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 10 

Assessing seismic hazards remains one of the most challenging scientific issues in Earth 11 

sciences. Deep tectonic processes are classically considered as the only persistent 12 

mechanism driving the stress loading of active faults over a seismic cycle. Here we show via 13 

a mechanical model that erosion also significantly influences the stress loading of thrust 14 

faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1 to 20 mm.yr
-1

, 15 

as documented in Taiwan and in other active compressional orogens, can raise the 16 

Coulomb stress by ~0.1 to ~10 bar on the nearby thrust faults over the inter-seismic phase. 17 

Mass transfers induced by surface processes in general, during continuous or short-lived 18 

and intense events, represent a prominent mechanism for inter-seismic stress loading of 19 

faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or 20 

promote the rupture of deep continental earthquakes up to the surface.  21 

 22 

INTRODUCTION 23 
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The evolution of the Earth’s topography is dictated by the interactions between tectonics, 24 

climate and surface processes (i.e. erosion and sedimentation). Whether this evolution influences 25 

tectonic deformation during mountain building has been widely debated. It is now well accepted 26 

that surface evolution can drive the localization and intensity of tectonic deformation over 27 

geological times
1-3

 (1-10 Myr). At intermediate time scales (10 kyr - 1 Myr), erosion and the 28 

subsequent isostatic rebound can favour slip along specific fault planes
4-7

. However, the link 29 

between surface processes and the stress loading of faults during the seismic cycle (0.1-1 kyr), 30 

and in turn the associated deformation mechanisms, remains unsubstantiated. 31 

Faults represent the main mechanical discontinuities of the elastic-brittle Earth’s upper 32 

crust. They accommodate tectonic deformation by slipping, mostly during earthquakes
8
. These 33 

seismogenic faults are rooted down dip in viscous shear zones
8-10

.  It is generally accepted that, 34 

during the inter-seismic phase (i.e. prior to an earthquake), continuous viscous flow in these deep 35 

shear zones leads to the elastic stress loading of active faults closer to failure, and that during the 36 

co-seismic phase (i.e. during an earthquake), failure and slip occur along the previously locked 37 

fault planes, followed by post-seismic stress relaxation
4,8

. Fault failure is commonly defined by 38 

the mean of the Coulomb stress change, CFF= η + µ’∙ζn, a function of the fault effective 39 

friction µ’, the shear η (positive in the direction of slip) and normal ζn (positive if the fault is 40 

unclamped) stress changes
8,11

. Earthquakes can be triggered by tectonic stresses, but also by 41 

Coulomb stresses due to episodic and short-lived events such as hydrologic
12

 or snow loading
13

, 42 

nearby earthquakes
14-17 

and slow-slip events
18

. 43 

Here, we show that surface processes significantly contribute to the Coulomb stress 44 

loading of thrust faults during the seismic cycle. To illustrate and then demonstrate our point, we 45 

consider a mountain range in Taiwan where the rates of erosion
19

 and tectonic deformation
20,21

 46 
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are extremely high and amongst the best-documented in the world. We then investigate how 47 

erosion influences the stress loading of thrust faults using a simple model for the seismic cycle.  48 

 49 

RESULTS 50 

Coulomb stress changes induced by erosion in Taiwan  51 

Our first model quantifies the Coulomb stress change ΔCFF generated by erosional 52 

unloading, as constrained from fluvial suspended sediment load measured over the 30 yr prior to 53 

the 1999 Mw7.6 Chi-Chi earthquake in central Taiwan
19

 (Fig. 1 and Methods). The 3D velocity 54 

field  , strain rate  ̇  and stress rate  ̇ tensors induced by erosion are computed in an elastic half-55 

space using a Boussinesq approach (Fig. 1C and Methods). We use simplified geometries for 56 

active thrust faults located in the foothills of Taiwan
22

 (see Methods) and assume a dip angle α of 57 

30°, a 15 km deep brittle–ductile transition
22

 and an effective friction µ’ of 0.5 to compute 58 

Coulomb stress changes per unit time (or loading rates) ΔCFF due to erosional unloading on 59 

these faults. We find a maximum value of ~4 x 10
-3

 bar.yr
-1

 for the Coulomb stress change ΔCFF 60 

induced by erosional unloading on the Liuchia fault system (number 8 on Figure 1) in 61 

southwestern Taiwan. Despite a low topographic relief, this area has the highest erosion rates 62 

documented in Taiwan (up to 24 mm.yr
-1

), which are proposed to be controlled locally by a low 63 

substrate strength, a high storminess and a high seismic moment release rate
19

. However, most of 64 

the thrust faults located in the foothills still display a significant ΔCFF of ~0.5 x 10
-3

 bar.yr
-1

, 65 

including the Chelungpu fault (number 3) that ruptured during the Chi-Chi earthquake. 66 

Integrated over a seismic cycle duration
23

 of ~500 yr, a ΔCFF of 0.5 to 4 x 10
-3

 bar.yr
-1

 due to 67 

erosional unloading gives a net Coulomb stress change of 0.25-2.0 bar. Similar values of 68 

Coulomb stress change are documented elsewhere to contribute significantly to the stress loading 69 
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and dynamics of active faults
12-18

. This suggests that erosional unloading can significantly 70 

influence the short-term dynamics of faults.  71 

Erosional unloading modifies the Coulomb stress change on a fault plane in two ways: 1) 72 

it decreases the normal stress and unclamps the fault, and 2) it increases the tangential stress (fig. 73 

2a). The increment of stress on a fault plane is proportional to the amount of erosion, but 74 

decreases with the square of the distance r between the fault plane and where erosion occurs (fig. 75 

2b). Therefore, the amplitude of erosional Coulomb stress loading on a fault is sensitive 1) to the 76 

effective friction µ’, which modulates the effect of erosion on the normal stress, and 2) to the 77 

fault dip angle α, which decomposes the stresses into fault normal and tangential components 78 

and controls the distance of the fault plane to the surface. For instance, a higher effective friction 79 

µ’ of 0.8 and a lower dip angle α of 15° therefore result in increasing the induced ΔCFF up to ~1 80 

x 10
-2

 bar.yr
-1

 for the Liuchia fault system (Fig. 2c). In addition, the stresses modelled here are 81 

invariant with the Young modulus of the material as we are considering a linear elastic material 82 

subjected to a surface pressure load (and not to a surface displacement). 83 

Stresses induced by erosion during the seismic cycle 84 

The above computations consider inter-seismic erosion rates calculated from data 85 

acquired during the 30 yr preceding the Chi-Chi earthquake
19

. Even though its amplitude relative 86 

to co-seismic rock uplift is debated, co- and post-seismic erosional unloading represents a major 87 

contribution to erosion in seismic areas
24-27

. In mountain belts with hillslopes close to failure, co-88 

seismic ground motion and acceleration can induce a significant amount of landslides
28

. The 89 

sediments produced by these landslides are then transported by rivers mainly during subsequent 90 

floods. This post-seismic landscape relaxation phase has a documented potential duration
25,26 

of 91 

years to decades, one order of magnitude shorter than a complete seismic cycle. Therefore, the 92 



 

 5 

contribution of co- and post-seismic erosion to the stress loading of active faults also needs to be 93 

evaluated.  94 

To assess the relative contribution of inter-seismic erosion, co-/post-seismic erosion and 95 

tectonics to the Coulomb stress loading of faults, we develop a simple model of the seismic cycle 96 

that accounts for the effect of both erosion and tectonics (Fig. 3 and Methods). We assume a 97 

steady-state landscape over the seismic cycle, i.e. rock uplift rates    are balanced by erosion 98 

rates Ė over this time scale. Because of the response-time of the geomorphic system to climate or 99 

tectonic perturbations and because of their stochastic properties
29

, this assumption is probably 100 

not valid in most settings. However, it offers a simple and self-consistent approach for modelling 101 

first-order surface processes during the seismic cycle. A Boussinesq approach is used to compute 102 

 ,  ̇ and  ̇, while the tectonic stresses and uplift (and therefore erosion) are calculated using 103 

dislocations embedded in an elastic half-space
30

.  The effects of tectonic deformation during the 104 

inter- and co-seismic phases are accounted for by slip on a deep shear zone and on a shallow 105 

brittle fault, respectively
9,31

. This seismic cycle model is valid when considering a fault that is 106 

fully locked during the inter-seismic phase, as it is proposed for the thrust faults located in the 107 

western foothills of Taiwan
32-34

.  108 

 For comparison with faults in the foothills of Taiwan, we define a reference model with 109 

a fault trace length of 80 km and a dip angle of 30°, while keeping all the other mechanical 110 

properties identical. We also impose a slip velocity Vinter of 40 mm.yr
-1

 on the shear zone during 111 

the inter-seismic phase, and Vco of 40 mm.yr
-1

 on the associated brittle fault during the co-112 

seismic phase. This model setup provides only a rough approximation of the seismic cycle at the 113 

scale of the whole western foothills of Taiwan. Indeed, deformation is partitioned between 114 

several active thrust faults in this area that are probably rooted down at depth into a single 115 
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decollement with a total slip of ~40 mm.yr
-1 

(refs. 21, 33).  In addition, because our goal is to 116 

quantify the co- and post-seismic erosional unloading rates during the landscape relaxation phase 117 

following large earthquakes
25,26

, we compute co-seismic slip velocity averaged over the seismic 118 

cycle rather than co-seismic instantaneous displacement. Note that these two approaches are 119 

strictly equivalent in an elastic model. 120 

In our modelling, inter- and co-seismic rock uplift (and erosion) rates are similar and up 121 

to ~20 mm.yr
-1

 (Fig. 3). We assume no time modulation of inter- and co-seismic erosion and 122 

both modeled erosion rates are applied over the entire duration of one seismic cycle. Despite 123 

similar erosion rates, co-seismic erosional unloading induces fault Coulomb stress loading 124 

ΔCFFE-CO of up to ~8 x 10
-2

 bar.yr
-1

 at very
 
shallow depth (< 1 km), which is about 30 times the 125 

maximum stress loading induced by inter-seismic erosion ΔCFFE-INTER. Indeed, the maxima of 126 

co-seismic uplift of the surface (and erosion) occurs over the shallow portion of the fault, 127 

therefore at a shorter distance to the fault plane than the maxima of inter-seismic erosion (Fig. 3).  128 

Despite a rapid decrease with depth, ΔCFFE-CO is still greater than ~0.5 x 10
-2

 bar.yr
-1

 at a depth 129 

of 5 km. Coulomb stress loading ΔCFFE-INTER induced by inter-seismic erosion displays two 130 

local maxima of ~0.3 x 10
-2

 bar.yr
-1

, one located on the deeper part of the fault underneath the 131 

maximum of inter-seismic erosion, and the second one close to the fault tip due to its proximity 132 

with the surface. 133 

We then compare fault Coulomb stress loading rates induced by erosion to those induced 134 

only by tectonics during the inter-seismic phase ΔCFFT-inter. In terms of amplitude, Coulomb 135 

stress loading rates due to tectonics are up to two or four orders of magnitude greater than those 136 

related to erosion, in particular for the deeper part of the fault. However, at shallower depths (< 5 137 

km), Coulomb stress loading rates due to co-seismic erosion and tectonics are of the same order 138 
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of magnitude, and the ratio ΔCFFE-co/ΔCFFT-inter even reaches ~20 close to the surface (Fig.3). 139 

At the contrary, Coulomb stress loading rates associated with inter-seismic erosion, which is 140 

maximum on the deeper and shallower part of the fault, do not dominate tectonic stresses. The 141 

ratio ΔCFFE-inter/ΔCFFT-inter only reaches ~0.1 at intermediate depths (5-10 km) and ~0.6 close to 142 

the surface. Because the upper crust displays a very long stress relaxation time associated to high 143 

effective viscosities, these Coulomb stress changes induced by erosion can be accumulated over 144 

the time scale of a seismic cycle (~500 yr). On the other hand, increasing the Young modulus 145 

from the reference value (10 GPa) by a factor of 2 (20 GPa) or 5 (50 GPa) results in increasing 146 

the Coulomb stress change induced by tectonics ΔCFFT-inter by a factor of 2 or 5 and decreasing 147 

the ratios ΔCFFE-inter/ΔCFFT-inter and ΔCFFE-co/ΔCFFT-inter by the same factor (Fig. 3h). However, 148 

these results still demonstrate 1) that erosion can contribute significantly to thrust fault stress 149 

loading during the seismic cycle, and 2) that erosion can even be one of the dominant stress 150 

loading mechanisms for the shallower parts of thrust fault planes. 151 

Model sensitivity analysis 152 

To assess the sensitivity of our results to the model parameters, we design a set of models 153 

similar to the reference model but with varying values of the effective friction µ’ (0.1 to 0.9), the 154 

Young modulus E (10, 20 and 50 GPa) and the fault and shear zone dip angle α (15 to 45°). For 155 

the sake of simplicity we keep the depth of the brittle–ductile transition at 15 km, which in turn 156 

implies that the surface area of the brittle fault increases when decreasing α. Using this 157 

modelling approach, erosion rates during the inter-seismic Ėinter and the co-seismic Ėco phases are 158 

only sensitive to α (Fig. 4a-b). While Ėinter remains approximately constant around 13 mm.yr
-1

, 159 

Ėco increases from 11 to 22 mm.yr
-1

 when α increases from 15 to 45°.  160 
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The resulting Coulomb stresses ΔCFFE-inter and ΔCFFE-co on the fault plane are in turn 161 

sensitive to 1) the dip angle α, which controls both the distribution and amplitude of Ėinter and Ėco 162 

and the distance between the Earth surface and the fault plane, and 2) the effective friction µ’ by 163 

amplifying the influence of normal stress on the Coulomb stress (Fig. 4c-d). The maximum 164 

values of ΔCFFE-inter and ΔCFFE-co obtained on the fault plane show similar distributions in the 165 

parameter space. ΔCFFE-inter is minimum (~1 x 10
-3

 bar.yr
-1

) for a low effective friction (µ’0.2) 166 

combined to a high or low dip angle (15° or 45°), while it increases when increasing µ’ and 167 

reaches a maximum (~2.7 x 10
-3

 bar.yr
-1

) for α around 25°. ΔCFFE-co is minimum (~1.5 x 10
-2

 168 

bar.yr
-1

) for a low effective friction (µ’0.2) combined to a high or low dip angle (15° or 45°), 169 

while it increases when increasing µ’ and reaches a maximum of ~4 x 10
-2

 bar.yr
-1

 for α around 170 

30°.  171 

Because the Coulomb stresses induced by tectonics ΔCFFT-inter are also sensitive to the 172 

Young modulus E, the ratios ΔCFFE-inter/ΔCFFT-inter and ΔCFFE-co/ΔCFFT-inter are in turn 173 

sensitive to α, µ’ and E. Increasing the Young modulus from 10 to 20 or 50 GPa increases 174 

ΔCFFT-inter and decreases ΔCFFE-inter/ΔCFFT-inter and ΔCFFE-co/ΔCFFT-inter by a factor of 2 or 5, 175 

respectively. ΔCFFE-inter/ΔCFFT-inter remains lower than 1 only for all the models tested, 176 

independent of the Young modulus E. At the contrary, ΔCFFE-co/ΔCFFT-inter displays a large 177 

domain in the parameter space with values greater than 1 (i.e. with at least one element of the 178 

fault plane dominated by stresses induced by erosion). For E=10 GPa, only models with low µ’ 179 

(<0.5) and high α (>35°) are dominated by tectonic stresses (ΔCFFE-co/ΔCFFT-inter<1), while for 180 

E=50 GPa, most of the models with α greater than 20-30° are dominated by tectonic stresses. 181 

Therefore, Coulomb stresses induced by erosion during the seismic cycle represent a significant 182 
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contribution to fault stress loading, even though their amplitude depends on the properties of the 183 

fault (dip angle, effective friction) and of the medium (Young modulus). 184 

 185 

DISCUSSION 186 

Based on erosion data from Taiwan
19

, we have demonstrated that the elastic Coulomb 187 

stresses induced by erosion are of the order of ~0.5 x 10
-3

 bar.yr
-1

 on the thrust faults located in 188 

the western foothills and reach a maximum of ~4 x 10
-3

 bar.yr
-1

 on the Liuchia fault. These 189 

results are consistent with the outcomes from a simple model of the seismic cycle of a thrust 190 

fault that accounts for the effect of both erosion and tectonics using fault properties and a slip 191 

velocity close to the ones inferred for Taiwan
20-22

. Coulomb stresses induced by inter-seismic 192 

ΔCFFE-inter and co-seismic ΔCFFE-co erosion and averaged over the duration of a seismic cycle 193 

(~500 yr) reach values of up to ~3 x 10
-3

 bar.yr
-1

 and ~8 x 10
-2

 bar.yr
-1

, respectively. On the 194 

shallower part of thrust faults (< 5 km deep), the ratio of the Coulomb stresses induced by co-195 

seismic erosion ΔCFFE-co to the ones induced by tectonic loading ΔCFFT-inter is about equal to 1 196 

for a Young modulus E=10 GPa (~0.2 for E=50 GPa) and even reach a maximum of ~20 closer 197 

to the surface (~4 for E=50 GPa). In addition, assuming that co-seismic erosion happens only 198 

during a period 10 to 100 times shorter
25,26

 (~5-50 yr) than the complete seismic cycle
23

 (~500 199 

yr), ΔCFFE-CO increases up to 80 x 10
-1

 to 8 bar.yr
-1

 and the ratio ΔCFFE-co/ΔCFFT-inter to 10 or 200 

100 for E=10 GPa (2 to 20 for E=50 GPa) during the first ~5-50 years following a large 201 

earthquake. Large earthquakes with a potential negative mass balance (i.e. erosion greater than 202 

uplift), such as the Wenchuan earthquake
24,27

, could induce even higher rates of ΔCFFE-co than 203 

those predicted by a steady-state model. Our modelling approach imposes that co-seismic 204 

erosion is maximum close to the fault trace and above the shallower part of thrust faults (Fig. 3). 205 
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This result contrasts with most of the observed distribution of earthquake-triggered landslides, 206 

with a maximum of landslide density close to the epicentral area and therefore generally above 207 

the deeper part of thrust faults
28

. Therefore, depending on the location of large earthquake 208 

hypocenters along the fault plane, our estimates for the contribution of co-seismic erosion to 209 

fault stress loading might likely be overestimated.  210 

However, our results emphasize that short-lived and intense erosional events associated 211 

with efficient sediment transport, such as typhoons, could suddenly increase the Coulomb stress 212 

of underlying faults. On longer time-scales, climatic changes or transition from fluvial- to 213 

glacial-dominated surface processes could also lead to high transient erosion rates and therefore 214 

to transient increases of the fault stress loading due to erosion
4-7

. The mechanism proposed in 215 

this study is limited neither to convergent settings nor to erosion only, as sediment deposition on 216 

the hanging wall of normal faults could also lead to a significant increase in Coulomb stress
5
. 217 

Moreover, some less active areas, such as intra-continental faults or old orogens still experience 218 

intense erosion and episodic seismic activity
6,7

. In the absence of major tectonic deformation, 219 

surface processes could significantly contribute to the stress loading of faults in these areas, even 220 

when considered independently of the stresses induced by isostatic rebound.  221 

In summary, our results demonstrate that surface processes represent a significant 222 

contribution to the Coulomb stress loading of faults during the seismic cycle. In terms of 223 

deformation, these additional stresses on the shallower part of fault planes can induce and trigger 224 

shallow earthquakes, as illustrated by the seismicity triggered by the large 2013 Bingham 225 

Canyon mine landslide
35

, or potentially favour the rupture of large deeper earthquakes up to the 226 

surface as, for instance, during the Chi-Chi earthquake
36

. This offers new perspectives on the 227 

mechanisms influencing stress transfers during the seismic cycle, as well as on seismic hazard 228 
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assessment in areas experiencing rapid erosion. More generally, Coulomb stress loading of faults 229 

induced by surface processes over short time scales provides an additional positive feedback 230 

between climate, surface processes and tectonics. 231 

 232 

METHODS 233 

Seismic cycle model 234 

The deformation model computes the velocity field  , strain  ̇  and stress  ̇ rate tensors induced 235 

by surface erosion in a 3D elastic half-space based on the Boussinesq approximation
37

. With 236 

respect to this approximation, we assume that the model surface is horizontal (Fig. 1). The effect 237 

of such assumption is here limited as the topography of the western foothills of Taiwan is 238 

globally lower than 1 km. The model is discretized by cubic cells with a 100 m-resolution, with a 239 

Young modulus of E=10 GPa, a Poison ratio of ν=0.25, and a rock density of ρ=2800 kg.m
-3

.  240 

Velocity, stresses and strain induced by tectonics are simulated by the mean of triangular 241 

dislocations
30,31

 accounting for the slip 1) of a viscous deep shear zone during the inter-seismic 242 

phase and of 2) a frictional fault located in the shallow elastic-brittle crust during the co-seismic 243 

phase. The imposed averaged tangential velocities of the shear zone Vinter and of the fault Vco are 244 

both equal to 40 mm.yr
-1

. Coulomb stress changes are then computed by projecting the stresses 245 

due to surface processes and to tectonics on the fault plane that is discretized with a resolution of 246 

100 m. The extent of fault planes and the dip angle data of the western foothills of Taiwan were 247 

simplified from ref. 22. Each fault trace was simplified to a line segment that best reproduces the 248 

real fault trace geometry. 249 

Elastic Boussinesq model 250 
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We here consider the displacements, stress and strain components generated by a point load F at 251 

the surface of a 3D semi-infinite elastic solid of coordinates x, y and z, with z being positive 252 

downward. Let’s define   √(    )
  (    )

     the distance to the point load of 253 

location (       ),        and       .The elasticity of the model is described by 254 

the Lamé’s first λ and second parameters µ, which are related to the Young modulus E and the 255 

Poisson ratio ν by     ((   )(    ))⁄  and    ( (   ))⁄   For z0, the 256 

displacement components are
37,38

: 257 
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Assuming infinitesimal deformation, the symmetric Cauchy strain tensor ε is then obtained by 258 

differentiating the displacement vector,        (       ⁄       ⁄ )⁄ . For an isotropic 259 

medium, the stress components are then given by the following equation,                  , 260 

where δij is the Kronecker delta. The 6 stress components are
37,38

: 261 
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   (     )   
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    
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(
    
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Because the model is linear and elastic, the total displacement, stress and strain components for 262 

any distribution of surface load are then computed by summation of the displacement, stress and 263 

strain components obtained for each individual point load. 264 

Taiwan erosion rates 265 

Erosion rates in Taiwan were calculated from fluvial suspended sediment load measured over the 266 

30 yr prior to the 1999 Mw7.6 Chi-Chi earthquake, considering that the total fluvial sediment 267 

load contains 70% of suspended load
9
 (Fig. 1b). Erosion rates were calculated assuming that 268 

suspended sediment load, measured at 130 gauging stations, represents 70% of the river total 269 

sediment load, and that catchment-wide erosion rates correspond to the total sediment load 270 

divided by sediment density and by drainage area
19

. The smoothed erosion map of Figure 1 was 271 

then obtained using a circular averaging window with a radius of 30 km. The spatial resolution 272 

of the erosion map, even though coarse, still allows for resolving potential heterogeneities of 273 

ΔCFF induced by erosion between different faults and along each individual fault plane. 274 

 275 
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 384 

FIGURE CAPTIONS 385 

 386 

Figure 1. Faults stress loading rates induced by erosion in the foothills of Taiwan. a) 387 

Topography, simplified main thrust fault systems (red lines and numbers from 1 to 8) and 388 

location of the 1999 Mw7.6 Chi-Chi earthquake epicenter (red star) that ruptured the Chelungpu 389 

fault (number 3). b) Inter-seismic erosion rates prior to the Chi-Chi earthquake, as calculated 390 

from fluvial suspended sediment measurements with a 5-km grid resolution, smoothed at the 391 

catchment scale using a circular moving mean with 30-km diameter
19

. c) Erosion induced 392 
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Coulomb stress loading rates ΔCFF calculated on the fault planes. The horizontal solid black 393 

lines represent scale bars of 50 km. 394 

 395 

Figure 2. Mechanism of Coulomb stress loading of a thrust fault by surface erosion. a) 396 

Distribution of stress increment ζ (here purely illustrative) induced by a punctual erosion at the 397 

surface, increasing both the tangential η (driving effect) and the normal stresses ζn 398 

(unclamping effect). The white solid line indicates a scale bar of 2.5 km. b) The resulting fault 399 

Coulomb stress change ΔCFF decreases with the square of the vertical distance r between the 400 

fault plane and where erosion occurs (assuming α=30° and 1 m of erosion). c) Sensitivity of 401 

ΔCFF induced by erosion to the fault dip angle α and effective friction µ’, taking the Liuchia 402 

fault system as an example. The black solid line indicates a scale bar of 25 km.  The model in the 403 

dashed green box is equivalent to the one in Figure 1 and η and ζn are reported in 404 

Supplementary Figure 1. 405 

 406 

Figure 3. Erosional versus tectonic driven Coulomb stress loading of faults during the seismic 407 

cycle. Model 3D geometry and modeled surface rock uplift rate U during the a) inter- and b) co-408 

seismic phases averaged over the entire seismic cycle. The averaged tangential velocities of the 409 

shallow fault Vco and of the deep shear zone Vinter are equal to 40 mm.yr
-1

. Erosional Coulomb 410 

stress loading rates of the fault obtained by equating erosion rates Ė to surface uplift rates    for 411 

the c) inter-seismic ΔCFFE-inter and d) co-seismic ΔCFFE-co phases. Ratios of e) inter-seismic and 412 

f) co-seismic erosional Coulomb stress loading rates over g) the inter-seismic tectonic Coulomb 413 

stress loading rate ΔCFFT-inter. η and ζn are reported in Supplementary Figure 2. h) Spatial 414 

variation of Coulomb stresses along the fault plane (cross-section Ω-Ω’) considering different 415 
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Young moduli (E=10, 20 and 50 GPa) that only influences the tectonics stresses and not the 416 

stresses induced by erosion. 417 

 418 

Figure 4. Sensitivity of model results to the model parameters. Maximum surface erosion rates 419 

obtained during the a) inter-seismic Ėinter and the b) co-seismic Ėco periods as a function of the 420 

fault and shear zone dip angle α. Maximum fault Coulomb stresses induced by erosion during c) 421 

inter-seismic ΔCFFE-inter and d) co-seismic ΔCFFE-co periods, which are function of the dip angle 422 

α and of the effective friction µ’, are shown with a plain color map. White lines indicate the 423 

limits of tectonics (black arrow) vs erosion (white arrow) dominated Coulomb stresses in the 424 

model parameter space for varying values of the Young modulus E (10, 20 and 50 GPa). The 425 

reference model is represented by a white star. We consider that Coulomb stresses induced by 426 

erosion dominates tectonic stresses when at least one element of the fault is dominated by 427 

erosional stresses. For the inter-seismic erosion induced stresses, we here only consider the deep 428 

part of the fault. 429 

 430 
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