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Abstract28

The Oisans Massif, located in the external zones of the western Alps, experienced 29

significant shortening during the Alpine collision. While a series of major top-to-the west 30

shear zones was recently described, the general low grade of the metamorphism has not 31

attracted much petrological and geochronological studies. This paper provides combined 32

temperature and age constraints on the evolution of the Oisans Massif. Temperature was 33

estimated with the Raman Spectrometry of Carbonaceous Material (RSCM) method and 34

chlorite geothermometry. Maximum temperature reached by the Mesozoic cover (Tmax) 35

from Grenoble to the Galibier pass (E-W) and from Saint Jean de Maurienne to Embrun (N-36

S) yielded almost constant ca. 330°C temperatures all through the Massif. Temperatures37

however strongly decrease either westward toward the top of the Vercors sedimentary 38

sequence or eastward toward the Penninic Frontal Thrust. Age constraints were retrieved 39

using 40Ar/39Ar in situ analyses performed on variously strained samples from Alpine shear 40

zones. Over strain gradients, incipient Alpine recrystallizations progressively develop at the 41

expense of former Variscan parageneses. A combined textural and EPMA approach 42

permitted to identify newly formed chlorite and phengite that unequivocally grew in 43

response to deformation or to low grade metamorphism. Chlorites recorded temperatures 44

from ca. 350 to 150°C during the activity of shear zones. In parallel, 40Ar/39Ar in situ45
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experiments enabled dating deformation using both synkinematic phengites crystallized 46

below the closure temperature of white-micas and former Variscan muscovite whose 47

isotopic system have been, at least partially re-opened. Activity of top-to-the-west shear 48

zones responsible for the shortening and thickening of the Oisans massif thus occurred 49

between 34-33 and 25 Ma. Integrating these new age-constraints, Tmax estimates, and 50

published geological data on the Oisans Massif and neighbouring areas allow proposing a51

new shortening scenario for the external zones. From ca. 34-33 Ma, the Oisans Massif was 52

buried as a rigid block below more internal units and reached temperature of ca. 330°C. 53

Shearing progressively localized along a series of top-to-the-W shear zones in the basement 54

until 25 Ma. Deformation then localised along a major thrust at the base of the ECM massif 55

and propagated along the basement-cover interface below the Vercors massif after 16Ma.56

57

1 Introduction58

The involvement of basement units in the external zones of collisional orogens is still 59

poorly understood because the associated deformation is not intense and metamorphic 60

conditions not severe enough to erase the effects of earlier deformation episodes, rendering 61

the syn-collision deformation difficult to recognize. The deformation and kinematic history 62

of these continental units thus often remains partly enigmatic and the rheology of the crust in 63

the early stages of collision poorly known.64

The Oisans Massif, which belongs to the External Crystalline Massifs (ECM) of the Western 65

Alps is a key-place to understand the first stages of continental collision. Major basement 66

brittle/ductile shear zones reworking the earlier Variscan fabric have been recognized which 67

have accommodated most of the collisional shortening (Wibberley, 1999, 2005; Bellahsen et 68

al., 2012,  2014; Bellanger et al., 2014; Boutoux et al., 2014a), but precise P, T, time data 69

are still lacking to better constrain the sequence of shortening and thickening.70

The Oisans Massif also comprises a Mesozoic sedimentary cover, mainly deposited during 71

the Early Jurassic rifting episode, which has not seen the Variscan metamorphic conditions 72

and can thus be used to assess the Alpine history. Bellahsen et al. (2012) and Bellanger et al. 73

(2014) have shown that localised west-verging Alpine shear zones developed in the 74

basement during collision while the cover was strongly folded above without a major 75

décollement in between. The geometry and kinematics of these shear zones is thus now 76

established and it remains to estimate the P-T conditions of their development and to date 77

them.78
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In this contribution, we first provide a map of the maximum temperature (Tmax) reached by79

the cover between Grenoble and the Galibier pass (E-W) and between Saint Jean de 80

Maurienne and Embrun (N-S) (Fig. 1) using the RSCM method (Beyssac et al., 2002). It 81

constrains the thermal history as well as the burial dynamics around the Oisans Massif. 82

Then, we compare these Tmax with temperatures obtained in both basement and cover, 83

using two chlorite geothermometers (Cathelineau and Nieva, 1985; Cathelineau, 1988; Vidal 84

et al., 2001, 2005, 2006). In a second step, we provide EPMA analyses of white micas 85

coupled to detailed microstructural and textural analysis of samples collected from various 86

shear zones, in order to document the nature of these white micas, i.e. inherited vs. 87

synkinematic. Finally, in a third step we performed in situ dating of white micas using the 88
40Ar/39Ar method. These results constrain the scenario of collisional shortening in the 89

external zones of the Western Alps.90

91

2 Geological setting92

93

2.1 The Oisans Massif within the Western Alps94

The Belledonne, Grandes Rousses, and Oisans massifs belong to the external zones 95

and more particularly to the Dauphinois zone of the Western Alps (Fig. 1). External zones, 96

which mainly recorded the Liassic rifting stage and the Oligo-Miocene collision event, were97

affected by a low-grade metamorphism after the end of Eocene. These massifs are parts of 98

the External Crystalline Massifs (noted ECM, thereafter) that correspond to uplifted 99

Variscan basement covered by Mesozoic to Cenozoic sedimentary series. The ECM were100

underthrusted below an orogenic prism made of stacked continental (Briançonnais zone) and 101

oceanic (Piemontais zone) nappes transported along the Penninic Frontal Thrust (PFT). The 102

PFT, also called the Crustal Pennine Thrust or the Embrunais Basal Thrust in Dumont et al.103

(2011, 2012) was active with top-to-the-(north-)west motion during the Early Oligocene 104

(Ceriani et al., 2001; Tricart et al., 2001, 2006). The internal zones, east of the PFT (Fig. 1),105

corresponds to the subducted continental margin of Europe and the Ligurian Ocean. They 106

are pervasively affected by high-pressure low-temperature (HP/LT) metamorphism, which 107

occurred between 70 and 35 Ma (Rosenbaum and Lister, 2005; Berger and Bousquet, 2008). 108

During the Palaeozoic, the Oisans Massif experienced a complex tectonometamorphic109

history (Debon and Lemmet, 1999; Guillot and Menot, 1999; Von Raumer et al., 1999; 110

Guillot et al., 2009). High-grade Carboniferous metamorphism has strongly overprinted 111

previous tectonometamorphic records. The Oisans Massif mainly consists of late Variscan112
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granites and earlier Devono-Dinantian plutonic and younger volcano-sedimentary 113

sequences, including Visean conglomerates, volcano-sedimentary and coal intercalations114

(Barféty and Pêcher, 1984). The Belledonne and Rochail massifs were then structured by 115

nappe stacking during the Visean and later affected by late Carboniferous to early Permian 116

late-orogenic gravitational collapse (Guillot and Menot, 1999), contemporaneous with 117

partial-melting and plutons emplacement between 330-290 Ma and the formation of 118

extensional Stephano-Westphalian continental basins (i.e. in Grandes Rousses, Belledonne 119

and La Mure massifs) (Barféty and Pêcher, 1984; Barféty et al., 1984, 1988; Guillot et al., 120

2009). This zone was ultimately eroded during Permian to Triassic times as evidenced by 121

the continental Permo-Triassic deposits (sandstones and conglomerates together with coal 122

intercalations) and middle to late Triassic shallow marine sediments (dolomitic limestone 123

with evaporitic layers). These formations remained attached to the basement during Alpine 124

deformation, and the contact can thus be used as a reference surface to quantify both the 125

extensional strain during the rifting episode and the later compressional deformation during 126

collision (Dumont et al., 2008, 2011; Bellahsen et al., 2012, 2014; Bellanger et al., 2014; 127

Boutoux et al., 2014a).128

During early Liassic times, the post-Variscan basement was stretched during the rifting 129

episode (Dumont, 1988; Dumont et al., 1998), as evidenced by basaltic flows ("spilites") 130

(Laurent, 1992) and a series of large-scale fault-bounded tilted blocks, limited by major131

normal faults that still shape the present-day geometry of the external zones (Barféty and 132

Gidon, 1983; Lemoine et al., 1986; Lemoine and De Graciansky, 1988). During the early 133

Liassic, the Meije block (Fig. 3) was a horst, as evidenced by a condensed sedimentary134

cover and shallow paleobathymetric conditions (Roux et al., 1988; Bouillin et al., 1997; 135

Corna et al., 1997).136

After the rifting stage, the Liguro-Piemontais oceanic domain formed between the European 137

and Apulian continental domains from the Bajocian onward, as evidenced by the age of the 138

first sediments deposited above the ocean floor (De Wever and Caby, 1981; De Wever et al., 139

1987). Subduction of the Ligurian domain, which started during late Cretaceous times was 140

followed by subduction of the leading edge of the European continental margin under the 141

Apulian microplate as evidenced by the HP to UHP metamorphism in the internal zones 142

(e.g., Chopin, 1984; Agard et al., 2001). The more proximal margin was subducted to 143

shallow depths and shortened and the deformation propagated outward.144

The "Pyreneo-Provençal phase", Late Cretaceous to Early Eocene in age, responsible for E-145

W folds and thrusts especially in the southern part of the external zone, is the first post-146
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Variscan shortening event (Lemoine, 1972; Caby, 1973). Ante-Senonian E-W fold axes147

described in the Dévoluy massif, were recently interpreted as due to submarine sliding 148

(Michard et al., 2010). The Nummulitic series are deposited within the foreland flexural 149

basin from Lutetian/Bartonian to Priabonian/Rupelian (Sinclair, 1997; Du Fornel et al., 2004 150

Mulder et al., 2010). They uncomformably overly reverse faults associated to N-S 151

shortening, south of the Oisans Massif (Ford, 1996). The timing and the kinematics of other 152

thrusts north of the Oisans Massif, such as the Meije or Combeynot thrusts, are debated, 153

whether they are pre- (Barbier, 1963; Bravard and Gidon, 1979; Ford, 1996), or syn- to post-154

Nummulitic (Beach, 1981b; Dumont et al., 2011; Bellanger et al., 2014). The only evidence 155

of N-S to NW-SE Oligocene shortening within the basement is restricted to a narrow area 156

around the PFT (Bellanger et al., 2014).157

The main Alpine collisional tectonometamorphic event in the external zones was thus due to 158

its burial under the internal units immediately after the deposition of a Rupelian olistostrome159

topping the Nummulitic series, the so-called "schistes à blocs" (Kerckhove, 1969; Gidon and 160

Pairis, 1980; Sinclair, 1997; Mulder et al., 2010). In the Oisans Massif, E-W shortening was 161

responsible for folding in the cover with axial plane cleavage development in the west 162

(Gratier and Vialon, 1980; Bellahsen et al., 2012; Bellanger et al., 2014). The metamorphic 163

peak reached 300 to 350°C for 1-5 kbar (Waibel, 1990; Jullien and Goffé, 1993; Crouzet et 164

al., 1999, 2001; Ceriani et al., 2003), which implies a tectonic overburden of around 10km 165

when considering a normal geothermal gradient. The temperature in the Bourg d'Oisans area 166

(Crouzet et al., 1999, 2001) reached 330°C after the end of deformation. The metamorphic 167

peak was dated with large uncertainties around 26-24 Ma by K-Ar method in fine clay 168

fraction from the cover (Nziengui, 1993), zircon fission-tracks ages ranging between 27 Ma 169

(alt. 3065m) and 13 Ma (alt. 1310m) (van der Beek et al., 2010). A deformation stage was 170

dated between 34 and 27 Ma by 40Ar/39Ar phengite ages from strike-slip shear zones related 171

to E-W shortening in the eastern part of the Oisans Massif (Simon-Labric et al., 2009).172

Bellahsen et al. (2012) and Bellanger et al. (2014) have further proposed that the E-W 173

shortening in the Oisans Massif was mainly accommodated by kilometer-scale top-to-the-174

west reverse shear zones, which are summarized in the next section.175

176

2.2 Inherited or newly formed: the Oisans shear zones revisited177

Contrary to the internal zones where deformation is too intense to preserve former 178

structures, the amount of shortening of the Oisans Massif was less than ca. 30-40% during 179

the Alpine collision (Dumont et al., 2008; Bellahsen et al., 2012, 2014; Bellanger et al., 180
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2014). As a consequence, inherited structures are still preserved, which allows studying 181

relationships between inherited and Alpine newly formed structures. The detailed structural 182

evolution of the Oisans Massif, which is beyond the scope of the present paper, was recently 183

investigated by Bellahsen et al. (2012) and Bellanger et al. (2014) in order to describe the 184

distribution of the deformation in the basement.185

The Oisans Massif presents unambiguous evidence of intense shortening either at 186

small (outcrop) scale or at large (kilometric) scale. Maps of shortening axes of small-scale 187

structures together with transport directions over the whole Oisans Massif reveal only one 188

major E-W shortening stage (Fig. 2). Strain localization in the basement leads to the 189

formation of a set of newly-formed, top-to-the-west, reverse shear zones that fold the 190

basement-cover interface to the west and form large basement thrusts near the Penninic 191

Frontal Thrust (Bellanger et al., 2014). Alpine shear zones can be separated from the 192

Variscan deformation by the lower-temperature, more localised character of the deformation 193

that cross-cuts a former high-temperature, pervasive Variscan fabrics. Moreover, an Alpine 194

age is ensured by the deformation with consistent top-to-the-west kinematics within the 195

Triassic-Liassic tegument (Bartoli et al., 1974; Barféty and Pêcher, 1984; Bellahsen et al., 196

2012; Bellanger et al., 2014). 197

While similar Alpine shear zones of Argentera or Mont Blanc massifs were recently 198

dated from the Oligo-Miocene (Rolland et al., 2008; Sanchez et al., 2011a; Cenki-Tok et al., 199

2013), the only recent constraints on the timing of the Alpine deformation were performed 200

on strike-slip shear zones of the eastern Oisans Massif (Simon-Labric et al., 2009). The most 201

prominent structures accommodating most of the shortening, W-directed reverse shear zones 202

remain therefore undated.203

204

3 Aims and methods205

206

To put age-constraints on reverse shear zones developed during collision in the 207

Oisans Massif, deformed rocks of four main shear zones were sampled across the W- E208

profile. These are, from west to east: the Col de Cluy, Plan du Lac, Col du Lac and209

Combeynot shear zones (Fig. 2), all sharing a common and consistent E-W to SE-NW210

stretching lineation and an overall top-to-the-west sense of shear. In situ 40Ar/39Ar laser 211

ablation method (Maluski and Monié, 1988) was chosen as it allows linking 212

radiochronology to petrology and particularly to textures/structures (Agard et al., 2002; 213

Müller, 2003; Augier et al., 2005; Gerber, 2008). This link is particularly important as 214
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different parameters such as temperature, deformation or fluid circulations may drastically 215

impact the behaviour of the K/Ar system. It is therefore crucial is to decipher the respective 216

contribution of these parameters to isolate the signal related to deformation. 217

To ensure a reliable T record, temperatures were constrained at the scale of the Oisans 218

Massif and the neighbouring areas using the Raman Spectrometry of Carbonaceous Material 219

method (RSCM; Beyssac et al., 2002; Lahfid et al., 2010). These data were supplemented by 220

local temperature estimates using the chemical composition of chlorite in the chlorite-221

quartz-water equilibrium (Vidal et al., 2001, 2005, 2006) either to control RSCM results or 222

to put direct constraints within the shear zones. In parallel, impact of the deformation was 223

evaluated by a combined textural/petrological study of the dated samples and particularly 224

the behaviour of white-micas. Besides, the potential impact of the fluid percolations was 225

evaluated by a careful study of output isotopic ratios. The next sections are dedicated to a226

brief description of the methods used in this study. 227

228

3.1 Raman spectrometry of carbonaceous material (RSCM)229

The Raman Spectrometry of Carbonaceous Material method (Beyssac et al., 2002) is 230

based on the quantitative study of the degree of graphitization of carbonaceous material 231

(CM), which is a reliable indicator of metamorphic T. Because of the irreversible character 232

of graphitization, CM structure is not sensitive to the retrograde reactions during exhumation 233

and therefore depends on maximum T (noted Tmax, thereafter) reached during 234

metamorphism (Beyssac et al., 2002). Tmax can be determined in the range 200-650°C by 235

using two empirical geothermometers which link the degree of graphitisation measured from 236

Raman Spectra (RS) to the highest temperature ever experienced by the rock (Beyssac et al.,237

2002; Lahfid et al., 2010). Lahfid et al. (2010) geothermometer was used when the D4 238

defect band was present in the RS, for the low-grade rocks. Absolute precisions of ca. 50°C 239

between 650 and 300°C and ca. 25°C between 330 and 200°C are related to uncertainties on 240

petrological data used for the calibration. However, relative uncertainties on Tmax appear 241

however much smaller, probably around 10-15°C and variations of that order of magnitude 242

may be detected (Beyssac et al., 2004, 2007; Gabalda et al., 2009; Vitale-Brovarone et al., 243

2013). 244

All Raman spectra were measured and analysed following procedures described in Beyssac 245

et al. (2002, 2004 and 2007) and Lahfid et al. (2010). Raman spectra were obtained using a 246

Renishaw InVIA Reflex microspectrometer (IMPMC, Paris, France) with a 514 nm argon 247

laser. RSCM analyses were conducted on thin sections prepared on CM-rich metasediments 248
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particularly abundant in the cover series in the studied area, cut in the structural X-Z plane 249

(i.e. orthogonal to foliation and parallel to lineation). To avoid defects on the CM related to 250

thin-section preparation, analyses were all performed below the surface of the section by 251

focusing the laser beam beneath a transparent crystal (i.e. dominantly quartz, calcite, albite 252

and occasionally phyllosilicates). Before each session, the spectrometer was calibrated with 253

a silicon standard. 10-20 spectra were routinely recorded for each sample to smooth out the 254

inner structural heterogeneity of CM within samples.255

256

3.2 Microprobe and independent temperature estimates257

Mineral analyses were performed with a Cameca SX50 electron microprobe (ISTO-258

BRGM, Orléans). Analytic conditions were 15 kV accelerating voltage and 10 nA beam 259

current using Fe2O3 (Fe), MnTiO3 (Mn, Ti), diopside (Mg, Si), CaF2 (F), orthoclase (Al, 260

K), anorthite (Ca), albite (Na) as standards. Elements, which are measured in %weight of 261

oxide, are SiO2, Al2O3, Fe2O3, MgO, MnO, CaO, Na2O, K2O, TiO2, F and Cl. Chemical 262

composition of chlorite and the white-micas were particularly studied. Composition of 263

chlorite has been used to retrieve independent T constraints using a thermodynamic 264

approach (Vidal et al., 2001, 2005, 2006). Besides, composition of white-micas was used to 265

distinguish different mineral generations to characterise the dated minerals. 266

Chlorite, which is abundant in the studied low-grade metamorphic rocks, was used as a 267

geothermometer. Temperatures were estimated by two ways: i) traditional empirical 268

geothermometry based on temperature dependency of the Si, Al and vacancy content of the 269

tetrahedral and octahedral sites within chlorite (Cathelineau and Nieva, 1985; Cathelineau, 270

1988), and ii) a thermodynamical approach (Vidal et al., 2001, 2005, 2006) that integrates271

multiple substitutions (FeMg-1, AlIVAlVISi-1Mg-1, (Mg, Fe2+)3□-1Al-2 where □ is the 272

vacancy). In the last case, metamorphic temperatures that prevailed during the formation of 273

chlorite were estimated upon 4 equilibria at fixed water activity and pressure (aw=1 and 274

P=4kbar (Simon-Labric et al., 2009)). Standard deviations are routinely close to ±10°C 275

(from ±4°C to ±32°C).276

277

3.3 In situ 40Ar/39Ar dating278

The 40Ar/39Ar in situ laser ablation method was first described by Schaeffer et al. 279

(1977) and successively upgraded by York et al. (1981) and Maluski and Monié (1988). 280

Procedure was detailed in Agard et al. (2002), Augier et al. (2005) or Turrillot et al (2011). 281
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We recall here the main stages for 40Ar/39Ar in situ sample preparation and analytical 282

procedure. 283

Measurements were all performed at Géosciences Montpellier (France) with an analytical 284

system that consists of: (a) an IR-CO2 laser of 100 kHz used at 5-15% during 60-80 sec; (b) 285

a beam shutter for selection of exposure times; (c) a lenses system for beam focusing; (d) a 286

camera connected to the monitor for beam focusing and selection of ablated zones; (e) a 287

steel chamber with a copper plate and the four samples on. This chamber is depressurized to 288

10-8 to 10-9 bar; (f) an inlet line for purification of gases including two Zr-Al getters; (g) a 289

Argus VI (Thermo-Fisher) multi-collector mass spectrometer from; (h) a software which 290

controls the timing of extraction/purification and the data acquisition. Rock sections of 1 291

mm thick, which had been used to make the petrographic thin-sections, were double 292

polished to c. 1 µm. Whole section and detailed-area photographs of both the rock section 293

and corresponding thin section were taken for an accurate selection of suitable areas for 294

laser experiments. All samples were ultrasonically rinsed in ethanol and distilled water, 295

wrapped in pure aluminium foils and then irradiated in the Triga Mark II nuclear reactor 296

(Pavia, Italia) with several aliquots of the Fisch Canyon sanidine standard (28.03 ± 0.08Ma, 297

(Jourdan and Renne, 2007) as flux monitors. After irradiation, both the monitors and the 298

sections were placed on a Cu-holder inside the sample chamber and heated for 48 h at 150–299

200 °C.300

For each experience, argon was released from a 100 x 300 µm mean surface corresponding 301

very often to aggregates of white micas. Incision of the sample did not exceed 10-20 µm 302

depending on the three-dimensional orientation of the white mica crystals. For each 303

experiment, ages have been obtained after correction with blanks, mass discrimination, 304

radioactive decay of 37Ar and 36Ar and irradiation-induced mass interferences. They are 305

reported with 1 uncertainty and were evaluated assuming an atmospheric composition for 306

the initially trapped argon [i.e. (40Ar/36Ar)i = 295.5]. The proportion of 38Ar and 37Ar 307

isotopes that result from interference with chlorine and calcium during irradiation reveals 308

the contribution of Cl and Ca-rich minerals or inclusions to the overall argon release and so 309

to the calculated age. A blank analysis was done every two or three analyses to evaluate the 310

argon background within the whole analytical system. Isotopic data are computed with the 311

ArArCalc freeware (Koppers, 2002) based on the algorithms described in (York, 1968;312

Faure, 1986; McDougall and Harrison, 1988; Renne et al., 1998; Min et al., 2000). 313

Along with a strong dependency with temperature and deformation, the behaviour of the 314

K/Ar system in white micas can be partially altered by fluid circulations. As fluid 315



Page 11 of 66

Acc
ep

te
d 

M
an

us
cr

ip
t

circulations are hardly detected a priori, output isotopic ratios (36Ar/39Ar, 37Ar/39Ar and 316
38Ar/39Ar ratios) were carefully checked.317

318

4 Temperature record within the sedimentary cover319

320

4.1 A large-scale RSCM Tmax cover in the sedimentary series321

322

First order thermal features323

Our dataset consists of 70 samples collected across the external zones, from Vif to 324

the Penninic Frontal Thrust (E-W transect) and from Saint Jean de Maurienne to Chorges325

(N-S transect) in various lithologies and all structural units of the studied area except 326

Variscan basement rocks (Table 1, Fig. 4). A more systematic sampling was performed 327

along the E-W transect where the thermal structure is so far poorly documented. Results are 328

all presented in maps of various scales and projected along structure-orthogonal cross-329

sections. For the sake of comparison, results of previous studies including illite-crystallinity 330

maps (Aprahamian, 1974; Barlier et al., 1974) or RSCM data in bounding areas (e.g. 331

Gabalda et al., 2009) are also shown (Fig. 4).332

At first glance, an unexpected major result of this study is the relative homogeneity of the 333

Tmax value at the scale of study area, with an average value of ca. 330°C (329±8 for 27334

Tmax values along an E-W cross-section), from the Lower Jurassic series close to Vif, all 335

the way to the Galibier pass, at the eastern edge of the study area (Fig. 4, 5). Conversely, 336

lower Tmax ca. 200-220°C is recorded to the south either in the Mesozoic series or Eocene337

flysch (north of Saint Michel de Chaillol; Fig. 4). Moreover, Tmax results recorded further 338

south along an E-W section between Chorges and l'Argentière-la-Bessée (Fig. 4) highlight a 339

drastic southward lateral change in the thermal structure. There, Tmax values present an 340

overall upward temperature increase from 253±10°C to more than 330±5°C in the vicinity of 341

the Penninic Frontal Thrust. Besides, additional important temperature variations were 342

recorded either to the west of the study area (Belledonne and La Mure massifs), to the east 343

in the vicinity of the Penninic Frontal Thrust (Fig. 4, 5). These variations are described here 344

in more details.345

346

Thermal structure of the western bound of the Belledonne and La Mure massifs347

To the west of the Belledonne and La Mure massifs, Tmax values decrease upward348

the stratigraphic succession from 334±6°C-329±8 in the Liassic, 325±6-286±5°C in 349
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calcareous Dogger and 227±23-<200°C in upper Jurassic black-shales (Fig. 4, 5) 350

highlighting a ca. 130°C temperature variation. In details, Tmax values gradually decrease 351

sequence along a ca. 30°C/km gradient but also highlight a localised temperature decrease 352

near the top of the calcareous Dogger (296±5-286±5°C) and the base of the upper Jurassic 353

(227±23-204±14°C). This ca. 80°C temperature gap can be followed 40 km strike, which is 354

consistent with a normal sense west-dipping tectonic contact located within the upper 355

Jurassic black-shales (Oxfordian). However, due to poor local outcrop conditions, this 356

contact has not been observed in the field. 357

In the same area, the base of thick Jurassic sequences of the Vercors yielded Tmax value 358

close to 335°C (334±6°C) while the thin Jurassic cover of the Belledonne and La Mure 359

massifs yielded only ca. 280°C (279±9°C). In this case, Tmax distribution evidenced an360

east-verging shear zone/thrust consistent with the description of a large-scale backthrust in 361

the field by Butler (1989). The Mesozoic sequence of the Vercors therefore appears i) 362

transported eastward above the La Mure thrust which roots in Triassic or Liassic units, and 363

ii) is partly dismembered by an extensional structure (Fig. 4, 5).364

365

Thermal structure in the vicinity of the Penninic Frontal Thrust366

To the east of the study area, close to the Lautaret and Galibier passes, Tmax values 367

decrease gradually from ca. 330°C in the easternmost Mesozoic cover of the Oisans Massif 368

to ca. 260°C in the Helmintoids flysch (Tête Noire area) despite the presence of numerous 369

tectonic contacts including the PFT. Tmax results therefore align well along an apparent 20-370

30°C.km-1 gradient suggesting either that the Tmax imprint was post-tectonic or that 371

extensional movements are not restricted to the PFT and rather distributed over numerous 372

small-scale, normal-sense structures. In any case, in their current position, Briançonnais 373

units did not experience Tmax higher than ca. 270°C which fall well below the ca. 330°C 374

temperatures characterising the internal Dauphinois. Conversely, a ca. 40°C localized 375

temperature drop is recorded further south, across the PFT (around L'Argentière-la-Bessée, 376

Fig. 4) where the Nummulitic series yielded ca. 330±5°C while Briançonnais units only 377

experienced 291±6°C. There, this result is consistent with both field and low-temperature 378

thermochronology evidences of the reactivation of the PFT as an extensional structure 379

(Tricart et al., 2001, 2004, 2006, 2007; Ceriani and Schmid, 2004).380

381

4.2 Independent temperature record using chlorite geothermometry 382
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Four samples were selected from the sample collection of the sedimentary cover for 383

the RSCM approach (see location on Table 2 and on Fig. 2). The main aim of this approach 384

is to estimate the temperature recorded by the cover series using independent 385

geothermometers based on the chemical composition of chlorites (Cathelineau and Nieva, 386

1985; Cathelineau, 1988; Vidal et al., 2001, 2005, 2006). Results are all presented on figure 387

6.388

Chlorites present different habits and occur in various textures. They are either dispersed in 389

the matrix (samples A-2-2, A-4-232, see location Fig. 2), crystallized within veins (samples 390

A-1-345(2)) or along the foliation and top-to-the-W shear bands (sample A-1-321). 391

Irrespectively to their structural position and to the potential impact of the protolith bulk 392

chemical composition, the two geothermometers yielded quite consistent results for all 393

samples within both the analytical and calibration errors and the within-sample internal 394

dispersion. However, the thermodynamical approach generally yield more dispersed395

temperature results between ca. 210 and 350°C than empirical geothermometry that show an 396

unimodal distribution centrered on the narrow ca. 270-330°C range (Fig. 6). Temperature 397

ranging from 150 to 350°C was retrieved from sample A.2.2, 150-340°C from sample A-4-398

232, 230-380°C for sample A-1-321 and 240-390°C for sample A-1-345 (Fig. 6). 399

Interestingly, RSCM Tmax fall systematically within the high temperature value indicating 400

i) the cross-validation of the methods and that ii) chlorites, at variance with the RSCM, do 401

record other discrete metamorphic increments. However, textural observations did not allow 402

distinguishing the relative timing of successive chlorite growth events during the 403

metamorphic evolution (prograde or retrograde (re-)equilibrations). 404

405

406

407

5 Phyllosilicate habits, chemical composition and chlorite temperature (TChl) record 408

for dated samples409

410

The crystallisation-deformation relationships of chlorite and white-micas that were 411

first recognised in the field were then strengthened by detailed textural observations in thin-412

section. Mineral chemical compositions were used to constrain i) the chemistry of dated 413

minerals and ii) the physical conditions by chlorite geothermometry. Together with textural 414

observations, these results are of prime importance to gather accurate a priori constraints 415

and discussion elements for in situ laser-probe investigations.416



Page 14 of 66

Acc
ep

te
d 

M
an

us
cr

ip
t

417

5.1 First order common features: guidelines for the 40Ar/39Ar in situ approach418

At the scale of the outcrop, rocks present routinely large white-mica crystals.419

Conversely, aggregates of very fine-grained white-micas occur only in deformed zones. At 420

the scale of thin-sections, deformed samples present two contrasted habits of white-micas. 421

Large, up to 2mm variously oriented white-mica flakes appear closely associated with a 422

former high-temperature foliation and high-temperature parageneses (Fig. 7). These crystals 423

coexist with aggregates of fine-grained white-micas growing either at the expense of former424

large crystals or in cracks of various scales within feldspars. Besides, this population 425

presents a close association with deformation structures and particularly with top-to-the-426

west shear bands within proto-mylonites, mylonites or phyllonites. This strong correlation 427

has been observed at the scale of strain gradients along which large, well-developed white-428

mica clasts tend to disappear whereas fine-grained blasts form the frame of the rock (Fig. 7).429

Interestingly, EPMA analyses reveal the existence of two texturally controlled groups of 430

white-mica of contrasted compositions reminding the results of Lanari et al. (2012) in the 431

Briançonnais domain, further east. The first group, which plots close to the muscovite end-432

member composition, is mainly represented by the large white-micas clasts population 433

carried by an earlier foliation (Fig. 7). Besides, the Na-content of this population is 434

systematically higher than 0.05 a.p.f.u. (atoms per formula unit) while the Si content is435

lower than 3.1 a.p.f.u. (Fig. 7). The second group, mostly corresponding to fine-grained 436

aggregates of white-micas, has a phengite chemistry, i.e. between muscovite and celadonite 437

end-member due to Tschermak substitutions. This group presents variable silica-content 438

scattered between 3.2 and 3.6 a.p.f.u. and Na-content systematically lower than 0.05 a.p.f.u. 439

(Fig. 7, 8). However, the small size of crystals and large internal variations of compositions440

suggest a partial mixing between two end-members. 441

EPMA analysis of the chemical compositions confirm the presence of two unrelated 442

generations of white-micas recognised on the basis of textural observations and 443

characterized by contrasted chemical compositions. Being conspicuously involved with the 444

greenschist facies partial reequilibration of former high-temperature parageneses and closely 445

associated with a top-to-the-W asymmetry, phengites therefore appear as a synkinematic 446

mineral particularly suitable to put age-constraints on the deformation. Conversely, the 447

habits of pre-kinematic clasts and the muscovite composition of most of the large white-448

mica population are likely inherited crystals pertaining to Variscan parageneses.449
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Besides, temperature, which is the most important factor controlling Argon diffusion,450

must be estimated to make a difference between cooling and deformation (crystallisation) 451

ages. Similarly to temperature estimates performed in the cover series, temperature recorded 452

by basement rocks was estimated using two different chlorite geothermometers. Results are 453

all presented in figure 8.454

455

5.2 Textural and chemical characteristics of dated samples456

Following this structural and chemical guideline, white-micas present in the dated 457

samples were carefully studied. Besides, chemical composition of chlorite was used to 458

constrain the temperature experienced by the rocks. Results are all presented from west to 459

east on figure 8. 460

461

Col de Cluy shear zone462

463

Samples from Col de Cluy are Variscan micaschists and gneisses with greenschist to 464

amphibolite facies associations with quartz, white-micas, feldspar, biotite and/or chlorite. 465

Rocks show generally only an incipient recrystallization. Former biotite and K-feldspar are 466

still preserved and locally abundant. White-micas, which are present in all samples, mostly 467

occur as ca. 1-2mm weakly deformed flakes and locally as clasts involved in shear bands. 468

This population coexists with fine-grained white-micas that occur as rare isolated 469

aggregates. Grain-size is generally less than 10 x 50 µm and white-mica crystals are often470

closely associated with chlorite. EPMA analyses of the white-micas mostly plot within a 471

rather narrow composition range close to the muscovite end-member. Analyses of fine-472

grained white-micas plot along continuous pattern from muscovite (Si(3.05); Na(0.09;0.12)) 473

to low-silica content phengite (Si(3.15;3.25); Na(0;0.02)) (Fig. 8). Chlorite occurs as 474

numerous small-scale aggregates. Chlorite shows variable composition with 70 to 85% of 475

clinochlore and XMg values close to 0.45 for variable silica content. Geothermometric 476

results yield quite contrasting results. While the thermodynamic approach yielded dispersed477

temperature between 150 to 370°C, empirical geothermometry showed quite consistent ca. 478

230 to 320°C temperature results (Fig. 8). Being devoid of conspicuous Alpine re-479

equilibrations, these samples appear, at a first glance poorly suitable to allow dating the 480

deformation and were therefore not used for the 40Ar/39Ar in situ approach.481

482
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Plan du Lac shear zone483

484

Thanks to good outcrop conditions allowing the recognition of the strain distribution, 485

the Plan du Lac shear zone was particularly studied. Four samples were selected over the 486

strain gradient. Sample A-4-74b is a proto-mylonite sample showing a rather weak Alpine 487

deformation by comparison to samples A-4-68 and 68b that are phyllonites. Sample A-4-66b488

was selected from an intermediate position within the strain gradient. All samples show a 489

clear top-to-the-west asymmetry except sample A-4-66b picked along a localized top-to-the-490

E shear zone.491

All samples derive from a quartz, feldspar, biotite and white mica Variscan gneiss.492

Chlorite pervasively replaces biotite either as static pseudomorphs in low strain domains or 493

as synkinematic crystallisations in mylonites. In low strain domain, white mica occur as 494

large, up to ca. 1-2mm clasts with clear disequilibrium textures while fine-grained white-495

mica are rare and clearly secondary. Conversely, mylonite and phyllonite are almost devoid 496

of large clasts and exclusively made of fine-grained white-micas. EPMA composition of 497

white-micas reveals two distinct poles with very few intermediate values (Fig. 8). The first 498

pole that corresponds to muscovite (Si(3.15); Na(0.06;0.08)) and the second one to a silica-499

rich phengite (Si(3.2;3.4); Na(0;0.02)) (Fig. 8). Interestingly, mineral composition shows a 500

conspicuous dependency to deformation. Mylonite and phyllonite samples yield mostly 501

phengitic white-micas. Conversely, less-deformed proto-mylonite sample yield texturally-502

controlled chemical compositions with muscovite compositions for the large clasts and 503

phengite composition for the fine-grained blasts. 504

Chlorite is locally abundant. It occurs in the matrix, growing at the expense of 505

biotite, crystallized in syn-deformation veins or associated with fine-grained white-micas 506

along shear planes. Most analyses yield consistent results with 70 to 90% of clinochlore 507

content, an XMg close to 0.45 for a variable silica content (Fig. 8). Regardless of strain 508

intensity, structural position and habits, most results cluster between 260 to 290°C (Fig. 8). 509

510

Col du Lac shear zone511

512

Sample A-1-355 was collected from the core of a top-to-the-W shear band 513

characterized by a thin layer of phengite-quartz phyllonites. This sample derives from a 514

Variscan high-grade gneiss still preserved a few decimetres apart on the same outcrop. The515

rock is made of quartz, feldspar and biotite partly turned into chlorite. Interestingly, white 516
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mica is absent from the mineralogical composition of the protolith. Small-scale but abundant 517

white-mica aggregates from the phyllonites are therefore newly-crystallized as the result of 518

strain and/or fluid-induced destabilization of the K-feldspar (e.g. Gueydan et al., 2003).519

Accordingly, EPMA analyses of the white-micas all yielded phengitic compositions with a 520

very low dispersion (Si(3.2;3.4); Na(0;0.02)). 521

Chlorite occurs as small-scale aggregates and rare dispersed larger crystals that may derive 522

from former biotites. Chlorite shows almost constant composition close to the clinochlore 523

end-member with XMg values around 0.6. Most geothermometric results cluster between 524

250 and 290°C for both geothermometers (Fig. 8).525

526

Combeynot shear zone527

528

Sample A-1-345 was selected in the most deformed outcropping ductily-deformed 529

basement rocks of the Combeynot shear zone. Mylonites are scarce and proto-mynolites, 530

derived from orthogneiss, which belongs to a volcano-sedimentary complex (Barbier et al., 531

1973), are often directly overthrusted onto the sedimentary cover. White micas occur532

generally as large clasts surrounded by very fine-grained blasts. Aggregates of fine-grained 533

white-micas also occur in tension gashes in K-feldspar. Composition of white-micas shows a 534

rather continuous pattern from muscovite (Si(3.05;3.15); Na(0.06;0.08)) to phengite535

(Si(3.25;3.5); Na(0;0.02)) (Fig. 8). Despite a clear partially reequilibration within Alpine 536

physico-chemical conditions, Alpine white-micas occur as very fine grained aggregates.537

Chlorite is rare, small and often closely associated with white-micas. Thus, most chlorites 538

show mixed composition with white-micas (i.e. K-rich chlorite) and were thus discarded.539

Data are thus only presented in table 2.540

541

Synkinematic fine-grained aggregates of phengite appear particularly adapted to put 542

age-constraints on the activity of the shear zones. Accordingly, samples from Col de Cluy 543

shear zone which may record only a weak Alpine re-equilibration have not been selected 544

from the in situ 39Ar/40Ar approach. For all other samples, success of the study relies on our 545

ability to effectively analyze newly formed crystals whose typical size is often small (150µm 546

max.).547

Temperatures recorded in the shear zones yielded very consistent results close to 250-300°C 548

which falls below RSCM Tmax recorded in the cover series. Chlorite therefore probably 549

recorded retrograde metamorphic increments during exhumation and cooling of the Oisans 550
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Massif. It is noteworthy that temperatures recorded at peak-T conditions also fall below the 551

lower bound of the closure temperature of white-micas (e.g. Dodson, 1973; Cliff et al., 552

1998; Villa, 1998). 553

554

6 40Ar/39Ar age constraints555

Our dataset consists of 199 in situ 40Ar/39Ar ages performed on 7 samples collected 556

over three main Alpine shear zones, namely (from west to east), the Plan du Lac, Col du 557

Lac, and the Combeynot shear zones (Table 3, see location on Fig. 2). To ensure the 558

coverage of the different strain facies recognized in the field, a more systematic sampling 559

was performed over the Plan du Lac shear zone. Results of the in situ 40Ar/39Ar approach are 560

all shown and discussed in Fig. 9 as apparent ages for which an initial 40Ar/39Ar ratio of 561

295.5 is assumed for the non-radiogenic argon component. These age results are described 562

in the light of the textural/structural observations, chemical composition results and the 563

output isotopic ratios (36Ar/39Ar, 37Ar/39Ar and 38Ar/39Ar) informative of potential 564

disturbances of the K/Ar system. For small-scale phengite aggregates located in the vicinity 565

of chlorite, calcium or fluid inclusions-bearing minerals, the release of the 38Ar and 37Ar 566

isotopes interfering with chlorine and calcium revealed that argon was extracted from both 567

phengites and K-poor minerals (Brereton, 1970; McDougall & Harrison, 1988). The quoted 568

errors represent one sigma deviation and do not include uncertainty on the monitor. Errors 569

are routinely inferior to ca. 1 Ma while larger error (ca. 2 to 15 Ma) are generally due to both 570

a weak argon signal and a high atmospheric contribution (Table 3).571

At a first glance, an important conclusion is that the successive phengite generations 572

recognized on the basis of textures (e.g. Fig. 7), compositions (Figs 8) effectively yield 573

successive ages. Fine-grained aggregates of synkinematic phengites yield Alpine ages sensu574

lato. Conversely, white-micas characterized by muscovite chemical compositions and/or575

presenting clear pre-kinematic (i.e. inherited) habits yielded pre-alpine ages or even 576

sometimes Variscan ages. Interestingly, a clear dependency to the intensity of the 577

deformation may even be detected either at the scale of the sample or at the scale of the 578

strain gradient within a shear zone (e.g. Fig. 10). Therefore, most ages are tentatively 579

interpreted either as, at least partially, re-opened Variscan isotopic systems for “old” ages or 580

as genuine crystallization ages for the “young” ca. 35-25 Ma ages. More locally, results 581

however show important age variations that may also record fluid percolations.582

583

6.1 Plan du Lac shear zone584
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In order to study the potential impact of the finite Alpine deformation, four samples 585

were selected over a single strain gradient toward the core of the Plan du Lac shear zone.  586

The relative structural position of samples is given on figure 10.587

588

A-4-74b (Proto-mylonite)589

In this sample, discrete ca. 1mm-thick shear bands partially overprint a high-590

temperature inherited texture composed by large, brittlely fractured feldspar clasts and more 591

ductilely stretched quartz and muscovite crystals (Fig. 10). Conversely, this sample contains 592

Alpine phyllosilicates including phengite and chlorite either carried along a weak vertical 593

foliation, or crystallized along top-to-the-W shear bands. A total of 40 apparent in situ594

analyses were performed to cover all situations. Apparent in situ ages are scattered between 595

207 ± 5.2 Ma and 24.3 ± 1.8 Ma (Fig. 10). 22 analyses corresponding to the oldest ages are 596

correlated with high 38Ar/39Ar ratio and atmospheric content (Table 3) but ages fall within 597

the age range of uncontaminated phengites. Interestingly, the core of the shear bands598

provides ca. 25 Ma consistent ages (24.3 ± 1.8 Ma and 26.7 ± 0.6 Ma).599

600

A-4-66b (Top-to-the-E Mylonite)601

This sample is characterized by a schistosed high-grade gneiss traversed by a 3 mm-602

thick top-to-the-E shear band (Fig. 10). While Variscan fabrics are still well developed in 603

most of the rock volume, Alpine synkinematic recrystallizations are almost complete within 604

shear bands. There, former muscovites and feldspars are absent and a ca. 2mm thick 605

phengitized fringe is developed (Fig. 10). 34 in situ analyses were performed. No 606

relationship between apparent ages and the 37Ar/39Ar and 38Ar/39Ar variations were detected,607

except for the 3 three apparent ages older than ca. 100Ma, which have high 38Ar/39Ar values608

(Table 3). Analyses show a first order textural control of the age. Large muscovites, at least 609

partially preserved within the matrix yielded 301.4 ± 6.6 and 62.3 ± 1.4 Ma. Conversely, 610

small-scale phengites within the shear band yielded 30 alpine ages ranging between 40.5 ± 611

1.1 Ma and 29.5 ± 0.6 Ma plus an older age of 47.6 ± 1.2 Ma (Fig. 10). Interestingly, while 612

ages depict a clear first order younging toward and within the shear band, older ages occur 613

within the core of the shear band over a ca. 1-2mm-thick fringe (Fig. 10). In this case, a late 614

gradient of 40Ar excess seems to overprint an initial age gradient related to deformation.615

616

A-4-68 (Phyllonite)617
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Sample A-4-68 is a phyllonite sample. 15 in situ analyses were performed and 618

yielded ages ranging between 93.5 ± 2.0 and 22.4 ± 0.9 Ma (Table 3). Most of apparent ages 619

cluster between 32 and 22 Ma (Fig. 10). There is no relationship of apparent ages with 620
37Ar/39Ar unlike with 38Ar/39Ar, suggesting some interaction with chlorine-rich fluids that 621

may occur as trapped inclusions (Fig. 10).622

623

A-4-68b (Phyllonite)624

Sample A-4-68b was cut in two distinct rock slabs (section 8 and 5) selected only a 625

few centimeters distant; section 5 being a little less deformed than section 8. Analyses 626

performed on section 5 yielded 21 apparent ages, ranging between 114.2 ± 4.3 and 25.9 ± 627

0.5 Ma (Fig. 10). Analyses present a strong relationship between apparent ages and 628
37Ar/39Ar, 38Ar/39Ar and atmospheric content. In the absence of Ca-rich and Cl-rich phases 629

in the chip, contamination may be rather related with fluid inclusions trapped in the analysed 630

phengites (Table 3). Despite contamination by Ca-rich and Cl-rich fluids, analyses yielded 631

ages of about 25-27 Ma. Interestingly, analyses performed on section 8 yielded 44 apparent 632

ages, which do not show any evidence of a direct relationship with the 37Ar/39Ar, 38Ar/39Ar 633

and atmospheric content. These ages are scattered between 37.2 ± 1.0 Ma and 23.2 ± 0.6 Ma 634

(with two old ages of 46.4 and 47.2 Ma) and define mainly two age groups at 31-33 Ma (7 635

ages) and 25-27 Ma (18 ages) (Fig. 10).636

637

6.2 Col du Lac shear zone (Sample A-1-355, phyllonites)638

Sample A-1-355 was collected from the core of a top-to-the-W shear band 639

characterized by a ca. 1 meter-thick layer of phyllonites. This sample derives from a 640

Variscan high-grade gneiss still preserved a few decimetres apart on the same outcrop and 641

turned into a phengite-quartz rock in the most deformed zone. It contains few chlorites and 642

no remnant of inherited muscovites present in the undeformed protolith. The 30 apparent 643

ages are scattered between 110 ± 7 Ma and 15 ± 10 Ma and 25 of them range between 42.68 644

± 2.22 and 23.88 ± 1.6 Ma (Table 3). No correlation between the apparent age and 38Ar/39Ar 645

and 37Ar/39Ar ratios was observed. However, some analyses, particularly the “old”, up to 50 646

Ma ages present high 38Ar/39Ar values and/or an important atmospheric contribution (Table 647

3). Interestingly, these old ages were found in micas from C'-type shear bands and therefore 648

argue for a 40Ar excess. These results are quite similar to those obtained in the most 649

deformed parts of sample A-4-66b. Despite this potential contamination, analyses with low 650
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38Ar/39Ar ratio and low atmospheric content yielded 15 internally consistent apparent ages651

scattered between 32.9 ± 0.9 and 24.8 ± 0.6 Ma (Fig. 10).652

653

6.3 Combeynot shear zone (Sample A-1-345, proto-mylonite)654

655

Sample A-1-345 was selected in the most deformed outcropping ductilely-deformed 656

basement rocks of the Combeynot shear zone. Mylonites are scarce and protomylonites, 657

derived at the expense of orthogneiss (former leucogranite) are often directly overthrusted 658

onto the sedimentary cover. It is the less deformed sample of the data set. None of the 15 in 659

situ analyses provide Alpine age (Table 3, Fig. 10). Instead, apparent ages are distributed 660

between 389 ± 27 Ma and 156 ± 3 Ma with no clear textural control. Part of the apparent 661

ages is correlated with the 38Ar/39Ar ratio, which suggests a possible contribution of Cl-rich 662

phases or fluid inclusions. High 37Ar ⁄ 39Ar ratios (Table 3) are probably due to the degassing 663

of Variscan epidote or titanite, but again no systematic correlation between the variation of 664

these ratios and the age dispersion was observed.665

666

7. Discussion667

668

7.1 Reliability, significance of the RSCM Tmax mapping669

670

RSCM Tmax estimates has proven an efficient mean to put extensive temperature 671

constraints on the thermal structure of coherent units or on the importance of tectonic 672

contacts (Beyssac et al., 2002; Augier et al., 2005; Negro et al., 2006; Gabalda et al., 2009; 673

Angiboust et al., 2011). In the Oisans Massif, RSCM Tmax fall in the same temperature 674

range as more punctual results issued from other methods available in literature. The most 675

important result is the uniformity of Tmax values at the scale of study area, with an average 676

value of ca. 330°C with a relative error that may not exceed 10-15°C (Beyssac et al., 2004). 677

Thermopaleomagnetic studies indicate that cooling started from 335°C in the north of the 678

Emparis formations and in the Bourg d'Oisans basin, after the main tectonic phase at ca. 25 679

Ma (Ménard and Rochette, 1992; Crouzet et al., 1999, 2001) (Fig. 11). The stability field of 680

paragenesis observed in the Jurassic cover (quartz-cookeite-margarite-pyrophyllite) that 681

most likely recorded peak-metamorphism conditions in the Emparis basin is restricted from682

270 to 340°C and from 1 to 5kbar (Jullien and Goffé, 1993) (Fig. 11). Besides, the overall 683
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thermal structure of the Oisans Massif as recorded by the distribution of RSCM Tmax is684

consistent with illite-crystallinity maps (Aprahamian, 1974; 1988; Barlier et al., 1974) (Fig. 685

4). 686

Related to the irreversible character of graphitization, and the insensitivity of the CM 687

structure to retrograde reactions (e.g. Beyssac et al., 2002; Lahfid et al., 2010; Aoya et al., 688

2010), RSCM record the highest temperature ever undergone by the rock sample. In689

principle, RSCM Tmax results issued from a continuous section may therefore be 690

diachronous and represent the superimposition of distinct thermal events.691

In the Bourg d'Oisans and Emparis basins, metamorphic peak-T conditions of ca. 335°C 692

where reached at ca. 25 Ma (i.e. Crouzet et al., 1999, 2001). As the restored sedimentary693

cover of this area is generally thinner than ca. 2 km (Barféty et al., 1972; Barbier et al., 694

1973; Crouzet et al., 2001; Bellahsen et al., 2012), these temperatures are clearly ascribed to 695

an Alpine tectonometamorphic event and particularly to the tectonic burial of the 696

Dauphinois domain under internal units (Crouzet et al. 2001; Dumont et al., 2008). Besides, 697

the progressive temperature decrease toward the top of the overthrusting units close to the 698

Galibier pass is consistent with a late to post-tectonic temperature imprint, as suggested by 699

thermopaleomagnetic results (Crouzet et al., 1999, 2000). Interestingly, the upward RSCM 700

Tmax evolution indicates a ca. 20-30°C.km-1 gradient (Fig. 4C), which is consistent with the 701

gradient around 20 to 25°C.km-1 proposed by Crouzet et al. (1999) but lower than the ca. 40-702

50°C.km-1 gradient deduced from fluid inclusion data (Gratier et al., 1973; Nziengui, 1993) 703

(Fig. 12). However, high geothermal gradients deduced from fluid inclusions may result 704

from an underestimated pressure due to reequilibriation of fluid inclusion densities during an 705

isothermal decompression as proposed by Boullier (1999) or Crouzet et al. (2001).706

Conversely, in the sedimentary cover west of the Belledonne Massif, Tmax values show 707

large temperature variations from 335°C to less than 200°C (Fig. 4, 5). Tilted with the 708

bedding, this ca. 130°C Tmax upward sequence decrease may witness a post-metamorphic 709

peak westward tilting of the sedimentary succession (Fig. 4, 5). Moreover, Tmax recorded at 710

the base of the succession is consistent with the ca. 8 km thickness of the Mesozoic series 711

assuming a ca. 40°C.km-1 geothermal gradient (Philippe et al., 1998). Besides, this result is 712

consistent with the 60 to 80 mW.m-2 basal heat flow estimated in this area (Deville and 713

Sassi, 2006) and a bulk thermal conductivity close to 1.5 W.m-1.K-1 (Beardsmore and Cull, 714

2001). 715

Minor and local fluid circulations along the basement-cover interface cannot be ruled out 716

but an overall thermal imprint related to large-scale fluid circulations is unlikely as available 717
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studies show that the fluid flow operated only at small scale in the studied area (Henry et al., 718

1996; Kirschner et al., 1999; Boutoux et al., 2014b).719

720

7.2 Significance of the 40Ar/39Ar in situ ages721

722

Geochronological data and particularly 40Ar/39Ar data are traditionally interpreted as723

recording closure of the isotopic system at a specific temperature depending on the isotopic 724

diffusion properties of the mineral (e.g. Dodson, 1973; Cliff et al., 1998; Villa, 1998; 725

Harrison et al., 2009). Accordingly, many studies therefore assume that the closure 726

temperature of the K/Ar system for muscovite argon retention is around 350-450°C 727

depending on cooling-rates, grain-size and other controlling factors such as the geometry of 728

the diffusion domain (e.g. Wijbrans & McDougall, 1986; Hames & Bowring, 1994; Reddy 729

et al., 1996; Villa, 1998). Using recent results of modeling, the closure temperature for 730

muscovite would fall in the range of 400-420°C for a 10-30°C.Ma-1 cooling-rate and a731

diffusion radius of 100µm (Harrison et al., 2009). However, closure temperature for 732

phengite is still discussed as it may largely vary as a function of both intrinsic (e.g. grain-733

size) and extrinsic (cooling-rates, temperature, pressure and deformation or fluid 734

circulations) parameters. Recent studies suggest that phengite is more retentive for argon 735

than muscovite and that phengite ages are interpretable as crystallisation ages to temperature 736

as high as 500-550°C (e.g. Dunlap, 1997; Agard et al., 2002; Müller, 2003; Mulch and 737

Cosca, 2004; Augier et al., 2005; Mulch et al., 2005; Gerber, 2008; Rolland et al., 2008, 738

2009; Sanchez et al., 2011a). Temperature experienced during the Alpine orogeny by dated 739

samples did not exceeded 330°C ± 30°C since they initially cooled at the end of the 740

Variscan Orogeny. Ages of the fine-grained synkinematic phengites therefore likely 741

represent crystallization ages. Conversely, large, inherited clasts of muscovite may reflect 742

Variscan cooling ages in the absence of additional disturbing factors. Stratigraphic 743

constraints indicate that the flexural basin of the external zones was diachronously filled up 744

from Lutetian to Bartonian (45 to 33Ma) (Du Fornel et al., 2004; Mulder et al., 2010; Salles 745

et al., 2011). Burial of this basin below internal units occurred during Rupelian (34 to 28746

Ma; Fry, 1989; Sinclair, 1997; Ford and Lickorish, 2004; Mulder et al., 2010). In 747

Champsaur and Saint-Antonin basins, amphiboles reworked from Oligocene volcanism 748

coeval with deposition yielded ca. 34-31 Ma Priabonian ages by 40Ar/39Ar methods (Féraud 749

et al., 1995; Ivaldi et al. 2003), giving a maximum age for the burial of the basins under the 750
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internal nappes. In addition, part of the Oisans Massif formed a 500 m high relief in the 751

Oligocene (Gupta and Allen, 2000) and dated samples, restored in their inferred initial 752

position, were probably less than 2km deep, between ca. 40 and 34 Ma. It therefore appears753

unlikely that phengites were formed under these P-T conditions and the ca. 34-33 Ma age 754

clearly fixes the upper bound of the possible ages for the deformation of the Oisans Massif. 755

97 in situ experiments yielded ages younger than 34 Ma.756

Interestingly, young ages are clearly correlated with the intensity of fine-grained white-757

micas blastesis particularly important in high-strain zones. It is therefore proposed that ages 758

younger than 34 Ma reflect synkinematic crystallisation ages and thus deformation ages, in a 759

broad sense. In addition, apparent ages show a bimodal distribution with a first age group 760

settled at ca. 33-30 Ma and a second group at ca. 28-25 Ma ages (Fig. 11). These results are 761

consistent with results of a conventional 40Ar/39Ar approach performed on wrench shear 762

zones of the same area (Simon-Labric et al., 2009). However, our interpretation differs. 763

Based on age spectra scattered between 32 and 24 Ma, Simon-Labric et al. (2009) proposed 764

the superimposition of two distinctive shearing events (one at ca. 32 and one ca. 24 Ma). In 765

this study, the use of an in situ mean over strain gradients allow linking deformation ages 766

and the amount of finite strain experienced by the rocks. Accordingly, proto-mylonite and 767

mylonite samples yielded older, ca. 33-30Ma ages while highly strained samples 768

(phyllonites) yielded younger ca. 28-25 Ma ages, suggesting that the deformation 769

progressively localized along the phyllonite bands thus leaving large rock volumes devoid of 770

further recrystallizations. In any case, intense E-W shortening started with or just after the 771

burial of external zones under the internal nappes around ca. 34-33 Ma and was still active at 772

ca. 25 Ma. Synchronous deformation ages of either top-to-the-W reverse shear zones or 773

wrench shear zones thus confirm the small-scale mutual cross-cutting relationships observed 774

in the field (Bellanger et al., 2014).775

102 in situ experiments yielded ages mostly clustering between 100 and 40 Ma with ages as 776

old as 380 Ma. Older than ca. 34 Ma and presenting sometimes pre-Alpine or even genuine 777

Variscan ages, theses apparent ages clearly do not record alpine collisional deformation. 778

Relying on temperature estimates throughout the studied area, the temperature concept 779

predicts that all white-micas sharing common pre-Alpine textures and inherited muscovite 780

chemical composition should yield the same age corresponding to the time elapsed since 781

initial cooling at the end of the Variscan Orogeny. Yet this is not the case for most analyses. 782

On the contrary, the correlation of in situ 40Ar/39Ar ages and finite strain intensity at any 783

scale reveals that ages are texturally-controlled and therefore independent of closure 784
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temperature. This deviation to the closure temperature concept could be simply explained in 785

terms of presence of 40Ar excess either due to (1) partial deformation-induced resetting of 786

Variscan muscovites (inherited argon), or (2) genuine incorporation of extraneous argon 787

related to fluid circulations. Besides, a straightforward yet possible source of geologically 788

meaningless ages could be simply explained by mixtures between inherited muscovite and 789

synkinematic phengite argon reservoirs during lasering. 790

At first glance, as stated above, an overall correlation with the intensity of the finite strain 791

can be drawn between samples. Weakly strained samples (from the Combeynot or the Plan 792

du Lac shear zones) yielded rather old, sometime only pre-Alpine ages while phyllonites 793

yielded much younger ages that tend to crystallization ages of newly formed crystals. Such794

control by the deformation is also perceptible at the scale of some dated rock samples with 795

an overall age decrease toward the core of a shear band from ca. 300 Ma to less than 30 Ma 796

in less than 1 centimetre (Fig. 11). It appears therefore tempting to ascribe to deformation 797

the ability to facilitate argon diffusion and thus to partially reset (i.e. re-open) inherited 798

muscovite isotopic system. Intensity of deformation, whether it occurs by grain-size 799

reduction during mylonitization or by presence and distribution of high-diffusivity pathways 800

lattice-modifying microstructures would therefore be the main controlling factor explaining 801

the age scatter between an inherited cooling ages and the age of a tectonometamorphic event 802

(i.e. Scaillet et al., 1990; West and Lux, 1993; Hames & Cheney 1997; Kramar et al. 2001, 803

2003; Mulch et al. 2002). As suggested by the linear relationships observed between some 804

apparent ages and corresponding 38Ar/39Ar ratios arguing for interactions with Cl-rich fluids,805

minor excess argon cannot be simply ruled out. Besides, a limited yet conspicuous input of 806

extraneous argon within and in the vicinity of shear bands is clearly detectable for some 807

samples (Fig. 10). In this case, results of absolute chronology are markedly inconsistent with 808

the relative chronology established independently on the basis of microtextures. For 809

example, mylonite sample A-4-66b presents a series of ca. 50-40 Ma old ages occurring 810

within the core of the shear band while other analyses show a clear age decrease toward the 811

shear band. Excess argon was moreover reported within fluid inclusions from Oisans 812

basement quartz veins (Nziengui, 1993). In this study seven K/Ar experiments on white-813

micas from the sedimentary cover yielding initially 48 to 30 Ma ages were corrected to 27-814

23 Ma by removing excess 40Ar content from fluid inclusions. If excess argon exists, it 815

should have a homogeneous composition at the scale of the whole study area, which seems 816

particularly unlikely. Excess argon is therefore present but does not explain the first order 817

features of the results. 818
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819

820

821

7.3 A new tectonic scenario822

823

This study brings primarily T-t-d (Temperature-time-deformation) results that further 824

constrain the tectonometamorphic evolution of the external zones of the Western Alps. In 825

this section, these results are all integrated into a compilation of published P-T-t-d results 826

(Fig. 11 and 12) in order to discuss a new tectonic scenario (see also in Bellahsen et al., 827

2014) (Fig. 13).828

Among the new results, this study constrains the thermal structure of a large volume of the 829

external basement. Results, despite local variations, show a constant Tmax around 330°C. 830

This constant temperature along several tens of kilometres suggests that the basement and 831

the cover preserved in half-grabens have been first quickly underthrust with rather limited832

internal shortening. Deformation ages from this study and from Simon-Labric et al. (2009)833

are consistent with a burial of the external zones around between 34 and 25 Ma (Fig. 12, 834

13). The main shortening seems to have occurred at or around the metamorphic peak (Fig. 835

12) as suggested in Boutoux et al. (2014b). The distribution of isotherms obtained with 836

thermopaleomagnetic method, which cross-cut the folds, indicates that the main shortening 837

had ended before cooling started in the Bourg d'Oisans basin (Crouzet et al., 1999). The 838

sampled profile may therefore correspond to an east-dipping isotherm (around 330°C) 839

during underthrusting of the Oisans Massif, which would then suggest that the whole area 840

behaved as a more or less rigid block below the internal units during part of its burial841

history, before it was ultimately shortened. Similarly, the geothermal gradient observed 842

close to the Lautaret and Galibier passes (around 20-30°C.km-1) seems to seal the PFT 843

activity dated between 32 and 27 Ma (Freeman, 1998). Thus, deformation mainly occured844

just prior or during metamorphic-peak conditions and seems, in any case, to have ceased845

before the onset of the main cooling event. During this time period, and around the 846

metamorphic peak conditions, the external zone crust underwent homogeneous shortening 847

until approximately 25 Ma. Shortening was progressively localized into phyllonite bands. At 848

25 Ma, the crust was progressively decoupled from the subducting lithosphere and started to 849

exhume. The PFT was then inactivated. These results argue against a progressive westward 850

thrust slice development that lead to the exhumation of units after that they have reached 851
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diachronously temperatures close to 330°C. However, this would imply that the basement 852

top has been heated up uniformly from 50-100°C to 300-350°C uniformly over ca. 70km, 853

which in turn suggests a rather slow burial.854

At the scale of individual shear zones, high-strain samples (phyllonite) are younger 855

(28-25Ma) than proto-mylonite and mylonite (33-30Ma). This suggests that deformation 856

progressively localized along phyllonite bands. Moreover, ages of deformation (33-25 Ma) 857

reveal that the deformation is contemporaneous all along the profile from the PFT to the 858

Plan du Lac shear zone, i.e. over more than ca. 30km. This synchronicity of deformation 859

shows that shortening in the ECM was distributed in space and time and confirms that the 860

crust was relatively weak during shortening as proposed in Bellahsen et al. (2012). This is in 861

agreement with the formation of newly formed shear zones rather than normal faults 862

reactivation.863

Later, shortening reached the Vercors fold and thrust belt during Burdigalian to 864

Langhian times (Fig. 13). This shortening appears linked to crustal ramps below the 865

Belledonne Massif, which suggests that the deformation localized in frontal parts after the 866

end of the main shortening phase of the ECM at around 20 Ma (Ménard, 1979; Butler, 1989; 867

Philippe et al., 1998). Between 25 and 20 Ma, the Oisans Massif has undergone fast cooling 868

at a rate of 33°C.Ma-1 (Crouzet et al., 2001) and was exhumed at a rate of 0.4 km.Ma-1 (van 869

der Beek et al., 2010). Final cooling, whose age is estimated from fission tracks ages 870

(Vernon et al., 2008), occurred after 15 Ma, which corresponds to the age of thrusting within 871

the Vercors Massif. During this more external fold and thrust belt shortening, only slight 872

deformation occurred in the Oisans Massif (Dumont et al., 2008). The new argon data 873

reported here thus complete the scenario of burial and first shortening at ca. 33 Ma, 874

progressive localisation of shear zones until 25 Ma, and final exhumation above a crustal 875

ramp until after 15-20 Ma. 876

Exhumation of the ECM was also accompanied by extensional reactivation of the PFT since 877

the late Oligocene (Tricart et al., 2007) (Fig. 13). Thus, during the late Oligocene and early 878

Miocene, the ECM was a crustal unit bordered by a normal fault to the east and a reverse 879

fault to the west, transported with low internal deformation, similarly to the models of syn-880

collisional rock exhumation described by Chemenda et al. (1995) (Fig. 14). Moreover, 881

numerous veins witnessing for fluids circulation have been documented between 17 to 5Ma 882

in the Aar Massif (Mullis et al., 1994; Mullis, 1996; Challandes et al., 2008), in the Mont 883

Blanc Massif (Leutwein et al., 1970; Marshall et al., 1998) or in the Belledonne Massif884
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(Gasquet et al., 2010), indicating that this event was coeval with a fluid-rich process which 885

affected all the orogen.886

887

8. Conclusion888

889

Following the description of Alpine shear zones responsible for shortening of the 890

Oisans External Massif of the Western Alps by Bellahsen et al. (2012) and Bellanger et al. 891

(2014), the alpine thermal structure of the massif is established here thanks to the RSCM 892

method and the shear zones were dated. The main outcome is that the interface between the 893

cover and the basement has recorded a maximum temperature of ~330°C, constant across 894

the whole massif and that the shortening was accommodated by top-to-the west shear zones 895

that progressively localized from 34 to 25 Ma, before the ECM were finally exhumed above 896

a crustal ramp after 15-20 Ma, which in turn controlled shortening in the deformed cover 897

further west (Vercors Massif).898
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Figure captions1511

1512

Figure 1: (a) Large-scale tectonic map of the Western Alps. Indicated is the location of the 1513

figure 2 that embraces the whole studied area. (b) Geological cross-section across the 1514

studied area close to the 45th parallel modified from Bellanger et al. (2014).1515

1516

Figure 2: Simplified structural map of the studied area modified from Bellanger et al. 1517

(2014). Indicated is the location of the studied samples either form the Mesozoic cover for 1518

RSCM and chlorite geothermometry or from the basement shear zones for chlorite 1519

geothermometry and for the 40Ar/39Ar in situ approach. See tables for precise locations of 1520

samples.1521

1522

Figure 3: Deformation features of the Oisans Massif at decreasing scales. (a) kilometer-scale1523

view as illustrated by a geological cross-section from the Penninic Frontal Thrust (PFT) to 1524

La Mure Massif. Note the distribution of the Alpine shear zones and the overall eastward 1525

increasing of the finite strain intensity; (b) landscape-scale view as illustrated by a picture of1526

a part of the Plan du Lac shear zone in the Vénéon Valley. Note the anastomosed 1527

relationships of the shear planes, the folded shape of the basement-cover interface and the 1528

pinched part of Mesozoic cover. Field-sketch diagrams represent macroscopic features of 1529
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the deformation from mylonite to phyllonite at outcrop-scale. (c) Thin-section pictures 1530

showing small-scale deformation features of from proto-mylonite to phyllonite strain-stage. 1531

Note the clear increase of the phengite fraction with strain increasing.1532

1533

Figure 4: First-order results from the Raman Spectrometry of Carbonaceous Material1534

approach. (a) RSCM Map showing mapping of the Tmax results and inferred isotherms. The 1535

isotherm shape was drawn from interpolated map and from the distribution of the Illite 1536

crystallinity; (b) Illite crystallinity map modified from Aprahamian (1974) and Barlier et al.1537

(1974). (c) Projection of the RSCM Tmax over a classical E-W cross-section from the west 1538

of the Belledonne Massif to the Penninic Frontal Thrust. (d and e) RSCM Tmax results vs.1539

longitude and elevation along the cross-section (c). Data represented with smaller symbols1540

to the east of the Penninic Frontal Thrust come from Beyssac et al. (2002); Gabalda et al.1541

(2009); Lanari et al. (2012) and Plunder et al. (2012). Detailed results are given in table 1.1542

1543

Figure 5: Local-scale features of results from the Raman Spectrometry of Carbonaceous 1544

Material approach. (a) Distribution of the Tmax to the west of the Belledonne Massif from 1545

RSCM (circle) and vitrinite reflectance results (star; data from Deville and Sassi (2006)1546

transformed into temperatures using the equation proposed in Allen and Allen (2005). The 1547

distribution of the Tmax in the sedimentary pile is aligned along a ca. 30-50°C.km-11548

gradient. Besides, temperature gaps across narrow zones highlight localized tectonic 1549

contacts. (b) Distribution of the RSCM Tmax results close to the Lautaret and Galibier 1550

passes. The structural data come from Depardon (1979), Beach (1981a, 1982), Ceriani et al.1551

(2001), and Bellanger (2013). Note that the distribution of the Tmax within the tectonic pile 1552

is consistent with a ca. 20-30°C.km-1 post-tectonic field gradient. Detailed results are given 1553

in table 1.1554

1555

Figure 6: Chlorite composition and results from chlorite geothermometry the Mesozoic 1556

cover. (a) XMg vs. Silica content diagram. (b) Clinochlore/Amesite/Sudoite ternary plot. 1557

Note that chlorite composition is first controlled by the bulk composition of the protolith. (c) 1558

Internal consistency of the geothermometric results. Chlorite geothermometry results using 1559
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both thermodynamic and empirical approaches (Cathelineau and Nieva, 1985, Vidal et al.,1560

2005, 2006) are compared to RSCM data. Chlorite probably records a part of the cooling 1561

(retrograde) evolution. Detailed results are given in table 2.1562

1563

Figure 7: Example of microstructural and composition of sample A.4.64 used as a guideline 1564

for dated samples. (a) Contrasted habits of white-micas as seen on several close-up views 1565

from the same thin-section. (b) White-mica chemical composition in ternary plots and XMg 1566

vs. Silica content diagram. Fine-grained, often syn-kinematic white-micas present in C-type 1567

and S-type foliation have phengite compositions. Well-developed white-mica clasts have a 1568

muscovite composition.1569

Figure 8: White-micas composition and chlorite geothermometry from dated samples 1570

(basement shear zones). For each of the dated shear zone, presented is the composition of 1571

white-micas as a function to their textural position in Si vs. Na content diagram and 1572

Muscovite/Celadonite/Pyrophyllite ternary plot together with results of chlorite 1573

geothermometry using both thermodynamic and empirical approaches (Cathelineau and 1574

Nieva, 1985, Vidal et al., 2001, 2005, 2006). Detailed results are given in table 2. (a) 1575

corresponds to results for the Col de Cluy shear zone while (b), (c) and (d) correspond to 1576

Plan du Lac, Col du Lac and Combeynot shear zones, respectively. Due to a very poor 1577

dataset, results for the Combeynot shear zone are not shown.1578

1579

Figure 9: Time-chart showing all results of the in situ 40Ar/39Ar approach. Detailed results 1580

are given in table 3. Stratigraphic age for the Nummulitic flysch deposit is from Mulder et 1581

al. (2010); zircon and apatite fission-tracks results from Van der Beek et al. (2010).1582

1583

Figure 10: Pictures showing the distribution of in situ laser ablation of the 40Ar/39Ar 1584

approach. Note the overall dependency of the K/Ar system to the finite strain intensity. 1585

Detailed results are given in table 3.1586

1587
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Figure 11: Pressure-Temperature-deformation-time evolution of the Oisans Massif. (a)1588

Pressure-Temperature (P-T) constraints for the Oisans Massif. The P-T data come from 1589

(Gratier et al., 1973; Bernard, 1978) and references therein (Thermobarometry from fluids 1590

inclusions and paragenesis from cover and basement veins), (Jullien and Goffé, 1993)1591

(conventional metamorphic petrology from the Emparis basin Mesozoic cover, (Crouzet et 1592

al., 1999) (thermopaleomagnetism from the Bourg d'Oisans basin), (Ceriani et al., 2003)1593

(Zircon fission track and Kübler index and b-cell dimension of white mica fom the 1594

Nummulitic cover of the Cheval noir unit), this study (RSCM from Mesozoic and 1595

Nummulitic cover). Temperature-deformation-time (T-d-t) constraints for the Oisans 1596

Massif. The T-d-t data come from (1) (Nziengui, 1993); (2) (Jullien and Goffé, 1993); (3) 1597

this study; (4) (Crouzet et al., 1999); (5) (Ménard and Rochette, 1992); (6) (Crouzet et al., 1598

2001); (7) (van der Beek et al., 2010); (8) (Sabil, 1995; van der Beek et al., 2010; Beucher et 1599

al., 2012).1600

1601

Figure 12: Large-scale compilation of existing time-constraints for the External zone and for 1602

the Western Alps close to the 45th parallel. (1) (Riche and Trémolières, 1987) (2) (Clauzon, 1603

1990) (3) (Philippe et al., 1998) (4) (Du Fornel et al., 2004) (5) (Mulder et al., 2010) (6) 1604

(Féraud et al., 1995) (7) (Marignac et al., 1997) (8) (Gasquet et al., 2010) (9) (Simon-Labric 1605

et al., 2009) (a: Combeynot sinistral strike-slip shear zone; b: Pelvoux dextral strike-slip 1606

shear zone; c: Ailefroide dextral strike-slip shear zone); (10) this study; (11) (Nziengui, 1607

1993) (12) (Crouzet et al., 1999, 2001) (13) (van der Beek et al., 2010) (14) (Sabil, 1995; 1608

van der Beek et al., 2010; Beucher et al., 2012) (15-16) (Fügenschuh and Schmid, 2003)1609

(17) (Ceriani and Schmid, 2004) (18) (Ceriani et al., 2003; Fügenschuh and Schmid, 2003)1610

(19) (Fügenschuh and Schmid, 2003) (20) (Féraud et al., 1995) (21) (Corsini et al., 2004)1611

(22) (Sanchez et al., 2011a) (23) (Bigot-Cormier et al., 2000) (24) (Bigot-Cormier et al., 1612

2000; Bogdanoff et al., 2000; Sanchez et al., 2011b) (25) (Pfiffner, 1992) (26) (Ruffini et al., 1613

1997) (27-29) (Leutwein et al., 1970) (30) (Marshall et al., 1998) (31) (Crespo-Blanc et al., 1614

1995) (32) (Kirschner et al., 1996) (33-34) (Rolland et al., 2008) (35) (Krummenacher and 1615

Evernden, 1960) (36) (Leutwein et al., 1970) (37-40) (Leloup et al., 2005) (41) (Baggio et 1616

al., 1967) (42-43) (Seward and Mancktelow, 1994; Leloup et al., 2005) (44-45) (Fügenschuh 1617

and Schmid, 2003) (46) (Freeman et al., 1998) (47) (Beucher, 2009) (48-49) (Fügenschuh 1618

and Schmid, 2003; Tricart et al., 2007) (50) (Ellenberger, 1958) (51) (Ganne, 2003) (52) 1619

(Gerber, 2008) (53) (Malusà et al., 2005) (54-56) (Ganne, 2003) (57-61) (Gerber, 2008) (62) 1620
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(Strzerzynski et al., 2012) (63) (Freeman et al., 1997) (64) (Agard et al., 2002) (65) 1621

(Duchêne et al., 1997) (66) (Rubatto and Hermann, 2003) (67) (Monié and Philippot, 1989)1622

(68-69) (Cliff et al., 1998) (70-71) (Schwartz et al., 2007; Tricart et al., 2007; Beucher, 1623

2009) (72) (Agard et al., 2002) (73) (Duchêne et al., 1997) (74) (Gebauer et al., 1997) (75) 1624

(Rubatto and Hermann, 2001) (76 et 78) (Tilton et al., 1991) (77) (Scaillet et al., 1992) (79) 1625

(Gebauer et al., 1997) (80) (Beucher et al., 2012) (81 et 83) (Chopin and Maluski, 1980)1626

(82) (Ganne, 2003) (84) (Meffan-Main et al., 2004) (85-86) (Hurford and Hunziker, 1989; 1627

Hurford et al., 1991).1628

Figure 13: Lithospheric reconstructions of the Alps along a cross-section close to the 45th 1629

parallel. See text for explanations.1630

1631

Table captions1632

1633

Table 1: Detailed results from the RSCM approach. Given are the GPS position (latitude 1634

(Lat.) and longitude (Long.) in decimal degrees (WGS84) and the elevation in meter), the 1635

tectonic unit, the stratigraphic age, the lithology, the number of Raman spectra (Sp.), the R2 1636

or the RA1 ratio, the RSCM temperature (mean and standard deviation). R2 ratio, in regular 1637

font (Beyssac et al., 2002) or the RA1 ratio, in italic font (Lahfid et al. 2010) was preferred 1638

depending on the shape of the spectra and the presence of the D4 peak (Lahfid et al., 2010).1639

1640

Table 2: Detailed results from the chlorite geothermometry approach. Given are the GPS 1641

position (latitude (Lat.) and longitude (Long.) in decimal degrees (WGS84) and results of 1642

thermodynamic and empirical approaches (Cathelineau and Nieva, 1985, Vidal et al., 2005, 1643

2006). Results are presented separately for the Mesozoic cover and the basement (Alpine 1644

shear zones).1645

1646

Table 3: Detailed results from the 40Ar/39Ar approach. Given are the GPS position (latitude 1647

(Lat.) and longitude (Long.) in decimal degrees (WGS84) in decimal degrees (WGS84) and 1648

different output isotopic ratio.1649

1650
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  182 26.68 ± 0.86 5.52 0.09 16.617 31.735 5.459 20
  184 27.25 ± 0.70 5.64 0.07 13.268 74.860 3.342 13
  185 37.15 ± 0.98 7.71 0.10 16.231 17.350 5.288 15
  186 32.60 ± 0.78 6.75 0.08 15.331 28.381 3.749 12
  188 23.22 ± 0.57 4.80 0.06 14.716 0.397 2.635 12
  189 26.87 ± 0.71 5.56 0.07 14.822 3.060 3.589 14
  190 33.63 ± 3.54 6.97 0.37 20.026 14.646 30.393 53
  192 34.59 ± 3.37 7.17 0.35 20.946 10.029 28.806 51
  193 32.12 ± 1.04 6.65 0.11 17.515 17.526 7.044 21
  194 26.78 ± 3.41 5.54 0.36 24.354 10.163 29.142 57
  196 28.71 ± 3.55 5.94 0.37 19.039 0.466 30.419 56
  197 30.02 ± 2.49 6.22 0.26 19.316 27.056 20.857 46
  198 28.68 ± 1.10 5.93 0.11 15.174 13.405 7.848 25
  200 35.20 ± 2.99 7.30 0.31 19.635 14.784 25.369 47
  201 25.89 ± 0.76 5.35 0.08 14.485 16.121 3.516 14 44

A-4-68b (Ech5)   79 101.14 ± 2.19 21.36 0.24 19.325 21.345 8.756 10
Plan du Lac   80 26.78 ± 0.62 5.54 0.06 14.705 7.379 2.725 11
Gneiss   82 25.90 ± 0.52 5.35 0.05 13.112 5.208 0.772 3
Lat.: 44.984950°   83 101.52 ± 4.58 21.44 0.50 36.434 26.990 37.570 33
Lon.: 6.143560°   85 87.86 ± 3.53 18.48 0.38 30.597 18.766 27.850 30

  86 114.24 ± 4.28 24.21 0.47 32.663 43.649 33.490 28
  88 57.58 ± 1.80 12.01 0.19 19.509 20.365 12.438 22
  89 59.11 ± 1.88 12.34 0.20 22.043 10.178 13.115 23
  91 65.70 ± 2.07 13.74 0.22 23.431 8.778 14.399 22
  92 96.56 ± 2.86 20.36 0.31 25.972 15.399 19.551 21
  94 52.37 ± 1.65 10.91 0.17 22.259 6.778 11.386 22
  95 102.17 ± 2.88 21.58 0.31 27.804 9.330 18.937 20
  96 37.80 ± 1.17 7.84 0.12 18.793 2.915 7.892 21
  98 38.11 ± 0.99 7.91 0.10 12.649 108.017 5.226 15
  99 27.07 ± 0.61 5.60 0.06 15.396 1.553 2.420 10

  101 37.89 ± 0.99 7.86 0.10 17.127 0.000 5.366 15
  102 42.32 ± 1.06 8.79 0.11 18.704 16.415 5.553 14
  104 71.99 ± 1.71 15.08 0.18 20.856 38.529 6.467 11
  105 49.19 ± 1.09 10.24 0.11 15.637 22.946 3.927 9
  107 57.58 ± 1.30 12.01 0.14 17.453 18.965 5.279 11
  108 61.32 ± 1.35 12.80 0.14 17.214 6.628 5.273 10 21

65

Table 3
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  317 159.84 ± 9.51 34.09 1.06 42.598 100.620 81.736 41
  318 83.59 ± 2.05 17.45 0.22 19.188 33.359 10.534 14
  319 116.28 ± 2.50 24.50 0.27 19.849 18.212 8.634 9
  320 89.33 ± 2.20 18.68 0.24 19.482 126.785 6.793 9 40

A-4-66b   19 37.78 ± 3.17 7.79 0.33 21.743 41.626 26.734 47
Plan du Lac   20 37.63 ± 2.03 7.76 0.21 19.494 7.915 16.086 35
Gneiss   26 38.95 ± 1.54 8.03 0.16 15.253 0.760 11.468 27
Lat.: 44.982410°   27 36.87 ± 2.03 7.60 0.21 17.892 2.116 16.419 36
Lon.: 6.147040°   29 301.42 ± 6.56 66.91 0.79 35.325 0.000 34.137 13

  30 62.29 ± 1.41 12.93 0.15 16.109 16.173 6.088 11
  33 129.05 ± 3.03 27.29 0.33 27.668 8.263 15.628 14
  34 36.00 ± 0.98 7.42 0.10 12.959 0.000 5.512 16
  37 35.72 ± 1.89 7.36 0.20 22.241 35.724 14.517 34
  39 32.67 ± 1.63 6.73 0.17 17.296 12.892 12.831 33
  40 32.08 ± 1.10 6.60 0.11 14.308 7.733 7.737 23
  42 30.72 ± 1.09 6.32 0.11 14.967 0.000 7.800 24
  43 32.87 ± 1.14 6.77 0.12 13.521 3.686 8.014 23
  45 33.49 ± 0.77 6.90 0.08 13.770 2.480 3.254 11
  46 33.55 ± 0.82 6.91 0.09 13.321 3.816 4.022 13
  48 29.17 ± 0.68 6.00 0.07 14.767 13.296 2.745 10
  49 29.58 ± 0.67 6.08 0.07 15.319 13.327 2.398 9
  51 31.49 ± 0.65 6.48 0.07 13.435 4.182 1.473 5
  52 31.98 ± 0.70 6.58 0.07 14.403 2.899 2.587 9
  54 33.12 ± 0.79 6.82 0.08 14.390 5.062 3.737 12
  55 39.81 ± 0.89 8.21 0.09 14.321 2.465 3.589 10
  57 37.33 ± 2.48 7.70 0.26 18.621 8.016 20.685 41
  58 31.65 ± 2.39 6.51 0.25 19.490 4.940 20.049 44
  60 35.03 ± 1.33 7.22 0.14 18.049 2.470 9.941 26
  61 34.70 ± 1.35 7.15 0.14 18.266 3.038 10.078 27
  63 37.84 ± 0.96 7.80 0.10 15.423 5.192 5.144 15
  64 40.50 ± 1.06 8.35 0.11 18.151 4.933 6.022 16
  66 36.59 ± 1.26 7.54 0.13 18.187 8.598 8.838 23
  67 38.66 ± 1.45 7.97 0.15 18.954 7.837 10.731 26
  69 47.58 ± 1.20 9.83 0.13 16.492 6.142 6.583 15
  70 125.56 ± 3.47 26.52 0.38 36.088 10.440 22.749 20
  72 31.89 ± 0.88 6.56 0.09 16.576 0.000 4.987 16
  73 30.51 ± 0.74 6.28 0.08 14.076 2.988 3.610 13
  74 30.90 ± 0.72 6.36 0.07 14.087 5.008 3.139 11 34

A-4-68   245 61.32 ± 2.22 12.72 0.23 19.501 25.355 16.475 26
Plan du Lac   246 40.61 ± 2.03 8.38 0.21 21.339 32.150 16.278 34
Gneiss   247 31.80 ± 0.80 6.55 0.08 15.058 19.614 4.127 14
Lat.: 44.984950°   249 28.77 ± 1.17 5.92 0.12 16.462 21.462 8.823 27
Lon.: 6.143560°   250 93.51 ± 2.10 19.58 0.23 24.615 5.839 9.355 12

  251 74.73 ± 1.81 15.56 0.19 24.938 42.041 9.522 14
  253 24.28 ± 1.26 4.99 0.13 15.279 87.896 9.612 32
  254 25.98 ± 1.67 5.34 0.17 16.846 9.266 13.651 39
  255 49.36 ± 2.18 10.21 0.23 26.893 34.100 17.096 31
  257 32.08 ± 1.17 6.60 0.12 21.853 29.097 8.412 25
  258 24.47 ± 0.77 5.03 0.08 16.339 36.424 4.936 19
  259 32.06 ± 1.34 6.60 0.14 24.525 32.552 10.214 28
  264 25.79 ± 0.79 5.30 0.08 16.313 21.900 5.101 19
  265 22.35 ± 0.90 4.59 0.09 15.449 29.685 6.636 26
  266 36.85 ± 0.87 7.60 0.09 16.856 28.362 4.120 12 15

A-4-68b (Ech8)   144 24.88 ± 0.54 5.14 0.06 12.752 3.706 0.478 2
Plan du Lac   145 27.16 ± 1.41 5.62 0.15 17.908 0.000 0.000 0
Gneiss   146 26.65 ± 0.55 5.51 0.06 13.920 0.000 0.507 2
Lat.: 44.984950°   148 25.74 ± 0.56 5.32 0.06 14.891 0.000 0.727 3
Lon.: 6.143560°   149 25.16 ± 0.55 5.20 0.06 14.784 0.000 0.583 3

  150 25.95 ± 0.55 5.37 0.06 14.536 12.917 0.570 3
  152 26.58 ± 0.69 5.50 0.07 12.124 5.811 0.701 3
  153 25.66 ± 2.89 5.30 0.30 12.211 0.000 0.066 0
  154 25.75 ± 3.15 5.32 0.33 12.126 271.884 0.184 0
  156 32.57 ± 3.85 6.75 0.40 10.353 108.067 1.046 4
  157 47.23 ± 1.41 9.82 0.15 11.567 168.834 3.893 9
  158 46.40 ± 1.90 9.65 0.20 17.515 18.150 14.508 29
  160 201.82 ± 12.76 43.83 1.46 46.660 2794.213 115.611 42
  161 25.34 ± 0.63 5.24 0.07 14.586 8.934 0.558 3
  162 28.20 ± 0.64 5.83 0.07 15.229 181.960 2.092 8
  164 25.22 ± 0.59 5.21 0.06 14.405 2.375 2.040 9
  165 28.43 ± 1.02 5.88 0.11 14.576 75.735 7.377 24
  166 27.73 ± 1.10 5.74 0.12 14.654 0.432 8.144 26
  168 25.92 ± 0.58 5.36 0.06 10.834 14.811 0.693 3
  169 25.30 ± 0.53 5.23 0.05 12.533 13.464 0.821 4
  170 32.25 ± 0.74 6.68 0.08 14.533 15.877 2.877 10
  172 31.89 ± 0.86 6.61 0.09 14.772 25.511 4.845 16
  173 26.67 ± 0.61 5.52 0.06 13.389 0.000 2.188 9
  174 32.11 ± 0.84 6.65 0.09 14.983 227.616 4.170 13
  176 26.71 ± 0.62 5.52 0.07 10.443 40.681 2.076 9
  177 28.76 ± 0.68 5.95 0.07 14.683 11.784 2.458 9
  178 30.74 ± 0.66 6.36 0.07 12.792 56.401 1.576 6
  180 31.38 ± 2.22 6.50 0.23 15.375 6.264 18.517 42
  181 26.39 ± 0.57 5.46 0.06 13.365 44.315 1.762 7
  182 26.68 ± 0.86 5.52 0.09 16.617 31.735 5.459 20
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Sample An. Age (+2s) 40*/39(k) 1s 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar % Atm n
(*1000) (*1000) (*1000)

A-1-345   110 389.51 ± 27.17 89.23 3.46 109.716 5.672 280.279 48
Combeynot   111 315.64 ± 11.36 70.80 1.39 62.828 8.248 100.136 29
Porphyroid   113 199.95 ± 5.88 43.40 0.67 34.056 22.486 42.774 22
Lat.: 45.026510°   114 330.96 ± 7.53 74.56 0.93 42.462 3.763 44.245 15
Lon.: 6.404380°   116 294.73 ± 6.91 65.72 0.83 40.937 5.032 43.083 16

  117 290.84 ± 6.72 64.78 0.81 36.516 0.000 40.250 15
  119 231.14 ± 6.59 50.62 0.77 38.998 4.310 48.412 22
  120 276.63 ± 9.00 61.37 1.08 50.417 8.596 74.129 26
  122 231.91 ± 5.81 50.80 0.68 38.043 4.734 37.637 18
  123 221.72 ± 6.55 48.43 0.76 40.747 2.831 49.034 23
  125 169.08 ± 3.29 36.39 0.37 13.650 11.799 3.969 3
  126 272.85 ± 5.81 60.46 0.69 29.630 24.865 17.269 8
  128 252.54 ± 4.98 55.64 0.59 16.655 37.405 7.473 4
  129 156.32 ± 3.22 33.52 0.36 21.734 4.032 7.403 6
  130 206.61 ± 4.42 44.93 0.51 33.808 22.324 11.769 7 15

A-1-355   205 30.82 ± 1.00 6.38 0.10 18.330 67.910 5.718 18
Col du Lac   206 38.08 ± 3.64 7.90 0.38 58.001 138.816 11.462 27
Gneiss   207 32.87 ± 0.88 6.81 0.09 15.744 85.272 2.104 7
Lat.: 45.017860°   209 27.30 ± 0.80 5.65 0.08 16.684 40.285 4.607 17
Lon.: 6.273540°   210 27.06 ± 0.99 5.60 0.10 16.173 83.580 5.847 20

  211 24.80 ± 0.76 5.13 0.08 15.227 32.113 3.441 14
  213 24.80 ± 0.57 5.13 0.06 13.758 26.275 2.476 11
  214 26.58 ± 1.41 5.50 0.15 30.685 83.420 4.539 17
  215 26.02 ± 0.65 5.38 0.07 16.349 154.835 2.906 11
  217 32.34 ± 1.05 6.70 0.11 16.960 124.361 7.162 21
  218 27.13 ± 0.91 5.61 0.09 17.432 244.419 5.225 18
  219 27.77 ± 1.05 5.74 0.11 19.465 251.880 6.967 23
  221 26.22 ± 0.66 5.42 0.07 15.212 51.173 2.493 10
  222 88.86 ± 8.58 18.70 0.93 22.432 121.326 71.317 52
  223 58.72 ± 2.12 12.25 0.22 22.361 24.720 14.784 25
  225 27.22 ± 0.88 5.63 0.09 15.473 93.917 5.594 20
  226 31.72 ± 1.11 6.57 0.12 19.244 109.244 6.726 20
  227 26.44 ± 2.01 5.47 0.21 18.452 89.430 16.213 42
  229 41.30 ± 1.63 8.58 0.17 15.750 79.334 11.810 27
  230 30.61 ± 1.13 6.34 0.12 19.183 111.046 5.922 19
  231 23.88 ± 1.64 4.93 0.17 16.507 58.995 13.359 40
  233 27.55 ± 1.44 5.70 0.15 10.904 120.782 9.622 29
  234 26.44 ± 4.85 5.47 0.50 16.482 272.598 41.140 64
  235 21.09 ± 4.19 4.36 0.44 23.129 37.242 36.304 67
  237 14.54 ± 9.58 3.00 0.99 31.718 0.581 83.039 86
  238 33.41 ± 2.36 6.92 0.25 22.418 113.398 18.933 41
  239 42.68 ± 2.22 8.87 0.23 15.109 82.208 16.743 33
  241 36.11 ± 2.27 7.49 0.24 19.655 164.103 18.251 38
  242 109.75 ± 7.11 23.23 0.78 27.052 135.090 49.364 38
  243 37.65 ± 2.33 7.81 0.24 24.920 87.031 18.521 38 30

A-4-74b   268 169.77 ± 3.55 36.31 0.40 27.306 43.850 13.453 10
Plan du Lac   269 52.47 ± 1.07 10.86 0.11 16.745 55.616 2.240 5
Gneiss   270 74.94 ± 2.66 15.61 0.28 19.667 1412.051 14.647 19
Lat.: 44.984930°   272 26.69 ± 0.60 5.48 0.06 12.978 52.107 1.561 7
Lon.: 6.125820°   273 24.76 ± 0.68 5.09 0.07 13.439 3.485 3.354 14

  274 24.29 ± 1.75 4.99 0.18 16.268 13.714 14.242 41
  277 105.95 ± 2.91 22.26 0.32 31.313 74.487 7.328 9
  278 186.61 ± 4.40 40.10 0.50 26.968 0.000 22.227 14
  279 158.63 ± 4.59 33.82 0.51 28.448 79.390 30.843 21
  281 207.10 ± 5.24 44.76 0.60 34.788 41.001 32.855 18
  282 132.95 ± 4.52 28.14 0.50 31.099 26.803 32.926 25
  283 76.73 ± 3.65 15.99 0.39 12.256 154.469 25.925 31
  285 126.70 ± 3.73 26.77 0.41 22.875 33.883 24.493 21
  286 43.97 ± 5.66 9.08 0.59 22.167 48.539 48.845 59
  287 57.14 ± 1.27 11.84 0.13 16.889 58.258 4.372 9
  289 105.53 ± 2.37 22.17 0.26 21.393 37.534 6.227 7
  290 131.78 ± 3.12 27.89 0.34 26.144 18.864 14.691 13
  291 111.61 ± 6.66 23.49 0.72 37.316 48.608 54.146 40
  293 40.96 ± 0.98 8.45 0.10 18.950 68.986 1.636 5
  294 36.84 ± 0.82 7.59 0.09 16.349 5.038 2.719 9
  295 54.01 ± 1.35 11.18 0.14 20.151 2.290 6.796 14
  297 32.65 ± 0.93 6.72 0.10 16.406 321.626 4.222 13
  298 36.43 ± 0.87 7.51 0.09 14.979 25.149 1.999 6
  299 32.17 ± 0.80 6.62 0.08 15.178 20.601 3.209 11
  301 40.05 ± 0.91 8.26 0.09 13.792 14.734 2.443 7
  302 32.71 ± 0.81 6.73 0.08 13.812 102.166 1.986 7
  303 38.28 ± 1.00 7.89 0.10 15.011 2.251 5.515 16
  305 46.66 ± 1.09 9.64 0.11 17.635 42.403 4.734 12
  306 47.53 ± 1.15 9.83 0.12 17.989 25.982 5.711 13
  307 59.65 ± 1.67 12.37 0.18 19.478 125.491 9.956 18
  309 25.22 ± 1.08 5.18 0.11 15.696 103.169 8.232 28
  310 43.87 ± 1.14 9.06 0.12 16.736 4.395 6.180 15
  311 86.77 ± 3.01 18.13 0.32 26.519 11.467 22.305 26
  313 45.26 ± 1.45 9.35 0.15 20.073 12.845 9.898 22
  314 34.80 ± 1.04 7.17 0.11 16.355 471.527 6.146 17
  315 73.72 ± 3.24 15.35 0.34 28.247 13.271 25.751 32



Page 52 of 66

Acc
ep

te
d 

M
an

us
cr

ip
t

Sample Lat. Lon. Shear zone Lithology n T σ T σ XFe3+σ RSCM σ
(°) (°) (or area)

A-2-2 45.16481 5.851862 Uriage Limestone 25 294 17 252 61 6 5 306 13
A-1-321 45.223812 6.138562 Bourg d'Oisans Shale 11 296 9 313 55 6 6 345 9
A-1-345(2) 45.00973 6.26403 Col du Lac Limestone 24 297 12 294 45 7 5 335 5
A-4-232 44.55958 6.47881 Embrun Black shale 13 288 13 269 51 5 5 308 5

A-4-114 45.08019 6.11031 Col de Cluy Chloritoschist 4 259 15 187 61 34 9
7 275 17 255 43 30 10

A-4-64 44.97745 6.15251 Plan du Lac Gneiss 8 267 8 255 26 29 4
3 256 16 267 11 34 3
4 261 7 250 32 31 7
5 262 16 250 8 32 4

A-4-28a 45.0173 6.270507 Col du Lac Gneiss 7 268 7 258 15 32 4
10 266 6 262 11 30 4

A-4-222c 45.01764 6.28244 Gneiss 2 265 4 271 10 42 3
2 262 2 263 9 46 0
4 269 1 283 4 38 1
1 266 268 - 40 -

A-1-355 45.01786 6.27354 Gneiss 17 255 8 267 13 56 5
5 239 18 263 9 62 3

A-1-345 45.02651 6.40438 Combeynot Orthogneiss 2 263 1 244 1 31 0

Table 2

B
as

em
en

t
C

ov
er

Cathelineau and Nieva [1985] Vidal et al. [2005, 2006] Beyssac et al. [2002]
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Sample Lat. Lon. Elev. Tectonic unit Stratigraphic age Lithology n R2/RA1 Tmax sd
(°) (°)  (m) ratio (°C) (°C)

A-1-001 45.004578 5.70136 560 Dauphinois Upper Lias Slate 14 0.70 329 8
A-1-004 44.87225 5.86169 948 Dauphinois Upper Lias Slate 25 0.58 258 7
A-1-007 45.069906 6.000484 806 Dauphinois Lower Lias Limestone 12 0.72 321 6
A-1-009 45.08103 6.04491 1513 Dauphinois Lower Lias Limestone 13 0.71 327 3
A-1-016 45.03812 6.131952 1257 Dauphinois Lower Dogger Slate 12 0.63 321 12
A-1-025 45.14811 6.31462 1516 Dauphinois Upper Lias Slate 12 0.69 335 6
A-1-029 45.032105 6.381495 1952 Dauphinois Middle Dogger Limestone 12 0.69 335 2
A-1-030 45.038448 6.398698 2128 Dauphinois Lower Lias Limestone 11 0.69 333 4
A-1-32 45.042092 6.388473 2215 Dauphinois Priabonian Flysch 15 0.61 298 4
A-1-37 45.291423 6.324367 1485 Dauphinois Upper Lias Slate 12 0.69 333 2
A-1-171 45.226435 6.190374 2119 Dauphinois Lower Lias Limestone 12 0.71 327 5
A-1-208 45.062326 6.126121 1761 Dauphinois Lower Lias Limestone 11 0.63 319 8
A-1-224 45.049632 6.102744 1166 Dauphinois Lower Lias Limestone 11 0.70 330 5
A-1-225 45.037 5.97841 1120 Dauphinois Lower Lias Limestone 10 0.70 331 3
A-1-318 44.984199 6.123207 982 Dauphinois Upper Lias Slate 14 0.69 333 9
A-1-320 45.127996 6.045468 801 Dauphinois Upper Lias Slate 12 0.69 336 9
A-1-321 45.223812 6.138562 1770 Dauphinois Upper Lias Slate 11 0.67 345 9
A-1-322b 45.21556 6.213118 1794 Dauphinois Upper Lias Slate 12 0.70 329 3
A-1-323 45.215115 6.252217 1461 Dauphinois Upper Lias Slate 12 0.69 336 8
A-1-324 45.192802 6.290928 1271 Dauphinois Lower Lias Limestone 12 0.69 332 3
A-1-326 45.200339 6.336937 1502 Dauphinois Lower Dogger Slate 11 0.63 322 10
A-1-327 45.218918 6.305905 1290 Dauphinois Upper Lias Slate 11 0.66 347 4
A-1-328 45.227265 6.303567 1240 Dauphinois Lower Lias Limestone 11 0.69 336 5
A-1-329 45.249661 6.28425 1286 Dauphinois Lower Dogger Slate 8 0.69 334 5
A-1-330 45.2608 6.367982 776 Dauphinois Lower Dogger Slate 12 0.66 347 6
A-1-331 45.291702 6.23121 1107 Dauphinois Upper Lias Slate 12 0.69 332 12
A-1-332 45.045302 6.313245 1464 Dauphinois Upper Lias Slate 12 0.69 332 8
A-1-333 45.040348 6.30609 1592 Dauphinois Lower Dogger Slate 12 0.71 326 4
A-1-334 45.039006 6.304639 1587 Dauphinois Lower Dogger Slate 11 0.70 328 4
A-1-337 45.052165 6.288855 1806 Dauphinois Lower Dogger Slate 13 0.70 330 4
A-1-342 45.076795 6.338908 2119 Dauphinois Middle Dogger Limestone 11 0.64 326 4
A-1-345(2) 45.00973 6.26403 3193 Dauphinois Upper Lias Slate 12 0.69 335 5
A-2-002 45.16481 5.851862 813 Dauphinois Lower Dogger Slate 12 0.62 306 13
A-2-003 45.162054 5.81894 393 Dauphinois Middle Dogger Limestone 10 0.62 306 6
A-3-019 44.526656 6.726225 1690 Embrunais-Ubaye Cretaceous Helm. Flysch 12 0.59 262 6
A-4-005 45.052408 6.390277 2355 Dauphinois Priabonian Flysch 12 0.61 296 9
A-4-006 45.05279 6.40051 2379 Dauphinois Priabonian Flysch 12 0.61 288 6
A-4-010 45.06035 6.4223 2758 Tête Noire Cretaceous Helm. Flysch 12 0.59 265 8
A-4-011 45.06062 6.42282 2772 Tête Noire Cretaceous Helm. Flysch 11 0.58 261 9
A-4-014 45.063536 6.412644 2670 Subbriançonnais Eocene Flysch 12 0.59 267 6
A-4-039c1 45.04773 6.13796 1072 Grandes Rousses Carboniferous Sandstone 15 0.63 319 7
A-4-042 45.044332 6.15657 1064 Dauphinois Lower Dogger Slate 15 0.69 335 14
A-4-044 45.042854 6.168657 1462 Dauphinois Lower Dogger Slate 12 0.70 329 5
A-4-055 45.0421 6.35506 1770 Dauphinois Lower Dogger Slate 12 0.69 335 3
A-4-057 45.016852 6.039292 1509 Dauphinois Lower Lias Limestone 12 0.69 334 2
A-4-121 44.95072 5.96606 978 Dauphinois Lower Lias Limestone 10 0.64 326 7
A-4-122 44.89179 5.8778 695 Dauphinois Lower Lias Limestone 12 0.61 298 10
A-4-123 44.87871 5.7535 793 Dauphinois Lower Dogger Slate 12 0.60 279 9
A-4-124 44.87459 5.71011 667 Dauphinois Lower Lias Limestone 14 0.64 334 6
A-4-126 44.96182 5.81198 1181 Dauphinois Upper Lias Slate 11 0.63 314 8
A-4-140 45.33314 6.33442 1137 Dauphinois Upper Lias Slate 11 0.70 331 3
A-4-196 44.789297 6.45698 1671 Dauphinois Priabonian Flysch 11 0.64 330 5
A-4-197 45.03796 5.7054 403 Dauphinois Upper Lias Slate 12 0.69 334 4
A-4-198 45.04444 5.69423 309 Dauphinois Middle Dogger Limestone 11 0.64 325 6
A-4-199 45.04834 5.68057 340 Dauphinois Middle Dogger Limestone 12 0.61 296 5
A-4-200 45.01018 5.63507 499 Subalpine chain Lower Malm Marls 12 0.54 208 9
A-4-201 45.00197 5.62223 741 Subalpine chain Lower Malm Marls 14 < 200
A-4-223 45.013605 6.283496 2509 Dauphinois Lower Lias Limestone 11 0.68 338 4
A-4-231 44.63593 6.56532 912 Subbriançonnais Eocene Flysch 16 0.62 302 10
A-4-232 44.55958 6.47881 883 Vocontian domain Dogger/Malm Black Shale 13 0.62 308 5
A-4-233 44.58166 6.39937 1211 Vocontian domain Dogger/Malm Black Shale 11 0.59 271 11
A-4-235 44.5549 6.34229 1246 Vocontian domain Dogger/Malm Black Shale 11 0.58 253 10
A-4-236 44.714333 6.156877 1667 Dauphinois Upper Lias Slate 11 0.56 228 8
A-4-238 44.713257 6.167974 1960 Dauphinois Upper Lias Slate 12 0.54 202 4
A-4-239b 44.714389 6.168411 1982 Dauphinois Priabonian Flysch 13 < 200
A-4-242 45.027604 6.312056 2228 Dauphinois Lower Lias Limestone 10 0.64 333 8
A-4-244 44.83378 5.93966 1002 Dauphinois Upper Lias Slate 11 0.57 237 7
A-4-247 44.844446 6.127314 2055 Dauphinois Lower Lias Limestone 12 0.69 334 2
A-5-1 44.867686 5.61239 847 Subalpine chain Lower Malm Marls 13 0.54 204 14
A-5-2 44.92326 5.63483 829 Dauphinois Middle Dogger Limestone 11 0.61 288 7
A-5-3 44.95121 5.60154 788 Subalpine chain Upper Dogger Marls 11 < 200
A-5-4 44.9613 5.58629 701 Subalpine chain Lower Malm Marls 12 < 200
A-5-5 44.92913 5.63472 819 Dauphinois Middle Dogger Limestone 11 0.60 286 5
A-5-6 44.9058 5.6258 902 Subalpine chain Upper Dogger Marls 15 0.56 227 23
A-4-154 45.25002 6.78357 1438 Subbriançonnais Lias Limestone 12 0.51 412 5
A-4-228 44.814212 6.567413 1147 Dent Parraché Malm Limestone 12 0.61 291 6

Table 1
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