measured first in the routine and exposed to a lower beam current of 5 nA to 

prevent migration or loss of volatiles. Counting times were 10s on peak and 5s on 



background. The hydroxyl content was calculated by difference according to atomic 

proportions, assuming an occupation of the x-site with two anions and a total of XCl + XF + 

XOH = 1.  

Bulk chemical analysis  

A 200 mg chip was powdered using a boron carbide mortar and pestle. 115 mg of the 

powder were used for the determination of trace elements by ICP-MS, and the remaining 

powder was used for the determination of the major elements by ICP-AES. The procedures 

have been extensively described (2). Based on replicate standards, the precision for 

abundances and trace element ratios are better than 5 % (2 x relative standard deviation). 

Oxygen isotope analysis  

The oxygen isotope compositions of two aliquots of ALM-A were measured by laser 

fluorination gas mass spectrometry (3,4). Sample material (typically ~2-3 mg) is reacted with 

purified F2 gas with aid of a 50 W infrared laser. Excess F2 is reacted to Cl2 in a NaCl trap 

(150°C) and Cl2 is trapped in a liquid N2 cold trap (-196°C). Sample O2 is purified from trace 

gases (e.g. NF3 and CF4) using gas a chromatographic column and subsequently analyzed in 

dual inlet mode with a ThermoElectron MAT 253 gas mass spectrometer (4). Accuracy and 

precision in δ
18

O and δ
17

O are typically better than ±0.2 and ±0.1 ‰ (2 sigma), respectively 

(4). The Δ
17

O (error: Δ
17

O = ±0.02 ‰ (2 sigma)) is defined as Δ
17

O = 1000*ln(
17

O/1000+1)-

0.5305*1000*ln(
18

O/1000+1) (4,5). 

Al-Mg analysis 

The Mg isotopic compositions and Al/Mg concentration ratios were measured with the 

CRPG-CNRS Cameca ims 1280HR2 ion microprobe. Because of the low Mg contents of the 

feldspars, the measurements were made in mono-collection mode using the central electron 

multiplier (EM) for 
24

Mg
+
, 

25
Mg

+
 and 

26
Mg

+
 and the central Faraday cup (FC2) for 

27
Al

+
. The 

samples were sputtered with a ~20 nA O
-
 primary beam and the secondary ions analyzed at a 

mass resolution M/DM ~3500. One measurement was made of 75 cycles with counting times 

during each cycle of 4, 3, 10, 10, 3 and 3 sec at masses 23.8 (background for EM), 
24

Mg, 

25
Mg, 

26
Mg, 26.8 (background FC2) and 

27
Al, respectively. The Mg isotopic compositions are 

given in delta notation according to δ
25

MgX=[(
25

Mg/
24

Mg)X/(
25

Mg/
24

Mg)standard - 1]×1000 

(similarly for 
26

Mg) with (
25

Mg/
24

Mg)standard = 0.12663 and (
26

Mg/
24

Mg)standard = 0.13932. The 

26
Mg excesses are noted Δ

26
Mg with Δ

26
Mg= δ

 26
Mg - δ

 25
Mg/0.521. Two in house synthetic 



glasses of anorthitic composition (An#1 with 
27

Al/
24

Mg=177.9 and An#2 with 

27
Al/

24
Mg=19.4) and with no 

26
Mg excess (Δ

26
Mg = 0‰) were used to calibrate the 

instrumental isotopic fractionation law and the relative Al/Mg ion yield
 
(6). Two sigma 

standard errors on the mean of ±0.26‰, ±0.37‰ and ±0.27‰ for δ
25

Mg, δ
26

Mg and Δ
26

Mg, 

respectively, were obtained for 13 measurements of the standards. The relative Al/Mg ion 

yield was determined to be 0.985±0.021. The errors reported for the measurements of the 

samples are two sigma errors calculated by summing in quadratic way the errors due to 

counting statistic in each point and the error due to calibration of instrumental isotopic 

fractionation and Al/Mg ion yield.  

Data for 7 different feldspar crystals are given in Table S4. Each data corresponds to the 

average of 2 to 4 replicate analyses in a given crystal within ~100 µm distance. The 
27

Al/
24

Mg 

ratios and 
26

Mg values are quite constant for the 7 feldspars analyzed, ranging from 1076±9 

to 1434±41 and from +0.45±1.04‰ to +1.38±0.66‰, respectively. A 
26

Al isochron forced to 


26

Mg =0±0.2‰ at 
27

Al/
24

Mg = 0 was calculated through these points. This gives a 
26

Al/
27

Al 

ratio of 1.1×10
-7

 (±0.4×10
-7

) corresponding to an age difference of 6.5 Ma (+0.5, -0.3Ma) 

relative to the 
26

Al/
27

Al ratio determined from the bulk CAI isochron (
26

Al/
27

Al =5.23×10
-5

; 

(7)). 

 

Micro-Raman Spectroscopy 

Raman spectra of selected areas within grains of interest were acquired on a Horiba 

Scientific XploRA
TM

 confocal Raman microscope of the Institut für Mineralogie at the 

Westfälische Wilhelms-Universität Münster. The green laser (532 nm, 5-6 mW) and an 

entrance slit of 100 µm resulted in an energy resolution of a few wave numbers sufficient for 

fingerprinting. The standard hole of 500 µm was chosen for a penetration depth of ~1 µm, 

spatial resolution with these laser and spectrometer settings was also around this value. 

Calibration of the system was checked before analysis on a silicon standard using the first 

order Raman band of 520.7 cm
-1

. The 100× objective lens of the microscope was used for 

spectrum collection, measurement time per spot was 60 or 120 seconds. Raman bands were 

dispersed by a grating of 2400 grooves per mm giving a wave number range from 100 to 1100 

cm
-1 

on a Peltier-cooled CCD camera. 

 



1. Armstrong JT (1991) Quantitative elemental analysis of individual microparticles with 

electron beam instruments.  In Electron Probe Quantitation, eds Heinrich KFJ, Newbury DE, 

Plenum Press, New York, 261-315.  

2.  Barrat JA, et al. (2012) Geochemistry of CI chondrites: Major and trace elements, and Cu 

and Zn Isotopes. Geochim Cosmochim Acta 83:79-92. 

3. Sharp ZD (1990) A laser-based microanalytical technique for in situ determination of 

oxygen isotope ratios of silicates and oxides, Geochim Cosmochim Acta 54:1353-1357.  

4. Pack A, Herwartz D (2014) The triple oxygen isotope composition of the Earth mantle and 

understanding Δ
17

O variations in terrestrial rocks and minerals. Earth Planet Sci Lett 

390:138-145.  

5. Miller MF (2002) Isotopic fractionation and the quantification of 
17

O anomalies in the 

oxygen three-isotope system: an appraisal and geochemical significance, Geochim 

Cosmochim Acta 66:1881-1889.  

6. Luu T-H, et al. (2013) High precision Mg isotope measurements of meteoritic samples by 

secondary ion mass spectrometry. J Anal. At. Spectrom. 28, 67-76. 

7. Jacobsen B, et al. (2008) 
26

Al-
26

Mg and 
207

Pb-
206

Pb systematics of Allende CAIs: 

Canonical solar initial 
26

Al/
27

Al ratio reinstated. Earth Planet Sci Lett 272:353–364.  

 

 

 

 

 



 

 

Fig. S1. a) Photomicrograph in polarized light (crossed nicols) of a chemically zoned ALM-A 

feldspar across which the zoning profile illustrated in b) was taken [anorthite (An)-, albite 

(Ab)-, and orthoclase (Or)-contents given in mol%]. White arrow in a) points the direction of 

the profile. No other grain with such a complicated zoning profile has been observed. c) 

Compositional range of feldspar in ALM-A. Green field denotes the feldspar compositions in 

feldspathic fragments from polymict ureilites (1). d) Frequency distribution of An 

compositions in ALM-A feldspars. A total of 720 analyses were performed in grid mode by 

SEM. Feldspar compositions peak at ~An10-15, while more calcic compositions (up to ~An55) 

are much less abundant and occur in some crystal cores (compare (a)).   

 

1. Cohen BA, Goodrich CA, Keil K (2004) Feldspathic clast populations in polymict ureilites: 

Stalking the missing basalts from the ureilite parent body. Geochim Cosmochim Acta 

68:4249-4266. 

 

 

 

 



 

Fig. S2. a) Chemical compositions low-Ca and Ca-pyroxene in ALM-A compared with the 

range of pyroxene compositions in albitic fragments from polymict ureilites (blue, Cohen et 

al., (1)). Shown as white dashed lines are isotherms at 1 bar from Lindsley (2). b) Molar 

Fe/Mg vs. Fe/Mn in ALM-A pyroxenes compared with data for pyroxenes in feldspathic 

clasts from polymict ureilites. Shown for comparison are literature data
 
(1,3) for pyroxene in 

ureilites (khaki) and within the albitic clasts from polymict ureilites (grey). Figure b) after 

Goodrich et al. (3). 
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Fig. S3. Glassy melt inclusion in ALM-A demonstrating the rapid cooling of the lava. (a) 

interstitial melt having small skeletal crystallites; transmitted polarized light; (b) tiny skeletal 

crystals and a metal-sulfide spherule embedded in a glassy groundmass; reflected light. 

 



 

 

Fig. S4. Raman spectra of anorthoclase grains from ALM-A compared to spectra from the 

RRUFF database
 
(1) of albite and anorthoclase. Spectra of ALM-A grains can be clearly 

identified as anorthoclase. The slight shift of band A around 170 cm
-1

 compared to the 

reference can be related to a chemical effect due to different K and Na contents
 
(2). 
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Fig. S5. REE patterns of ALM-A and Almahata Sitta ureilites (1). Noncumulate eucrites are 

shown for comparison (2). The reference for CI chondrites is from (3). 
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Fig. S6. 
26

Al isochron for ALM-A. Data for 7 feldspar grains from ALM-A are shown as blue 

diamonds with two sigma errors for the 
26

Mg excesses (given in delta unit in permil as 

δ
26

Mg* on the Y axis) and the 
27

Al/
24

Mg atomic ratios on the X axis. The regression line has 

been calculated assuming an intercept of δ
26

Mg*=0±0.2‰ (red diamond). This gives a slope 

of 7.8±(2.9)10
-4

 (error envelope shown in red) corresponding to a 
26

Al/
27

Al ratio of 

1.1(±0.4)10
-7

. 

 

 



 

 

Fig. S7. ∆
17

O vs. Mg# for ALM-A and ureilites. ∆
17

O data and olivine core compositions 

taken from Clayton and Mayeda (1) and Downes et al. (2), respectively. Hughes type ureilites 

are unusual augite-bearing rocks petrologically distinct from the other ureilites (3). 
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Fig. S8. Trace element abundances of melts generated from a source with CI abundances. The 

models include (a) the classical batch partial melting (equilibrium), (b) fractional melting 

(“instantaneous” melts), and (c) the aggregate melts formed from fractional melting. Data for 

ALM-A are given for comparison. Two mineralogical assemblages were tested. The model 1 

corresponds to an olivine-pigeonite-augite-plagioclase using the modal and melting 

proportions given by (1). The model 2 corresponds to an olivine-augite-plagioclase 

assemblage using the modal proportions and the melting proportions given by (2). The 

partition coefficients are the same as those literature data given for Zr (3) and the other 

elements (4). None of the models reproduces satisfactorily the trace element abundances of 

ALM-A. 
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Table S1. Composition of feldspar ordered by increasing An-contents. 

 SiO2 Al2O3 FeO CaO Na2O K2O Total  An Ab Or 

Feldspar 66.5 20.0 0.07 1.84 10.5 0.60 99.51  8.5 88.2 3.3 

 66.4 19.9 0.09 1.99 10.4 0.48 99.26  9.3 88.0 2.7 

 66.5 20.1 0.05 2.15 10.4 0.56 99.76  10.0 87.0 3.1 

 66.0 20.6 0.32 2.35 10.3 0.44 100.01  11.0 86.6 2.5 

 65.7 20.7 0.17 2.77 10.2 0.46 100.00  12.7 84.7 2.5 

 65.2 20.9 0.09 3.2 10.0 0.39 99.78  14.5 83.4 2.1 

 64.7 21.2 0.05 3.4 9.6 0.45 99.40  15.8 81.7 2.5 

 64.4 21.3 0.17 3.5 9.5 0.38 99.25  16.5 81.3 2.1 

 64.1 21.8 <0.02 3.8 9.4 0.36 99.48  17.7 80.2 2.0 

 63.6 21.8 0.05 4.0 9.7 0.31 99.46  18.2 80.1 1.7 

 63.1 22.3 0.10 4.5 9.3 0.31 99.61  20.8 77.5 1.7 

 63.3 22.6 <0.01 4.5 9.1 0.35 99.86  21.1 76.9 2.0 

 62.3 23.0 0.09 5.0 9.0 0.23 99.62  23.1 75.6 1.3 

 61.5 23.4 0.06 5.4 9.1 0.22 99.68  24.4 74.4 1.2 

 61.3 23.8 0.07 5.7 8.7 0.23 99.80  26.4 72.4 1.3 

 61.1 23.8 0.08 6.0 8.3 0.26 99.54  27.9 70.7 1.4 

 60.8 23.6 0.11 6.3 8.2 0.21 99.22  29.3 69.5 1.2 

 60.6 24.1 0.19 6.4 8.0 0.20 99.49  30.5 68.4 1.1 

 60.5 24.2 0.06 6.5 7.7 0.20 99.16  31.4 67.5 1.1 

 59.4 24.7 0.67 7.1 7.6 0.18 99.65  33.8 65.2 1.0 

 58.6 25.0 0.08 7.7 7.6 0.14 99.12  35.6 63.6 0.8 

 58.9 25.5 <0.01 8.0 7.2 0.16 99.77  37.7 61.4 0.9 

 58.0 25.8 <0.04 8.2 6.8 0.13 98.97  39.8 59.4 0.8 

 58.0 25.8 0.10 8.6 6.7 0.12 99.32  41.1 58.2 0.7 

 57.4 26.0 0.07 8.9 6.5 0.17 99.04  42.6 56.4 1.0 

 57.0 26.4 0.06 9.2 6.7 0.14 99.50  42.8 56.4 0.8 

 57.8 26.4 0.06 9.2 6.3 0.13 99.89  44.2 55.1 0.8 

 56.8 26.9 0.07 9.6 6.4 0.10 99.87  45.1 54.3 0.5 

 56.8 26.8 0.07 9.8 6.1 0.14 99.71  46.6 52.6 0.8 

 56.7 27.1 0.09 9.9 6.0 0.12 99.91  47.5 51.8 0.7 

 56.1 27.0 <0.01 10.1 5.9 0.09 99.20  48.4 51.1 0.5 

 55.7 27.6 <0.03 10.7 5.9 0.09 100.02  49.8 49.7 0.5 

 55.4 27.3 <0.04 10.5 5.7 0.11 99.05  50.0 49.4 0.6 

 55.4 27.3 0.07 10.3 5.6 0.11 98.78  50.0 49.3 0.6 

 54.9 27.8 0.11 10.8 5.7 0.10 99.41  51.0 48.5 0.5 

 55.1 27.7 <0.03 11.1 5.5 0.10 99.53  52.5 46.9 0.5 

 54.8 27.5 <0.01 11.0 5.3 0.06 98.67  53.0 46.7 0.3 

Data in wt%; < = Value is below detection limit. An-, Ab-, and Or-contents in mol%. 

            

 



Table S2. Chemical composition of Ca-rich and low-Ca pyroxene, spinels, ilmenite, and 

the SiO2-rich glassy component.  

 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 
 

En Fs Wo 

Ca-rich pyroxene 51.8 1.31 0.57 0.90 12.0 0.76 14.7 16.9 0.72 <0.02 99.68 
 

43.7 20.1 36.2 

 
51.9 1.35 0.55 0.88 11.8 0.69 14.5 17.4 0.71 <0.01 99.79 

 
43.1 19.8 37.1 

 
52.2 1.25 0.52 0.83 12.0 0.75 14.3 17.4 0.70 n.d. 99.95 

 
42.7 20.0 37.3 

 
52.1 1.28 0.53 0.89 11.9 0.79 14.3 17.5 0.69 <0.02 100.00 

 
42.6 20.0 37.4 

 
52.3 1.26 0.53 0.91 11.7 0.76 14.4 17.4 0.67 0.04 99.97 

 
42.9 19.7 37.5 

 
52.0 1.31 0.53 0.91 11.7 0.73 14.4 17.5 0.72 n.d. 99.80 

 
42.8 19.6 37.5 

 
52.0 1.24 0.53 0.85 11.9 0.79 14.4 17.7 0.65 n.d. 100.06 

 
42.6 19.8 37.6 

 
52.1 1.33 0.51 0.89 11.6 0.75 14.4 17.6 0.64 n.d. 99.82 

 
42.9 19.5 37.7 

 
52.0 1.35 0.52 0.91 11.8 0.72 14.2 17.7 0.79 <0.01 100.00 

 
42.4 19.7 37.8 

 
52.0 1.28 0.50 0.90 11.9 0.71 14.2 17.7 0.62 <0.03 99.84 

 
42.3 19.8 37.9 

 
51.8 1.31 0.56 0.89 11.8 0.81 14.2 17.7 0.71 n.d. 99.78 

 
42.3 19.7 38.0 

 
52.0 1.32 0.54 0.92 11.7 0.76 14.3 17.8 0.70 n.d. 100.04 

 
42.5 19.5 38.0 

 
52.3 1.29 0.52 0.89 11.6 0.73 14.3 17.7 0.72 <0.01 100.06 

 
42.6 19.4 38.1 

                

 
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

 
En Fs Wo 

low Ca-pyroxene 52.2 0.62 0.28 0.37 21.6 1.26 19.7 3.9 0.19 n.d. 100.12 
 

56.9 35.0 8.1 

 
52.4 0.57 0.21 0.37 21.7 1.21 19.4 3.9 0.18 n.d. 99.94 

 
56.5 35.4 8.1 

 
52.1 0.55 0.23 0.40 22.0 1.20 19.5 4.0 0.20 n.d. 100.18 

 
56.2 35.6 8.2 

 
52.3 0.58 0.21 0.37 21.8 1.25 19.3 4.0 0.16 n.d. 99.97 

 
56.2 35.5 8.3 

 
52.2 0.57 0.22 0.39 21.8 1.25 19.4 4.0 0.18 n.d. 100.01 

 
56.3 35.4 8.3 

 
52.3 0.60 0.24 0.43 21.5 1.18 19.5 4.1 0.22 n.d. 100.07 

 
56.6 35.0 8.5 

 
52.1 0.59 0.23 0.40 21.7 1.24 19.4 4.1 0.16 n.d. 99.92 

 
56.2 35.3 8.5 

 
52.4 0.53 0.22 0.42 21.7 1.23 19.6 4.1 0.20 <0.02 100.42 

 
56.4 35.0 8.6 

 
52.2 0.71 0.30 0.47 19.9 1.19 18.5 6.4 0.33 <0.01 100.01 

 
53.9 32.6 13.5 

                

 
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

    
Spinel 0.09 19.8 2.48 29.2 41.1 1.05 4.4 0.10 0.08 n.d. 98.30 

    

 
0.06 19.7 2.49 29.0 42.5 1.00 3.7 0.05 0.03 n.d. 98.53 

    

 
0.08 20.1 2.07 28.7 41.9 1.04 4.3 0.30 0.12 n.d. 98.61 

    

 
0.05 20.1 2.33 29.2 41.9 1.04 4.3 0.08 0.04 n.d. 99.04 

    

 
0.05 20.0 2.45 29.1 42.4 1.02 3.8 0.14 0.08 n.d. 99.04 

    

 
0.07 19.8 2.21 28.8 43.5 1.05 3.4 0.13 0.11 <0.01 99.08 

    

 
0.05 20.3 2.08 29.8 42.2 1.07 3.9 0.06 0.07 n.d. 99.53 

    

 
0.04 20.8 1.96 30.0 41.8 1.10 4.0 <0.01 0.03 n.d. 99.74 

    

 
0.04 20.8 2.19 29.6 41.8 1.09 4.1 0.08 0.06 n.d. 99.76 

    

 
0.04 20.6 2.15 29.8 42.0 1.05 4.2 0.03 0.03 n.d. 99.90 

    

                

 
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

    
Ilmenite n.d. 52.7 0.07 1.45 38.3 1.07 5.0 0.28 <0.01 n.d. 98.88 

    

 
<0.01 53.3 0.12 1.82 38.1 1.13 5.3 0.12 n.d. n.d. 99.90 

    

 
<0.01 53.8 0.06 1.84 38.3 1.18 5.1 <0.02 0.03 <0.02 100.36 

    

 
<0.02 54.6 0.07 2.05 37.3 1.16 5.2 0.05 n.d. n.d. 100.45 

    

 
n.d. 54.1 0.08 1.87 37.4 1.13 5.7 0.14 0.07 n.d. 100.49 

    

 
<0.02 54.1 0.05 1.72 38.2 1.16 5.4 <0.02 <0.01 n.d. 100.68 

    

 
<0.02 54.6 0.09 2.14 37.4 1.11 5.3 <0.02 0.08 n.d. 100.76 

    

 
<0.01 53.9 0.09 1.98 38.0 1.07 5.7 <0.02 <0.01 <0.02 100.80 

    

 
0.04 55.2 0.09 2.35 37.0 1.12 5.0 n.d. n.d. n.d. 100.80 

    

 
<0.02 53.9 0.07 1.98 38.3 1.17 5.4 0.03 0.07 n.d. 100.94 

    

                

 
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

    
SiO2-rich glass 73.4 1.73 13.6 <0.02 3.5 0.12 0.20 0.54 3.8 1.68 98.59 

    

 
71.4 1.77 13.1 <0.02 3.9 0.14 0.20 0.56 4.6 3.4 99.09 

    

 
72.3 1.87 13.4 <0.02 4.2 0.12 0.20 0.72 4.6 1.98 99.41 

    

 
74.0 1.61 13.9 <0.05 3.4 0.12 0.10 0.52 4.2 1.59 99.49 

    

 
72.0 1.72 13.6 <0.03 3.2 0.08 0.20 0.47 4.2 4.0 99.50 

    

 
72.5 1.68 13.4 <0.02 3.2 0.08 0.20 0.52 4.2 4.3 100.10 

    

 
72.7 2.04 13.8 <0.02 3.7 0.12 0.20 0.62 4.2 2.78 100.18 

    

 
72.5 1.84 13.5 <0.03 3.1 0.12 0.20 0.56 4.2 4.1 100.15 

    
Data in wt%;  n. d. = not detected, < = value is below detection limit. En-, Fs-, and Wo-contents in mol%; the SiO2-rich  
glass contains about 0.5-0.7 wt% P2O5. 



Table S3. Chemical composition of Cl-apatite  

  P1-1  P3-1  P3-2  P2-1  P2-2  P2-3  P4-1  P4-2  P5-1  P7-1  

CaO 52.8 52.6 52.1 51.4 52.2 52.2 51.9 52.6 52.2 52.2 

P2O5 41.2 41.3 40.7 41.1 41.0 40.7 41.0 41.0 41.0 41.4 

FeO 0.77 0.83 0.87 0.80 0.83 0.67 0.68 0.61 0.69 0.74 

MgO 0.44 0.47 0.49 0.51 0.44 0.42 0.45 0.47 0.45 0.43 

MnO 0.19 0.18 0.15 0.20 0.21 0.20 0.15 0.13 0.19 0.21 

SrO 0.14 0.14 0.16 0.09 0.14 0.13 < 0.03 0.16 0.13 0.08 

Na2O 0.62 0.62 0.54 0.63 0.62 0.61 0.63 0.63 0.55 0.56 

K2O < 0.02 0.05 0.08 n.d. n.d. n.d. n.d. < 0.03 < 0.02 < 0.02 

SiO2 0.23 0.23 0.36 0.26 0.24 0.21 0.29 0.28 0.28 0.29 

TiO2   n.d. n.d. < 0.02 n.d. n.d. n.d. 0.04 n.d. 0.07 n.d. 

Al2O3  n.d. 0.04 < 0.02 n.d. n.d. n.d. n.d. n.d. < 0.02 < 0.02 

Cr2O3  < 0.03 n.d. n.d. < 0.02 0.04 < 0.03 0.04 n.d. n.d. < 0.02 

SO3 0.04 < 0.03 0.04 0.04 0.04 0.04 0.04 < 0.03 0.06 n.d. 

Cl 3.1 2.9 2.9 3.1 3.0 3.1 2.8 3.1 3.2 3.1 

F 1.57 1.32 1.39 1.37 1.46 1.32 1.51 1.56 1.40 1.43 

H2O 0.21 0.38 0.33 0.30 0.27 0.31 0.30 0.22 0.27 0.28 

total 101.36 101.09 100.15 99.82 100.49 99.94 99.86 100.82 100.53 100.78 

 

Stoichiometric calculations (based on 26 oxygens) 

  P1-1  P3-1  P3-2  P2-1  P2-2  P2-3  P4-1  P4-2  P5-1  P7-1  

Ca 9.694 9.699 9.690 9.571 9.673 9.736 9.638 9.708 9.666 9.615 

P 5.984 6.014 5.984 6.040 5.998 5.998 6.022 5.983 5.998 6.035 

Fe 0.110 0.119 0.127 0.117 0.119 0.098 0.098 0.088 0.100 0.106 

Mg 0.113 0.121 0.126 0.132 0.114 0.109 0.117 0.120 0.116 0.111 

Mn 0.028 0.026 0.022 0.030 0.031 0.030 0.022 0.019 0.028 0.030 

Sr 0.014 0.014 0.016 - 0.014 0.013 - 0.016 0.013 - 

Na 0.205 0.205 0.181 0.211 0.208 0.206 0.213 0.211 0.183 0.188 

K - - 0.018 - - - - - - - 

Si 0.040 0.040 0.062 0.044 0.041 0.037 0.050 0.048 0.048 0.050 

Ti - - - - - - - - - - 

Al - - - - - - - - - - 

Cr - - - - - - - - - - 

S - - - - - - - - - - 

Cl 0.904 0.842 0.857 0.904 0.887 0.916 0.827 0.897 0.929 0.895 

F 0.854 0.719 0.761 0.751 0.797 0.726 0.825 0.849 0.763 0.779 

OH 0.243 0.439 0.383 0.345 0.315 0.358 0.348 0.254 0.308 0.326 

total 18.189 18.248 18.227 18.145 18.197 18.227 18.160 18.193 18.152 18.135 

cations 16.188 16.248 16.226 16.145 16.198 16.227 16.160 16.193 16.152 16.135 

(OH)+F+Cl 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

XCl 0.45 0.42 0.43 0.45 0.44 0.46 0.41 0.45 0.46 0.45 

XF 0.43 0.36 0.38 0.38 0.40 0.36 0.41 0.42 0.38 0.39 

XOH 0.12 0.22 0.19 0.17 0.16 0.18 0.17 0.13 0.15 0.16 
Data in wt%; H2O-concentrations calculated; n. d. = not detected, < = value is below detection limit. 

 



Table S4. Results on Al-Mg isotope analyses of 7 feldspar grains from ALM-A. 

Sample # 
27

Al /
24

Mg 2σ 
27

Al /
24

Mg Δ
26

Mg 2σ Δ
26

Mg 

A4 1433.9 40.9 1.1 1.4 

A3 1351.4 172.1 0.8 1.0 

A2 1119.6 36.4 1.4 0.7 

A1 1208.3 18.9 0.8 1.0 

A5 1369.0 119.3 1.2 0.6 

A6 1223.5 56.1 0.4 1.0 

B1b-1 1075.7 8.8 0.7 0.6 

 

  

 

 


