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Numerical methods which utilize partitions of equal-size, including the box-counting method, remain

the most popular choice for computing the generalized dimension of multifractal sets. However, it is

known that mass-oriented methods generate relatively good results for computing generalized

dimensions for important cases where the box-counting method is known to fail. Here, we revisit two

mass-oriented methods and discuss their strengths and limitations. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885778]

Fractal sets are characterized by self-similarity, and

power laws can be associated with them. Examples of

fractals in nature are ubiquitous. Their discovery led to

the extension of the notion of dimension. For monofrac-

tals, the scaling pattern is homogeneous and the set can

be characterized by a single dimension. In contrast, mul-

tifractals are inhomogeneous and require a spectrum of

dimensions Dq to capture their geometry. In finding the

generalized dimensions, the box-counting method has

been by far the most popular choice among researchers

across various fields. However, it is known that the class

of methods which deal with partitions into cells of equal

size, including the box-counting method, is ill-suited for

computing the generalized dimensions on some domain

of q. In this paper, two alternative methods which utilize

mass-oriented partitions, rather than partitions of

equal-size, are investigated.

I. INTRODUCTION

The box-counting method has been the most popular

among researchers despite its difficulty to accurately com-

pute the generalized dimension Dq
1 in the negative q range.2

In this work, we revisit two known alternative numerical

methods for obtaining generalized fractal dimensions and

discuss their strengths and difficulties. Unlike the box-

counting method3 and the related correlation method,3 which

employ partitions composed of equal-sized cells, the two

methods examined in this paper employ mass-oriented parti-

tions. The nearest neighbor method4 utilizes partitions com-

posed of equal-mass cells while the k-neighbor method5 uses

partitions composed of cells with cumulative mass. These al-

ternative approaches enable one to compute the generalized

dimension on the domain where the box-counting method

encounters difficulty. The comparison between the correla-

tion method and the nearest neighbor method has been made

by Kostelich and Swinney.6

This work was originally motivated by the emergence of

fractal patterns on the one-dimensional expanding universe

model.7,8 Therefore, our focus is on one-dimensional sets

although the numerical methods used in this paper can be

applied to higher dimensional spaces. In particular, we

applied the methods to the generalized Cantor set.3 The gener-

alized dimensions of the generalized Cantor set can be readily

derived analytically, thus permitting the accuracy of the nu-

merical methods to be verified. Moreover, numerical methods

need to deal with finite samples which often give rise to tech-

nical difficulties. While a true mathematical fractal is charac-

terized by an infinite nesting structure, fractal-like objects

found in nature have a limited hierarchal structure and the

range of scales where a power law is observed is finite.

Accordingly, when employing a numerical method, one is

required to determine the applicability of the method in rela-

tion to a finite sampling process. The generalized Cantor set is

an ideal set in that the degree of hierarchy can be readily

controlled.

The paper is organized as follows: In Sec. II, the impor-

tant definitions and notations are stated. In Sec. III, we explain

the nearest neighbor method and the k-neighbor method in

depth. Section IV includes an overview of our results and var-

ious raw data obtained using the aforementioned methods.

Mathematical methods are employed to analyze the results in

Sec. V. In Sec. VI, a summary and conclusions are provided.

II. DEFINITIONS

A. Generalized Cantor set

Starting with a set consisting of a fixed interval of size l
on the real line, consider a process whereby a smaller inter-

val is removed from the center leaving intervals of size l0
and l1 on the left and right. Further, assign weights p0 and p1

to each subinterval, respectively. Now consider repeating the

process indefinitely to the remaining interval with the same

ratios li/l and weights pi for {i¼ 0, 1}. The surviving set is

referred to as the generalized Cantor set. For numerical sim-

ulation, the procedure is terminated after mth iteration, yield-

ing a finite representation of the Cantor set with degree of

hierarchy m. In particular, the uniform Cantor set is obtained

by setting l0¼ l1¼ l/3, where l is the original length, so the

a)Electronic mail: yui.shiozawa@tcu.edu
b)Electronic mail: b.miller@tcu.edu
c)Electronic mail: jean-louis.rouet@univ-orleans.fr

1054-1500/2014/24(3)/033106/9/$30.00 VC 2014 AIP Publishing LLC24, 033106-1

CHAOS 24, 033106 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

194.167.30.129 On: Thu, 27 Nov 2014 08:54:55

http://dx.doi.org/10.1063/1.4885778
http://dx.doi.org/10.1063/1.4885778
mailto:yui.shiozawa@tcu.edu
mailto:b.miller@tcu.edu
mailto:jean-louis.rouet@univ-orleans.fr
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4885778&domain=pdf&date_stamp=2014-07-08


middle 1
3

is removed and the ratios and weights are taken

equal. Another special case, referred to as the multiplicative

binomial process, or MBP, is defined by l0¼ l1¼ l/2, so there

is no central interval, and the weights are arbitrary.9

B. R�enyi dimension

As mentioned in the Introduction, the traditional notion

of dimension can be extended to generate a spectrum of

dimensions for a given set. Suppose C¼ {Ui} is a cover of a

set A � Rn. Let ni denote the number of points in Ui among

n randomly chosen points from A. Then pi is associated with

Ui for each i by pi ¼ limn!1
ni

n . For any real number q 6¼ 1,

the generalized dimension Dq, also known as R�enyi

Dimension, for a set A is given by10

Dq ¼ �
1

1� q
lim
�!0

ln
XNð�Þ
i¼1

pq
i

ln�
; (1)

where N(�) is the number of sets with diameter d(Ui)¼ �
required to cover the set A. For q¼ 1, the limiting case where

q ! 1 is used. There is no explicit formula for Dq when

l1 6¼ l2, but the dimension Dq can be found from an implicit

relationship that employs the spectrum of scaling indices f(a)

and the Legendre transform.11 For a general set, it is often

difficult, if not impossible, to find appropriate covers. Thus

methods which permit numerical simulations are important.

III. NUMERICAL METHODS

In this section, three numerical methods for computing

the R�enyi Dimensions, namely, the box-counting, the nearest-

neighbor, and the k-neighbor methods are discussed. The lat-

ter two belong to a class of methods with mass-oriented

partitions whereas the box-counting method employs a size-

oriented partition. It is briefly explained here to illustrate the

different approaches in the choice of partitions and their

limitations.

A. Box-counting method

This method is probably the most well-known and is

closely related to the original definition of the R�enyi

Dimensions. There are a few slightly different versions that

fall under the name “box-counting methods,” using “spheres”

instead of “boxes,” for example,12 but the underlying ideas

are similar: generally, the number of cells required to cover

the points in a given set, N, changes as the size of the parti-

tions � changes. The scaling relation can be extracted for a

fractal set as the size of the partitions decreases. Namely, for

q¼ 0, Eq. (1) reduces to

D0 ¼ � lim
�!0

lnNð�Þ
ln�

: (2)

Due to the simplicity of the method, it is widely used among

researchers. However, it has been pointed out by many that

this method and, more generally, methods that involve parti-

tions of the same size such as the correlation method, do not

work well for q< 1.2

B. Nearest neighbor method

The approach called the “nearest neighbor method” was

first introduced by Badii and Politi.4 This method is essen-

tially based on their observation that there is an exponent D
such that

hdi � n�
1
D; (3)

where hdi denotes the mean distance from each point to its

nearest neighbor among n randomly chosen points from a

given test set and, as discussed earlier. By naturally extend-

ing the premise, the Dimension Function D(c) can be com-

puted by using the moments of order c of the distribution

function P(d, n) generated by an ensemble of n randomly

chosen points

hdci � McðnÞ �
ð1

0

dcPðd; nÞdd ¼ Kn�
c

DðcÞ; (4)

where K is some function of n and c which asymptotically

remains bounded as n becomes large. Here, the meaning of c
should be clear; for positive values of c, the contribution of

high-density regions is suppressed since they generate smaller

values of d, the distance to the nearest neighbor, and vice-

versa. The proof of a more general relation is provided by

van de Water and Schram.5 Therefore, the nearest-neighbor

approach may be regarded as a special case of more general

scaling relations which will be discussed in Sec. III C. From

Eq. (4), it follows that the Dimension Function D(c) can be

obtained by

DðcÞ ¼ � lim
n!1

c ln n

ln McðnÞ
: (5)

The function K generally depends on n and c but K should

be, by definition, irrelevant in the limiting case as in Eq. (5).

In numerical analysis, the value of K(n, c) does affect the nu-

merical result since n is finite. The scaling property of Eq.

(5) for the uniform Cantor set is shown in Fig. 1. The simu-

lated results for clnðnÞ vs. �lnðMcðnÞÞ are plotted for a

FIG. 1. For the uniform Cantor set, clnðnÞ vs. �lnðMcðnÞÞ is plotted for each

c as n is increased. According to Eq. (5), the slope converges to D(c). The

corresponding result for D(c) is shown in Fig. 2.
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selected set of c as n increases. For the 10 different values of

n selected, the scaling property is clearly observed. In Fig. 2,

the value of D(c) was extracted as the slope of the best-fit

line in Fig. 1 for each corresponding c. The slope values in

the positive c range agree well with the analytical results.

The Dimension Function D(c) can be thought of as an

alternative generalized dimension and is related to the R�enyi

Dimension by4

D½c ¼ ð1� qÞDq� ¼ Dq: (6)

As the equation suggests, once D(c) is obtained, the general-

ized dimension Dq can be found as the intersection of D(c)

and the straight line with slope (1 – q)�1 which passes

through the origin as illustrated in Fig. 3.

For most cases, the generalized dimension Dq is uniquely

determined from D(c). Note that a larger q does not corre-

spond to a larger c but rather, due to the negative sign in the

equation, the limit q!1 corresponds to c!�1, and vice-

versa. Therefore, the index c plays a similar role as q in that it

discriminates the range of density of a given set that most

strongly contributes to D(c). In simulations, the Dimension

Function D(c) is obtained using Eq. (5). The formula can, in

principle, be applied to sets with any embedding dimension.

In the case of a one-dimensional set, sample points are pre-

pared in a way that d is bounded from above by 1. Therefore,

the integral in Eq. (4) can be taken from 0 to 1. Unlike the

box-counting method, this algorithm does not make use of

partitions of the same size but, rather, of the same “mass” for

it can be considered that each element of the partition con-

tains two points, a reference point and its nearest neighbor.

Badii and Politi used a slightly improved version of the

method, namely, “near-neighbor” method, which uses parti-

tions containing three or four points to smooth out local sta-

tistical anomalies.4 Broggi used partitions containing up to

300 points for systems of large dimensionality.13 For all these

approaches, the number of sample points in a cell is fixed

while the total number of sample points n is increased when

extracting the Dimension Function. Therefore, these methods

differ from the k-neighbor method mainly in that the scaling

of cell-size with n is used.

C. k-neighbor method

Another method, called “k-neighbor,” is similar to the

nearest neighbor method in that its partitions are taken

according to the number of points inside. However, it is

based on the scaling of a moment generating function with k
and therefore incorporates a cumulative collection of parti-

tions, one for each value of k selected. Therefore, the scaling

property is obtained through the global structure of a given

set. A similar global approach with size-oriented partitions

was introduced by T�el et al.14 using elements of different

size, rather than different mass, and some literature mislead-

ingly refers to it as the “cumulative mass” method.15 The k-

neighbor method records the distance d(k, n) from a refer-

ence point to the kth neighbor point among n – 1 randomly

chosen points from a given set. van de Water and Schram

formulated a technique for evaluating D(c) from the average

of d(k, n)c by using the local dimension introduced in

Sec. II.5 The average of d(k, n)c is defined as follows:

DðcÞðk; nÞ ¼ 1

n

Xn

j¼1

dc
j ðk; nÞ; (7)

where dj(k, n) represents the kth neighbor distance from the

jth reference point when n points are randomly chosen from a

test set. Here, all n sample points are used as reference

points. When n is large, it can be shown that5

hDcðk; nÞi1=c ffi n�1=DðcÞ aDðcÞCðk þ c=DðcÞÞ
CðkÞ

� �1=c

; (8)

where a is some constant independent of c. Note that the av-

erage of dc
j from a single set is used in Eq. (7), whereas the

derivation of Eq. (8) is based on the ensemble probability.

For large k, a simple approximate relation can be obtained5

DðcÞðk; nÞ
h i1=c

ffi n�1=DðcÞk1=DðcÞGðk; cÞ; (9)

FIG. 2. In this graph, the Dimension Function D(c) for the Uniform Cantor

set was computed as the slope of the best-fit line to the corresponding data

set which is partially plotted in Fig. 1. D(c) diverges strongly from the ana-

lytical result which is log2=log3 for negative c.

FIG. 3. The solid curve is the simulated result of the Dimension Function

for MBP using the nearest neighbor method. Note how Dq can be obtained

by locating the corresponding intersections. For example, the box-counting

dimension D0 can be found at the intersection of D(c) and y¼ c.
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where G(k, c) is a correction function close to unity for large

k. The Dimension Function D(c) can be estimated by setting

G(k, c)¼ 1 in the first iteration. The dependence of the cor-

rection function G(k, c) on k and c can be obtained from Eq.

(8) with the value of D(c) from the first iteration. The

Dimension Function D(c) then will be updated using this

G(k, c). After a few iterations, the numerical results for D(c)

will converge to a single value for each c. The correction

function G(k, c) generally exhibits a periodic pattern as a

direct consequence of the self-similarity of fractals as seen in

Fig. 12. According to Eq. (9), the Dimension Function D(c)

can, in principle, be obtained from the slope of the best-fit

straight line in the log-log plot with either a fixed n or k.

When k is fixed to 1, the equation reduces to the key relation

in Eq. (4) for the nearest neighbor method. For the near-

neighbor method, k¼ 3 or 4 may be used. With the k-neigh-

bor method, we used a fixed value of n. By fixing n instead

of k, we can extract a global property of a given set. The use

of scaling with k makes the k-neighbor method less sensitive

to local anomalies which often arise from a finite sampling

process.

IV. RESULTS

Generally, with a small amount of computational time,

both of the methods in the fixed-mass class give good indica-

tions of the R�enyi Dimension in the vicinity of the box-

counting dimension (q¼ 0) on various generalized Cantor

sets. This is a major advantage over the box-counting

method if one seeks to find D0, the box-counting dimension

itself. Around the box-counting dimension, the nearest

neighbor method yields a result closest to the analytical solu-

tions. However, as q moves away from 0 and hence c moves

away from D0, the k-neighbor method generally produces

more accurate results. Therefore, at this point, no single

method seems reliable enough for an extended domain q of

the generalized dimension. However, the combination of the

aforementioned methods reveals the essential features of a

given set such as whether it is a monofractal or multifractal.

For a multifractal set, how the dimension changes over the

domain q is a key property. The k-neighbor seems to be the

best method to start with as it can provide an estimate of the

generalized dimension over an extended region, albeit not

too accurately especially for q< 1. To obtain the dimension

to a higher accuracy for a particular q or c, the box-counting

or the nearest neighbor method may be used. For q> 1, the

box-counting method should be employed and for q< 1, the

nearest neighbor, provided that q is not a very large negative

number. Therefore, if possible, the results obtained from

these methods should be compared and examined to see if

they are consistent within the uncertainty of each method.

A. Nearest neighbor method

In the nearest neighbor method, the Dimension Function

D(c) was extracted from Eq. (5), where the right hand side

reads � c ln n
ln McðnÞ before taking the limit. To investigate how it

approaches to the limit, ln n=ln Mc versus ln n for the uniform

Cantor set was plotted in Fig. 4. The points in the plot indi-

cate how �cln n=lnMc seemingly approaches the theoretical

limit of ln 2=ln 3 ¼ 0:63::: as lnðnÞ increases in the case of

uniform Cantor set. However, it can be seen that the conver-

gence rate is rather slow. Given that the hierarchy degree m
is large enough, increasing n can almost always guarantee a

higher accuracy around the box-counting dimension.

However, since the convergence rate is rather slow, deter-

mining the limit is not a trivial task. For c¼ 1, the number of

sample points n¼ 29¼ 512 was required to obtain the result

within 5% accuracy and n¼ 217 to obtain the result within

3%. For quick simulations, we typically used n¼ 216 and 10

ensembles. In general, we employed the linear regression

technique and obtained the limit from the slope of the appro-

priate log-log plot. While the overall qualitative features of

the Dimension Function, such as the non-decreasing prop-

erty, are properly reflected on the domain, where c is posi-

tive, the deviations and the fluctuations around c¼�1 seem

sudden and uncontrolled. The difficulty of obtaining a sensi-

ble result for c<�1 seems persistent throughout the set we

have tested. In Fig. 5, the results for various generalized

Cantor sets are shown; the domain of c on which the simu-

lated D(c) agrees well with the analytical results is between

0 and 2. For a multifractal, as c increases, the numerical

results start to diverge from the analytical result as well.

B. k-neighbor method

Unlike the nearest neighbor method, where the choice of

n is often limited by a finite sample size and the available

computation time, the k-neighbor method can utilize a larger

data set from which the slope is extracted to estimate D(c).

In general, fine structure occurs in the log-log plots, which

injects arbitrariness in a slope-fitting process. This point is

covered in detail in Sec. V. For a fixed value of n, D(c) or, to

be precise, the corresponding 1/D(c) in Eq. (9), is taken as

the slope of logdcðk; nÞ versus logðk=nÞ. As clearly shown in

Fig. 12, the dc(k, n) obtained exhibits a periodic pattern, so

all approaches for obtaining the slope seem to inject ambigu-

ity. We have used the standard linear regression technique16

using sample points equally spaced in the logarithmic scale

of k rather than in the linear k scale. Another consideration is

FIG. 4. This figure shows how increasing n¼ 2r affects the value of

�clnn=lnMc. The plot was generated for the uniform Cantor set. The analyti-

cal value for D(c) for all c is log 2=log 3 ¼ 0:630::: which corresponds to the

horizontal line in the plot.
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that the slope, and therefore the result for D(c), depends on

the range over which the linear regression is applied. It turns

out that the best range seems to depend on the value of c as

shown in Fig. 6. The plot shows how D(c) varies when the

upper bound of the slope range increases for the case of the

uniform Cantor set with the analytical dimension of

log2=log3 ¼ 0:63::: for all c values considered.

As a result of these findings, we have used two different

boundaries for computing the slope, one for positive c and the

other for negative c, to produce the final results. Since the

inaccuracy inherited from these ambiguities cannot be entirely

removed by increasing n as in the nearest neighbor method, it

is more difficult for the k-neighbor method to be adjusted to

obtain a better result before knowing the theoretical values.

Nevertheless, aside from these ambiguities in the method, the

k-neighbor works for both positive and negative ranges of q,

and therefore, is a good candidate as an initial method to

investigate a given set. In the simulation, the ordering of the

n – 1 points for each reference point according to their relative

position takes most of the computational time. Since the

ordering takes more time as the embedding dimension

increases, the method is said to be especially suited for one-

dimensional sets. Furthermore, in contrast with the nearest

neighbor method, the hierarchy degree m can be substantially

smaller. The size of the scaling region expectedly diminishes

as m decreases. However, the Dimension Function deduced

from the best-linear-fit from the appropriate scaling region

produces acceptable results. For the uniform Cantor set, when

m is as small as 5, we obtained D(c) on the order of 0.6 as

shown in Fig. 7. This shows that to estimate the fractal dimen-

sion from the k-neighbor method, the finite representation

does not necessarily require a large degree of hierarchy.

Hence, the k-neighbor method is a good candidate for estimat-

ing the fractal dimensions when only a limited hierarchy

degree is available.

V. ANALYSIS

A. Range and stability

In the nearest neighbor method, the probability distribu-

tion of P(d, n) plays a key role as seen in Eq. (4). Hence, it is

worthwhile to investigate the nature of probability distribu-

tions associated with fractal sets. Starting with the conjecture

for the mathematical form for the cumulative distribution

function for the uniform Cantor set,

Sðd; nÞ ¼ 1� exp½�nð2dÞD0 �; (10)

Badii and Politi argue that the correct form of the probability

density distribution of uniform Cantor set for n� 1 is given

by4

Pðd; nÞ ¼ 2D0nð2dÞD0�1
exp½�nð2dÞD0 �: (11)

Note that there is a singularity in the gamma function, Eq.

(12), for nonpositive integer z17

FIG. 5. These plots show typical results

of D(c) vs. c for the nearest neighbor

method and the k-neighbor method

applied to four different sets. The corre-

sponding analytical results are shown

for comparison. “Unit Segment” here

means an interval of unit length and

can be thought as the 0th finite repre-

sentation of the Cantor set. For negative

c, numerical results persistently deviate

from the analytical results for the near-

est neighbor method. While the k-

neighbor method works relatively well

for all c, the outcome may not be as

accurate as the nearest neighbor

method for small positive c.

FIG. 6. This plot shows how D(c) differs when a different range is used to

extract the slope in the k-neighbor method. For the uniform Cantor set,

increasing the upper bound of k generally seems to produce better results.

However, this is not a general result.
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CðzÞ ¼
ð1

0

tz�1e�tdt: (12)

By substituting Eq. (11) into (4), a simple computation yields

that

McðnÞ ¼
1

2n

� �c=D0ð1
0

x
c

D0 e�xdx; (13)

¼ 1

2n

� �c=D0

Cðc=D0 þ 1Þ; (14)

where x ¼ nð2dÞD0 . Therefore, the function Mc(n) involves

singularities for c<�D0. This means that, for the general-

ized Cantor set, the nearest neighbor method is ill-suited for

obtaining the correlation dimension (q¼ 2) or Dq for larger

q. The function D(c) was calculated for each of four different

data sets using the nearest neighbor method and is shown in

Fig. 5. In each plot, the numerical results are compared to

the corresponding analytical results. The influence of the

singularity is observed for a variety of sets. Note that the

k-neighbor method does not suffer from this kind of singu-

larity. For the k-neighbor method, the corresponding singu-

larity can be found in Eq. (8). However, this time, the

singularity can be avoided by taking a sufficiently large k.

Accordingly, the k-neighbor method could generate sensible

results in the entire range of c we have investigated.

It is worth noting that the simulated probability distribu-

tion functions did not completely converge to the theoretical

distribution of Eq. (11). The Komologov-Smirnov goodness-

of-fit test18 measures the maximum discrepancy between two

sample cumulative distributions and was employed to

compare the theoretical distribution given by Eq. (10) with

different values for D0 and the distribution obtained in simula-

tions.18 As seen in Fig. 8, as m increases, the simulated distri-

bution for the uniform Cantor set initially approaches the

theoretical distribution when D0 ¼ ln 2
ln 3

is inserted in Eq. (10).

When the number of points n¼ 2r exceeds the number of

intervals 2m, the nearest point for each reference point is likely

to fall in the same interval which contains the reference point.

This means that the nearest neighbor statistic does not reflect

the property of the Cantor set but rather that of a line.

Therefore, when m is increased, the result of the K-S goodnes-

s-of-fit test constantly decreases as long as m< r. One would

rationally expect the convergence to improve when m is

increased further but this was not observed. The maximum

discrepancy reaches a plateau when m¼ r, suggesting that

there is a constant disparity between the two distributions

which does not diminish even when the finite representation

of the Cantor set has a large hierarchy degree. Among the val-

ues used, the theoretical distribution with D ¼ D0 ¼ ln2=ln3

showed the best fit for m> 14. In the following, unless other-

wise noted, we used the hierarchy degree of m¼ 30 when gen-

erating the finite representation of the Cantor set. Using a

larger value does not significantly improve the results for the

number of sample points we typically used, and would not be

consistent with double precision arithmetic employed in the

computations.

The effective domain is also related to the stability of

the method. For both methods, as jcj increases, the nearest

FIG. 7. These plots show how the results for D(c) change as m varies when

the k-neighbor method is applied to the mth finite representation of the uni-

form standard Cantor set. The theoretical value for D(c) is logð2Þ=logð3Þ for

all c. For all iterations, the value of n is fixed at 10 000. The k-neighbor

method provides relatively good results even when m is as small as 5.

FIG. 8. The Kolmogorov-Smirnov

goodness-of-fit test was used to com-

pare the simulated probability density

distribution and the theoretical distri-

bution proposed by Badii and Politi for

the uniform Cantor set with n¼ 215.

According to Eq. (10), various values

between 0 and 1 were substituted for

D0 for the purpose of this test. Smaller

values of the outcome indicate a better

fit. The finite representation of the

Cantor set with m¼ 1 is the unit inter-

val. Therefore, expectedly, the test

function with D¼ 1 exhibits the best

fit among others. As m increases, the

K-S statistic decreases for D ¼ D0 ¼
ln2=ln3 and similar values. However,

they reach plateaus after m¼ 15.
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distance, d, is either amplified or attenuated. Consequently,

the contribution from only a few sample points among n cho-

sen points starts to dominate the integral or sum in the equa-

tions. Unlike the nearest neighbor method, however, the

effect of a few sample points is relatively small in the k-

neighbor method due to the global feature. For the nearest

neighbor method, simulations require a large number of

ensembles and therefore, an extensive amount of computa-

tional time and memory for a relatively large (in magnitude)

negative c. How the Dimension Function D(c) varies in each

implementation when the nearest neighbor method is applied

is shown in Fig. 9. Each iteration is numbered on the hori-

zontal axis. In the positive range of c, the values of D(c) fluc-

tuate more when computed under the same number of

sample points as c increases.

This difficulty can be partially overcome by employing

the “near” neighbor instead of the nearest neighbor as it

makes the simulation less dependent on the local property of

a single reference point. However, it eventually suffers from

the same difficulty as the magnitude of c increases. The

results for D(c) are shown in Fig. 10 when the near neighbor

method is used. The integer i denotes the ith neighbor points

included in the partitions with i¼ 1 being the nearest neigh-

bor method. Moreover, as i increases, all the relevant equa-

tions need to be modified accordingly but the dependence on

i is not obvious. Overall, the k-neighbor method has an

advantage for large jcj.

B. The limitation of numerical methods

As shown in Figs. 11 and 12, plots of the probability dis-

tribution P(d, n) of d for the nearest neighbor method or the

kth neighbor distance dc(k, n) typically exhibit self-similar

fine structure which arises from the original fractal geometry.

However, unless a construction recipe is known in advance,

as in the case of the generalized Cantor set, the exact nature

of the fine structure is difficult to obtain. Moreover, to find

its exact nature is essentially redundant for it would be

FIG. 9. This figure shows how each

iteration of the simulation generates a

different outcome for D(c). Each itera-

tion is numbered on the horizontal

axis. Sample sets were taken from the

uniform Cantor set. In the range where

Eq. (4) does not exhibit singularities,

the results fluctuate more as c
increases. Larger fluctuation indicates

more sensitive dependence on the par-

ticular choice of a sample set. The

result for c¼�1 is also included to

illustrate the difficulty of the method in

the negative range of c. The outcome

in this range fluctuates even more, and

the average of the outcome is signifi-

cantly smaller than the theoretical pre-

diction which is roughly 0.63.

FIG. 10. These plots show how using

near neighbor instead the nearest

neighbor affects the result. The integer

i denotes the ith neighbor. While

increasing i generally makes D(c)

smoother, one cannot expect that the

results improve when i is increased.
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another fractal set which is as complex as the original fractal

set. Hence, numerical methods are typically developed based

on an assumption that these fine structures will not affect

their output in any substantial way. Nevertheless, we should

not simply ignore the effect of the fine structure as a set

would not be a fractal without them. In the equations such as

Eqs. (4) and (9), the fine structures are absorbed by the con-

stant or correction term. In general, these correction terms

depend on the hierarchy degree used in creating a test set as

well as other parameters of these methods. However, it is dif-

ficult to estimate the error attributed to the correction term,

and therefore this raises a question concerning the reliability

of the method.

In principle, the largest possible m should be used to

reflect the infinite hierarchical self-similarity. For the nearest

neighbor method, the number of reference points, n, needs to

be smaller than 2m. Therefore, to increase n to obtain more

accurate results, one needs to increase m as well. However,

unlike the case of sample points where increasing n generally

guarantees a more accurate result, increasing m does not nec-

essarily do so. As we can see in Fig. 7, once m reaches a cer-

tain threshold, increasing m will not produce a better result.

VI. CONCLUSION

In contrast with the box-counting method, or similar

methods which utilize partitions into cells of equal size, the

nearest neighbor method, which employs partitions of equal

mass, as well as the k-neighbor method, which employs par-

titions of distributed mass, are good candidates for estimat-

ing the generalized fractal dimension for negative q. The k-

neighbor method works for the complete range of q and no

serious deviations were found. By choosing an appropriate

scaling region, it is possible to estimate the generalized

dimensions even with a small hierarchy degree. However,

the method involves linear regression and the results depend

on how the best-fit line is obtained. Therefore, the k-neighbor

method is a good option for a starting point and to investi-

gate the general outlook of Dq.

If the sample size is large, the nearest neighbor method

can be the best method for small negative q. Although the

result is sensitive to the local anomalies, one can choose the

size of n according to one’s required precision to extract the

dimension. However, in contrast with the k-neighbor method,

the hierarchy degree, m, also needs to be sufficiently large in

order to obtain a desirable probability distribution. Therefore,

if the sample size of a finite representation is small, the near-

est neighbor method is not a practical choice. For positive q,

the methods with partitions of equal size may be used.

In general, a few different methods should be applied

before one determines if the results from different methods

are consistent. The k-neighbor method should provide the

overall features of Dq. Given that the subjective choice of

the best-fit line affects the result, it is important to determine

the window of ambiguity. If the sample size is adequate,

FIG. 11. These plots show how the hi-

erarchy degree m affects the probabil-

ity distribution of the nearest neighbor

method. The sample sets were taken

from the uniform Cantor set. While the

cumulative distribution is somewhat

more stable, as m increases, the fine

structure of the probability distribution

of d emerges, exhibiting self-similar

patterns. A limited horizontal range

from 0 to 3�15 is plotted.

FIG. 12. dcðk; nÞ ¼ Dcðk; nÞ
� �ð1=cÞ

is plotted versus k in a log-log plot. The

fine structure inherited from the non-uniform Cantor set is observed.
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apply the nearest-neighbor method for negative q and box-

counting or similar method for positive q. The results from

these two different methods should lie within the window of

ambiguity. Given the strengths and the limitations of these

methods, it would be interesting to apply them to a set with

unknown fractal dimensions.

In any simulation of the kind worked out in this paper,

the finite sample correction needs to be taken care of.

Although a number of correction terms have been proposed

over the years,5,19 many of them add extra complications to

the simulation without achieving a dramatic increase in accu-

racy.5,13,20 In the process of exploring the form of the nearest

neighbor distribution of the generalized Cantor set, some

interesting properties have been obtained; the order of taking

m and n to infinity may not commute as usually assumed.

Since a numerical sample only possesses a finite hierarchy, a

new algorithm which does not assume an infinite hierarchy

may be useful. In future work, it will be shown that a new

analysis of generalized dimension may be based on some

quantities that are independent of the hierarchy.
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