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Abstract 18 

Tile drainage systems are sometimes not sufficient to provide favorable unsaturated 19 

conditions in the rootzone. These drainage systems then need to be supplemented with an 20 

additional high conductivity material in the trenches above the tiles or by implementing mole 21 
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drainage. The HYDRUS (2D/3D) model was used to evaluate the impact of such additional 22 

measures for heavy clay soil. Three types of drainage systems were simulated: i) tile drains, 23 

ii) tile drains with gravel trenches, and iii) tile drains with gravel trenches and mole drains, 24 

using either two-dimensional (the former two systems) or three-dimensional (the latter one) 25 

transport domains. Three scenarios were considered to test the efficiency of each system: i) 26 

time to drain an initially saturated system, ii) high intensity rainfall, and iii) a real case 27 

scenario. Different horizontal spacings between tile drains with or without gravel trenches 28 

were also compared with the system which included mole drainage. The results showed that 29 

the drainage system that included mole drains and gravel trenches was the most efficient. This 30 

system provided the largest drainage rate, was the first to reach steady-state in the time to 31 

drain scenario, and also efficiently reduced surface runoff. Adding mole drains to a system 32 

with tile drains and gravel trenches resulted in a large reduction of surface runoff (75%). 33 

Simulations showed that the spacing of tile drains with or without gravel trenches would have 34 

to be 40% or 55% smaller, respectively, in order to reproduce the same water table levels as 35 

those observed for the drainage system with mole drains. Therefore, introducing mole drains 36 

in drainage systems is an efficient practice for reducing waterlogging and runoff. 37 

Keywords: Tile drainage; Mole drainage; Numerical simulation; Heavy soil; Three-38 

dimensional modeling 39 

 40 

1. Introduction 41 

Soil drainage systems aim at limiting saturated conditions in the soil profile that can arise due 42 

to hydrological processes from above (downward water percolation) and from below 43 

(elevated groundwater). The main goal of drainage systems is to remove excess water and 44 

maintain favorable unsaturated conditions in the rootzone. The most common agricultural 45 

drainage system consists of perforated PVC tile drains installed in soil at various spacing’s 46 
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and depths, depending on soil hydraulic properties, climatic conditions, and cultivated crops. 47 

When designing drainage systems, it is crucial to increase the hydraulic functioning of the 48 

entire system. These systems are mostly installed in soils with high clay content, i.e., heavy 49 

soils with very low hydraulic permeability (Tuli et al., 2005). In such soils, subsurface 50 

drainage systems can substantially reduce surface runoff, shorten periods of surface ponding, 51 

and lower water table (Konyha et al., 1992; Skaggs et al., 1994). Under certain conditions, 52 

including high groundwater table, large and intensive precipitation, and heavy-textured soils, 53 

the installation of tile drains may not be sufficient to provide favorable conditions for growing 54 

crops. Additional measures may then be needed, such as using a backfill material (gravel) 55 

with a high hydraulic conductivity above tile drains or performing mole drainage. The 56 

presence of a gravel layer above tile drains up to the tilled layer may increase the efficiency of 57 

the entire system by promoting by-pass flow of water from the tilled layer directly into the 58 

drains. Mole drains are closely-spaced unlined channels of limited duration that are formed in 59 

clay subsoil using a ripper blade with a cylindrical foot, often with an expander, which helps 60 

to compact and stabilize the channel walls. Mole drainage has been recommended for heavy 61 

soils with low permeability, which would otherwise require a small drain spacing (Hudson et 62 

al., 1962). During the construction of the mole channels the foot and expander create a 'leg 63 

slot' directly above the mole as well as fissures in the soil upwards from the mole towards the 64 

plough layer. These cracks and fissures can promote preferential flow towards mole drains 65 

(Leeds-Harrison et al., 1982). Mole drains are intended to improve lateral flow to tile drains 66 

and are usually used only in soils with a high clay content (>35%). If established properly and 67 

under the right conditions, they may still be operating after five years (Harris, 1984). Tile and 68 

mole drains are nonconductive under unsaturated conditions because positive pressure must 69 

occur before water can start flowing into them (Stormont and Zhou, 2005).  70 
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In recent years, numerical models have been developed to simulate water flow in tile-drained 71 

soils. One-dimensional (1D) models (e.g. MACRO, Larsbo and Jarvis, 2003) use an 72 

approximate analytical solution of Darcy’s equation to account for water loss through the 73 

drainage system (e.g., Hooghout, Ernst, or Boussinesq’s equations), while two- or three-74 

dimensional (2D or 3D) models (e.g. HYDRUS (2D/3D), Šimůnek et al., 2006) use the 75 

Richards’ equation to explicitly model the dynamics of the water table. In 1D models, the 76 

flow to tile drains is implemented as a sink term in the mass balance equation. The 77 

Houghoudt's equation is based on the Dupuit-Forschheimer assumptions with corrections for 78 

convergence of radial flow near the tiles. When combining the Houghoudt's equation (for the 79 

saturated zone) with the Richards  equation (for the unsaturated zone), the Houghoudt's 80 

equation gives instant lateral fluxes to tile drains, while the Richards equation gives transient 81 

fluxes in the unsaturated zone, leading to a rise or drop of the water table. An example of such 82 

model is DrainMod, which has been used in many applications. For example, Skaggs et al. 83 

(2012) used DrainMod to simulate water flow in a subsurface-drained agricultural field in 84 

eastern North Carolina. The performance statistics indicated that the model with calibrated 85 

input data accurately predicted daily water table depths, daily drainage rates, and monthly 86 

drainage volumes. Singh et al. (2006) calibrated and tested DrainMod on two types of soils in 87 

Iowa and used it to simulate the impacts of different designs of subsurface drainage systems. 88 

Simulation results suggested that a drainage system designed for a drainage intensity of 4.6 89 

mm d
-1

 with a drain depth of 1.05 m and a drain spacing of 25 m was sufficient to maximize 90 

crop production under the prevailing local agricultural conditions.  91 

Water flow and solute transport to tile drains has been also evaluated using the HYDRUS 92 

family of codes (Šimůnek et al., 2008). For example, the HYDRUS-2D software package was 93 

used by De Vos et al. (2000, 2002) to simulate nitrate transport in a tile-drained layered silt 94 
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loam soil in a reclaimed Dutch polder, or by Castanheira and Serralheiro (2010) to evaluate 95 

the impact of mole drains on salinity of a vertisol under irrigation.  96 

Numerical modeling of drainage systems involving both tile and mole drains is much more 97 

limited. Snow et al. (2007) used the APSIM-SWIM model to predict drainage rates and runoff 98 

in a mole‐tile drained silty loam soil of New Zealand. There was an excellent agreement 99 

between simulated and measured drainage, as well as a reasonable agreement between 100 

measured and simulated cumulative surface runoff.  Armstrong et al. (2000) performed a 101 

modeling study on a macroporous clay soil with mole and tile drains, in which they compared 102 

four “preferential flow” models (MACRO, CRACK-NP, SIMULAT and PLM) in their ability 103 

to simulate isoproturon leaching. MACRO model gave the best results, although globally the 104 

simulations showed the difficulty of deriving adequate parameters, even where relatively 105 

complete soil physical data were available. A similar study was performed by Besien et al. 106 

(1997) on a structured heavy clay soil with tile (0.75 m depth and 50 m spacing) and mole 107 

drains (0.5 m depth and 3 m spacing) in which the MACRO model was calibrated and used to 108 

investigate the leaching of isoproturon. Madvar et al. (2007) used the SEEP/W model to 109 

simulate the hydraulic performance of mole and tile drains in heavy-textured soil. Based on 110 

their numerical study the combination of mole and tile drains resulted in economical and 111 

hydraulic improvement of the agricultural system. 112 

Most of modeling studies considered water flow in one- or two-dimensional soil profiles, 113 

either taking into account only tile drainage without mole drainage or mole drainage without 114 

tile drainage (e.g., Castanheira and Serralheiro, 2010), but not both in a fully three-115 

dimensional system. This is mainly because mole drains, being installed in a perpendicular 116 

direction to tile drains, make the entire system three-dimensional. Since we could not identify 117 

any study that simulated water flow in systems with tile and mole drains as a three-118 

dimensional problem, we conducted 3D numerical experiments to evaluate the performance 119 
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of these systems. In our numerical simulations we considered environmental conditions that 120 

are typical for the eastern part of Croatia. Hydromorphic soils in Croatia cover an area of 121 

1,618,500 ha, which is approximately one third (29%) of the total area occupied by 122 

agricultural soils (Husnjak, 2007). Subsurface tile drainage systems are installed on 161,530 123 

ha (Petošić et al, 2004), with mole drainage often used to improve drainage efficiency.  124 

The main objective of this paper was to numerically evaluate the performance of different 125 

subsurface drainage systems of increasing complexity in hydromorphic soils using a three-126 

dimensional model that can explicitly account for any drainage system. (i) The simplest 127 

system to be considered consists of a layered soil profile with parallel tile drains. Such system 128 

can be simulated using a two-dimensional simulation domain that is perpendicular to tile 129 

drains. (ii) In the second set of simulations it is assumed that a backfill material (gravel) of 130 

higher hydraulic conductivity than the original soil is placed above the drains. Such system 131 

can also be evaluated assuming a two-dimensional simulation domain perpendicular to drains. 132 

(iii) Finally, the most complex system consists of tile drains with backfilled gravel above 133 

drains, combined with perpendicular mole drains. Such system has to be analyzed using a 134 

fully three-dimensional flow model. 135 

 136 

2. Materials and methods 137 

2.1. Theory 138 

Subsurface water flow in the unsaturated and saturated zones is governed by the mass balance 139 

equation and the Darcy-Buckingham’s law: 140 

  

  
  

    

   
                (1) 141 

            
   

   
          

   

   
    

        (2) 142 
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respectively, where θ is the volumetric water content [L
3
L
−3

], Jwi is Darcy's flux [LT
−1

] in the 143 

i-th direction, S is a sink/source term [T
−1

], K(h) is the saturated/unsaturated soil hydraulic 144 

conductivity function [LT
−1

], Kij
A
 are the components of the dimensionless anisotropy tensor 145 

for hydraulic conductivity K
A
 [-], H is the total hydraulic head [L] defined as the sum of the 146 

pressure head and the gravitational head, H = h+z, xi are the spatial coordinates [L], with x 147 

and y being horizontal coordinates and z the vertical coordinate directed upwards, and t is 148 

time [T]. The governing flow equation for these conditions, resulting from combining (1) and 149 

(2), is given by the following modified form of the Richards' equation: 150 

  

  
 

 

   
      

   

   
    

              (3) 151 

The unsaturated hydraulic conductivity function K(h) is given by: 152 

K(h, x, y, z)=Ks(x, y, z)Kr(h, x, y, z)         (4) 153 

where Kr is the relative hydraulic conductivity [-] and Ks is the saturated hydraulic 154 

conductivity [LT
-1

]. 155 

Soil hydraulic functions were described using the van Genuchten-Mualem model (van 156 

Genuchten, 1980), which is defined as follows: 157 
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where θr and θs denote residual and saturated volumetric water contents [L
3
L

-3
], respectively; 162 

Se is the effective saturation [-], α [L
-1

], and n [-] are retention curve shape factors, and l is a 163 

pore connectivity parameter [-]. A numerical model for simulating water flow and solute 164 

transport in two- and three-dimensional transport domains, HYDRUS (2D/3D) (Šimůnek et 165 

al., 2006), was used it this study. 166 

 167 

2.2. Numerical Experiments and Input Data 168 

2.2.1. Soil Hydraulic Properties 169 

Numerical experiments were set up for a Eutric Haplic Calcaric Siltic Gleysol (horizons: Ap; 170 

Bg; Cr; Cg), which is located in eastern Croatia (45°09' N and 18°42' E). Disturbed soil 171 

samples were taken from each horizon and particle size distribution was determined using the 172 

pipette method (Gee and Or, 2002). Undisturbed soil samples (100 cm
3
) were used to measure 173 

bulk density and soil hydraulic properties. The saturated hydraulic conductivity, Ks, was 174 

measured using the constant head method (Klute and Dirksen, 1986). The saturated water 175 

content, θs, was measured using the ISO 11274:1998 sandbox method (Clement, 1966). Data 176 

points of the soil water retention curve were measured using the pressure plate apparatus 177 

(Dane and Hopmans, 2002) for applied pressures of 3, 10, 33, 100, 625, and 1500 kPa. While 178 

the saturated water content, θs, was measured, the remaining parameters of the soil water 179 

retention curve (5) (θr, α, and n) were optimized using the RETC software (van Genuchten et 180 

al., 1991) by fitting measured data. R
2
 values for soil water retention curve fitting were in 181 

range from 0.91 to 0.99. The pore connectivity parameter, l, was assumed to be equal to an 182 

average value for many soils (l=0.5) (Mualem, 1976). The hydraulic properties of the material 183 

that was assumed to be backfilled into the tile trenches were taken from the soil catalog of 184 

Carsel and Parrish (1988) for sand, with an increased Ks value to imitate the hydraulic 185 

properties of gravel (Table 1). As only one seepage face boundary condition could be 186 
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considered in HYDRUS (2D/3D), mole drains were simulated as a gravel material with 187 

hydraulic properties identical to those of the material used for tile trenches. 188 

 189 

2.2.2. Drainage systems 190 

Three different drainage systems were evaluated in our numerical simulations. The simplest 191 

system (System 1) consisted of parallel tile drains and no other additional measures (denoted 192 

below in graphs and tables as “tile”). In simulations for System 2 (denoted as “tile_gravel”), it 193 

was assumed that a backfill material (gravel) of higher hydraulic conductivity was placed 194 

above drains. Finally, the most complex system (System 3) consisted of tile drains with a 195 

backfilled gravel above drains combined with perpendicular mole drains (denoted as 196 

“tile_gravel_mole”). Fig. 1 shows a schematic of the simulated drainage systems. System 1 197 

and 2 were evaluated assuming a two-dimensional transport domain perpendicular to tile 198 

drains (Fig. 1a), while System 3 needed a fully three-dimensional water flow model (Fig. 1b). 199 

 200 

2.2.3. Transport Domain 201 

Because of the symmetry of water flow between two parallel tile drains, it was possible to 202 

consider only a half domain between two tile drains. A two-dimensional transport domain for 203 

Systems 1 and 2 (Fig. 1a) thus had a width of 750 cm (tile drain spacing was assumed to be 15 204 

m) and a height of 200 cm. The 8 cm diameter tile drain, which was located on the left side of 205 

the transport domain, was assumed to be centered at a depth of 96 cm from the bottom of the 206 

soil profile. The soil profile was divided into 4 soil horizons (Table 1) based on a soil survey 207 

of the area. In simulations of System 2, an additional vertical layer of gravel, representing a 208 

backfill material (material 5; Table 1), was considered. The three-dimensional transport 209 

domain for System 3 (Fig. 1b) with tile and mole drains and a backfill material above the tile 210 
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drains had the same first two dimensions as the two-dimensional transport domains, i.e., a 211 

width of 750 cm and a depth of 200 cm. The third dimension, perpendicular to tile drains, was 212 

equal to 100 cm (mole drain spacing was assumed to be 2 m). The mole drain, which was 213 

perpendicular to tile drains, was located at the front of the three-dimensional transport domain 214 

(Fig. 1b) and was assumed to have a diameter of 6.5 cm, an inclination of 0.5%, and was 40 215 

cm deep (from the soil surface) above the tile drain.  216 

 217 

2.3.4. Simulated scenarios 218 

Numerical simulations were carried out for each drainage system for three different scenarios 219 

with different initial and boundary conditions. In Scenario 1, a "time to drain" scenario was 220 

used to compare the drainage response of the three simulated systems, i.e., tile drains, tile 221 

drains with gravel trenches, and tile drains with gravel trenches and mole drains, starting from 222 

wet soil conditions. The initial pressure head was assumed to be at equilibrium conditions 223 

with a positive pressure head of 175 cm at the bottom of the transport domain which left the 224 

first 25 cm (corresponding to the tilled layer) unsaturated. No flow boundary condition was 225 

considered for all boundaries except for the small semicircle on the left of the transport 226 

domain which represented the tile drain (Fig. 1a). A seepage face boundary condition was 227 

used to represent the tile drain. Simulation time was equal to 2,400 hours (100 days). 228 

However, as there was still some limited outflow after 2,400 hours, the time when drainage 229 

was assumed to stop was defined as the time when the drainage rate decreased below 0.001 230 

mm h
-1

. Simulations for Systems 1 and 2 were also performed in 3D to check if the results 231 

were identical to those provided by 2D modeling.  232 

In the "rainfall” scenario (scenario 2), the initial conditions were set up as the pressure head 233 

distribution from the end of the first scenario (steady state conditions), and a rainfall event 234 

(with an intensity of 2 mm/h and a duration set up to get a total of either 50 mm, 100 mm, or 235 
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150 mm) was applied starting at the first day of simulation. In addition to a seepage face 236 

boundary condition representing a tile drain, an atmospheric boundary condition was applied 237 

at the top of the transport domain to include rainfall. Evaporation was neglected in this 238 

scenario.  239 

In the "real case" scenario (scenario 3), 4-year simulations (2009-2012) were performed with 240 

meteorological data collected at the Gradište station (45°09' N and 18°42' E) using the same 241 

initial conditions as in scenario 2. An atmospheric boundary condition was applied at the top 242 

of the transport domain using evapotranspiration values calculated by the Penman-Monteith 243 

approach (Monteith, 1981). Transpiration was calculated formaize (Zea Mays L., 2009, 2010, 244 

2012) and barley (Hordeum vulgare L., 2011) which were grown at the actual location. 245 

Again, a seepage face boundary condition was selected to represent the tile drain.  246 

 247 

3. Results and discussion 248 

3.1. “Time to drain” scenario 249 

To evaluate the specific drainage response of each of the three drainage systems, a “time to 250 

drain” scenario was performed. The ending time of drainage was reached at 681 h (28.4 days) 251 

for the tile system, 594 h (24.7 days) for the tile_gravel_system, and 506 h (21.1 days) for the 252 

tile_gravel_mole system. The value corresponding to 90% of the final drainage volume from 253 

each system was selected as the time when a quasi steady-state condition was reached. 254 

According to this criterion, the systems reached quasi steady-state after cumulated outflow 255 

amounts of 4.86 mm, 6.57 mm, 9.18 mm for the tile, tile_gravel, and tile_gravel_mole 256 

systems, which corresponded to days 11, 7.1, and 6, respectively (Fig. 2). The difference in 257 

time response of the three systems may have a large influence on the crop root system, i.e., 258 

the faster the soil is drained the less consequences on the crop root system and yield can be 259 
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expected (Oosterbaan 1991). The soil horizons had a relatively low permeability and, in the 260 

absence of a highly conductive layer, the drainage is very slow. When a gravel trench above 261 

the tile is added, the time response is faster (Fig. 2) since the trench is filled up with a material 262 

that has a high saturated hydraulic conductivity. The response of the system with moles is 263 

fastest since it includes both the trench and the mole drain constructed from the same highly 264 

conductive material as the trenches. Since the domain was initially saturated well above the 265 

mole drain depth, the response of the system is increasing in the order tile < tile_gravel < 266 

tile_gravel_mole.  267 

In addition to the time response of each system, a large difference in the cumulative amount 268 

of drainage was found. This difference is due to the substitution of soil materials having 269 

different water retention properties within the simulation domain. In System 2, parts of the 270 

volumes of materials 1, 2, and 3 are replaced by material 5 to represent the gravel trench. In 271 

System 3, in addition to the trench, a part of material 2 is replaced by material 5 to represent 272 

the mole drain. The difference in water storage between System 1 and System 2 is 1.86 mm 273 

and 4.86 mm between System 1 and 3. Material 5 and materials 1, 2, and 3 have very different 274 

water retention properties, which explain the different cumulative outflows (Table 2). 275 

Inserting a gravel trench above the tile drain increased outflow by 1.86 mm, 90% of it coming 276 

from the water initially stored in the trench itself. Adding a mole drain (System 3) further 277 

increases the outflow by 3 mm, with more than half of it coming from the gravel material 278 

representing the mole drain. From these results one can already expect a significant effect of 279 

the mole drain on the recession of the water table.  280 

Fig. 3 shows the simulated cross sections of all three systems during the first 24 hours. The 281 

results are displayed after 2 and 24 hours. Pressure head values are lower in the tile_gravel 282 

system than in the tile system and the lowest in the tile_gravel_mole system. After 2 h of 283 

drainage, the influence of the trench in System 2 is limited to the right side of the domain 284 
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while in System 3 the effect is expanding more to the left side because of the presence of the 285 

mole drain. After 24 h, there is a large drop in the water table depth for all three systems in 286 

the order (high to low) tile > tile_gravel > tile_gravel_mole. The mean pressure head after 24 287 

hours in the domain above the tile depth (from the surface down to 100 cm) was -75 cm, -78 288 

cm, and -84 cm for the tile, tile_gravel, and tile_gravel_mole system, respectively. These 289 

results indicate the higher efficiency of the tile_gravel_mole system in reducing the water 290 

table height compared to the tile_gravel system.  291 

3.2. High intensity rainfall scenario 292 

High intensity rainfall events with an intensity of 2 mm per hour and various durations, to get 293 

total amounts of 50 mm, 100 mm, or 150 mm, were applied in the second scenario. The initial 294 

condition was set equal to the final pressure head distribution at the end of the first scenario, 295 

i.e., the surface pressure head was -108 cm and the bottom pressure head was 92 cm on the 296 

right side of the domain. The cumulative outflow increased with the rainfall intensity in all 297 

three systems (Fig. 4). In this scenario, the trench and mole drain were not initially saturated 298 

as in the previous scenario, which led to the slower response time at the beginning of the 299 

experiment. The gravel material (representing the trench and mole) was not initially saturated 300 

and the time needed for its saturation induced a delay in the system response, which can be 301 

best seen for the tile_gravel_mole system during the first 4 hours (Fig. 4). There is no outflow 302 

during the first 4 hours in System 3 since the mole drain needs to be saturated to trigger 303 

drainage. The tile system without a gravel layer became almost instantaneously saturated 304 

since the rest of the domain had a very low permeability (5 mm h
-1

).  305 

The low permeability of the soil promotes runoff during high intensity rainfalls. In Fig. 5, the 306 

total amount of surface runoff is presented for each system. One can see that the cumulative 307 

amount of runoff increases according to rainfall intensity, while the opposite was found for 308 

cumulative outflow (Fig. 4). The largest runoff occurs in the tile system, then in the 309 
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tile_gravel system, and the smallest in the tile_gravel_mole system. The mole drain was very 310 

efficient in reducing surface runoff. These results are in agreement with several studies, in 311 

which authors found that artificial drainage increases the amount of infiltrating water and 312 

reduces runoff (e.g., Bengtson et al., 1995).  313 

Mass balance information for all three system and three rainfall events is shown in Table 3. 314 

Table 3 shows that the effectiveness of mole drainage in reducing surface runoff is not only 315 

due to a better efficiency in promoting drainage outflow, but also due to a better capacity for 316 

water storage than for the other two drainage systems. 317 

3.3. Real case scenario  318 

For the real case scenario, agroecological conditions that correspond to East Croatia were 319 

taken into account to be able to explain the behavior of each system in real field conditions.  320 

Fig. 6a shows the cumulative outflow during 2009-2012 period. At the beginning, one can see 321 

that the order of drainage relative to cumulative outflow is a bit different from what was 322 

found in first two scenarios in which the tile_gravel_mole system had the largest outflow. 323 

This effect is due to the small rainfall amounts at the beginning of the simulated time period 324 

which were drained by the tile_gravel system, but not by the tile_gravel_mole system, 325 

because mole drains did not become saturated enough to trigger outflow. Long term 326 

simulations showed the opposite effect on the 1
st
 of June 2010 when a high intensity rainfall 327 

event (72.8 mm) saturated mole drains and promoted a large outflow from the 328 

tile_gravel_mole system, while in the same time other two systems generated low outflow and 329 

large surface runoff (Fig. 6b). Adding gravel in the trench above a drain resulted in small 330 

decrease of surface runoff by (1%) However, inserting a mole drain into the system decreased 331 

the runoff by an additional 75%. The tile drain system with gravel and mole drains effectively 332 

reduced surface runoff in real field conditions. In such situation, the tile_gravel system cannot 333 
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conduct such large amounts of water as the system with moles, which leads to waterlogging 334 

conditions at the surface or the presence of a high water table.  335 

 336 

3.4. Drain spacing 337 

Finally, simulations with different tile drain spacings were performed in order to compare the 338 

water table variations for each system and to try to obtain, either with only tile drains or tile 339 

drains with backfilled trenches, the same water table level as for System 3. The simulation set 340 

up e.g., initial and boundary conditions was taken from the “time to drain” scenario. The tile 341 

with gravel trenches and mole system had the same spacing of 15 m as in above studied 342 

scenarios. The tile and tile_gravel systems were set up with various spacings from 6 to 12 m. 343 

Figs. 7a and 7b show the water table elevation during 96 h in the middle between two tile 344 

drains for the three systems (numbers 6, 7, 8, 9, 10, 12 corresponds to the drain spacing in 345 

meters). At the beginning, there is a rapid decrease in water table depths in all three systems, 346 

clearly visible during the first 24 hours. After that, the decrease is smaller and starts to 347 

stabilize as time approaches the end of simulation. The tile_gravel system was more efficient 348 

than the tile system at each spacing in lowering the water table (by ~2 cm). To reproduce the 349 

same water table level after 96 h (-100.2 cm) as in the tile_gravel_mole system, one would 350 

need to lower the spacing of the tile_gravel system to 9 m, or to 7 m if the system without 351 

gravel is used. System 1 and 2 with a 6-m spacing were able to lower the water table more 352 

efficiently than System 3 with a 15-m tile drain spacing and a 2-m mole drain spacing. 353 

However, a system with such small tile drain spacing is not economically sustainable. A small 354 

tile drain spacing is mostly used only in golf course construction or in civil engineering. Since 355 

the construction of mole drains requires only a simple equipment (i.e., a special kind of 356 

plough) (Hopkins 2002), this system could significantly lower the overall cost of the drainage 357 

system.   358 
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 359 

4. Conclusions 360 

Numerical experiments have been performed for three different drainage systems: i) tile 361 

drains, ii) tile drains with gravel trenches, and iii) tile drains with gravel trenches and mole 362 

drains. The tile drain system showed in all scenarios the slowest outflow response and the 363 

smallest cumulative outflow. When compared with the other two systems, the drainage 364 

system with tile drains, gravel trenches, and mole drains provides the largest efficiency. 365 

Under real case scenario, the system with tile drains and gravel trenches had the fastest 366 

reaction time and provided drainage outflow for small intensity rainfalls. However, the system 367 

with tile drains, gravel trenches and mole drains was able to provide larger outflow during 368 

higher intensity rainfall (>15 mm). Adding mole drains to a system with tile drains and gravel 369 

trenches resulted in a very large reduction of surface runoff (75%), which can have a very 370 

important effect during high intensity rainfalls. Since the use of the drainage systems with 371 

mole drains is still limited to special agro ecological conditions, there is only limited 372 

extensive field data available which allow to test fully three-dimensional simulations of these 373 

particular drainage systems. Research needs to be expanded through field trials in order to 374 

have more information on water flow dynamics in such complex systems.  375 
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Table 1. van Genuchten soil hydraulic parameters for all horizons of the soil profile used in 

the numerical simulations. 

Material 
Depth 

(cm) 

θr 

(cm3 cm-3) 

θs 

(cm3 cm-3) 
 (cm-1) n 

Ks 

(cm day-1) 
l 

1 0-30 0.095 0.42 0.00136 1.20 12 0.5 

2 30-70 0.095 0.41 0.00212 1.18 14 0.5 

3 70-100 0.095 0.41 0.00136 1.20 12 0.5 

4 100-200 0.102 0.50 0.0121 1.41 12.8 0.5 

5 Gravel (trench and mole) material 0.005 0.42 0.1 2.1 3000 0.5 

 

 

Table 2. Water balance (ΔWS – change in storage) for the various material layers composing 

the three simulated systems at the end of “time to drain” scenario (mm). 

  
All Materials Mat 1 Mat 2 Mat 3 Mat 4 Mat 5 

ΔWS in each system Tile -5.35 -1.12 -0.87 -0.68 -2.68 0.00 

 
Tile_gravel -7.21 -1.14 -0.96 -0.72 -2.68 -1.71 

 
Tile_gravel_mole -10.21 -1.14 -1.91 -0.72 -2.68 -3.76 

Difference between Tile vs Tile_gravel -1.86 -0.02 -0.09 -0.04 0.00 -1.71 

the systems Tile vs Tile-gravel_mole -4.86 -0.02 -1.04 -0.04 0.00 -3.76 

 

 

Table 3. Mass balance for all three simulated systems for scenario 2 – subscripts 50, 100, and 

150 correspond to the cumulative rainfall amount (mm). 

 

System 150 System 250 System 350 System 1100 System 2100 System 3100 System 1150 System 2150 System 3150 

Rainfall 50.00 50.00 50.00 100.00 100.00 100.00 150.00 150.00 150.00 

Outflow 16.57 19.58 28.13 29.71 35.65 51.22 42.81 51.69 74.26 

Runoff 31.93 29.69 6.36 68.66 63.52 13.61 105.39 97.35 20.85 

ΔWS 1.49 0.72 15.51 1.63 0.83 35.18 1.79 0.96 54.89 
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