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Abstract The origin of seismic anisotropy inmantle wedges remains elusive. Here we provide documentation

of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed

mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case

exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and

enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs

(maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs.

However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800–1000°C)

and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in

contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda

peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic

anisotropy.

1. Introduction

Elastic waves stem from the energy released during earthquakes, and they propagate through the Earth’s

interior at velocities that are directionally dependent on the state and properties of the surrounding rocks.

In particular, upon entering an anisotropic medium, the elastic shear wave splits into two orthogonally

polarized waves, consisting of fast (Vs1) and slow (Vs2) velocity components. At seismic stations, the

geometry and magnitude of shear wave splitting are, respectively, recorded as the polarization direction of

the fast shear wave (fast direction) and the time difference between the arrival of the fast and slow

shear components (delay time). The delay time depends on both the degree of shear wave anisotropy

(AVs= 200(Vs1�Vs2)/(Vs1 + Vs2)) and thickness of the anisotropic layer [Silver et al., 1999]. Measurement of

shear wave splitting is a crucial diagnostic tool to interpret structures and flow dynamics in the out-of-reach

mantle.

In most subduction zones, shear waves exhibit a general trend of fast directions that are polarized parallel

to the trench in the fore-arc region and normal to the trench in the back-arc region. In contrast, delay times

vary considerably from one subduction zone to another, ranging in average from 0.3 s in Japan or Sumatra

to greater than 1 s in the Aleutians or Tonga [Long and Silver, 2008]. In the case of the low-delay-time

subduction zone along Japan, S wave splitting has been attributed to the olivine fabric—or lattice-preferred

orientation (LPO)—in the mantle wedge [Nakajima and Hasegawa, 2004; Karato et al., 2008], where

trench-parallel and trench-normal fast directions would likely be due to, respectively, flow-normal [100]

axis LPO in the cold wedge (B-type fabric [Mizukami et al., 2004]) and flow-parallel [100] axis LPO in the

inner, hotter wedge (A-, E-, or C-type fabrics). However, from the mantle wedge geometry and seismic

raypath azimuths in high-delay-time subduction zones, it can be inferred that B-type fabric requires

approximately 9% AVs to account for the recorded delay times [Kneller et al., 2008]; this value has been

recently lowered to 8% based on detailed observations and modeling of the Ryukyu subduction system

[McCormack et al., 2013]. Previous measurements of olivine seismic anisotropy in laboratory and nature

[Jung and Karato, 2001; Skemer et al., 2006; Tasaka et al., 2008] indicated that Swave anisotropy accounts for

<7% for B-type fabric. As a consequence, although suitable to account for the geometry of fast directions

in subduction zones, the strain-induced olivine fabric has been discarded in favor of other hypotheses

[Behn et al., 2007; Long and Silver, 2008; Faccenda et al., 2008; Katayama et al., 2009]. Here we provide a

natural equivalent of mantle wedge deformation, where the olivine fabric itself can explain the observed

shear wave splitting in subduction zones.
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2. The Ronda Mantle Shear Zone

The Ronda massif belongs to the internal domain of the Betic Cordillera in southern Spain (Figure 1). It

encompasses several lenses of subcontinental peridotites that were exhumed from the mantle wedge of

the African subduction zone during the Cenozoic [Van der Wal and Vissers, 1993; Garrido et al., 2011]. As

remnants of exhumation, several structural domains occur in the northwestern Ronda peridotite, which

comprises (1) a 500m thick mantle mylonite underlying a paleocontinental crust [Balanyá et al., 1997] and

(2) a plurikilometer thick tectonite overlying an asthenospherized mantle section [Van der Wal and Vissers,

1996; Vauchez and Garrido, 2001]. These two structural domains are mostly composed of spinel-bearing

peridotites and make up a kilometer-scale shear zone of lithospheric mantle coeval with a temperature

gradient ranging from 1280°C (athenospherized section) to ~1000°C in the tectonite and then to ~850°C in

the mylonite (Figure 1) [Van der Wal and Vissers, 1993; Lenoir et al., 2001]. The high-strain deformation in the

mylonite originates from subcrustal viscous strain localization during back-arc continental extension

[Précigout et al., 2007; Garrido et al., 2011; Précigout et al., 2013].

3. Olivine Fabric

Recently, the Ronda peridotite has been the subject of a detailed documentation of olivine LPO across the

mantle shear zone, describing a progressive transition from A-type fabric in the tectonite to B-type fabric in

the uppermost mylonite beneath the overlying crust (Figure 2a) [Précigout and Hirth, 2014]. Indeed, in the

tectonite, the olivine LPOdevelops A-type fabricwith the [100]a axis in the lineation, the [010]b axis normal to

the foliation, and the [001]c axis normal to the lineation in the foliation plane [Jung and Karato, 2001].

However, whereas the b axis remains unchanged in the uppermostmylonite, the a and c axes rotate 90° with

respect to the foliation pole, giving rise to a B-type fabric with the c axis parallel to the lineation (Figure 2b)

[Mizukami et al., 2004]. The B-type fabric progressively overprints the A-type fabric over a section that is

greater than 300m thickwithin themylonite, where LPOs develop a girdled pattern for both the a and c axes

(A/B-type fabric) (Figure 2b) [Précigout and Hirth, 2014]. This A-type/B-type fabric transition occurs with

Figure 1. Maps and cross section of the Ronda massif and its northwestern structural domains, including a kilometer-scale
shear zone of lithospheric mantle between an overlying paleocontinental crust and underlying asthenospherized mantle
[Van der Wal and Vissers, 1993, 1996; Vauchez and Garrido, 2001; Lenoir et al., 2001]. The shear zone encompasses a domain
of high-strain deformation that strengthens toward the peridotite/crust contact (mylonite) and its weakly deformed
protolith (tectonite).
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increasing strain and decreasing temperature, and it results from changing olivine deformationmechanism

fromdominant dislocation creep in the tectonite to dominant grain boundary sliding (GBS) in the uppermost

mylonite. Such a transition, in terms of mineral fabric and deformation mechanism, is expected to occur in

the mantle wedge from the inner, high-temperature core to the outer, low-temperature rim beneath the

overriding plate or above the subducting slab [Kneller et al., 2008, and references therein]. The Ronda

peridotite therefore provides a unique opportunity to investigate the relationships between olivine fabrics

and shear wave splitting in the mantle wedge of subduction zones.

4. Shear Wave Splitting

In Figure 2b, we show the calculated shear wave anisotropy for A-, A/B-, and B-type fabrics with respect to the

structural directions x (lineation) and z (foliation pole) (refer to the supporting information for further data).

For both A-type and B-type fabrics, maximum AVs lies in the foliation plane but normal to the lineation for

A-type fabric and parallel to lineation for B-type fabric. At high angle to foliation, A- and B-type fabrics

Figure 2. (a) Cross section of the Ronda shear zone (location in Figure 1) and location of the samples (squares). (b) Olivine lattice-preferred orientation (LPO) and
shear wave anisotropy (AVs) with fast directions for three selected samples of peridotite across the shear zone (red squares), respectively, for the A-, A/B-, and
B-type fabric domains. The LPO and AVs for the rest of the samples (white squares) are shown in Précigout and Hirth [2014] and in the supporting information,
respectively. We calculated both AVs from olivine LPO only and from olivine + pyroxene LPOs based on modal compositions (pyroxene LPOs and modal contents are
available in Précigout and Hirth [2014]). The LPOs and shear wave anisotropies are plotted in lower hemisphere equal-area pole figures with respect to the structural
orientations x (lineation), y (normal to lineation in the foliation plane), and z (foliation pole). The LPOs have been collected using electron backscatter diffraction
analyses on thin section considering one measurement per grain [see Précigout and Hirth, 2014]. They are shown for the three orthorhombic axes (100, 010, and 001)
with isocontours and grey shading that represent multiples of uniform distribution. The shear wave anisotropies were calculated using the CareWare software of
Mainprice [1990] available at http://www.gm.univ-montp2.fr/PERSO/mainprice/W_data/CareWare_Unicef_Programs/. The AVs pole figures show the difference of
shear wave velocity (color shading in percent) between slow and fast components (AVs = 200(Vs1� Vs2)/(Vs1 + Vs2)). Whereas A-type and B-type fabrics develop one
maximum of shear wave anisotropy, respectively, normal and parallel to the lineation, the A/B-type fabric generates a girdled pattern with high AVs in the foliation
plane. (c) Distribution of maximum shear wave anisotropy for olivine across the Ronda shear zone. Each sample is plotted with respect to its distance from the
peridotite/crust contact [see Précigout and Hirth, 2014] and considering a 20° solid angle around the lineation (x AVs). We assume a solid angle of 20° to account for
the obliquities induced by simple shear deformation and the natural variability of fabric pattern. The red dots are the selected samples shown in Figures 2a and 2b.
The highest anisotropy (AVs = 8–9%) occurs in the A/B-type fabric domain.
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develop orthogonally polarized fast directions with respect to each other (white lines in Figure 2b). This effect

has been proposed to account for the pattern of orthogonal fast directions observed across the volcanic arc

of NE Japan [Nakajima and Hasegawa, 2004]. Between the A- and B-type fabrics, the A/B-type fabric develops

high AVs through the whole foliation plane with maxima located roughly at 45° to lineation. Unlike the

patterns of S wave anisotropy for A- and B-type fabrics, this transitional pattern implies a high shear wave

splitting in the lineation direction, i.e., in the direction of the flow. To emphasize this, we show in Figure 2c the

development of the maximum AVs across the shear zone around the lineation, i.e., within a solid angle of 20°

to account for both the obliquity induced by simple shear deformation between the foliation plane and

the olivine (010) plane and the natural variability in LPO pattern. We considered in this graph the AVs for

olivine only. From the tectonite to upper mylonite, the maximum AVs along the x axis (x AVs) varies from ~5%

to >8%, with the highest anisotropy forming a plateau in the region of A/B-type fabric. Both A- and B-type

fabric domains show maximum x AVs lower than 6%. Concerning the effect of pyroxenes for shear wave

splitting in Ronda (pyroxene LPOs andmodal compositions are available in Précigout and Hirth [2014]), it does

not change the AVs pattern, but it decreases the anisotropy for all of the fabric types, especially because the

pyroxenes show a very weak fabric across the Ronda shear zone (Figure 2b) [Précigout and Hirth, 2014].

5. Discussion

The occurrence of “A-type to B-type” fabric transition with decreasing temperature across the Ronda shear

zone indicates that such a fabric transition occurs in the mantle wedge of the subduction zone. The

maximum temperature for the occurrence of B-type fabric has been estimated around 800°C based on

experimental and numerical data sets [Katayama and Karato, 2006; Kneller et al., 2008]. B-type olivine fabric has

beenmoreover reported from several peridotitemassifs in subduction setting [Mizukami et al., 2004; Skemer et al.,

2006]. In Ronda, the presence of B-type fabric in the uppermost/coldest part of the shear zone supports these

features; syntectonic temperature has been documented around 850°C in the center mylonite [Van der Wal and

Vissers, 1993]. Thus, the B-type fabric type cannot be ignored in the low-temperature mantle wedge of the

subduction zones. However, as already documented for experimentally and naturally deformed olivine, we

confirm that B-type fabric is weakly anisotropic (3–6%), and hence, it cannot account for shear wave splitting in

high-delay-time subduction zones where a minimum of 8% AVs is required [Kneller et al., 2008;McCormack et al.,

2013]. As an alternative, we highlight transitional A/B-type fabric for which olivine shear wave anisotropy can

achievemore than 9%AVswith amean AVs around 8% (Figure 2). Although the presence of pyroxenesmay yield

lowerAVs, this fabric typehasbeendocumented in subduction xenolithswithmore than8%AVs consideringboth

olivine and pyroxenes (Petit-Spots Volcanoes) [Hiragane et al., 2011]. Hiragane et al. [2011] moreover estimated

temperature conditions forA/B-type samplesbetween800and1100°Cbasedonpetrological features, supporting

the occurrence of high-AVs, A/B-type fabric at intermediate temperature of the lithospheric mantle. The A/B-type

fabric thus provides a very good candidate to account for shear wave splitting in the subduction zones.

In Figure 3, we compare our natural data set from Ronda with the predicted thermal and deformational

structures of the Ryukyu and Honshu subduction wedges, as well as to the S wave raypaths calculated from

seismic stations in these two regions. We have chosen as examples both Ryukyu and Honshu because (1) they

are “ideal” cases of subduction zone as they show trench-normal plate convergence and close to constant

slab dip; (2) they record significant differences in average delay times, ~0.1–0.2 s in Honshu and ~1–2 s in

Ryukyu [Katayama et al., 2009, and references therein]; and (3) large seismic shear wave data sets are

available for both of them [Peacock and Wang, 1999; Nakajima and Hasegawa, 2004; Long and Van der Hilst,

2006; Kneller et al., 2005, 2008]. Following the modeled foliation tracks and considering A/B-type fabric as

dominant between the isotherms 800 and 1000°C (1000°C represents a minimum value for the upper bound),

we find that raypaths are tangent to the foliation throughout a major portion of the mantle wedge where

A/B-type fabric occurs, i.e., in conditions that imply around 8% shear wave anisotropy (Figure 3a). At lower

temperature, the seismic raypaths also crosscut a significant part of B-type fabric, but because of lower

foliation dip, the shear wave anisotropy reduces to around 4% (Figure 3a). We then provide estimations of

the delay times arising from the olivine fabric for different depths of earthquakes and considering the

LPO-induced AVs all along the raypaths. The delay times were calculated for both “olivine only” and “olivine

+pyroxenes” samples, addressing two cases of raypaths: the first one with raypaths parallel to the mantle

flow, i.e., normal to the trench, and a second one at 30° of the flow direction in the mantle wedge (Figure 3).

While seismic raypaths from deep earthquakes indicate more than 2 s of delay times, the ones from shallower

Geophysical Research Letters 10.1002/2014GL062547
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earthquakes that only go through the B-type fabric domain show delay times around 0.5 s. This range of delay

times is typical of the Ryukyu subduction system [Long and Van der Hilst, 2006; Katayama et al., 2009].

The expected position of olivine LPOs in the mantle wedge—based on the foliation tracks—moreover

involves trench-parallel fast splitting direction for all of the raypaths involved. Our calculations indicate

nonetheless that 8% AVs is required to achieve delay times of 2 s, as recently concluded [McCormack et al.,

2013]. Considering the additional effect of pyroxenes, AVs is lower than 8%, and the predicted delay times are

far below 2 s for the longest raypaths, even for oblique raypaths at 30° (Figure 3a).

In contrast to Ryukyu, the seismic stations in the Honshu peninsula have recorded very small delay times,

ranging from 0 to 0.6 s [Nakajima and Hasegawa, 2004]. In this subduction system, the slab dips at around

30°—instead of 50° in the case of Ryukyu—and hence, most of the raypaths are significantly oblique to the

foliation (Figure 3b). As a consequence, the LPO patterns from Ronda involve significantly lower shear wave

anisotropy for A-, A/B-, and B-type fabric domains. Furthermore, our calculations for Honshu predict that

delay times mostly originate from A- and B-type fabrics; the contribution from the A/B-type fabric is minor

(Figure 3b). This feature implies very low delay times—especially for oblique raypaths in the B-type fabric

domain—and trench-parallel fast directions for shallow earthquakes, whose seismic raypaths are recorded in

the fore-arc region. In contrast, we predict trench-normal fast directions and high delay times for deeper

earthquakes recorded in the back-arc region (>>0.5 s) (Figure 3b). These back-arc delay times do no match

the ones documented in Honshu, even if we consider the effect of pyroxenes, and thus we probably

overestimate the shear wave anisotropy that arises from the back-arc mantle. The presence of a strain

gradient in the mantle wedge may account for this discrepancy. Indeed, while we expect very high strain

Figure 3. Application of the Ronda-based olivine fabric to shear wave anisotropy in the Ryukyu and Honshu subduction wedges. (a) Cross section of the subduction
wedge in Ryukyu, including the isotherms, foliation tracks, and seismic raypaths [Long and Van der Hilst, 2006; Kneller et al., 2008]. Using the AVs patterns from Ronda
and considering transitional A/B-type olivine fabric between the isotherms 800 and 1000°C because of changing deformation mechanisms from dominant GBS to
dislocation creep, we estimate the delay times for the five cases of seismic raypaths that originate from different depths (bar graph). For each depth, we consider one
raypath normal to the trench and a second one at 30° obliquity of the slab dip (3-D sketch and grey bars). For the trench-normal raypaths, we show how each fabric type
contributes to the delay time (color coding). Delay times are also shown considering both olivine LPO only and olivine + pyroxene (Px) LPOs. Whereas low delay
times arise from B-type fabric, high delay times are mostly due to A/B-type fabric. In both cases, these natural AVs involve trench-parallel fast directions with delay times
ranging between 0.5 and 2 s, as observed in Ryukyu (see text). (b) Cross section and delay time estimations (bar graph) for the Honshu subduction system. Temperature
isotherms and seismic raypaths are from Kneller et al. [2005] and Nakajima and Hasegawa [2004], respectively. The foliation tracks are predicted based on the study
of Kneller et al. [2008]. In this case, only A- and B-type fabrics significantly contribute to the delay times, which range from<0.1 to 1.5 s. The high obliquity between the
raypaths and foliation tracks also involves a switch from trench-parallel to trench-normal fast directions, as shown in Honshu [Nakajima and Hasegawa, 2004]. However,
although olivine AVs accounts for the delay times recorded in Honshu, delay times are generally overestimated in the back-arc regions.
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deformation in the supraslab mantle wedge, strain should significantly decrease away from the slab beneath

the overriding plate. Experimental and numerical data have shown that because of dislocation creep, higher

finite strain increases the degree of mineral alignment—or fabric strength [Tommasi et al., 2000; Bystricky

et al., 2000; Hansen et al., 2014]—which is the first-order parameter that controls shear wave anisotropy

[Mainprice, 1990]. Thus, in regions dominated by dislocation creep (A- and A/B-type fabrics), such a strain

gradient may have a direct impact on shear wave anisotropy, which would be higher in the supraslab mantle

(Figure 3b). Echoing the conclusions of Katayama [2009] and Hacker and Abers [2012], we therefore suggest

that most of the seismic anisotropy occurs in the supraslab mantle wedge because of strain-induced fabric

anisotropy in Honshu and more probably Ryukyu as well.

Recent modeling of a seismic data set suggests that an ~1 km thick layer with 8% AVs occurs above the

subducting slab in Ryukyu [McCormack et al., 2013]. This layer is considered to be sandwiched between an

underlying supraslab layer with 10% AVs and an overlying wedge with 4% AVs. In the case of both domains of

8% and 4% AVs, our documentation confirms the relevance of the transitional A/B-type fabric to account

for the seismic anisotropy of the Ryukyu subduction wedge (Figure 3a). However, the Ronda transitional

fabric does not match the thin layer of 10% AVs immediately above the subducting slab. Previous studies

have proposed the occurrence of serpentinite layers above the subducting slab, which would be highly

anisotropic (i.e., ≥10% AVs) [Katayama et al., 2009; McCormack et al., 2013], but an inherent problem with this

explanation arises because temperatures at the intersection between the seismic raypaths and supraslab

mantle are always higher than the breakdown temperature for serpentine (~700°C) [Ulmer and Trommsdorff,

1995; Peacock, 2001]. As concluded by Kneller et al. [2008], it is therefore unlikely that serpentine would be

responsible for this high-AVs layer. As an alternative, we propose that A/B-type fabric can account for this

feature considering higher finite strain above the subducting slab. In contrast to B-type fabric, which results

from dominant GBS-controlled creep, i.e., diffusion creep [Sundberg and Cooper, 2008] or disGBS [Précigout

et al., 2007], A/B-type fabric results from a significant component of dislocation creep [Précigout and Hirth,

2014], and hence, we might expect stronger LPO because of higher finite strain in close proximity to the

subducting slab. As a consequence, the seismic anisotropy for A/B-type fabric would be higher, potentially

accounting for the 10% AVs deduced from seismic models [McCormack et al., 2013]. The presence of such a

high fabric anisotropy, i.e., strong LPO, above the subducting slab has also been recently proposed based on

seismic features in Alaska [Hacker and Abers, 2012].

In part due to the paucity of data regarding natural olivine fabric at low mantle temperatures (<900°C), some

recent studies have deemphasized olivine fabrics as source of high anisotropy in subduction zones [Long and

Silver, 2008; Katayama et al., 2009]. Based on detailed documentation in the Ronda peridotite, and considering

isotherms geometry and foliation tracks in the mantle wedges of the Ryukyu and Honshu subduction

systems, we show that olivine LPOs can account for shear wave anisotropy because of transitional A/B-type

olivine fabric between the 800 and 1000°C isotherms. Our findings provide a natural analogue ofmantle wedge

deformation and support the occurrence of an olivine fabric transition across the mantle wedge [Karato et al.,

2008; Kneller et al., 2008; Abt et al., 2009; McCormack et al., 2013]. Nevertheless, both Ryukyu and Honshu

represent ideal cases of subduction system, as they show trench-normal plate convergence and constant slab

dip. These two features can significantly change depending on the subduction system [Lallemand et al., 2005;

Long and Silver, 2008], and hence, there is not a straightforward relationship between the olivine LPO and

shear wave splitting in the mantle wedge. We stress therefore that the thermal state of the mantle wedge,

geometry of the subduction zone, and intensity of deformation need to be considered in future studies to

properly account for the mantle LPO for shear wave splitting in subduction wedges.
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