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Assessment of the value of groundwater age time-series
for characterizing complex steady-state flow systems

using a Bayesian approach

Arash Massoudieh a,⇑, Sarah Leray b,1, Jean-Raynald de Dreuzy b,c

aDepartment of Civil Engineering, Catholic University of America, Washington, DC, USA
bGéosciences Rennes (UMR 6118 CNRS), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
c IDAEA (CSIC), c/Jordi Girona, 08034 Barcelona, Spain

In this work, the effectiveness of transient environmental tracer data in reducing the uncertainty associ-ated with the inference of groundwater residence 
time distribution was evaluated. A Bayesian Markov Chain Monte Carlo method was used to infer the parameters of presumed residence time distribution 
forms—exponential and gamma—using concentrations of five tracers, including CFC-11, CFC-12, CFC- 113, SF6, and 85Kr. The transient tracer 
concentrations were synthetically generated using the residence time distributions obtained from a model of the Plœmeur aquifer in southern Brittany, 
France. Several measures of model adequacy, including Deviance Information Criteria, Bayes factors, and measures based on the deviation of inferred and 
true cumulative residence time distribution, were used to evaluate the value of groundwater age time-series. Neither of the presumed forms of residence 
time distributions, exponential and gamma, perfectly represent the simulated true distribution; therefore, the method was not able to show a definitive 
preference to one over the other in all cases. The results show that using multiple years of tracer data not only reduces the bias of inference (as defined by 
the difference between the expected value of a metric of inferred residence time distribution and the true value of the same met-ric), but also helps 
quantify the uncertainty more realistically. It was found that when one year of data is used, both models could almost perfectly reproduce the observed 
tracer data, even when the inferred res-idence time distributions differed substantially from the true one. When the number of years of tracer data is 
increased to four years, the uncertainty associated with the distribution parameters and the model structural uncertainly increased, as the presumed 
forms were not able to reproduce all the data accu-rately. This resulted in a more realistic assessment of model uncertainty due to structural error. It was 
also found that regardless of the prescribed age distribution form, the Bayesian method does a better job of capturing the cumulative ages at older ages; 
however, it is not able to reproduce the early ages well. The ability of the model to capture older ages improves as a greater number of years of tracer data 
is used, in cases of both presumed exponential and gamma distributions.

1. Introduction

Environmental tracers have been increasingly used for charac-

terizing groundwater residence time distribution (RTD) (Leray

et al., 2012; Massoudieh et al., 2012), and calibrating hydrogeolog-

ical models (Portniaguine and Solomon, 1998; Reilly et al., 1994;

Robertson and Cherry, 1989; Solomon et al., 1992). They character-

ize the underground flow patterns from recharge to discharge

zones and provide an integrated insight into the system. Concen-

trations of CFCs, SF6,
3H, 39Ar, 14C, He, and 85Kr, for instance,

provide essential information over a broad range of temporal

scales, from several months to several decades (IAEA, 2006; New-

man et al., 2010). The interest in this type of data has promoted the

quest for tracers with different atmospheric concentration histo-

ries and decay rates, in order to expand the range of ages that

can be effectively characterized (Busenberg and Plummer, 2008;

Newman et al., 2010; Sturchio et al., 2004). The ultimate goal is

to characterize the full RTD beyond some of its moments, which re-

quires more tracers than are often available. The set of environ-

mental tracers that can be used for this purpose is limited. The

tracers must be relatively stable with respect to the ages they are

used to characterize, and they must not react or undergo adsorp-

tion into the solid matrix (Glynn and Plummer, 2005). They should

be ideally inert tracers with low or no biodegradability or decay

rates that are known with high confidence.
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Along with seeking additional potential environmental tracers,

we assess here the effectiveness of the temporal variation of the

concentrations of the commonly used ones. This variation might

come from a transient evolution of the flow patterns, such as what

occurs when starting a pumping (Leray et al., submitted for publi-

cation), and from the transient tracer atmospheric concentrations

(Troldborg et al., 2008). The time series of environmental tracer

concentrations have been used in a limited number of studies,

and mainly for interpreting the field data (Troldborg et al., 2007,

three-year period); (Long and Putnam, 2009, 16-year period);

(Osenbrück et al., 2006, five-year period); (Sültenfub et al., 2011,

five-year period); (Bauer et al., 2001, three-year period). Manning

et al. (2012) compiled a 13 year time series of multiple dis-

solved-gas age tracers from springs to constraint the form of RTD

and concluded that the time series of age tracers is potentially a

valuable tool for constraining age distribution in sampled water.

In catchment hydrology, time-series of seasonally variable tracers

in precipitation including 18O, 2H and 3H have been widely used

to estimate transit time distributions using direct deconvolution

and indirect methods based on lumped parameter models. A com-

prehensive review on different techniques used in estimation of

transit time distributions in catchment hydrology can be found

in McGuire and McDonnell (2006). Parametric and non-parametric

methods have been used in the past to infer the transfer functions

from tracer tests (Fienen et al., 2006; Luo et al., 2006). Because of

inherent limitations of knowledge of the natural flow patterns,

although the value of temporal chronicles has been emphasized,

it has not been quantitatively evaluated. Temporal tracer data

can both further corroborate and scrutinize previous inferences

about the forms of age distribution. Temporal chronicles have been

used to help identify the parameters of an a priori known form of

the RTD (Ivey et al., 2008). The form of the distribution, however,

is itself part of the identification problem. It has also been proposed

that the transient variations of tracer age might help predict the

general form of the RTD (Zhang, 2004). However, assessment of

this idea is difficult, as it requires an independent knowledge of

the flow patterns, which is out of reach in most natural sites.

In this study a Bayesian approach is used to evaluate the addi-

tional information content of tracer data collected at different

times in comparison to the use of single samples obtained at a sin-

gle time. The Bayesian approach allows us to quantify the uncer-

tainly associated with estimation of the parameters of RTDs and

therefore can provide an insight into how additional data help re-

duce these uncertainties. A synthetic aquifer case for which the

flow patterns can be both quite complex and perfectly controlled

is used for this study. It is common to test methodologies first on

synthetic controlled cases to examine their relevance to natural

cases. Steady-state flow conditions are considered and the capacity

of the same environmental tracer, sampled at different times at the

same position, to provide the needed information on the hydrosys-

tem is evaluated. The steady-state assumption is acceptable over

the long term if the overall withdrawal or recharge patterns at a

site do not substantially change over the study period. Under a

steady-state condition, the concentration of a tracer sampled at

different dates is controlled solely by its past atmospheric chroni-

cle (Leray et al., submitted for publication). If the historic atmo-

spheric concentrations vary strongly enough and the sampling

dates are sufficiently separated, samples of the single tracer taken

at multiple times, in effect, can contain the equivalent information

content of a number of different tracers. In reality, the same ele-

ment taken at different times might not provide as much informa-

tion as many unrelated tracers, due to the gradual changes in the

atmospheric inputs, as well as the noise that results from observa-

tion error and other spatial and temporal variability. Nonetheless,

it might still be valuable as a complementary tool for evaluating

the relevance of classically used RTDs (Haitjema, 1995; Maloszew-

ski and Zuber, 1982; Amin and Campana, 1995) and providing

ways to cross-validate the inferred RTDs.

2. Methodology

Our analysis and methods are organized into four stages: con-

struction of the hydrogeological model; simulation of solute trans-

port and the derivation of the time-dependent environmental

tracer concentrations; independent interpretation of these data to

obtain estimated RTDs; and the ultimate comparison between the

estimated and simulated RTDs. The tracers concentrations used

for the analysis was obtained in one case from a hypothetical gam-

ma RTD and in the second case from simulated RTD from a hydro-

geological model of the Plœmeur aquifer in North West France. The

simulated tracer concentrations as a result of the hydrogeological

model were treated as observed tracer data for inferring the RTD

using several presumed lumped parameter models. Several mea-

sures of model sufficiency have been used to evaluate and compare

the performance of the approach in determining the age distribu-

tion, as well as uncertainties associated with the estimated RTDs

when different periods of tracer data are used for the RTD inference.

2.1. Simulated aquifer characteristics

The hydrogeological model is based on the Plœmeur aquifer, a

highly heterogeneous, hard-rock aquifer located on the south coast

of Brittany (France). This aquifer has been exploited for water sup-

ply of the nearby city at a rate of 1.1 � 106 m3/year since 1991. This

aquifer offers a realistic hydrodynamic context for our methodo-

logical study, which is to assess the value of groundwater age

time-series in inferring age distributions.

Based on the inversion of gravimetric data (Ruelleu et al., 2010)

and observations (Touchard, 1999), the geological conceptual mod-

el of the Plœmeur site is composed of two transmissive structures

at the kilometric scale, which are embedded in less permeable

micaschists. The first transmissive structure, named the contact

zone, is a shallow-dipping fractured zone that constitutes the

interface between an underlying leucogranite, Plœmeur granite,

and the overlying micaschists. The second structure is a North

20� normal fault. The almost impervious Plœmeur granite forms

the southern hydraulic barrier and part of the substratum. Another

leucogranite, Guidel granite, forms the northern hydraulic barrier.

The mean thickness of the system composed of the shallow-dip-

ping structure and the micaschists has been estimated at 180–

280 m (Ruelleu et al., 2010) (Fig. 1).

We will use the steady-state model developed by Leray et al.

(2012) for which the transmissivity of the contact zone has been

constrained both by hydraulic tests and by the mean piezometric

level at the pumping well, while the hydraulic conductivity of

the micaschists should not be too small to ensure that the area

around the pumping does not seep. The hydraulic properties of

the different rock units are summarized in Table 1.

The potential recharge rate, R, is assumed to be approximately

200 mm per year, based on previous estimations (Carn, 1990; Ler-

ay et al., 2012; Touchard, 1999). The supplying area to the pump-

ing well located in the shallowest part of the aquifer then amounts

to a few square kilometers and is limited to a North–South direc-

tion by the two granites. The long-term pumping well was found

to induce a radial flow all along the fractured contact zone almost

parallel to the dip plan of the contact zone because of its high

conductivity contrast with the overlying micaschists. Flows

through the micaschists are vertical near the surface and slightly

bend perpendicular to the fractured zone at depth. As the goal of

this paper is clearly methodological and without detailed informa-

tion about the porosity field, we used an homogeneous porosity
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(1%). The calibration of a model would require a more complex rep-

resentation of the porosity field in case of complex systems such as

fractured ones (Cook et al., 2005). However, in our case, the non-

trivial shape of the residence time distribution obtained from the

synthetic model shows that the model complexity is sufficient to

perform our analyses. Particularly, the form of RTD is determined

by the aquifer structure. The smaller depth of the aquifer close to

the pumping well, skews the RTD toward younger ages by shorten-

ing locally the flow paths Leray et al. (2012). The RTD is overall

controlled by the superposition and interactions between different

reservoirs and circulation scales; i.e., by local as much as global ef-

fects. Thus, we do not control the shape of the distribution, nor do

we expect a classical reservoir model with an exponential or dis-

persion model with inverse-Gaussian distribution to reproduce

these specific features. This particularly makes the synthetic exam-

ple relevant to real cases.

2.2. Derivation of environmental tracer concentrations

Solute concentration is classically determined by solving the

advection dispersion equation (Bear, 1991; de Marsily, 1986). In

this study, we disregarded local dispersion and diffusion, as we ex-

pected that mixing occurs mainly at the pumping well, where sam-

pling is carried out, and is much larger than the mixing due to the

diffusion–dispersion processes in this media (LaBolle and Fogg,

2001). The advection equation is solved backwards in time using

a particle-tracking scheme (Neupauer and Wilson, 1999, 2001).

5 � 106 particles are injected at the well according to a flow-

weighted distribution. The RTD, p(t), is obtained by simply looking

at the distribution of the equally likely travel times that it takes for

particles released at the well to arrive at the recharge locations.

Mean concentration, ci,j, which is the concentration of tracer i in

sample j at the pumping well, is determined by the convolution

of p(t) with the atmospheric chronicle, cin,i(tw,j � t) (Kreft and Zu-

ber, 1978; Maloszewski and Zuber, 1982):

ci;j ¼
Z 1

0

cin;iðtw;j � tÞpðtÞe�kitdt ð1Þ

where cin,i represents the atmospheric concentration of tracer i and

ki is its decay rate. Eq. (1) shows the time dependency of the sam-

pled concentration, which, under steady-state assumption, comes

exclusively from the non-linear variation of the atmospheric con-

centration of the given environmental tracer (Leray et al., submitted

for publication; Zhang, 2004).

The steps to infer the residence time distribution, p(t), in this

work include first assuming a functional form representing p(t)

[i.e., p(t) = f(t;/1,/2, . . .)], where /1,/2, . . . are the parameters

needed to fully determine the distribution, and then estimating

the parameters /1;/2; . . . using a statistical inverse modeling ap-

proach. Various sources of uncertainty associated with the inferred

parameters include observation error due to measurement error

and the spatial and temporal variability of tracer concentrations;

model structural error (epistemic uncertainty) due to the fact that

the actual RTD cannot be represented accurately by any presumed

functional forms and the uncertainties associated with environ-

mental factors, such as tracer atmospheric concentration records

and parameters affecting the transport of tracers in the aquifer.

Assuming that an RTD function with given parameters /1,/2, . . . re-

sults in tracer concentrations C = [ci,j]n�m (a matrix) and that the

observed tracer concentrations can be represented as
eC ¼ ~ci;j

� �
n�m

, while assuming (1) no prior information is present

Fig. 1. Conceptual model of the Plœmeur aquifer. The red lozenge is the pumping well where the steady-state residence time distribution is simulated. The North 20� normal

fault does not outcrop and is represented by black stripes. Lengths are in meters. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 1

Parameters of the conceptual flowmodel based on the Plœmeur aquifer and chosen as

the synthetic model.

Synthetic model based

on Plœmeur site

Source

Structural parameter – mean

thickness

180 m Ruelleu et al.

(2010)

Potential recharge rate R 200 mm/year = 6.3 �
10�9 m/s

Touchard

(1999)

Pumping rate Qw 3.32 � 10�2 m3/s Ruelleu et al.

(2010)

Hydraulic conductivities K

– Granite KG 10�11 m/s Le Borgne et al.

(2006)– Micaschists KMS 10�6 m/s

Transmissivities T

– Contact zone TCZ 2.27 � 10�3 m2/s Le Borgne et al.

(2006)– Normal fault TN20 1.13 � 10�3 m2/s
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regarding the parameters defining age distribution (non-informa-

tive priors), (2) there are no uncertainties associated with the de-

cay rate of the tracers, and (3) the tracers travel with pore water

without undergoing any reactions or adsorption into the aquifer

material, the Bayes theorem can be expressed as:

pð/1;/2; . . . ;CjeCÞ ¼
pðeCj/1;/2; . . . ;CÞ

pðeCÞ
ð2Þ

where C is the variance–covariance matrix of the observation error

(or a transformation of it), pðeC j/1;/2; . . . ;CÞ is the likelihood func-

tion, and pðeCÞ is a normalizing factor that is equal to the integral of

the numerator over the entire parameter space. Using a log-nor-

mally distributed observation error structure, and assuming that

the observation error variance for log-transformed observed con-

centrations, given the true concentrations of all the tracers, are all

the same, the variance–covariance matrix can be written as a scalar

value r multiplied by an identity matrix, and the likelihood func-

tion can be written as:

pðeCj/1;/2;rÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pm
p

Pm
i¼1P

n
j¼1

~ci;jrmn
e

�
Xn

j¼1

Xm

i¼1

lnð~ci;j Þ�lnðci;j Þ½ �2
2 ln rð Þ2

ð3Þ

Combining Eqs. (2) and (3) results in the following equation for

the posterior distribution of the parameters defining the RTD:

pð/1;/2; . . . ;CjeCÞ /
1

rmn
e

�
Xn

j¼1

Xm

i¼1

lnð~ci;j Þ�lnðci;j Þ½ �2
2r2

ð4Þ

A Markov Chain Monte Carlo (MCMC) method (Gamerman and

Hedibert, 2006; Kaipio and Somersale, 2004) was used to draw a

large number of samples from Eq. (4). A C++ code is written to per-

form the MCMC simulation. The number of Markov chains can be

determined by the user. In the example application presented in

the next section, 8 chains were used and 1,000,000 samples re-

sulted in convergence of the MCMCmethod. The first 100,000 sam-

ples were left out as ‘‘burn-in’’ period. The criteria suggested by

Geweke (1992) and Geweke and Tanizaki (2001) was used to eval-

uate the convergence of the MCMC algorithm. For more details on

the Bayesian inference, see Massoudieh et al. (2012).

Fig. 2 shows the time evolution of Cin for the environmental

tracers used in this study: CFC-11, CFC-12, CFC-113, SF6 and, 85Kr

in the Northern Hemisphere atmosphere (IAEA, 2006). CFCs have

been exhibiting an increasing atmospheric concentration since

the late 1940s, which stabilized in the mid-1990s. SF6 has been

monotonically increasing since the late 1950s. 85Kr began to in-

crease in 1980 and flattened out in 2000.

Table 2 synthesizes the mean concentration, Cw of the five dif-

ferent tracers used in this study and apparent ages for each tracer

at each year. These concentrations are obtained using RTD p(t),

produced by the chosen calibrated flow model (Table 1 and previ-

ous section) with a porosity of 1%. They constitute the data time

series that covers the eight-year period from 2003 to 2010. This

eight-year period is consistent with medium-term planning rela-

tive to site studies and projects duration. One interesting observa-

tion is that for the three tracers with highly non-linear

atmospheric concentration trend in the recent past (i.e. CFC-11,

CFC-12 and CFC-113) the apparent ages not only deviate from

the known mean age but are also non-consistent within years

while the apparent ages are more consistent for SF6 and 85Kr with

approximately linearly changing atmospheric concentrations in

the recent past.

In order to make the synthetic tracer concentration resemble

real-world observations more realistically, a noise that was pro-

duced based on a log-normally distributed structure and a stan-

dard deviation of 5% was added to each calculated concentration

to represent the error due to measurement, heterogeneity, and

model structural error.

2.3. Comparison of model performance and uncertainty

Two measures, Deviance Information Criteria (DIC) and Bayes

factors, were used for evaluating the goodness of different RTD

forms. DIC (Spiegelhalter et al., 2002), a measure that is used to

compare the goodness of each model structure, takes into account

how good a model structure can reproduce the observed data,
Fig. 2. Historical equivalent atmospheric concentrations of the tracers used in this

study.

Table 2

Mean concentration Cw for CFC-11, CFC-12, CFC-113, SF6 and 85Kr at the pumping well.

Sampling time CFC-11 CFC-12 CFC-113 SF6 85Kr

2003 Mean concentration, Cw 249.74 501.07 74.33 3.66 51.68

Apparent age 14.89 12.18 12.76 7.13 6.07

2004 Mean concentration, Cw 250.27 506.07 75.02 3.88 52.44

Apparent age 15.84 12.75 13.88 7.26 6.46

2005 Mean concentration, Cw 250.49 510.44 75.51 4.11 53.13

Apparent age 16.82 13.40 14.76 7.40 6.82

2006 Mean concentration, Cw 250.27 513.78 75.85 4.34 53.66

Apparent age 17.84 14.21 15.68 7.42 7.11

2007 Mean concentration, Cw 249.92 516.86 76.04 4.56 54.15

Apparent age 18.88 15.04 16.64 7.42 7.02

2008 Mean concentration, Cw 249.06 518.97 76.09 4.78 54.48

Apparent age 19.96 15.77 17.62 7.46 6.93

2009 Mean concentration, Cw 248.15 520.65 76.02 5.00 54.84

Apparent age 21.03 16.46 18.64 7.55 6.83

2010 Mean concentration, Cw 246.85 521.58 75.84 5.22 55.03

Apparent age 22.11 17.27 19.68 7.67 6.78
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while explicitly imposing a penalty for the level of complexity of

the model:

DIC ¼ 2DðHÞ � DðHÞ ð5Þ

where DðHÞ is the mean deviance and H is the deviance of the

mean, respectively defined as:

DðHÞ ¼ �2E lnpðeCjHÞ
h i

� 2 log f ðeCÞ ð6Þ

DðHÞ ¼ �2 lnpðeCjHÞ � 2 log f ðeCÞ ð7Þ

where f is a standardizing term that is only a function of the ob-

served data, H represents the parameters that are random-vector

distributed based on the posterior distribution, and H is the ex-

pected values of the posterior distribution of parameters. Because

2 log f ðbCÞ is only a function of the observed data, it is not affected

by the model structure, and therefore, it becomes irrelevant when

comparing different forms of RTD functions using the same data.

The DIC was easily calculated using the results of the MCMC calcu-

lations. A smaller DIC means a better model.

To compare different age distribution forms in terms of their

ability to reproduce the measured data, the Bayes factor (Jeffreys,

1935; Kass and Raftery, 1995) was used. The Bayes factor for com-

paring two models,M1 andM2, assuming an equal prior probability

for the models, is defined as:

B12 ¼
R
H1

pðeCjH1;M1ÞpðH1Þ
R
H2

pðeCjH2;M2ÞpðH2Þ
ð8Þ

B12 represents the ratio of the odds that model 1 is the true model to

the odds that model 2 is the true model, pðbCjH;MÞ is the likelihood

of observing concentrations bC given model M, and pðHÞ is the prior

density of the parameters. The odds of each model being the correct

model when the only choices of model structures are models 1

through m can be calculated as:

Ik ¼
R
Xs
pðeCjHs;MkÞpðHsÞ

Pm
k¼1

R
Xs
pðeCjHs;MkÞpðHsÞ

ð9Þ

where m is the total number of RTD distribution forms being eval-

uated. The integrals of posterior distribution are estimated using

the Monte Carlo method Carlin and Chib, 1995:
Z

Hs

pðeC jXs;MsÞpðHsÞ �
1

n

X
pðeC jHðkÞ

s ;MsÞpðHðkÞ
s Þ ð10Þ

3. Results

3.1. Hypothetical gamma residence time

To evaluate the effect of transient tracer information on reduc-

tion of the uncertainty associated with inferred RTDs when there is

no model structural error, the method was applied first to a case

where the concentrations of four tracers—CFC-11, CFC-12, CFC-

113, and SF6—were obtained based on a known gamma residence

time distribution, using Eq. (1), for eight consecutive years,

2003–2010. The gamma distribution was considered because first

it is relatively simple and is determined using only two parameters

while it also has the flexibility to reproduce skewness and tailing

observed in commonly seen breakthrough curves. A 5% randomly

generated observation error based on a log-normal and multiplica-

tive error structure was added to each calculated tracer concentra-

tion to represent measurement and sampling error and the error

due to spatial variability. The Bayesian approach was then used

to estimate the parameters defining a gamma, inverse Gaussian

(dispersion model) and a log-normal distribution and for cases

where one, two, four, and eight years of tracer data were used.

The gamma and inverse Gaussian distributions were used to eval-

uate the capability of multiple years of data to identify the right

form of distribution by discriminating between the correct (gam-

ma) and incorrect (inverse Gaussian and lognormal) distributions.

Fig. 3 shows the presumed (true) RTD (solid line) and 60 samples of

inferred plausible RTDs when one, two, four, and eight years of

data were used, while assuming gamma and lognormal distribu-

tions. As can be seen, as the number of years of tracer data used

for inferring the RTDs increases, the uncertainty associated with

the distribution parameters decreases. In order to quantify the

uncertainty associated with the inferred RTDs, a measure repre-

senting the spread of the posterior probability distribution of a sca-

lar measure extracted from the RTD around the true value can be

used:

d ¼ E n� ntð Þ2
h i1=2

¼
Z 1

�1
nð/1;/2; . . .Þ � nt½ �2pð/1;/2; . . .Þd/1d/2; . . .

� �1=2

ð11Þ

where n is a random variable representing the scalar measure ex-

tracted from the RTD, and nt is the true value of n that is known if

the true RTD is known. Any single scalar quantity extracted from

the RTD (e.g., mean, median, cumulative distribution at a certain

age) can be considered to represent n. Here, we define n as the frac-

tion of water younger than a certain age L; therefore, nL ¼
R L

0 pðtÞdt.
In addition, the bias of estimation can be calculated as bL = E(nL) -

� nt. Using the samples drawn from the posterior distribution ob-

tained from the MCMC algorithm, the values of the uncertainty

measure, d, and the bias measure, bL, can be calculated easily.

Fig. 4 shows the 95% credible intervals of modeled concentra-

tions of the four tracers vs. the ‘‘observed’’ concentrations for the

two cases were two years and eight years of data used for param-

eter estimation of RTDs using presumed gamma and log-normal

distributions. The results for the inverse-Gaussian distribution

have not been shown to keep the figures more readable. As it can

be seen, as the number of years used for parameter estimation in-

creases, the ability of the inverse-Gaussian model to reproduce the

data is declined compared to the gamma distribution. Table 3

shows Bayes factors, uncertainty measure d5 ¼ E n5 � nt;5
� �2h i1=2

,

and bias b5. The subscript 5 indicates that these measures were cal-

culated using the cumulative RTD at 5 years. A smaller d5 means a

smaller uncertainty is quantified for cumulative age distribution at

5 years for the three presumed RTD forms. Ik is the odd of one mod-

el being the correct one if the only possible models where the ones

considered (i.e. gamma, inverse-Gaussian and lognormal). When

one and two years of tracer data are used, the method is not able

to definitively identify the right model as the odds of each model

to be the true is not significantly different. However, when four

years of tracer data is used a 90% odd is assigned to the correct

(gamma) model and when eight years of tracer data is used the

correct model is definitively selected. As is expected when the cor-

rect form of RTD is assumed (gamma), using samples from a larger

number of years of tracer data results in a smaller uncertainty and

a smaller bias of estimation. However, when the correct form of

RTD is not used, using a larger number of years does not result

in an improvement in uncertainty and bias. This is an important

conclusion, as in practical cases, the form of RTD is not known

and there is a high probability that the simple forms selected do

not match the real distribution. In these cases, the uncertainty

and bias of inference do not improve when using samples from

multiple years. The implication of this outcome is that additional

data can affirm or dispute the presumed form of distribution. The

Bayes factors show the odds of each model structure to be the

5



correct form when the only choices are the ones considered (in this

case, gamma, inverse Gaussian and lognormal). What can be

learned from this experiment is that when one form of RTD de-

scribes the tracer data substantially better than other forms do,

using transient data can strengthen the confidence toward the

right form and more definitively reject the inappropriate forms.

3.2. Simulated residence time distribution from the conceptual flow

model based on the Plœmeur aquifer

Gamma and exponential models were applied to the tracer con-

centrations calculated using the simulated RTD for the Plœmeur

aquifer. Here, the simulated RTD is deemed the ‘‘true’’ RTD, and

Fig. 3. Hypothetical gamma residence time distribution (solid black line) and inferred gamma distributions using the tracer data calculated from it when (a) one year, (b) two

years, (c) four years and (d) eight years of tracer data were used for inferring the residence time distribution.

Fig. 4. ‘‘Observed’’ tracers concentrations and 95% credible intervals obtained from the posterior distribution of gamma and exponential RTDs based on 8 years (top row), and

two years (bottom row) of tracer data. The tracer concentrations are calculated based on a hypothetical gamma distribution and corrupted with 5% noise.
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the performance of the method is evaluated based on how well the

inferred RTDs based on the tracer information resemble the ‘‘true’’

one. The concentrations of five tracers – CFC-11, CFC-12, CFC-113,

SF6, and
85Kr – were calculated for eight years, ending in 2010, as

shown in Table 2. These calculated tracer concentrations are con-

sidered observed tracer concentrations and are referred to as such

henceforth. All the tracers were considered to be conservative

(non-decaying) except 85Kr, for which a decay rate of 0.0641 yr�1

(equivalent to a half-life of 10.8 years) was considered. In order

to compare the effect of one additional tracer against using multi-

ple years, the analysis was performed once using all five tracers

and once using only four of the tracers, excluding 85Kr. A random

5% log-normal and multiplicative error was added to each of the

calculated tracer concentrations to represent measurement error

and the effect of temporal and spatial heterogeneities on measured

concentrations.

3.2.1. Adequacy of analytical age distributions

Fig. 5 shows the ‘‘true’’ RTD and 60 samples produced based on

random realizations generated from the posterior distributions of

the RTD parameters, shown using gray lines. The 60 realizations

can be thought of as plausible RTDs inferred by the algorithm,

resulting in the true observed tracer concentrations. It can be seen

that neither the gamma nor exponential distribution is able to

reproduce the RTD on the full time range. The correct estimate at

older ages (those over three years) corresponds with a poor match

of the early parts of the ‘‘true’’ RTD (ages less than three years).

More precisely, the very early part of the distribution for ages un-

der half a year is generally overestimated, while the intermediary

part, around one year, is underestimated. The shapes of the gamma

and exponential distributions are too simple to represent the early

part of the ‘‘true’’ distribution. In the gamma distribution, the large

dispersion of distributions at early ages also shows that the early

Table 3

Bayes factors, uncertainty and bias of RTD inference for the hypothetical case using gamma and exponential forms.

1 yr 2 yrs 4 yrs 8 yrs

Gamma

BF 38.7% 27.0% 90.3% 100.0%

d5 2.02E�04 4.74E�05 1.68E�05 2.62E�06

bias �1.27E�02 �3.32E�03 �2.74E�03 �2.48E�03

IG

BF 24.0% 38.5% 6.6% 0.0%

d5 6.42E�03 1.94E�03 2.21E�03 3.40E�04

bias �1.27E�02 4.34E�02 4.68E�02 �3.36E�02

Lognormal

BF 37.3% 34.5% 3.1% 0.0%

d5 2.06E�02 1.68E�02 1.81E�02 6.39E�03

bias 1.42E�01 1.29E�01 1.34E�01 1.46E�01

Fig. 5. Simulated age distribution using the inverse particle tracking approach for the Plœmeur aquifer and 60 realizations from the inferred plausible age distributions based

on five tracers including CFC-11, CFC-12, CFC-113, SF6 and
85Kr. The top row represent the results when a gamma RTD is assumed and the bottom row shows the results when

the RTD is assumed to be exponential. The number of years used for inference of the RTD are one year in panels a and d (left), four in panels b and e (middle) and eight in

panels c and f (right).
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part of the distribution is not very sensitive to the tested tracers,

and that the information content of the environmental tracers is

limited at very early ages. Differences between the ‘‘true’’ distribu-

tion and the analytical approximation come from the topographi-

cal and geological details close to the well. First, the well pumps

water at a depth with a minimum time necessary for the water

to reach the well from the surface. No such assumptions are taken

into account in the gamma and exponential distributions. Second,

Fig. 6. Simulated age distribution using the inverse particle tracking approach for the Plœmeur aquifer and 60 realizations from the inferred plausible age distributions based

on four tracers including CFC-11, CFC-12, CFC-113, and SF6. The top row represent the results when a gamma RTD is assumed and the bottom row shows the results when the

RTD is assumed to be exponential. The number of years used for inference of the RTD are one year in panels a and d (left), four in panels b and e (middle) and eight in panels c

and f (right).

Fig. 7. ‘‘Observed’’ tracers concentrations and 95% credible intervals obtained from the posterior distribution of gamma RTDs based on 8 years (top row), four years (middle

row) and one year (bottom) of tracer data.
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the shape of the ‘‘true’’ distribution between zero and three years is

sensitive to the details of the topography. More details about the

effects of near well topography on the distribution of the very

young (<3 years) of groundwater is provided in Leray et al., 2012.

These details produce the irregular shape of the distribution, and

they cannot be homogenized into a smooth curve for the later time

that concerns a much larger part of the domain.

In fact, the part of the RTD greater than three years is captured

much better using both the gamma and exponential forms. If the

estimated distributions cannot be used for the very early ages, it

does not preclude their applicability at later ages. In both cases

of four and five tracers, the uncertainty associated with the earlier

parts of the distributions increases as the number of years of data

used is increased from one to four, and then it slightly decreases

(Fig. 6). This may appear counter-intuitive, as more data would

seem to reduce the uncertainty. However, the reason for the in-

crease in uncertainty when the number of years of data increases

from one to four can be explained better by looking at Fig. 7, which

shows the ‘‘observed’’ tracer concentrations and the 95% credible

intervals of posterior concentrations.

3.2.2. Information content of environmental tracer concentrations

The credible intervals of tracer concentrations when using the

four-year time series are about twice as large as those obtained

when using a single year (Fig. 7, middle line compared to bottom

line). When four years of data are used, the model is more con-

strained and the observation and model structural errors are re-

flected more appropriately in the uncertainty associated with the

posterior parameters. The multiplication of the data introduces

some possible tradeoffs, with some models possibly being better

than others at some ages and worse at other ages. It does not mean

that the models are more uncertain, but that the uncertainty of the

model is better constrained.

Another observation from Fig. 7 is that the temporal trends in

the concentrations of some of the tracers provide more informa-

tion about the RTD than other tracers. For example, the temporal

pattern of the concentration of 85Kr is completely disrupted by

the addition of the 5% random noise, while the temporal trend

is preserved for most of the other tracers. This is due to the fact

that the historical atmospheric 85Kr concentrations have been

relatively flat in recent years (Fig. 1). Conversely, in the case of

SF6, and to a lesser degree, CFCs, evaluating the 95% credible

intervals of tracer concentrations for different years shows that

the temporal variations in input concentrations have a statisti-

cally significant impact on the observed concentrations at the

well. The smaller uncertainty associated with the posterior SF6
compared to the CFCs can be attributed to the fact that observed

SF6 concentrations varied monotonically by year for the past

eight years, while the variation in CFCs was not strictly

monotonic.

Table 4

Measures of goodness of models including Normalized Bayes Factor and DIC and measures based on the ability of the method to predict cumulative residence time at 10 years for

exponential and gamma RTDs as a result of using four and five tracers and one, four and eight years of tracer data.

BF DIC 100 � d10 1000 � b10

1 yr (%) 4 yrs (%) 8 yrs (%) 1 yr 4 yrs 8 yrs 1 yr 4 yrs 8 yrs 1 yr 4 yrs 8 yrs

CFCs, SF6
exp 29 48 7 38.60 66.10 131.51 5.72 3.16 2.09 56.03 6.86 12.99

gamma 71 52 93 39.59 65.50 136.22 5.16 3.97 1.50 49.78 19.99 1.88

CFCs, SF6,
85Kr

exp 48 61 48 36.20 99.28 177.35 7.25 1.70 1.15 68.57 7.62 0.25

gamma 52 39 52 34.56 97.84 177.11 8.66 3.57 1.10 55.85 4.52 0.66

Fig. 8. True fraction of water with age greater than 10 years (n10) (vertical dashed line) and the inferred posterior distribution of n10 obtained using five tracers: CFC-11, CFC-

12, CFC-113, SF6, and
85Kr when one (left), four (middle), and eight (right) years of tracer data are used assuming gamma (top) and exponential (bottom) RTDs.
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Various measures of adequacy of the models are summarized in

Table 4. The method does not seem to provide a definitive conclu-

sion about the forms of RTDs. When four tracers are used, the

method tends to assign a larger likelihood (although not substan-

tially) to the gamma RTD (except in the case of four years of data),

and when five tracers are used, the exponential and gammamodels

are given roughly equal odds. This can be due to the fact that nei-

ther the gamma nor the exponential model perfectly represents

the ‘‘true’’ RTD, and neither model is able to fit all parts of it per-

fectly, especially the early part, as seen before. The DIC values also

show that as more data are used, a smaller discrimination between

the models is observed. It is interesting to point out that when four

tracers are used, the exponential model is given preference in

terms of DIC in all cases, while when five tracers are used, the gam-

ma model is always better. Because DIC explicitly accounts for

model complexity in determining the goodness of fit, this can be

interpreted as meaning that four tracers are not adequate for char-

acterizing the more complex gamma distribution, but when five

tracers are used, the gamma distribution can be better determined.

It is also important to note that the 85Kr tracer that is added in

the case of five tracers contains more information about the youn-

ger ages, due to its relatively short half-life.

3.2.3. Prediction capacity of analytical age distributions

The uncertainty measure, d10, and the bias, b10, decrease sharply

as the number of years of data is increased (Table 4). Uncertainty

d10 is reduced by a factor of 3–7 when using eight years of data

rather than one year, while b10 is reduced by a factor of 3 to almost

100, depending on the number of tracers and distribution type

(exponential or gamma). The reduction is systematic, except for

the case of the exponential model from four to eight years of data.

The distribution of the fraction of water age greater than ten years,

n10, gives a more accurate illustration of the interest of the age data

time series (Figs. 8 and 9). Using only one year of data, the distri-

bution of n10 is both biased and uncertain, to the point that the

‘‘true’’ value is given a very low probability. With four years of data,

the bias is significantly reduced. With eight years, the uncertainty

is further reduced. Several years of data reduce both the bias and

the uncertainty. The good predictions on n10 are also confirmed

by the small values of bias b10 and uncertainty d10 for the

eight-year case, except for the exponential case without 85Kr

(Table 4, first line). This highlights the effectiveness of the age data

time series for the predictions of the relatively ‘‘older’’ water age

fraction.

The very small influence of the distribution nature on the pre-

dictions is also noteworthy. Whether the exponential or the gam-

ma distribution is used barely affects the distributions of n10, as

predictions are much more sensitive to the fraction of ages greater

than 10 years than to the distribution shape. This might be ex-

plained by the strong consistency of both distribution shapes at

periods longer than ten years (Fig. 5). Depending on the targeted

application, the shape of the distribution might not be an essential

factor for the predictions.

7. Conclusion

In this paper, the value of age data time series for the inference

of groundwater age distribution was studied. For this purpose, a

hypothetical gamma and a simulated age distribution obtained

using an aquifer model of the Plœmeur site were used to generate

synthetic tracer concentrations for five tracers—3 CFCs, SF6, and
85Kr—at the end of eight consecutive years ending in 2010. Bayes-

ian inference by means of MCMC was used to infer the parameters

of presumed mathematical age distribution forms, including expo-

nential and gamma, when variable numbers of years of data were

used. In addition, the effect of excluding 85Kr in the inference

uncertainty was evaluated by repeating the analysis without
85Kr. Using DIC, the main conclusions that can be drawn from this

study are:

– In the case where the tracer data were obtained using the hypo-

thetical age distribution, using a larger number of data will

result in a much more pronounced preference given to the right

RTD form in terms of DIC.

Fig. 9. True fraction of water with age greater than 10 years (n10) and the inferred posterior distribution of n10 obtained using four tracers: CFC-11, CFC-12, CFC-113, and SF6
when one (left), four (middle), and eight (right) years of tracer data are used assuming gamma (top) and exponential (bottom) RTDs.
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– The two mathematical RTD forms considered here (exponential

and gamma) are too simple to be able to capture the early part of

the true RTDs. The fact that the earlier ages cannot be captured

well is due to their dependency on local, non-homogeneous

aquifer characteristics in the proximity of the pumping well.

– The actual bias and uncertainty of the inferred age distributions

based on comparing the cumulative ten-year ages (n10) decrease

as the number of years of tracer data increases. Both bias and

uncertainty evaluated based on 10 years cumulative age

decrease when a larger number of years of data is used in the

case when five tracers were used. When using four tracers

one year of data resulted in a smaller spread for n10 with a sub-

stantially larger bias compared to the case when four years of

data was used, which might imply high confidence about the

outcome in the absence of knowledge about the true RTDs. This

means that more data does not necessarily lead to a reduction

in the uncertainty as expressed by the spread of the parameters,

but it leads to better assessment of the uncertainty. This is espe-

cially true when the true RTD cannot be fully captured by the

assumed mathematical forms.

– In the case of the simulated RTD, the method cannot definitively

pick one of the RTD forms over the other one. However, based

on the DIC measure, when the additional tracer, 85Kr, is

included in the analysis, the more complex form (gamma) is

given higher odds, while the exponential form is given prefer-

ence when only four tracers are used.

– Regardless of the distribution shape, the reliability of the

inferred RTD improves with regard to predicting the ten-year

cumulative age, and the uncertainties and bias associated with

gamma and exponential models are close to each other.

– Shape-free RTDs can liberate us from presuming mathematical

forms that restrict the age distribution to a limited range of

shapes. However, due to larger degrees of freedom, they require

a greater number of tracers to be constrained. Transient tracer

information is a promising way to provide the amount of data

needed for such an approach.
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