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Abstract22

This study investigates the tectono-metamorphic history and exhumation mechanisms of the mid-23

crustal Mékinac-Taureau domain of the Mauricie area, central Grenville Province. Macro- and micro-24

structural analyses reveal the top-down-to-the-ESE sense of shear on the eastern Taureau shear zone, a 25

major extensional structure that exhumed the mid-crustal Mékinac-Taureau domain and juxtaposed it 26

against the lower grade rocks of the Shawinigan domain. Peak metamorphism in the Mékinac-Taureau 27

domain, inferred to be the result of northwestward thrusting and regional crustal thickening, took place 28

under P-T conditions of 1000-1100 MPa and 820-880 °C prior to 1082 ± 20 Ma. Retrograde conditions 29

varying from 775 to 675 °C and from 800 to 650 MPa were registered in its upper structural levels prior 30

to and/or during shearing along the the eastern Taureau shear zone that was active at 1064 ± 15 Ma. 31

The Shawinigan domain records P-T conditions ranging from 850 to 625 MPa and from 775 to 700 °C, P-T 32

values that are similar to or slightly lower than those for retrogressed samples from the upper structural 33

levels of the Mékinac-Taureau domain, but clearly lower than the peak metamorphism values of the 34

latter domain. Finally, the area cooled below 550-600 °C at ~1000-1030 Ma and below 450 °C at ~900-35

970 Ma on the basis of 40Ar/39Ar geochronology on amphibole and biotite. Structural and metamorphic 36

characteristics of the Mauricie area are similar to those expected from a metamorphic core complex 37

formed during post-convergence orogenic collapse in a gravity-driven fixed-boundary mode. The 38

Mékinac-Taureau and Shawinigan domains were thus probably exhumed by a similar process, which 39

supports the orogenic collapse model recently proposed to explain the exhumation of mid-crustal 40

metamorphic core complexes in the Grenville Province. 41

Keywords: Grenville Province; Eastern Taureau shear zone; Middle crust exhumation; 42
Geochronology; Thermobarometry43

44
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44

1. Introduction45

 In collisional orogens, the mechanisms by which high-grade metamorphic rocks are exhumed (i.e. 46

displaced towards Earth’s surface; England and Molnar, 1990) by mechanisms are central to many 47

debates (e.g. Gapais et al., 2009; Gervais and Brown, 2011; Ring et al., 1999). For instance, mid-crustal 48

units can be exhumed by syn-convergent channel flow coupled to focused erosion (e.g. Beaumont et al., 49

2001, 2006), by post-convergent orogenic collapse (e.g. Dewey, 1988; Rey et al., 2001) and associated 50

metamorphic core complexes (MCC) development (e.g. Brun et al., 1994; Rey et al., 2009; Tirel, 2004; 51

Tirel et al., 2004, 2006, 2008), by diapirism (e.g. Calvert et al., 1999; Teyssier and Whitney, 2002), and in 52

orogenic wedges whose shape is described by the critical taper theory (e.g. Dahlen, 1990; Platt, 1986). 53

These mechanisms have all been proposed to explain the exhumation of mid-crustal units during 54

the late Mesoproterozoic to early Neoproterozoic Grenvillian orogeny. The Grenville Province 55

represents the southeastern boundary of Proterozoic Laurentia and the Grenvillian orogeny is 56

characterized by a >100 m.y. period of heating and crustal thickening that affected a wide area of 57

reworked Laurentian orogenic crust (>600 km; Hynes and Rivers, 2010; Rivers, 2008, 2009, 2012; Rivers 58

et al. 2012). Recent work demonstrated that the orogenic crust can be subdivided into lower, mid and 59

upper crustal segments (Rivers, 2008, 2012 and references therein), contrasting with the long-lasting 60

interpretation of this province as a homogeneous slice through the mid-crust, and thus promoting 61

research on orogenic collapse mechanisms. Following the idea of Dewey (1988), Rivers (2008) suggested 62

the presence of a Tibetan-type orogenic plateau in the hinterland of the orogeny that resulted from 63

thickening of the continental crust. In such a setting, the mid-crust is typically weakened by partial 64

melting at depth (Rosenberg and Handy, 2005) and may flow laterally (Rey et al., 2001; Royden, 1996; 65

Vanderhaeghe et al., 2003). The importance of ductile flow in the mid-crust of the Grenville orogen was 66

assessed recently (Jamieson et al., 2007, 2010; Rivers, 2008, 2009), and a heterogeneous channel flow 67

model, in which the weak ductile layer is thrust above a strong indentor, was proposed (Jamieson et al., 68

2007, 2010). A complementary model of exhumation (Rivers, 2008, 2012) presents the Grenville 69

Province as a series of high-grade mid-crustal core complexes overlaid by fragments of the upper crust 70

resulting from the collapse of the orogenic plateau, following crustal thickening and mid-crustal flow. 71

Multiple regions of the Grenville Province that exhibit normal-sense faults and shear zones juxtaposing 72
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the potential mid-crustal core complexes with upper crustal segments were recognized by Rivers (2008, 73

2009, 2012). These regions include large parts of the northeastern Grenville Province, the southeastern 74

Composite Arc Belt, the northwestern Frontenac-Adirondack Belt and smaller areas such as the 75

Natashquan domain and the Mauricie area (Fig. 1). Finally, in a few specific localities in the eastern 76

Grenville Province, diapirism has been proposed to explain the exhumation of high grade gneiss domes 77

(e.g. Gervais et al., 2004), and the orogenic wedge model has been invoked to explain the formation and 78

exhumation of a mid-crustal foreland fold-thrust belt (van Gool et al., 2008).79

This contribution presents new data from the Mauricie area to further investigate the exhumation 80

of a mid-crustal high-grade gneiss dome known as the Mékinac-Taureau domain (Nadeau and 81

Brouillette, 1994, 1995). Detailed macro- and micro-structural analyses reveal the kinematic history of 82

the eastern Taureau shear zone (TSZ), a major regional structure responsible for the exhumation of the 83

Mékinac-Taureau domain. Thermobarometry was applied to six selected samples in order to evaluate 84

the peak pressure and temperature (P-T) conditions and the retrograde path of the Mékinac-Taureau 85

and overlying Shawinigan domains. Both the timing of peak metamorphism and exhumation were 86

constrained by U-Pb geochronology on zircon from two pegmatite dykes. 40Ar/39Ar thermochronology on 87

amphibole and biotite separates from six samples was undertaken to provide precise timing constraints 88

for the cooling of this area through the closure temperatures of these minerals. These structural, 89

thermobarometric and geochronologic constraints were then compared with equivalent data 90

determined from type localities in well-known orogenic belts or predicted by analog/numerical 91

modeling of different exhumation processes to constrain the most likely process for the Mauricie area. 92

2. Geological setting93

The Grenville Province comprises rocks of southeastern Laurentia that were affected by multiple 94

orogenic events from late Paleoproterozoic until early Neoproterozoic (Hynes and Rivers, 2010; Rivers, 95

1997; Rivers et al. 2012). The Grenvillian orogeny is the youngest of these and can be separated into two 96

main phases according to their age and spatial extent (Rivers, 1997, 2008; Rivers et al. 2012). The 97

Ottawan phase affected the hinterland of the Grenville Province during a first pulse of compression from 98

1090 to 1020 Ma. The rocks affected by this orogenic phase are far-travelled with respect to the 99

Laurentian margin and are referred to as allochthonous belts. This contrasts with the structurally 100

underlying parautochthonous belt, located to the northwest, which comprises rocks of the Laurentian 101
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margin that can be correlated with the Grenvillian foreland in the adjacent Archean and Proterozoic 102

Superior provinces. The latter belt was deformed and metamorphosed during a second phase of 103

compression, known as the Rigolet, between 1000 and 980 Ma. Rivers (2008, 2012) subdivided the 104

allochthonous hinterland affected by the Ottawan orogeny into four belts according to their relative 105

positions in the crust (Fig. 1). From base to top, (1) the allochthonous high-pressure belt (aHP Belt) 106

comprises nappes of relict eclogitic material overprinted by granulite-facies metamorphism. The aHP 107

belt is directly underlain by the Allochthon Boundary Thrust in two areas of the western and central 108

Grenville Province. The aHP belt represents remnants of the base of the doubly-thickened orogenic crust 109

that have been incorporated into the mid crust during their exhumation. (2) The allochthonous medium-110

pressure belt (aMP Belt) is the most extensive belt, extending along the whole length of the Grenville 111

Province. It is composed of upper amphibolite- to granulite-facies mid-crustal units of various 112

compositions that are commonly migmatitic. The upper crust is preserved as two distinct levels, (3) the 113

allochthonous low-pressure belt (aLP Belt) and (4) the Ottawan Orogenic Lid (OOL). The aLP Belt is 114

exposed only in small areas of the southeastern, central and western Grenville Province. It consists of 115

greenschist to amphibolite-facies rocks that were juxtaposed to the aMP Belt via extensional shear 116

zones. Finally, the structurally overlying OOL occupies large zones of the northeast and southwest 117

Grenville Province. It comprises units that escaped penetrative Ottawan metamorphism and 118

deformation, although they may have been subjected to older tectono-metamorphic episodes. 119

3. Regional geology120

The present study is located in the Mauricie area, central Grenville Province, comprising rocks of 121

the aMP and aLP belts that have been subdivided into three main lithotectonic domains (Figs. 1 and 2; 122

Nadeau and Brouillette, 1994, 1995; Nadeau and Corrigan, 1991). (1) The domal-shaped Mékinac-123

Taureau domain is the structurally lowest domain that extends for more than 80 km from the St. 124

Maurice River to the Taureau Reservoir. Its northern boundary is not yet recognized, but it is in tectonic 125

contact to the west, south and south-east with the overlying Morin Terrane along the TSZ. (2) The Morin 126

Terrane is principally exposed on the western side of the Mékinac-Taureau domain, but a thin slice of 127

this terrane extends towards the east where it is referred to as the Shawinigan domain (e.g. Corrigan, 128

1995; Corrigan and van Breemen, 1997; Rivers, 2008). (3) To the east, the elongate, north-south striking 129

Portneuf-Mauricie domain structurally overlies the two other lithotectonic domains along the 130



Page 6 of 68

Acc
ep

te
d 

M
an

us
cr

ip
t

6

Tawachiche shear zone. These three lithotectonic domains can be distinguished according to their 131

lithology, age, structural style and magnetic signature (Corrigan, 1995; Nadeau and Brouillette, 1994, 132

1995; Nadeau and Corrigan, 1991). 133

3.1. Lithotectonic domains 134

3.1.1 Mékinac-Taureau domain135

The Mékinac-Taureau domain is mostly composed of ~1370 Ma granodioritic orthogneiss (age 136

from Nadeau and van Breemen, unpublished data, reported in Corrigan and van Breemen, 1997) that 137

forms part of the aMP Belt of Rivers (2008). It is mostly at granulite facies, but upper amphibolite-facies 138

gneiss occurs in the Reservoir Taureau area of the Mékinac-Taureau domain (Nadeau and Brouillette, 139

1995). According to Corrigan and van Breemen (1997), the metamorphism occurred from 1120 to 1090 140

Ma and was due to crustal thickening during northwestward thrusting structurally above the present 141

exposure of units. 142

The Mékinac-Taureau domain orthogneiss is generally homogeneous on the map scale, but varies 143

between granodioritic, granitic, dioritic and gabbroic compositions in any one outcrop (Nadeau and 144

Brouillette, 1995). Felsic and intermediate gneiss is pervasively migmatitic, whereas migmatitic mafic 145

gneiss is only locally present. Rare, discontinuous layers of quartzite, calc-silicate gneiss, marble and Sil-146

Kfs-Grt-bearing, migmatitic metapelite, commonly concordant to the regional foliation, are found close 147

to the eastern margin of the Mékinac-Taureau domain (mineral abbreviations after Kretz, 1983). 148

Field observations in this study confirmed the general structural pattern outlined on Nadeau and 149

Brouillette’s (1994, 1995) compilation maps. A regional foliation (Sn), defined by preferred orientation of 150

minerals, ribbon quartz, gneissic compositional banding and stromatic layers of leucosome, gently dips 151

towards the margins of the domain, although local variations occur (Fig. 2). In the interior of the domain, 152

marble layers record high qualitative strain, as evidenced by numerous sheath folds and contorted to 153

rounded fragments of country rocks. They were interpreted as tectonic breccias by Nadeau and 154

Brouillette (1995). Hanmer (1988) attributed similar structures to the relatively low viscosity of marble 155

at high temperature and pressure as compared to the surrounding gneiss. The stretching and mineral 156

lineations (Ln) are generally poorly developed in the interior of the domain (Fig. 2). On the southern and 157

southeastern boundaries, a well-developed stretching lineation plunges gently to moderately (10-35°) to 158

the ESE (Ln+1) (Fig. 2). A third population of lineation (Ln+2) plunging gently (0-20°) to the NE is recognized 159
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on the eastern side along the Tawachiche shear zone (Fig. 2). Geochronological constraints suggest that 160

Ln+1 is younger than Ln (see section 6), whereas cross-cutting relationships imply that Ln+2 is younger than 161

Ln (Nadeau and Brouillette, 1994). However, there is no clear cross-cutting relationship between Ln+1 and 162

Ln+2, thus this notation does not imply an age sequence.163

3.1.2. Morin Terrane (including the Shawinigan domain)164

The Morin Terrane comprises granulite-facies gneiss and plutonic complexes belonging to the 165

aMP Belt (Rivers, 2008). The western side of the Morin Terrane comprises ~1330 Ma orthogneiss (Peck, 166

2012), amphibolite, quartzofeldspathic gneiss, paragneiss, quartzite and marble (Martignole, 1975) 167

metamorphosed at granulite-facies prior to the intrusion of the Morin and Lac Croche plutonic 168

complexes (1165-1135 Ma; Barton and Doig, 1972; Doig, 1991; Friedman and Martignole, 1995). A 169

second granulite-facies metamorphic event followed the intrusions, but is otherwise temporally 170

unconstrained (Peck et al., 2005). In contrast to the granulite-facies west-side, the eastern side of the 171

Morin Terrane, referred to as the Shawinigan domain, is characterized by the presence of upper 172

amphibolite-facies rocks (Corrigan, 1995; Lévesque, 1995). The metamorphism is coeval with the 1120-173

1090 Ma metamorphism in the Mékinac-Taureau domain (Corrigan and van Breemen, 1997). 174

The Shawinigan domain is composed of two major rock units in tectonic contact: felsic to 175

intermediate orthogneiss of the Jésuite complex and the overlying St. Boniface paragneiss. Orthogneiss 176

of the Jésuite complex is mainly tonalitic in composition, with a crystallization age of ~1370 Ma (Corrigan 177

and van Breemen, 1997), but granitic and rare gabbroic rocks are present locally. Stromatic migmatite is 178

common, although not as pervasive as it is in the upper structural levels of the Mékinac-Taureau 179

domain. The St. Boniface paragneiss comprises mainly Sil-Kfs-Grt-bearing, migmatitic metapelite with 180

minor quartzite and marble that were deposited after 1180 Ma on the basis of limited detrital zircon 181

data (Corrigan and van Breemen, 1997).182

Important masses of anorthosite-mangerite-charnockite-granite (AMCG), gabbro, porphyritic 183

granite and monzonite intruded the Morin Terrane during two episodes of magmatism (Corrigan and 184

van Breemen, 1997). The first episode includes the 1165-1135 Ma Morin anorthositic complex (Doig, 185

1991; Friedman and Martignole, 1995), the ~1140 Ma Lac Croche complex (Barton and Doig, 1972) and 186

the 1153 Ma Lake Paul granite (Corrigan and van Breemen, 1997). The second pulse of magmatism 187

occurred from 1080 to 1056 Ma and includes the Shawinigan norite, the Lejeune complex and the St. 188
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Didace complex (Corrigan and van Breemen, 1997; Nadeau and van Breemen, 2001). 189

The foliation in the Morin Terrane generally dips away from the contact with the Mékinac-190

Taureau domain. However, multiple folds described in Nadeau and Brouillette (1995) produce local 191

variations to this trend. The regional structural pattern is also affected by pre-1135 Ma AMGC plutons 192

that are wrapped by the foliation (Martignole, 1975; Nadeau and Brouillette, 1995). In the Shawinigan 193

domain, the foliation (Sn) defined by compositional banding dips shallowly to moderately (0-45°) to the 194

SE (Fig. 2). The stretching and mineral lineations (Ln) plunge sub-horizontally to gently (0-15°) to the S 195

and SE (Fig. 2).196

3.1.3. Portneuf-Mauricie domain197

The Portneuf-Mauricie domain comprises the ~1450 Ma Montauban Group supracrustal rocks and 198

the 1400-1370 Ma La Bostonnais calc-alkaline complex plutonic rocks (Corrigan and van Breemen, 1997; 199

Nadeau and Brouillette, 1995; Nadeau and van Breemen, 1994). Rocks of the Portneuf-Mauricie domain 200

are generally at a lower metamorphic grade than the other domains, with middle to upper amphibolite-201

facies recorded throughout most of the domain, except for the eastern strand where low- to medium-P 202

granulite-facies is observed (Corrigan, 1995; Lévesque, 1995). Metamorphism of the Portneuf-Mauricie 203

domain is associated with the ~1400 Ma pre-Grenvillian accretion of the Montauban Arc and was not 204

overprinted by granulite facies metamorphism during the Grenvillian orogeny, as opposed to the 205

adjacent Mékinac-Taureau and Shawinigan domains (Corrigan, 1995; Corrigan and van Breemen, 1997). 206

Therefore, Rivers (2012) included the Portneuf-Mauricie domain in the aLP Belt. 207

The structure of the Portneuf-Mauricie domain is characterized by a planar fabric dipping gently 208

to moderately to the SE or E and by two sets of mineral and stretching lineations (Nadeau and 209

Brouillette, 1994, 1995). The first set is pervasive, plunges to the SE and has been attributed to regional 210

NW-directed thrusting (Nadeau and Brouillette, 1995). The second set plunges to the NNE and was 211

developed in discrete shear zones during oblique-sinistral extensional ductile shearing after the peak of 212

metamorphism (Nadeau and Brouillette, 1995). 213

3.2. Lithotectonic boundaries214

The contact between the Mékinac-Taureau domain and the Morin Terrane is known as the 215

Taureau shear zone (TSZ; Fig. 1; Martignole and Friedman, 1998). On the western flank of the dome the 216
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shear zone is presumed to be several hundred of meters wide and to gently dip away from the Mékinac-217

Taureau domain. Martignole and Friedman (1998) proposed oblique thrusting on the TSZ based on local 218

dextral kinematic indicators observed on lineations shallowly plunging to the SE and because of the 219

broad spatial coincidence between the trace of the shear zone and the Opx-in isograd (Schriver, 1973), 220

delimiting granulite-facies rocks of the Morin Terrane from upper amphibolite-facies rocks of the 221

western part of the Mékinac-Taureau domain. They constrained the minimum age of displacement on 222

the TSZ by dating a late-kinematic dyke at 1074 ± 4 Ma. Further east, however, the eastern TSZ does not 223

superpose granulite-facies rocks on top of amphibolite-facies rocks because the Opx-in isograd crosscuts 224

the Mékinac-Taureau domain boundary (Fig 1; Hocq and Dufour, 1999, 2002). In the study area on the 225

eastern flank of the dome, the metamorphic contrast across the TSZ is ambiguous, but previous 226

qualitative observations of metamorphic mineral assemblages and textures, as well as quantitative 227

thermobarometry studies, suggested higher grade in the footwall (Mékinac-Taureau domain) than in the 228

hanging wall (Shawinigan domain) (Corrigan, 1995; Lévesque, 1995; Nadeau and Brouillette, 1995). If the 229

suggested metamorphic contrast is real and if timing of metamorphism is the same for both the 230

Mékinac-Taureau and Shawinigan domains, the two hypotheses are paradoxical: thrusting alone along 231

the eastern TSZ could not explain the present configuration. One objective of the current study is, 232

therefore, to test this hypothesis. 233

Away from the TSZ, the contact between the Portneuf-Mauricie domain and the Shawinigan 234

domain is marked by an anastomosing array of E-dipping shear zones, collectively known as the 235

Tawachiche shear zone (Fig. 1; Corrigan, 1995; Corrigan and van Breemen 1997; Lemieux, 1992). The 236

total thickness of the area affected by these shear zones may be as wide as 25 km, but most of the 237

shearing occurred directly at the contact between the two domains, along a strand that has an average 238

map width of 1 km (Corrigan, 1995). The Tawachiche shear zone is almost co-planar with the N to NE 239

striking and gently dipping regional foliation of the Portneuf-Mauricie domain. The associated stretching 240

lineation trends to the NNE with a shallow to moderate plunge (Ln+2). Corrigan (1995) observed a 241

paleopressure offset of 200 to 300 MPa between footwall and hanging wall metamorphic mineral 242

assemblages, with lower pressure in the hanging wall, and therefore suggested that the shear zone 243

accommodated a vertical offset of 7-10 km by top-down-to-the-NNE oblique extensional shearing. 244

Corrigan and van Breemen (1997) constrained the timing of movement along the Tawachiche shear zone 245

between 1065 and 1035 Ma.246
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4. Structural geology of the eastern TSZ247

One of the main objectives of this study was to constrain the kinematic history the TSZ. Field work 248

involved examination of over 200 outcrops from the Mékinac-Taureau domain and the Shawinigan 249

domain, especially in the vicinity of the TSZ. Large (commonly >500 m2) and well exposed key outcrops 250

(e.g. Fig. 3A) were studied in detail to document complex structural relationships. Due to poor exposure 251

on the western and south flank of the Mékinac-Taureau domain, the TSZ was only recognized on the 252

eastern flank. Field observations show a general trend from S-tectonites dominant in the interior of the 253

Mékinac-Taureau domain towards S-L and locally L-tectonites developed on its eastern boundary. The 254

opposite variation, that is a transition from S-L-tectonites to S-tectonites, is observed from the boundary 255

structurally up in the Shawinigan domain. As shown on Fig. 2, ESE-trending lineation is abundant and 256

well clustered in the vicinity of the eastern TSZ (domain 3 on Fig. 2) whereas it is only rare and not 257

clustered away from the TSZ. This clearly reveals the presence of the eastern TSZ, which separates the 258

two domains. 259

The main shear zone is several hundred meters thick and is heterogeneously strained: rock from 260

the TSZ is generally well-foliated and lineated, and locally shows well-developed mylonitic textures that 261

may contain a pre-shearing relict foliation. In the latter case, the relict foliation (Sn) is commonly 262

crenulated and folded with axial planes parallel to the new foliation formed in the shear zone (Sn+1, Fig. 263

3B). The stretching lineation associated with this shear fabric (Ln+1) plunges gently (10-35°) towards the 264

ESE (Fig. 2). Multiple shear-sense indicato - -porphyroclasts and asymmetric 265

folds (Hanmer and Passchier, 1991) indicate a top-down-to-the-ESE tectonic displacement (Fig. 3C and 266

D). Granitic pegmatites with pre- to syn-kinematic relationships are common in the TSZ. Information 267

about the last increments of strain is provided by the relationship between the pegmatites and 268

crosscutting marble layers of uncertain origin. These layers are of variable thickness (5-200 cm), present 269

a high degree of qualitative strain, contain a foliation and a lineation parallel to those of the host gneiss, 270

and contain clasts of host lithologic units, including pegmatites (Fig. 3A). At their margins, undeformed 271

pegmatites become mylonitic and the entrainment of foliation of the host gneiss indicates a top-down-272

to-the-ESE sense of shear (Fig. 3E). The marble layers thus accommodated the lasts strain increments of 273

top-down-to-the-ESE sense of shear along the TSZ (Fig. 3E). 274

Kinematic indicators attesting to top-down-to-the-ESE sense of shear are also developed locally in 275
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a metapelite layer of the Mékinac-Taureau domain three kilometers structurally below the eastern TSZ. 276

At this locality, quartz ribbons are syn-kinematically recrystallized to form an oblique grain-shape fabric 277

(Passchier and Trouw, 2005; Snoke et al., 1998) (Fig. 4A). This contrasts with the orthogneiss and 278

structurally lower metapelites in which quartz forms fully annealed ribbons. 279

Finally, in the lower structural levels of the Shawinigan domain, there are multiple ductile-brittle 280

extensional shear zones with a top-down-to-the-SE sense of shear (Fig. 4B). These shear zones probably 281

accommodated only minor displacement because there is no metamorphic or lithological contrasts 282

between the footwall and hanging wall. They may represent structurally higher equivalents of the 283

eastern TSZ that were active during the waning stages of normal shearing.284

5. Thermobarometry285

5.1. Qualitative interpretations286

Granulite-facies metapelite from both the Mékinac-Taureau and the Shawinigan domains have a 287

similar mineral assemblage composed of Qtz + Kfs + Pl + Grt + Sil + Bt ± Rt ± Ilm ± Zrn ± Mnz (Fig. 5A). 288

The presence of Kfs and the absence of Ms, Opx and Ky in the peak assemblage of metapelite constrain 289

the conditions to temperatures higher than the Ms dehydration-melting reaction, below the Opx-in 290

reaction and within the Sil stability field. In felsic to intermediate orthogneiss, the occurrence of 291

migmatitic melt indicates conditions above the wet-solidus of granitic rocks. 292

There are several differences between the felsic to intermediate orthogneiss units of the 293

Mékinac-Taureau and the Shawinigan domains. Based on our observations in the Mékinac-Taureau 294

domain, the volume of leucosome in rock of felsic and intermediate composition increases structurally 295

upward from only a few percent in the interior of the domain to 20-40% close to upper structural levels. 296

Opx-bearing leucosome occurs in two structural settings. Pre- to syn-deformation leucosome is 297

observed as stromatic layers parallel to the foliation and as pockets of leucosome trapped in boudin 298

necks of more competent mafic layers or in hinges of isoclinal folds, whereas post-deformation 299

leucosome is observed as undeformed, coarse patches that cross-cut the foliation. Because both types 300

of leucosome contain the same mineralogy, and are locally intimately associated (i.e. stromatic 301

leucosome merging into a cross-cutting pocket), our preferred interpretation is that migmatisation 302

outlasted the deformation (e.g. Corrigan, 1995). Stromatic leucosome is also observed in the Shawinigan 303
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domain, but to a lesser extent (<20%). The most striking difference is the scarcity of orthopyroxene in 304

Shawinigan domain intermediate orthogneiss (Pl + Qtz + Hbl + Bt ± Kfs ± Cpx ± Opx) and, where present, 305

orthopyroxene in this domain is typically partially retrogressed to hornblende. In the felsic to 306

intermediate orthogneiss (Pl + Qtz + Kfs + Opx + Bt + Hbl) of the Mékinac-Taureau domain, on the other 307

hand, orthopyroxene is abundant and unaltered, especially in the interior of the domain. The wider P-T 308

stability field predicted for orthopyroxene in granodioritic orthogneiss compared to that predicted in 309

metapelite by phase equilibria modeling (Gerya, 2004), most likely explain its presence and absence in 310

the former and latter, respectively. Clinopyroxene is retrogressed to hornblende in intermediate 311

orthogneiss of the Shawinigan domain and only locally in the upper levels of the Mékinac-Taureau 312

domain. This suggests that retrograde metamorphic reactions affected the Shawinigan domain and, to a 313

lesser extent, the Mékinac-Taureau domain. These qualitative observations suggest higher peak 314

metamorphic in the Mékinac-Taureau domain as compared to the Shawinigan domain and/or a more 315

profound retrograde metamorphism in the latter. As a clear metamorphic contrast in peak P-T 316

conditions between the two domains cannot be demonstrated solely on the basis of petrographic 317

observations, quantitative thermobarometry is required.318

5.2. Analytical methods and strategy319

Five metapelite samples and one amphibolite were selected along a transect of approximately ten 320

kilometers of structural thickness to determine the overall metamorphic conditions characterizing the 321

Mékinac-Taureau and Shawinigan domains. Metapelitic samples RS12-021, RS12-015A & RS11-058, as 322

well as RS11-105 & RS12-027B were collected 5.5, 3 & 2.5 km structurally below and 4 & 6 km 323

structurally above the TSZ, respectively. Amphibolite sample RS11-082B was collected within the shear 324

zone (see Fig. 2 for locations). We considered that conventional thermobarometry was the best 325

approach for our samples because: 1) the equilibrium volume chemical compositions to input in phase 326

equilibria modeling would be difficult to estimate because of the heterogeneous texture of the rock; 2) 327

the metapelitic samples do not show textures nor chemical zoning indicative of the retrograde net-328

transfer reactions that commonly precludes this type of P-T calculations in high-grade metapelite (cf. 329

Spear and Florence, 1992; Spear et al., 1999); 3) amphibolite show textures and chemical zoning 330

susceptible to yield information on the prograde and retrograde path. 331

Mineral compositions were determined using wavelength-dispersive spectrometry on a JXA JEOL-332
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8900L microprobe at McGill University. Acceleration voltage was 15 kV, beam current was 20 nA, beam 333

size was 5μm and counting time was 20 seconds. Natural mineral standards were used for calibrations 334

and ZAF correction was used for data reduction. Additional details on standards used and detection 335

limits for the different minerals under above conditions are provided in the supplementary data table 1. 336

Pressure and temperature (P-T) values were calculated with the computer software TWEEQU 337

(Thermobarometry With Estimation of EQUilibrium state) developed by Berman (1991). The TWEEQU 338

version 2.3 (Berman, 2007) was used for calculations on metapelites because it is easier to calculate the 339

classical thermobarometers involving garnet, biotite and plagioclase than with other software such as 340

THERMOCALC, and because it uses a recent thermodynamic database (v2.32, Berman and Aranovich, in 341

prep.) and solution models for garnet (Berman et al., 2007), biotite (Berman et al., 2007) and plagioclase 342

(Fuhrman and Lindsley, 1988).  Essene (1989) and Berman (1991) proposed uncertainties of ± 50 °C and 343

± 100 MPa for P-T calculations using TWEEQU. For the amphibolite, we preferred to use the software 344

THERMOCALC version 3.33 (Holland and Powell, 1998; Powell and Holland, 1988, 1994, 2008) with the 345

thermodynamic dataset ds55 because it uses more recent solution models for amphiboles than 346

TWEEQU (the Dale et al. (2005) model used with AX2 of Holland (2014) vs. the Mäder et al. (1994) 347

model used with TWEEQU v. 1.02). We calculated relative P-T differences and associated uncertainties 348

by calculating the standard deviations of P and T for all permutation of mineral compositions interpreted 349

to have been in equilibrium by using the software TC_Comp (Dolivo-Dobrovolsky, 2013, 350

http://www.dimadd.ru/en), as detailed below. 351

The following geothermometers and geobarometers were applied:352

Metapelite353
Ann + Prp = Alm + Phl (1)354
An = Grs + Sil + Qtz (2)355

356
Amphibolite357

Prp + Fac = Tr + Alm  (3)358
Ts + Qtz + Grs + Alm = An + Prp + Fac (4)359
Ts + Ab + Grs + Prp = An + Tr + Prg (5)360
Grs + Prp + Qtz + Ts = Tr + An (6)361

362
The proper evaluation of P-T conditions in high grade metapelite is a difficult task requiring many 363

precautions (e.g. Spear and Florence, 1992). As several high temperature phenomena may modify the 364

chemical composition of minerals, it is important to evaluate them to make sure that calculated P-T 365
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points are significant. At high temperature (>500-600 °C), the growth zoning pattern of Fe, Mg, Ca and 366

Mn in garnet is modified by intra-crystalline diffusion (e.g. Caddick et al., 2010; Tracy, 1982; Tracy et al., 367

1976; Yardley, 1977), which depends on the maximum temperature reached, the size of the crystal and 368

the duration of metamorphism. For example, complete homogenization of a garnet with a diameter of 1 369

mm at temperature reaching 800 °C would require tens of m.y., but the growth zoning pattern would be 370

modified significantly within a few m.y. (Caddick et al., 2010). Inasmuch as the extent of diffusion 371

depends on grain size, P-T calculations on garnet having different diameters should not yield similar 372

values, unless they were completely re-equilibrated. On the other hand, Fe-Mg diffusion in biotite in 373

contact with garnet is effective at >525 °C and at rates much faster than most metamorphic processes 374

(Spear, 1993). Furthermore, Grt-Bt re-equilibration may occur during retrograde metamorphism via 375

exchange reaction (1) and net transfer reaction:376

Grt + Kfs + melt = Bt + Sil + Pl + Qtz (Spear, 2004) (7)377

(Kohn and Spear, 2000; Spear, 1993, 2004; Spear and Parrish, 1996; Spear et al., 1999; Tracy, 1982). In 378

addition, the net transfer reaction (7) produces plagioclase and biotite during melt crystallization that 379

may not have compositions reflecting peak P-T conditions. Garnet involved in this reaction generally 380

have embayments and invariably show a spike in Mn at their margins, whereas biotite produced by this 381

reaction have a higher Fe/(Fe + Mg) value than biotite that crystallized at peak conditions. Finally, the 382

rate of Ca diffusion in plagioclase is much slower than the rate of most metamorphic processes; 383

therefore plagioclase composition will only be modified by dissolution and reprecipitation (Grove et al., 384

1984). Minerals analyzed for peak P-T determination were therefore carefully selected to prevent the 385

inaccuracies introduced by these high temperature phenomena on the calculated P-T points (e.g. 386

Schaubs et al., 2002). 387

Petrographical observations (i.e. lack of muscovite and presence of sillimanite and K-feldspar in 388

metapelite assemblage) suggest high peak temperature (>650 °C). Garnet chemical composition is thus 389

expected to have partially to completely re-equilibrated during peak metamorphism and to possibly 390

have been modified by post-peak metamorphic reactions. Largest available (500 to 4000 μm) garnets 391

were selected because they are likely to preserve a chemical plateau in their cores that would be 392

unaffected by retrograde reactions (Spear et al., 1999; Hauzenberger, 2005). In cases for which garnet 393

did not show a perfectly flat zoning profile in its core, a plateau composition close to the rim was used in 394
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order to avoid the effect of relict growth zoning. Biotite isolated from garnet (e.g. trapped within a non-395

reacting phase such as quartz or feldspar), with high Ti content (suggestive of higher temperature; Henry 396

et al., 2005), and that was parallel to the foliation (limiting the possibility of analyzing late biotite) was 397

used rather than biotite in contact with garnet to minimize the effect of retrograde re-equilibration. Due 398

to slow Ca diffusion rate in plagioclase, its composition reflects the conditions of crystallization or 399

reprecipitation. Plagioclase was therefore selected from the groundmass in the vicinity of garnets 400

(Holdaway, 2001), but away from any embayment in garnet (in rare cases where such embayments are 401

present) to avoid plagioclase possibly formed by the retrograde net transfer reaction (7). Moreover, 402

plagioclase rims were preferred over cores to avoid plagioclase that would have formed on the prograde 403

path at lower temperatures than that corresponding with the re-equilibrated garnet core composition. 404

Although great precautions were taken in the selection of minerals, it is difficult to ascertain that the 405

calculated P-T truly represent the highest P-T conditions attained by the rocks. Results should therefore 406

be considered minimum estimates of the peak P-T conditions.407

The strategy adopted for the amphibolite sample RS011-082B is different and is described in 408

detail along with the description of the textures to facilitate comprehension.409

5.3. Results 410

A summary of the chemical compositions and the calculated P-T results is presented in table 1, 411

garnet zoning profiles are presented on Fig. 6, and the complete chemical composition spreadsheets for 412

the analyzed minerals is provided as supplementary data table 1. The following section outlines the 413

major compositional variations observed in the minerals and presents the thermobarometric results 414

obtained from the three different domains. 415

5.3.1. Interior of the Mékinac-Taureau domain in the footwall of the TSZ (RS12-021)416

Zoning profiles of euhedral garnet porphyroblasts are typically flat (Fig. 6A) and show little inter-417

crystal variation. Biotite shows variation in chemical composition based on their relationship with 418

garnet. Biotite in contact with garnet typically has low Fe/(Fe+Mg) values compared to isolated biotite 419

(0.31-0.33 vs. 0.36-0.39, respectively). Plagioclase is abundant and commonly has sharp, straight 420

contacts with garnet. Its composition is relatively homogenous (An43-An46). Calculated pressures and 421

temperatures range from 1050 to 1120 MPa and from 819 to 849 °C, respectively.422
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5.3.2. External zone of the Mékinac-Taureau domain near the TSZ (RS11-058 and RS12-015A)423

Garnet from these samples is not strongly resorbed and locally preserve pristine crystalline faces. 424

Garnet zoning profiles of Fe/(Fe+Mg) are generally flat or increases slightly from the core towards the 425

-C). Garnet zoning profiles of Xsps and Xgrs are flat throughout. 426

Garnet show little inter-crystal variations, with the exception of rare smaller grains (<1 mm) that have 427

abnormally high Fe/(Fe+Mg) values that were thus excluded from calculations. Biotite in contact with 428

garnet typically has low Fe/(Fe+Mg) values compared to isolated biotite (0.36-0.37 vs. 0.40-0.44 and 429

0.26-0.34 vs. 0.36 vs 0.44 for samples RS11-058 and RS11-015A, respectively). Sample RS11-058 contains 430

relatively homogeneous plagioclase (An37-An41), but sample RS12-15A contains rare plagioclase (only five 431

analyses) of variable composition (An8-An20) that occurs as anhedral masses within or next to K-feldspar. 432

In the latter sample, the large variation of composition, the small number of analyses, and the high 433

probability that Ca-poor plagioclase is the result of exsolution or secondary precipitation prevented a 434

confident selection of an appropriate plagioclase composition for geothermobarometric calculations. In 435

sample RS11-058, calculated pressure ranges from 780 to 790 MPa and temperature was determined at 436

780 °C. Because of the lack of satisfactory plagioclase analyses in sample RS12-015A, no pressure 437

determinations were attempted. However, a temperature range of 740-780 °C was obtained, assuming a 438

conservative pressure range of 600-1100 MPa. 439

5.3.3. Shawinigan domain above the TSZ (RS12-027B and RS11-105)440

Garnet in sample RS12-27B is well preserved, whereas embayments filled with large unoriented 441

biotite are locally present at the margins of garnet in sample RS11-105. Fe/(Fe+Mg) zoning profiles of all 442

garnet from this domain are flat in the cores and increase in the rims (<0.07, Fig. 6D-G). Xgrs profiles are 443

typically flat, but a gradual decrease in Xgrs444

In sample RS12-027B, Xsps is constant from core to rim, whereas systematic increases of Mn (<0.01 Xsps)445

are observed on garnet rims of sample RS11-105. Sample RS11-105 also contains three populations of 446

garnet, occuring randomly in the thin section, that have similar composition profiles but different 447

absolute concentrations of Fe, Mg and Ca. Their morphology is also different: type 1 is characterized by 448

abundant ilmenite inclusions in the core with an inclusion-poor rim (Fig. 5C); type 2 is characterized by 449

abundant quartz inclusions in the core and inclusion-poor rim (Fig. 5D); whereas type 3 consists of 450

inclusion-poor garnet (Fig. 5E).451
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Biotite in contact with garnet has systematically lower Fe/(Fe+Mg) compared to armoured biotite 452

(0.40-0.47 vs. 0.47-0.48 and 0.51-0.54 vs 0.53-0.56 for samples RS12-027B and RS11-105, respectively). 453

In sample RS11-105, no systematic variation of the Fe/(Fe+Mg) value in biotite with position was 454

observed that could be related to the garnet type. Plagioclase is abundant in both samples and 455

commonly found in stable contact with garnet. Its composition varies between An32 and An38 in sample 456

RS12-027B whereas sample RS11-105 contains homogeneous plagioclase (An21-An22). Ca-poor 457

plagioclase (An2 to An15) in sample RS12-027B, occurring as patches in K-feldspar and interpreted as the 458

result of exsolution or secondary precipitation, was not used for thermobarometric calculations.459

Sample RS12-27B yielded pressures and temperature of 740-790 MPa and 780 °C. In sample RS11-460

105, calculated pressures and temperatures for type 1 garnet range from 720 to 860 MPa and from 730 461

to 750 °C, respectively, whereas both types 2 and 3 garnets registered lower P-T conditions of 620-650 462

MPa and 700-710 °C.463

5.3.4. Eastern TSZ (RS11-082B)464

This amphibolite contains sigmoid-shaped coronas of plagioclase and minor hornblende 465

surrounding garnet (Fig. 5F), in a groundmass of Hbl + Pl + Qtz + Mag + Ilm + Ttn. It also shows 466

plagioclase-rich patches similar in size to garnet crystals and surrounded by the same groundmass, that 467

are interpreted as garnet pseudomorphs formed from the retrograde decompression reaction:468

Tschermakite-Hbl + Grt + Qtz = Tremolitic-Hbl + Pl (Schaubs et al., 2002) (8)469

The sigmoidal shape of the reaction rims suggests that they are pre- to syn-kinematic with respect 470

to top-down-to-the-ESE movement. Retrograde conditions obtained with this sample therefore provides 471

P-T constraints corresponding to shearing along the eastern TSZ.472

The chemical compositions of minerals in this sample supports this interpretation because they 473

systematically vary according to their textural locations. Fe/(Fe+Mg) and Xsps profiles in garnet are either 474

475

largest garnet grains present evidence of a prograde P-T path (Fig. 6H) with a gradual increase in Xgrs476

grs477

478

(1000-3000 μm) crystals in in the groundmass and is characterized by higher Fe/(Fe+Mg) values (0.43-479
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0.45) compared to the second population composed of small (100-400μm) in the coronas surrounding 480

the garnet (Fe/(Fe+Mg)=0.40-0.44). Plagioclase from the groundmass yield values of An40 to An51 that 481

are clearly distinctive from that in the coronas, which yield values of An49 to An58. These patterns suggest 482

that thermobarometry could provide good estimate on peak and retrograde conditions.483

Our interpretation that the disequilibrium coronitic texture linked with chemical variation in 484

minerals provide information about the peak and retrograde history of the rock requires two conditions. 485

First, parts of garnet, plagioclase and hornblende must have been in chemical equilibrium at the scale of 486

the thin-section when the rock was at peak and at the end of the retrograde path. Second, chemical 487

compositions that prevailed at the peak were preserved in parts of several minerals despite subsequent 488

diffusion and recrystallization that took place afterward. If these two conditions are met in our sample, 489

then every P-T calculated from any garnet-plagioclase-hornblende compositions interpreted to have 490

been in equilibrium at peak or at the end of the retrograde path should yield the same values within 491

analytical and reasonable geological errors. We tested this by using the software TC_Comb (Dolivo-492

Dobrovolsky, 2013, http://www.dimadd.ru/en) that allows rapid P-T calculations by the average PT 493

method (Holland and Powell, 1994) for all possible permutations of a set of mineral compositions. As a 494

set interpreted to reflect peak mineral compositions, we selected 17 analyses from the core of four 495

garnet grains showing minimal evidence of diffusion (i.e. flat for at least two succesive points), the six 496

hornblende analyses located in the matrix, and the four plagioclase analyses located in the groundmass 497

near the selected garnet grains. Calculations of P-T for all permutations of these analyses resulted in a 498

well clustered cloud of correlated points yielding mean temperature and pressure of 880 ± 80°C and 990 499

± 120 MPa, respectively. To calculate retrograde conditions, we selected five analyses from the rim of 500

five garnet grains surrounded by a plagioclase + hornblende coronae, as well as six hornblende and 22 501

plagioclase grains located in these coronas. Calculations of P-T for all permutations of these analyses 502

resulted in a well clustered cloud of correlated points yielding mean temperature and pressure of 720 ± 503

30°C and 650 ± 50 MPa, respectively. The uncertainties are 2 and do not reflect uncertainties 504

associated with the mineral database. The difference between these mean values are highly significant 505

(p < 0.0001) yielding 162°C with a 95% confidence interval of 157-166°C and 340 MPa with a 95% 506

confidence interval of 330-350 MPa. These results clearly demonstrate that minerals in amphibolite 507

sample RS11-082B reached chemical equilibrium at peak and at the end of the retrograde path and that 508

the two P-T conditions are clearly distinct. 509
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5.4. Interpretation of thermobarometry results510

The chemical compositions of analyzed garnet and biotite reveal important information about the 511

metamorphic history of the metapelites from the Mauricie area. First, completely flat Fe/(Fe+Mg), Xgrs512

and Xsps zoning profiles of most garnets from the interior of the Mékinac-Taureau domain suggest 513

complete intra-crystalline diffusion of Fe, Mg, Ca and Mn in garnet during peak metamorphism. Since 514

biotite in contact with garnet has a lower Fe/(Fe+Mg) value compared to armoured biotite, the 515

exchange reaction (1) probably occurred during retrograde metamorphism, but the expected opposite 516

pattern is not present in adjacent garnet, probably because the transects were located away from zones 517

of contact with biotite. Most importantly, garnet in sample RS11-021 is euhedral (Fig. 5B) and does not 518

show a variation in Xsps, which suggests that it did not start to break down via the retrograde net transfer 519

reaction (7).520

Pressure and temperature calculated with compositional plateaus in garnet core, armoured 521

biotite and matrix plagioclase are therefore interpreted as the metamorphic peak conditions of the 522

Mékinac-Taureau domain. The calculated conditions of ~1075 MPa and ~825 °C lie in the kyanite 523

stability-field and could suggest underestimation of the temperature, but they are nonetheless within 524

error of the sillimanite stability-field, and hence in agreement with petrographic observations 525

considering uncertainties. The temperature measured in this study is in agreement with previous results 526

of an, 1995; Herd et al., 1986). However, the pressure estimate of 1075 MPa is above 527

the previous results of 800-900 MPa (Corrigan, 1995; Herd et al., 1986). 528

In the external zone of the Mékinac-Taureau domain, garnet cores in metapelite have essentially 529

flat zoning profiles in Fe/(Fe+Mg), Xgrs and Xsps, suggesting complete intra-crystalline diffusion of Fe, Mg, 530

Ca and Mn in garnet during peak metamorphism. However, garnet crystals show a slight increase in 531

esult of limited diffusion by the retrograde exchange 532

reaction (1). The systematic decrease in Fe/(Fe+Mg) value of biotite in contact with garnet, as compared 533

with armoured biotite, supports such an interpretation. The lack of Xsps increase at the rim suggests that 534

the garnet consuming net transfer reaction (7) did not operate. The pressure of 790 MPa and 535

temperature of ~775 °C calculated with compositional plateaus from the garnet core, armoured biotite 536

and matrix plagioclase are therefore interpreted as the prevailing conditions during high grade Grt-Bt re-537

equilibration in the external zone of the Mékinac-Taureau domain. Furthermore, Grt and Bt were only 538
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affected to a limited degree by the retrograde exchange reaction (1) and chemical compositions used for539

calculations were selected to avoid the effects of this reaction. A metamorphic temperature estimate of 540

~770 °C in the southeastern margin of the Mékinac-Taureau domain has been previously provided by 541

Lévesque (1995), which is consistent with data presented above. In any case, these results are lower 542

than metamorphic peak conditions obtained for the interior of the Mékinac-Taureau domain. 543

The amphibolite RS11-082B collected at the eastern TSZ indicates that similar P-T conditions of 544

~990 MPa and ~880°C prevailed during the metamorphic peak throughout the Mékinac-Taureau 545

domain. As shown on Fig. 7, peak and retrograde P-T values are equivalent to those yielded by the 546

metapelites from the interior and the margin of the Mékinac-Taureau domain. The statistical analysis 547

further demonstrates that the difference between the mean peak and retrograde P-T conditions are 548

significant. Moreover, the reaction rims around garnet in the amphibolite were deformed during top-549

down-to-the-ESE shearing along the eastern TSZ and must have formed prior to or during that shearing. 550

This implies that the eastern TSZ was formed under P-T conditions -700 MPa and -775 °C, 551

respectively.552

In the Shawinigan domain, garnet cores in metapelite have essentially flat zoning profiles 553

Fe/(Fe+Mg), Xgrs and Xsps, suggesting complete intra-crystalline diffusion of Fe, Mg, Ca and Mn in garnet 554

during peak metamorphism. However, garnet crystals show a slight increase Fe/(Fe+Mg) toward their 555

-105 contains garnet that has a small Xsps556

probably resulted from net transfer reaction (7). Such reactions theoretically increase the Fe/(Fe+Mg) 557

value of biotite in contact with garnet, but in our sample, Fe/(Fe+Mg) values are lower in biotite in558

contact with garnet as compared to armoured biotite. This suggests that the effect of net transfer 559

reaction (7) was overwhelmed by the effect of exchange reaction (1), which decreases the Fe/(Fe+Mg) 560

value of biotite. Although the retrograde exchange and net transfer reactions (1) and (7) affected the 561

composition of the rim of garnet, the large compositional plateau in the core indicates a complete Grt-Bt 562

re-equilibration at high temperature. P-T values yielded by this sample are dispersed along an array (Fig. 563

7) with types 2-3 garnets lying on the lower grade side and type 1 garnet on the higher grade side. This 564

may suggest two episodes of garnet growth. Chemical plateaus in type 1 garnets imply complete intra-565

crystalline diffusion at higher grade than conditions recorded by types 2-3. Considering that type 2 566

garnets are equivalent in size to type 1 and that type 3 garnets are approximately half the size of type 1 567
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garnet, prograde conditions cannot be preserved in types 2-3 garnets. An alternative hypothesis would 568

be that types 2-3 garnets grew during decompression and cooling, but this would require an 569

unexplained thermal spike during the retrograde path. Molar isopleths of garnet in metapelites (e.g. 570

Storm and Spear, 2005) have steep slopes on P-T diagrams for the considered P-T conditions (i.e. 625-571

650 MPa and 700 °C). Therefore, temperature must increase to produce new garnet. It may also be 572

possible that abundant ilmenite inclusions in type 1 garnet induce a Fe/(Fe+Mg) decrease in garnet that 573

results in over-estimation of metamorphic conditions. Pressure and temperature calculated with 574

compositional plateaus from garnet core of samples RS12-027B and RS11-115 along with and armoured 575

biotite and matrix plagioclase are interpreted as the metamorphic peak conditions of the Shawinigan 576

domain at ~625-850 MPa and ~700-775 °C. Such metamorphic conditions are consistent, within error, 577

with data from Lévesque (1995) (725-800 °C at 720-880MPa).578

In summary, the necessary precautions in the selection of minerals were taken and we carefully579

interpreted the results to provide meaningful P-T values for high grade rocks. The non-existent to 580

limited effects of the retrograde net transfer reaction (7), allowed the preservation of large chemical 581

plateaus in the cores of garnets. Peak metamorphism in the Mékinac-Taureau domain attained P-T 582

conditions of 1000-1100 MPa and 820-880 °C, whereas retrograde conditions varying from 800 to 650 583

MPa and from 775 to 675 °C were recorded in its upper structural levels. The Shawinigan domain 584

records P-T conditions varying from 850 to 625 MPa and from 775 to 700 °C. The decreasing P-T trend 585

from the Mékinac-Taureau domain to the Shawinigan domain described in this study is therefore 586

significant.587

6. U-Pb geochronology588

6.1. Pegmatite samples description and setting 589

6.1.1. Sample RS11-098590

In order to constrain the timing of deformation along the eastern TSZ, a pegmatite intrusion 591

synchronous with normal shearing (RS11-098) was sampled at the St-Tite gravel pit (Fig. 8A). This 592

pegmatite has a granitic composition (Qtz + Kfs + Pl + Bt + Chl (late) + Zrn + Mnz) and forms a 3-m wide 593

body, from which the analyzed sample was collected, surrounded by abundant dykelets, extending away 594

from it. The pegmatite cross-cuts the Sn+1 foliation in the host gneiss (Sn+1595

weakly-developed internal foliation parallel to Sn+1. Contacts with the host gneiss are sharp and the 596
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composition of the pegmatite is homogeneous, suggesting they are dilation dykes (in the sense of 597

Goodspeed, 1940). Above the main body of pegmatite, a series of foliated dykelets is clearly transposed 598

parallel to Sn+1 whereas the foliation in the hosting gneiss forms S-shaped planes. Planar fabrics defined 599

by both the pegmatite dykelets and the host rock foliation are interpreted as similar to a C-S structure 600

indicating top-down-to-the-ESE shearing (Fig. 8B). The transposition of S planes during shearing was 601

probably interrupted by the emplacement of the dykelets, which then accommodated further strain. To 602

the right end of the pegmatite body, a 20 cm-thick dyke dips ESE and cuts across Sn+1 at an angle of ~40°. 603

Inasmuch as this orientation is perpendicular to the minimum shortening direction under top-down-to-604

the-ESE shearing, this dyke, which resemble extensional fault-propagation fold and associated dilation 605

dike (Schwerdtner et al. 2014), is interpreted to have been emplaced in a fracture conjugate to the shear 606

plane (e.g. Davidson et al., 1994). At the margins of that dyke, Sn+1 is dragged downward on the NW side 607

and upward on the SE side, which is also consistent with top-down-to-the-ESE (Fig. 8A). We therefore 608

consider that the isotopic dating of pegmatite crystallization provides an age constraint for the normal-609

sense shearing deformation observed on the eastern TSZ.610

6.1.2. Sample RS12-040611

Another granitic pegmatite (RS12-040) was sampled at an outcrop located approximately 2 km 612

structurally below the eastern TSZ. This outcrop is composed of strongly migmatised and folded, felsic to 613

mafic orthogneiss. Leucosome material contains orthopyroxene and is commonly trapped within the 614

hinges of recumbent folds of undetermined vergence, indicating that partial melting was mostly 615

contemporaneous with peak metamorphism and deformation. Moreover, some pockets of leucosome 616

locally cut across the foliation, suggesting that partial melting outlasted deformation and possibly 617

occurred after metamorphic peak. Because this outcrop does not show evidence of shearing typical of 618

the eastern TSZ, deformation there is attributed to the older event associated with the development of 619

foliation Sn. The sampled pegmatite is made up of Qtz + Kfs (perthitic) + Pl + Bt + Chl (late) + Zr + Mnz 620

and opx-bearing leucosome in the host gneiss commonly merges into the pegmatite without clear cross-621

cutting relationships. Contact between the pegmatite dyke and the host gneiss melanosome is sharp 622

and rectiplanar, suggesting that the pegmatite dyke is a dilation dyke (Goodspeed, 1940). Its 623

crystallization age therefore provides a minimum age for the deformational episode related to crustal 624

thickening and associated peak metamorphism.625
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6.2. Analytical methods626

Zircon grains were separated from rocks using standard techniques. Zircon was mounted in epoxy, 627

polished until the centers of the grains were exposed, and imaged with cathodoluminescence (CL). 628

Zircon was analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) using 629

a ThermoElectron X-Series II quadrupole ICPMS and New Wave Research UP-213 Nd:YAG UV (213 nm) 630

laser ablation system at Boise State Univeristy (Idaho, USA). In-house analytical protocols, standard 631

materials, and data reduction software were used for acquisition and calibration of U-Pb dates and a 632

series of selected high field strength (HFSE) and rare earth elements (REE). Zircon grains were ablated 633

with a laser spot of 25 and 30 μm wide. Additional details concerning analytical methods are available in 634

the supplementary data repository.635

For groups of analyses that were collectively interpreted as a weighted mean date (i.e., igneous 636

zircon analyses), a weighted mean date was first calculated with Isoplot 3.0 (Ludwig, 2003) using errors 637

on individual dates that do not include a standard calibration uncertainty, and then a standard 638

calibration uncertainty was propagated into the error on the weighted mean date. Age interpretations 639

are based on weighted mean 207Pb/206Pb dates, which are more precise than U/Pb dates upon 640

propagation of the standard calibration uncertainties and not affected by recent Pb loss. Analyses that 641

are >15% discordant are interpreted as being from domains that lost Pb and were not considered. A few 642

analyses with <15% discordance were not included in the weighted mean calculations because they are 643

not equivalent with the other dates, most likely due to small amounts of Pb loss (206Pb/238U dates) or 644

common Pb (207Pb/206Pb dates). Errors on the 207Pb/206Pb and 206Pb/238U dates from individual analyses 645

are given at 2 , as are the errors on the weighted mean dates.646

6.3. Results647

6.3.1. Pegmatite sample RS11-098648

Zircon was classified into four compositional groups according to trace element concentrations. 649

Some differences are also apparent in their morphology and zoning patterns in cathodoluminescence 650

(CL) images (Fig. 9A). Trace element contents are presented below in the following format: (min-max 651

values; average value). Complete chemical composition data and Concordia diagrams are presented in 652

supplementary data table 2 and Fig. S1. 653
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Group 1 zircon is composed of homogeneous to oscillatory-zoned, CL dark, subequant grains (Fig 654

9A), characterized by high U and Th contents (210-420; 306 and 110-330; 201 ppm; Fig 10A) and low 655

Th/U values (0.5-0.8; 0.7). It has medium Y (480-1300; 829 ppm), Nb (4-8; 5 ppm), Hf (9940-11530; 656

10783 ppm), middle rare earth elements (MREE: Sm-Gd) and heavy rare earth elements (HREE: Tb-Lu) 657

contents.658

Group 2 zircon is composed of CL paler grains that are frequently sector or patchy zoned. It 659

commonly forms individual grains and/or secondary rims of overgrowth on Group 1 (Fig 9A). It is 660

characterized by low to medium U content (80-210; 133 ppm; Fig 10A), low Th content (60-190; 101 661

ppm; Fig 10A) and low Th/U value similar to group 1 (0.5-0.9; 0.8). It has relatively low Y (360-970; 591 662

ppm), Nb (2-5; 3 ppm), MREE, HREE contents and relatively high Hf content (9200-13410; 10968 ppm).663

 Group 3 zircon is composed of CL pale oscillatory and patchy zoned zircon. It usually forms 664

individual grains, but one occurrence shows Group 3 zircon rim overgrowing a Group 1 zircon core (Fig 665

9A). Group 3 is characterized by low U content, (50-130; 103 ppm; Fig 10A), medium Th content (70-210; 666

157 ppm; Fig 10A) and relatively high Th/U value (1.1-1.8; 1.5). It has relatively high Y (750-1450; 1198 667

ppm), Nb (2-7; 6 ppm), MREE and HREE contents and relatively low Hf content (7820-10930; 9407 ppm).668

Group 4 zircon is composed of homogeneous to patchy zoned CL dark cores (Fig 9A). It has low to 669

very high U and Th content (100-650; 387 and 90-510; 300; Fig 10A) and medium Th/U values (0.5-1.0; 670

0.8). It has relatively high Y (940-1920; 1491 ppm) and Nb (1-9; 6 ppm) contents, very high MREE (Sm-671

Gd) and HREE (Tb-Lu) contents and relatively low Hf content (7210-11780; 9855 ppm).672

Differences and similarities in the chemical composition of Groups 1-4 are well illustrated by a 673

series of selected compositional variation diagrams (Fig. 10). The distinction between zircon groups is 674

particularly obvious in the Th vs. U diagram (Fig. 10A), in which each group shows a distinctive 675

compositional trend that reflects variations in the Th/U value. Other diagrams such as Lu/Hf vs. Th/Y, 676

and Th/Y vs. Y/Hf (Fig. 10B-C) also show clear differences between the four groups. Groups 1 and 2 677

typically have overlapping chemical compositions, whereas Group 3 is clearly distinguishable, as shown 678

by the Nb/U vs. Th/U diagram (Fig. 10D). Group 4 comprises zircon cores of various chemical 679

compositions that generally lie off the chemical compositional field of Groups 1-3 in some diagrams. 680

The temperature of crystallization of the analyzed zircon grains was calculated based on the Ti-in-681
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zircon thermometer, developed by Watson et al. (2006), using the more recent calibration of Ferry and 682

Watson (2007) and the pressure dependence of Ferriss et al. (2008). For Groups 1-3, aTiO2=0.8 and 683

P=700 MPa were used to correct the temperature calculations, whereas the same aTiO2 without any 684

pressure correction (i.e. P=1000 MPa) were used for Group 4. All temperatures of crystallization are 685

subject to an uncertainty of ± 30 °C comprising uncertainties on the Ti content measurement, on the 686

calibration error of the thermometer equation, on the estimated value of aTiO2 and on the estimated 687

pressure during crystallization, all added in quadrature. Additional details on the calculation of the 688

uncertainty and the choice of correction factors are available in the supplementary data repository. The 689

average temperature of crystallization of Group 1 is 691 °C; Group 2 is 703 °C and Group 3 is 707 °C. 690

Group 4 zircon crystallized at temperature varying from 716 to 794 °C. 691

All interpretations are based on 207Pb/206Pb dates (Fig. 11A-C) because they are more precise upon 692

propagation of calibration errors and not affected by recent Pb loss. 206Pb/238U dates are nonetheless 693

presented here for comparison purposes, but were not used in interpretations. Weighted mean 694
207Pb/206Pb and 206Pb/238U dates obtained from Groups 1-3 are equivalent whereas they are older in 695

Group 4. Group 1 yielded a 207Pb/206Pb date of 1064 ± 15 Ma (mean square weighted deviation 696

(MSWD)=1.3, probability of fit (PF)=0.16, number of analyses (n)=22) and a 206Pb/238U date of 1058 ± 27 697

Ma (MSWD=1.1, PF=0.32, n=21). Group 2 yielded a 207Pb/206Pb date of 1058 ± 16 Ma (MSWD=1.1, 698

PF=0.34, n=28) and a 206Pb/238U date of 1042 ± 26 Ma (MSWD=0.9, PF=0.55, n=25). Group 3 yielded a 699
207Pb/206Pb date of 1063 ± 17 Ma (MSWD=1.4, PF=0.08, n=31) and a 206Pb/238U date of 1047 ± 26 Ma 700

(MSWD=1.0, PF=0.41, n=34). Group 4 yielded 207Pb/206Pb dates of 1459 ± 50 to 1052 ± 53 Ma and 701
206Pb/238U dates of 1421 ± 60 to 1032 ± 58 Ma.702

6.3.2. Pegmatite sample RS12-040703

The chemical composition, morphology, zoning patterns in CL images and age of zircon from 704

sample RS12-040 do not define distinct groups. These analyses are consequently treated as a unique 705

group. Dark xenocrystic cores were easily distinguished and avoided during analysis. Trace element 706

contents are presented in the following format: (min-max values; average value) and the complete 707

chemical composition data and Concordia diagram are presented in supplementary data table 2 and Fig. 708

S1. Zircon grains are generally prismatic and have an aspect ratio varying from 1:1 to 1:5. They are 709

commonly oscillatory zoned and dark in CL (Fig. 9B). They are characterized by medium to high U and Th 710
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contents (90-340; 166 and 40-570; 252) and high Th/U values (0.1-2.9; 1.52). They have high Y and Nb 711

content (540-2790; 1148 and 3-8; 6), variable Hf content (8230-15060; 10362), medium MREE and 712

relatively high HREE (Tb-Lu) contents. Their temperature of crystallization has been estimated at 755 ± 713

30 °C with aTiO2=0.8 and P=1000 MPa.714

Weighted mean 207Pb/206Pb and 206Pb/238U dates from sample RS12-040 are equivalent. It yielded 715

a 207Pb/206Pb date of 1082 ± 20 Ma (Fig. 11D; MSWD=1.4, PF = 0.06, n=35) and a 206Pb/238U date of 1055 716

± 34 Ma (MSWD=1.3, PF=0.11, n=39). 717

6.4. Interpretation of zircon chemical composition and U-Pb dates718

Relatively large errors on U-Pb dates yielded by the LA-ICP-MS method preclude a clear distinction 719

between Groups 1-3 zircons of the pegmatite sample RS11-098. More precise TIMS dating is needed to 720

precisely determine age differences, if any. However, petrographical relationships suggest that Group 1 721

zircon grains are the oldest since they are commonly overgrown by Group 2 and rarely by Group 3 (Fig. 722

9A). Given their homogeneous chemical composition and the lack of sector zoning or zonation 723

perturbation, Group 1 zircon grains are interpreted as primary igneous zircons that formed during the 724

crystallization of the pegmatite. The great compositional similarity between Groups 1 and 2 zircons 725

suggests that Group 2 formed by recrystallization and/or dissolution and re-precipitation of Group 1. 726

Such an interpretation is supported by the constant depletion in non-essential structural constituent 727

cations such as U, Th, Y, Nb and REE, which are commonly removed in fluid-altered zircon, of Group 2 as 728

compared to Group 1 (Hoskin and Black, 2000; Hoskin and Schaltegger, 2003). Furthermore, the small 729

enrichment in Hf content of Group 2 zircon compared to Group 1 is also characteristic of 730

recrystallization of a pre-existing zircon population (Pan, 1997). Finally, the patchy and sector zonation 731

common in Group 2 is considered as typical of metamorphic zircon or igneous zircon perturbed by late-732

magmatic processes (Corfu et al., 2003).733

Group 3 zircon has a distinct chemical composition, suggesting that it possibly originated from a 734

distinct fluid phase. Rare overgrowing of Group 1 zircon grains indicates that Group 3 zircon is younger, 735

but no physical relationship were observed between Groups 2 and 3 (Fig. 9A). Group 3 zircon comprises 736

mostly patchy zoned crystals that probably grew in solid state, but minor oscillatory zoned zircon grains 737

suggest that some may have grown in the presence of a fluid phase. Group 3 zircon is therefore 738

interpreted as metamorphic, but derived from a different source than that of Group 2. Scarcity of Group 739
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3 zircon overgrowing Groups 1-2 zircons would be explained if Group 3 zircon only formed in discrete 740

domains related to fluid infiltration following the crystallization of the pegmatite. However, further in-741

situ work on new samples is needed to test this hypothesis since the crushing process destroyed 742

evidence of any such domains, if present.743

Group 4 is composed of zircon cores of various chemical compositions that do not fit with Group 744

1-3 chemical composition. Group 4 also typically yields older U-Pb dates and is therefore interpreted as 745

being xenocrystic (inherited).746

Temperatures of crystallization of Groups 1-3 (691 °C, 703 °C and 707 °C, respectively) are 747

equivalent within the ± 30 °C uncertainty. Since the pegmatite was emplaced during the exhumation of 748

the hosting units, it would be expected to see a temperature decrease from the oldest to the youngest 749

group of zircons. However, such a decrease is not resolvable with the present data. A 14 °C increase is 750

even observed from group 1 to group 3. A pressure decrease between Group 1 and Group 3 751

crystallization would elegantly explain this apparent increase in temperature, because pressure 752

decrease leads to overestimation of the temperature calculated with the Ti-in-zircon thermometer 753

(Ferris et al., 2008; Ferry and Watson, 2007). However, the large uncertainties on many other 754

parameters (especially aTiO2) impede confident interpretation of temperature variations between zircon 755

groups from sample RS11-098. Nonetheless, temperatures calculated for the crystallization of Groups 1-756

3 zircons (691-707 ± 30 °C) are equivalent, within error, to temperatures of retrograde metamorphism 757

registered by the amphibolite and the metapelites of the upper structural levels of the Mékinac-Taureau 758

domain (675-775 ± 50 °C; section 5.3). Temperatures of zircon crystallization thus support the 759

emplacement of the pegmatite during retrograde metamorphism and exhumation of this domain. The 760

crystallization of this syn-kinematic pegmatite at 1064 ± 15 Ma (Group 1, 207Pb/206Pb) therefore provides 761

a time constrain on the top-down-to-the-ESE shearing along the eastern TSZ.762

Zircon from sample RS12-040 is interpreted as igneous because of their prismatic shape, 763

oscillatory zoning and high trace elements content (e.g. U, Th, Y, Nb, HREE) (Corfu et al., 2003). The 764

temperature of crystallization of pegmatite RS12-040 (755 ± 30 °C) is higher as compared to pegmatite 765

RS11-098 (691 ± 30 °C). This is consistent with the emplacement of pegmatite RS12-040 after peak 766

metamorphic conditions of 820-880 °C ± 50 °C, but before the emplacement of pegmatite RS11-098, 767

which was emplaced during cooling and extension along the eastern TSZ at 1064 ± 15 Ma. The age of 768
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crystallization of the pegmatite RS12-040 (1082 ± 20 Ma, 207Pb/206Pb) implies a minimum age constraint 769

for deformation and metamorphism related to thrusting and crustal thickening in the Mékinac-Taureau 770

domain. That result is moreover consistent with data of Corrigan and van Breemen (1997) who 771

suggested a lower age limit of 1087 ± 2 Ma for the thrusting in the adjacent Shawinigan domain.772

7. 40Ar/39Ar geochronology773

7.1. Analytical methods774

Amphibole and biotite single grains from the the Mékinac-Taureau domain were dated by the 775
40Ar/39Ar method (Géosciences Rennes, UMR CNRS 6118) using a CO2 laser probe. The experimental 776

procedure has been described by Ruffet et al. (1991, 1995) and Cathelineau et al. (2012). All plateau and 777

pseudo-  data, parameters used for calculations 778

(isotopic ratios measured on K, Ca and Cl pure salts; mass discrimination; atmospheric argon ratios; J 779

parameter; decay constant, etc.) and reference sources are available in the supplementary data 780

repository.781

Isotopic mineral ages are interpreted to record cooling below the closure temperature (TC).782

Closure temperatures for amphibole are difficult to estimate because amphibole diffusivity is influenced 783

by the cooling rate, the size of diffusion domains and ionic porosity (Dahl, 1996; Fortier and Giletti, 784

1989). On the basis of natural hornblende compositions measured by various authors (i.e. Leake, 1978; 785

Robinson et al., 1982), Dahl (1996) suggested a Tc range of 480–560 °C, calculated for an effective 786

787

g rates in 788

the range of 10 to 500 °C/Ma. The closure temperature was revised to 550–650 °C by Villa (1998) using 789

Dahl's (1996) experiments suggesting that, depending on its lattice characteristics, hornblende may form 790

a closed system for Ar diffusion at temperatures as high as 580 °C under cooling rates of 0.7 K/Ma (Villa 791

et al., 1996). Recent re-assessments of the closure temperature for biotite suggest that it may be as high 792

as 450 °C (e.g. Allaz, 2008; Allaz et al., 2011; Villa and Puxeddu, 1994), 150 °C higher than the commonly 793

accepted temperature of 300 °C (ex: Dodson, 1973; Harrison et al., 1985). In this study, we will 794

consequently use a Tc range value of 550–600 °C and around 450 °C for Ca-amphibole and biotite, 795

respectively.796
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7.2. Results797

Six samples containing coarse amphibole and/or biotite were collected in the Mékinac-Taureau 798

and the Shawinigan domains to investigate the cooling history of the area through 40Ar/39Ar799

geochronology (See Fig. 2 for locations and supplementary data table 3 for complete results). With one 800

exception, all samples yielded undisturbed plateau ages for both amphibole and biotite (Fig. 12, Table 801

2). Samples RS11-002 and RS11-115 come from two amphibole- and biotite-rich mafic layers transposed 802

into parallelism with the hosting orthogneiss foliation (Sn) in the interior of the Mékinac-Taureau 803

domain, and located, respectively, ~11 and ~9 km structurally below the eastern TSZ. They yielded 804

amphibole plateau ages of 998.6 ± 7.4 Ma and 1010.0 ± 7.4 Ma, respectively (Fig. 12A and 12B). Biotite 805

plateau ages of 923.2 ± 7.0 Ma and 969.8 ± 7.2 Ma, respectively, were also obtained from these samples 806

(Fig. 12A and 11B). Sample RS11-015 comes from a metapelite layer located ~3 km below the TSZ and 807

contains biotite but not amphibole. The biotite spectrum defines a plateau at 926.1 ± 7.0 Ma (Fig. 12C). 808

Sample RS11-089 is a biotite-free amphibolite layer located within the eastern TSZ, on the Mékinac-809

Taureau domain side, that yielded an amphibole plateau age of 1031.6 ± 7.6 Ma (Fig. 12D). Finally, two 810

samples were collected in the Shawinigan domain: RS11-113 is a biotite and amphibole bearing 811

intermediate orthogneiss whereas RS11-105 is an amphibole-free metapelite. These samples are 812

respectively located ~1 km and ~4 km structurally above the eastern TSZ. Amphibole in sample RS11-113 813

yielded a pseudo-plateau age of 1022.3 ± 7.6 Ma with a younger perturbation at 1012.3 ± 8.0 Ma (Fig. 814

12E). Its biotite spectrum defines a plateau at 930.4 ± 7.0 Ma (Fig. 12E). Sample RS11-105 yielded a 815

biotite cooling age of 905.8 ± 6.8 Ma (Fig. 12F). 816

7.3. Interpretation of 40Ar-39Ar ages817

As discussed, 40Ar-39Ar ages provide timing constraints on cooling of the area through the closure 818

temperature of amphibole (550-600 °C) and biotite (450 °C). The youngest amphibole ages (998.6 ± 7.4 819

Ma and 1010.0 ± 7.4 Ma) were obtained from the interior of the Mékinac-Taureau domain, whereas the 820

oldest (~1031.6 ± 7.6 Ma) was from the amphibolite located within the eastern TSZ. A sample from the 821

Shawinigan domain yielded an intermediate age of 1022.3 ± 7.6 Ma. Unsurprisingly, all amphibole ages 822

are younger than ~1060 Ma, the age of shearing along the eastern TSZ when rocks were at ~700 °C (see 823

section 6). 824

An interesting younging trend is identified from the eastern TSZ towards the interior of the 825
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Mékinac-Taureau domain. Amphibole sample RS11-113 located 1 km above the eastern TSZ does not fit 826

in this trend, but the perturbation of its spectrum limits the confidence we have on this date and the 827

interpretations we can make from this sample. Corrigan (1995) explained a similar younging trend from 828

the Tawachiche shear zone towards the Mékinac-Taureau domain by the progressive cooling of the 829

footwall downwards from the detachment surface (e.g. England and Jackson 1987; Hodges et al., 1993; 830

Ruppel et al., 1988). In this study, we have shown the importance of the eastern TSZ for the exhumation 831

of the Mékinac-Taureau domain and consequently propose that cooling may have propagated from this 832

shear zone towards the interior of the Mékinac-Taureau domain, as suggested by the younging trend of 833

amphibole cooling ages in that direction. 834

Biotite cooling ages vary from ~905 to ~970 Ma and do not show a pattern that is similar to 835

amphibole cooling ages. For samples containing both amphibole and biotite, the time gap between 836

cooling through the Tc of amphibole and the Tc of biotite varies from 40 to 90 m.y. This correspond to a 837

cooling rate of 1.36 to 3.10 °C/m.y. for the interval ~1020-920 Ma, assuming closure temperatures of 838

~575°C and 450 °C for amphibole and biotite, respectively. This is comparable to the cooling rate of 1.1 839

to 2.5 °C/m.y. calculated by Corrigan (1995) for the interval 1040-990 Ma.840

8. Discussion841

8.1. Metamorphic history and timing constraints842

This study reveals the presence of the eastern TSZ, a major normal-sense shear zone that 843

separates two domains of contrasting metamorphic history. We conducted conventional 844

thermobarometry on granulites of the Mauricie area because of the evidence for limited to absent 845

effects of retrograde reactions following complete re-equilibration, highlighted by the flat zoning 846

profiles in all garnet grains of this study (Fig. 6). Inasmuch as complete chemical homogenization of 847

garnet requires several tens of m.y. at high temperature (see Caddick et al., 2010), and because it is 848

difficult to ascertain that the calculated P-T conditions truly represent the highest P-T conditions 849

attained by the rocks, results presented herein likely represent metamorphic conditions that prevailed 850

during homogenization and are thus considered minimum estimates of the peak P-T conditions. Our 851

results, summarized in Fig. 13, indicate that rocks in the interior of the Mékinac-Taureau domain located 852

5.5 km below the eastern TSZ record metamorphic peak conditions of ~1075 MPa and ~825 °C. In the 853

amphibolite sample RS11-082B, collected within the eastern TSZ, P-T values calculated with minerals 854
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interpreted as relict of the former peak assemblage yielded values similar to those calculated in the 855

interior of the domain, whereas P-T values calculated with retrograde minerals interpreted as syn-856

kinematic with normal shearing yielded P-T values similar to those registered in metapelite from the 857

external zone of the Mékinac-Taureau domain (800 to 650 MPa and 775 to 675 °C). In contrast, 858

metapelite from the Shawinigan domain records P-T conditions varying from 850 to 625 MPa and from 859

775 to 700 °C. Although evidence for higher metamorphic conditions are lacking, it is impossible to rule 860

out the possibility that these P-T conditions reflects homogenization during retrograde metamorphism 861

from peak conditions similar to that recorded in the Mekinac-Taureau domain. Nevertheless, it is 862

noteworthy that these P-T values are similar to those from the retrogressed metapelite and amphibolite 863

samples of the Mékinac-Taureau domain.864

An important finding of this study is the demonstration that the TSZ on the eastern flank of the 865

Mekinac-Taureau domain is a normal shear zone. Its presence is revealed by an increase in qualitative 866

strain, marked by a much better developed stretching lineation and by numerous shear-sense 867

indicators. Timing constraint on the normal-sense shearing along the eastern TSZ is provided by the 868

emplacement of the syn-kinematic pegmatite, RS11-098, that yielded a 207Pb/206Pb age of 1064 ± 15 Ma, 869

and for which the temperature of crystallization of zircon (~700 °C ± 30°C) is consistent with the 870

temperature recorded for retrograde conditions during shearing by the amphibolite RS11-082B (720 ± 871

60°C). Although this age overlaps within errors with that of pegmatite sample RS12-040 from within the 872

Mékinac-Taureau domain, which yielded a 207Pb/206Pb age of 1082 ± 20 Ma, the absolute ages of the two 873

pegmatite samples and the difference between them are consistent with previously published ages for 874

the area. Indeed, the minimum age of ~1082 Ma for thrust-related deformation and accompanying 875

metamorphism indicated by pegmatite sample RS12-040 is consistent with an age of 1087 ± 2 Ma for a 876

syn-kinematic leucosome from the Shawinigan domain (Corrigan and van Breemen, 1997), whereas the 877

~1064 Ma age for pegmatite sample RS11-098 is consistent with the 1065 ± 1 Ma age for a pegmatite 878

emplaced during normal shearing along the Tawachiche shear zone, located ~10 km east of the study 879

area (Fig. 14A; Corrigan and van Breemen,1997). Although quantitative assessment of the amount of 880

vertical displacement along the eastern TSZ remains impossible with available data, a minimum estimate 881

is provided by the 340 MPa difference in paleopressures (converted to depth by assuming a lithostatic 882

gradient of 30 MPa/km (Winter, 2001)) between peak and retrograde pressure conditions calculated for 883

the amphibolite sample RS11-082B. Consequently, a minimum of ~11 km of exhumation occurred during 884
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normal shearing along the eastern TSZ for which the best timing estimate is provided by the ~1064 Ma 885

age of pegmatite RS11-098. 886

Finally, 40Ar/39Ar data on amphibole and biotite provided time constraints on the cooling of the 887

area. Based on amphibole and biotite 40Ar/39Ar ages, respectively, the Mauricie area cooled below 550-888

600 °C at ~1030-1000 Ma and below 450 °C at ~970-900 Ma. Amphibole cooling ages define a younging 889

trend from the eastern TSZ towards the interior of the Mékinac-Taureau domain (Fig. 13).890

8.2. Mode of exhumation 891

 Exhumation of mid-crustal rocks in the hinterland of orogens can occur in several different 892

tectonic contexts, notably: (1) an orogenic wedge controlled by the critical taper theory, (2) diapirism 893

(e.g. Calvert et al., 1999; Gervais et al., 2004; Teyssier and Whitney, 2002), (3) syn-convergent channel 894

flow (e.g. Beaumont et al., 2001, 2006, Godin et al., 2006) or (4) post-convergent orogenic collapse and 895

metamorphic core complex (MCC) development (e.g. Brun et al., 1994; Rey et al., 2009; Tirel, 2004; Tirel 896

et al., 2004, 2006, 2008). Here, we compare the tectono-metamorphic characteristics of the Mauricie 897

area with distinguishing features expected from these various exhumation modes.898

The regional deformation pattern in the Mauricie area is characterized by a dome-shaped 899

foliation pattern parallel to the lithotectonic boundaries and dipping away from the interior of the 900

Mékinac-Taureau domain (Fig. 2). This regional foliation is considered as the result of thrust-related 901

deformation prior to ~1082 Ma in the Mékinac-Taureau domain (this study) and the Shawinigan domain 902

(Corrigan and van Breemen, 1997), although doming of this foliation might be related to the exhumation 903

process. According to Corrigan and van Breemen (1997), thrust faults were located at structural levels 904

above the present exposure of the units. Regional deformation is associated with high-grade 905

metamorphism and partial melting in both domains, migmatites being particularly extensive in the 906

upper structural levels of the Mékinac-Taureau domain. Strain increases in the vicinity of lithotectonic 907

boundaries, i.e. the eastern Taureau and the Tawachiche shear zones. As argued above, the eastern TSZ 908

played a significant role in the exhumation of the Mékinac-Taureau domain at ~1064 Ma. However, the 909

Tawachiche shear zone must also be considered when assessing the exhumation history of the Mauricie 910

area. Corrigan and van Breemen (1997) dated syn- and late-extension pegmatites, constraining NNE-911

directed extension along the Tawachiche shear zone, between 1065 ± 1 and 1036 +4/-2 Ma. Combined 912

with data from our study, this suggests that ESE-directed extension along the eastern TSZ has been 913
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coeval, within uncertainty, with NNE-directed extension along the Tawachiche shear zone. The average 914

directions of tectonic transport on both shear zones are almost at right angle from each other (Fig. 14A). 915

Predominance of normal-sense structures, lack of steep flattening structures and reverse-sense shear 916

zones in the area (e.g. Gervais and Brown, 2011 and references therein), and extensive partial melting of 917

the rock units, limiting the maintenance of a wedge geometry, are all against the orogenic wedge model 918

(Vanderhaeghe et al., 2003). On the other hand, regional foliation conformable to discontinuities and an 919

increase in finite strain towards normal-sense shear zones are structural characteristics common to 920

diapirism, channel flow and MCC formation.921

Diapirs are characterized by a radial distribution of stretching lineations, vertical flow in their 922

trunk and horizontal flattening at their apex (e.g. Dixon, 1975). As shown in Fig. 14A, stretching 923

lineations within the TSZ and Tawachiche shear zones flanking the SE and E flanks of the Mékinac-924

Taureau and Shawinigan domains, respectively, are orthogonal to each other. However, the distribution 925

of these lineations do not correspond to a radial pattern around an hypothetical diapir, but are rather 926

associated with two distinct shear zones located at different structural levels. The interior of the 927

Mékinac-Taureau domain presents a strong foliation dipping away from its core, a feature common to 928

the apex of diapirs. However, relict vertical fabric attesting for vertical flow during diapiric ascent, 929

commonly observed despite the horizontal fabric overprinting (e.g. Gervais et al., 2004), are lacking in 930

the interior of the Mékinac-Taureau domain, despite the ~12 km of vertical section exposed along the 931

tilted transect of the study area. Furthermore, data suggesting an older deformation in the interior of 932

the domain than along the bounding normal-sense shear zones would not be compatible with diapirism. 933

Finally, a buoyancy contrast is required to initiate and maintain diapirism (Teyssier and Whitney, 2002). 934

In the Mauricie area, it is not clear whether the relatively small area of garnet-rich metapelite in the St-935

Boniface paragneiss and of mafic volcanic rocks in the Portneuf-Mauricie domain constituted a sufficient 936

volume of dense rocks to initiate diapirism. Due to poor compatible structural evidence, apparently 937

incompatible timing of deformation and lack of an obvious efficient driving mechanism, diapirism is not 938

proposed as the exhumation process for the Mauricie area.939

Extrusion of mid-crustal material by channel flow involves a melt-weakened ductile layer bounded 940

by a thrust shear zone below and a normal shear zone above (Godin et al., 2006). Key characteristics of 941

such model that are testable in the study area include: 1) high shear strain commonly distributed 942
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through the channel; 2) coeval reverse- and normal-sense shearing at the base and top of the channel, 943

respectively; 3) uniform cooling ages at any transverse sections of the channel and progressively older 944

cooling ages from the front towards the rear of the channel (Gervais and Brown, 2011; Godin et al., 945

2006). If such a mechanism occurred in the Mauricie area, the eastern TSZ would be the upper normal-946

sense shear zone and the underlying Mekinac-Taureau domain would be the upper portion of the 947

channel. Although deformation within the latter is interpreted as resulting from NW thrusting, the 948

variable and poorly developed lineation (Fig. 2) does not suggest high shear strain. Furthermore, 949

although more robust geochronological data would be desirable, available data suggest that penetrative 950

deformation within the putative channel occurred prior to ~1082 Ma, whereas normal shearing along its 951

upper shear zones, the eastern TSZ and the Tawachiche shear zone, was occurring at ~1064 Ma and 952

probably continued until 1036 Ma, the age of a “late-extensional” pegmatite emplaced within the 953

Tawachiche shear zone (Corrigan and van Breemen, 1997). Evidence for synchroneity of reverse- and 954

normal-sense shearing, characteristic 2 above, is therefore lacking. Finally, as a channel flows towards 955

the surface, its frontal part should cool before its rear. The trend of hornblende argon cooling age 956

decreasing towards the core of the Mekinac-Taureau domain could be compatible with this 957

characteristic, although it could also reflect a trend towards deeper structural levels. Consequently, 958

although more data are needed, especially at the northern end of the Mekinac-Taureau domain, 959

available data from the Mauricie area do not seem to support the channel flow hypothesis as a single 960

exhumation mechanism. The possibility of an earlier phase of mid-crustal flow overprinted by another 961

mechanism cannot however be entirely excluded.962

Metamorphic core complexes are characterized by a dome of high-grade metamorphic rocks in 963

the footwall, covered by non-metamorphic upper crustal units (or units that have experienced an earlier 964

metamorphic event) in the hanging wall of a normal-sense shear zone, which is generally planar or 965

slightly convex upward at the apex of the dome and dips away from that dome on its flanks (e.g. Lister 966

and Davis, 1989; Tirel 2006; Wernicke, 1985). In the Mauricie area, the Mékinac-Taureau domain 967

underwent high-grade metamorphism before 1082 Ma (1075 MPa and ~825 °C; this study) and the 968

Shawinigan domain underwent coeval and slightly lower-grade metamorphism (625-850 MPa and 700-969

775 °C, this study; Corrigan and van Breemen, 1997). In contrast, peak metamorphic conditions in the 970

overlying Portneuf-Mauricie domain was significantly lower (300-600 MPa and 550-700 °C; Corrigan, 971

1995; Lévesque, 1995) and most likely much older (estimated at ~1400 Ma by Corrigan and van 972
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Breemen, 1997). This geometry of domains of contrasted metamorphic grades separated by gently 973

dipping (~20-30°) normal-sense shear zones that were active after the main episode of deformation and 974

metamorphism in the dome core are compatible to that expected on the flank of a MCC, although two 975

major normal shear zones are present, instead of a single decollement horizon (Fig. 14C). Furthermore, 976

the late, brittle-ductile normal faults observed in the Shawinigan domain, south of the TSZ (i.e. 977

structurally above the shear zone; Fig. 4B) could be compatible with the synthetic structures related to 978

the main detachment commonly observed in the hanging walls of MCCs (e.g. Wernicke, 1985). The top 979

bounding shear zone of MCCs is commonly retrograde when compared with the metamorphic grade of 980

the footwall (Dallmeyer et al. 1986; Gibson et al. 1988; Lister and Davis, 1989). This is the case for the 981

eastern TSZ, where retrograde metamorphic textures and retrograde P-T conditions were observed in an 982

amphibolite sampled within the shear zone. Corrigan (1995) and Corrigan and van Breeman (1997) also 983

suggested that the Tawachiche shear zone was retrograde as compared to peak metamorphism in the 984

underlying Shawinigan domain. The trend of cooling ages younging towards the core of the dome is a 985

feature uncommon to classic metamorphic core complexes (e.g. Sullivan and Snooke, 2007), but similar 986

cooling trends are nevertheless reported in the literature (e.g. Brun and Sokoutis, 2007) and can be 987

inferred from results of numerical modeling (Tirel et al. 2008). MCC development is commonly 988

associated with unidirectional direction of extension (e.g. Doughty et al., 2007; Lana et al., 2010; Lister 989

and Davis, 1989), as opposed to the orthogonal trends of stretching lineation associated with the 990

Tawachiche and eastern TSZ (Fig. 14A). Although uncommon, examples of core complexes with >1 991

directions of extension however exist in nature. Hill et al., (1992) and Hill (1994), for instance, described 992

the d’Entrecasteaux Island MCC and argued for the existence of bounding shear zones with directions of 993

shearing at 90 °C from one another. Although present data suggest that the eastern Taureau and 994

Tawachiche shear zones are coeval within uncertainty, the possibility of temporally discrete phases with 995

orthogonal direction of extension cannot be firmly ruled out. Whether both shear zones were coeval or 996

not, this pattern is best explained if orogenic collapse was of the gravity-driven fixed-boundary mode (as 997

in the terminology of Rey et al., 2001) in contrast to the free-boundary mode of most cordilleran MCC 998

that formed in a regional tensional stress regime. 999

gravitational forces rather than by horizontal, orogen-1000

1001

in the normal-sense shear zones bounding the complex. A quasi radial pattern of extension is also 1002

observed at the scale of the Grenville Province (Rivers; 2012). Furthermore, a MCC not developing by a 1003
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rolling-hinge mechanism (Axen and Bartley, 1997) could potentially explain the difference in trends of 1004

cooling ages as well. Even if some characteristics of the Mauricie area do not correspond to that of a 1005

typical cordilleran MCC, we consider that gravitational collapse is the most likely mechanism of 1006

exhumation of the Mekinac-Taureau domain. The possibility of an earlier phase of mid-crustal flow 1007

preceding the gravitational collapse cannot be confidently ruled out, but data suggest that channel flow 1008

alone cannot explain the geological architecture observed in the Mauricie area. Results of this study, 1009

therefore, support the conceptual model of gravitational collapse presented by Rivers (2008, 2012).1010

9. Conclusions1011

Structural analysis, thermobarometry, U-Pb and 40Ar/39Ar geochronology on selected samples of 1012

the Mauricie area provided data essential to the reconstruction of the tectono-metamorphic history of 1013

the area:1014

1) Peak metamorphism in the Mékinac-Taureau domain reached P-T conditions of 1000-1100 1015
MPa and 820-880 °C prior to 1082 ± 20 Ma. This metamorphic event is considered as the 1016
result of northwestward thrusting and regional-scale crustal thickening.1017

2) Retrograde conditions varying from 800 to 650 MPa and from 775 to 675 °C were recorded in 1018
the upper structural levels of the Mékinac-Taureau domain.1019

3) The Shawinigan domain records P-T conditions varying from 850 to 625 MPa and from 775 to 1020
700 °C, values that are equivalent or of a slightly lower metamorphic grade as compared with 1021
retrogressed samples from the margin of the Mékinac-Taureau domain.1022

4) The contact between the Mékinac-Taureau and the Shawinigan domains is marked by a 1023
normal-sense shear zone with a top-down-to-the-ESE sense of shear, the eastern TSZ, that 1024
was active at ~1064 ± 15 Ma, during and/or after retrograde metamorphism documented in 1025
the Mékinac-Taureau domain. 1026

5) Normal-sense shearing along the eastern TSZ is coeval, within uncertainty, with NNE-directed 1027
normal-sense shearing along the Tawachiche shear zone (Corrigan, 1995; Corrigan and van 1028
Breemen, 1997). 1029

6) The area cooled below 550-600 °C at ~1000-1030 Ma and below 450 °C at ~900-970 Ma.1030

7) Structural and metamorphic characteristics of the Mauricie area are similar to those expected 1031
from a metamorphic core complex formed during post-convergent orogenic collapse in a 1032
gravity-driven fixed-boundary mode. The Mékinac-Taureau and Shawinigan domains were 1033
thus probably exhumed by a similar process. Our study thus supports the orogenic collapse 1034
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model of Rivers (2008, 2012) for the exhumation of mid-crustal metamorphic core complexes 1035
in the Grenville Province. 1036
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Figure Captions1383

Fig. 1. Simplified geologic map of the Mauricie area (modified from Nadeau and Brouillette, 1995). 1384

Age constraints on the Tawachiche and western Taureau shear zones are from Corrigan and van 1385

Breemen (1997) and Martignole and Friedman (1998). Opx-in isograd was drawn after Schriver (1973), 1386

and Hocq and Dufour (1999, 2002) following the descriptive definition of Carmichael (1978). Black 1387

rectangle represents study area shown on Fig. 2. Inset shows the simplified tectonic subdivisions of the 1388

Grenville Province (modified from Rivers, 2008) with the location of the Mauricie area (black rectangle). 1389

MT—Morin terrane, MTD—Mékinac–Taureau domain, SD—Shawinigan domain, PMD—Portneuf–1390

Mauricie domain, PLD—Parc des Laurentides domain, MA—Anorthosite, SMF—St. Maurice fault.1391

Fig. 2. Simplified geologic map of the study area with location of samples used for 1392

thermobarometry, U-Pb geochronology and 40Ar/39Ar thermochronology. Structural data (poles to 1393

foliation (circles) and lineations (X)) are divided according to structural domains delimited by dashed 1394
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lines. Stereonets are lower hemisphere equal area projections. Contours were produced with Stereonet 1395

software v.1.5 using the 1% area method and 2 sigma contour intervals (2-20 sigma) for stereonets 1396

containing more than 40 data points. Geologic map from Nadeau et al. 2009.1397

Fig. 3A. Panoramic view of the St-Tite gravel pit, a key outcrop where the eastern Taureau shear 1398

zone is best exposed and where samples RS11-098, RS11-089 and RS11-082 were collected. The inset is 1399

a sketch of the principal structures of the outcrop. Blue lines represent strongly deformed marble layers.1400

Prime locations for the observation of top-down-to-the-ESE kinematic in -1401

-porphyroclasts, asymmetric z-folds). Letters in the inset refer to the locations of close-up 1402

photographs, which have the same orientation unless specified otherwise. Lineation (Ln+1) is plunging to 1403

the ESE (see structural subdomain 3 on Fig. 2), i.e. subparallel to the outcrop surface. B. Lower strain 1404

area indicated by the preservation of an earlier, folded, foliation Sn that is not completely transposed 1405

into the Sn+1 foliation. - -porphyroclast of K-feldspar-rich 1406

leucosome pod. E. Foliation Sn+1 of the host gneiss (H) entrained at the margins of an anastomosing 1407

marble layer (M).1408

Fig. 4. A. Composite microphotograph in cross polarized light (XPL) of a paragneiss located in the 1409

Mékinac-Taureau domain ~3km below the eastern Taureau shear zone (sample RS11-058). Syn-1410

kinematic recrystallization of quartz ribbons forming an oblique grain-shape fabric suggests top-down-1411

to-the-ESE sense of shear. Fine grain material within the quartz layer is a mixture of Sil + Bt + Kfs + Pl + 1412

Rt. B. Extensional ductile-brittle structure in the Shawinigan domain showing top-down-to-the-SE sense 1413

of shear. View is not perfectly parallel to the stretching lineation along the shear plane, which plunges 1414

towards the SE. These structures are interpreted as structurally higher equivalents of the Taureau shear 1415

zone that were active during waning stages of extension.1416

Fig. 5. Representative microphotographs of metapelite and amphibolite analyzed for 1417

thermobarometry. A. Typical metamorphic assemblage in metapelite RS11-105 of the Shawinigan 1418

domain containing Qtz + Kfs + Pl + Grt + Bt + Sil. This assemblage characterizes all metapelites from the 1419

Mauricie area. B. Perfectly euhedral garnet grains from the interior of the Mékinac-Taureau domain 1420

(sample RS11-021). C. Type 1 garnet containing abundant ilmenite inclusions (sample RS11-105). D. Type 1421

2 garnet containing abundant quartz inclusions (sample RS11-105). E. Type 3 inclusion-poor garnet 1422

(sample RS11-105). F. View parallel -shaped reaction rims of 1423
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plagioclase and hornblende around garnet (sample RS11-082B). Inset is a view perpendicular to the 1424

lineation at the same scale. Sigmoid shape of reaction rims implies that the reaction was pre- to syn-1425

kinematic.1426

Fig. 6. Representative chemical composition profiles of garnet from core to rim. A Metapelite 1427

from the interior of the Mékinac-Taureau domain. B-C. Metapelite from the external zone of the 1428

Mékinac-Taureau domain. D-G. Metapelite from the Shawinigan domain. H. Amphibolite from the 1429

eastern Taureau shear zone. Notice the lack of zoning in garnet typical of retrograde net transfer 1430

reaction in migmatitic metapelites, such as spike in Xsps at the rim (Spear et al. 1999). See text for 1431

additional interpretation of the zonation.1432

Fig. 7. Pressure and temperature obtained from the Mékinac-Taureau and the Shawinigan domain 1433

with metapelites (A) and amphibolite (B). Samples are located on Fig. 2. Uncertainties for the 1434

metapelites are ± 50 °C and ± 100 MPa on temperature and pressure, respectively, as estimated by 1435

Essene (1989) and Berman (1991), and are represented by parallelograms based on the thermometric 1436

and barometric reactions. The amphibolite was used to calculate peak and retrograde conditions by 1437

combining all possible permutations of the mineral compositions data set. Pink stars show the averages1438

of all permutations with a 95% confidence ellipse. Note that these errors do not include uncertainties 1439

stemming from the thermodynamic database nor from calculations of mineral activities.  Results suggest 1440

high grade (820-880 °C; 1000-100 MPa) metamorphism in the Mékinac-Taureau domain overprinted by 1441

retrograde metamorphism (675-775 °C; 650-800 MPa) in the upper structural levels, whereas the 1442

Shawinigan domain was metamorphosed at conditions varying from 775 to 700 °C and from 850 to 625 1443

MPa. See text for further explications. Ky-Sil transition is from Pattison (1992); wet solidus and Ms-out 1444

reaction are from Vielzeuf and Schmidt (2001) and references therein; compositional dependant Bt-out 1445

reactions are from phase equilibria modeling of a typical metapelite (Brown, 2010; B10) and from the 1446

partial melting experiment of a two-micas pelite (Patino Douce and Johnson, 1991; PDJ91). The 1447

prograde equivalent of the net transfer reaction (7), Bt + Sil + Pl + Qtz = Grt + Kfs + melt, operates once 1448

the Ms-out reaction is crossed and as long as all reactants are present in the rock (i.e. until the Bt-out 1449

reaction).1450

Fig. 8. Syn-kinematic pegmatite (sample RS11-098) cross-cutting the host rock foliation, but locally 1451

containing a weak internal foliation parallel to the external foliation Sn+1. “C-S” fabric above the main 1452
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pod (Fig. 8B) and dragging of the host gneiss foliation indicate top-down-to-the-ESE sense of shear. 1453

Rectangle shows the location of Fig. 8B. Inset outlines the major contacts between the pegmatite and 1454

the host rock. B. C-S fabric indicating syn-kinematic emplacement of the pegmatite. S-planes are defined 1455

by the host rock foliation and pegmatite dykelets define C- -porphyroclast (P) of 1456

clinopyroxene partially replaced by hornblende, indicating retrograde metamorphism prior to or during 1457

shearing.1458

Fig. 9. A. Cathodoluminescence images of representative zircon from sample RS11-098. Group 1 1459

zircon is commonly overgrown by Group 2 and rarely by Group 3 zircon, but no physical relationship is 1460

observed between Groups 2 and 3. Group 1 zircon is interpreted as primary igneous zircon, Groups 2 1461

and 3 as metamorphic zircon, and Group 4 as inherited zircon. Circles are spots analyzed for 1462

geochronology. Their diameters are 25 μm large except for spots outlined in white, which are 30 μm. B. 1463

Cathodoluminescence images of representative zircon crystals from sample RS12-040. Prismatic shape 1464

and oscillatory zoning of zircon from this sample are typical of igneous crystallization. Analyzed spots are 1465

25 μm large.1466

Fig. 10. A-D. Geochemical composition diagrams showing differences and similarities between 1467

Groups 1-4 zircon from sample RS11-098. Similar chemical composition between Groups 1 and 2 and 1468

depletion of non-essential structural constituent cations (ex: U, Th, REE) in Group 2 as compared to 1469

Group 1, suggest that Group 2 zircon is derived from dissolution and reprecipitation of Group 1 zircon 1470

(Hoskin and Black, 2000; Hoskin and Schaltegger, 2003). Group 3 zircon has a distinct chemical 1471

composition that suggests an origin from a distinct fluid. Group 4 zircon includes inherited cores that do 1472

not match the composition and/or age of Group 1-3 zircon. See text for details.1473

Fig. 11. Weighted mean 207Pb/206Pb dates for A-C. syn-extension pegmatite RS11-098 (UTM 1474

680719E, 5178838N, NAD 83, zone 18N) and D. post metamorphic peak pegmatite RS12-040 (UTM 1475

6741476

1477

of the standard calibration uncertainties. Weighted mean 207Pb/206Pb dates are preferred for 1478

interpretations because they are more precise than U/Pb dates upon propagation of standard 1479

calibration uncertainties and because they are not affected by recent Pb loss. MSWD—mean square 1480

weighted deviation, PF—probability of fit, n—number of analyses, Ti-in-Zrn—Temperature of 1481
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crystallization based on the Ti-in-zircon thermometer (Ferry and Watson, 2007; Watson et al. 2006). 1482

Isotope ratios, ages, chemical composition and temperature of crystallization for any single analysis can 1483

be found in supplementary data table 2.1484

Fig. 12. 39Ar/40Ar age spectra for A. amphibole and biotite of sample RS11-002; B. amphibole and 1485

biotite of sample RS11-115; C. biotite of sample RS11-015; D. amphibole of sample RS11-089; E. 1486

amphibole and biotite of sample RS11-113; F. biotite of sample RS11-105. The age error bars for each 1487

-1488

when applicable. See text for interpretations. Samples are located on Fig. 2.1489

Fig. 13. Compilation of thermobarometric, thermochronologic and geochronologic results placed 1490

on a schematic cross-section of the southeastern Mékinac-Taureau and Shawinigan domains. Samples 1491

are located on Fig. 2 and their structural positions (in km) is projected perpendicular to the eastern 1492

Taureau shear zone.. 40Ar/39Ar cooling ages are defined by plateau ages, except for sample RS11-113 1493

(Hbl) that is defined by a pseudo-plateau. U-Pb dates (207Pb/206Pb on zircon) provide a minimum age for 1494

regional deformation and peak metamorphism (RS12-040) and an age of significant shearing along the 1495

eastern Taureau shear zone (RS11-098). See text for further details and interpretation.1496

Fig. 14. A. Simplified geologic map of lithotectonic domains and major shear zones of the Mauricie 1497

area (modified from Nadeau and Brouillette, 1995). Cross section A-A' is shown in Fig. 14C. B. Schematic 1498

structural profile representing the configuration of thrust-imbricated domains prior to extension. This 1499

configuration might have prevailed before 1082 ± 20 Ma, the minimal age constraint determined for 1500

peak metamorphism and thrusting in the Mékinac-Taureau domain. The vertical pressure scale is based 1501

on values obtained from the Mékinac-Taureau and Shawinigan domains and depth in kilometers is 1502

calculated assuming a pressure gradient of 30 MPa/km (Winter, 2001). Red pods represent leucosome 1503

material at the Mékinac-Taureau and Shawinigan domains interface. The approximate trace of the 1504

future detachment zone (i.e. the eastern Taureau and Tawachiche shear zones) is shown on the cross-1505

section. C. A-A' cross-section showing the architecture after the 1065-1035 Ma episode of extension, 1506

modified after Rivers (2012) and Rivers et al. (2012). Deformation was localized along both the eastern 1507

Taureau and Tawachiche shear zones, responsible for the exhumation of the Mékinac-Taureau and 1508

Shawinigan domains as a metamorphic core complex. Reference points (blue stars) show how different 1509

crustal levels were juxtaposed laterally. WTSZ—western Taureau shear zone, ETSZ—eastern Taureau 1510
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shear zone, TWSZ—Tawachiche shear zone.1511

Table captions1512

Table 1. Summary of chemical compositions from microprobe analyses and calculated P-T results.1513

Table 2. Summary of 40Ar/39Ar results.1514

Supplementary data repository captions1515

Supplementary U-Pb and 40Ar/39Ar geochronology analytical methods.1516

Supplementary data table 1. Mineral compositions determined by electron microprobe analysis.1517

Supplementary data table 2. U-Pb isotopic compositions and trace element concentrations. 1518

Supplementary data table 2. 40Ar/39Ar data.1519

Supplementary Fig. S1. Concordia diagrams for Groups 1-3 zircon of pegmatite RS11-098. D. 1520

Concordia diagram for zircon of pegmatite RS12-040. Individual error 1521

include standard calibration uncertainties. Dates are 207Pb/2061522

level, including standard calibration uncertainties.1523
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We conducted thermobarometry and geochronology on samples of the Mauricie area. 1 

Peak metamorphism (~1000-1100 MPa and ~820-880 °C) occurred prior to 1082 ± 20 Ma. 2 

A top-down-to-the-ESE shear zone is responsible for exhumation at ~1064 ± 15 Ma. 3 

Shearing was coeval with retrograde metamorphism. 4 

A metamorphic core complex was formed by orogenic collapse in fixed-boundary mode. 5 

*Highlights (for review)
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Table 1. Continued
Eastern Taureau
shear zone
RS11-082B
680747

5178829
core 71-79
inner rim 74-75
outer rim 74-76
core 18-30
inner rim 27-32
outer rim 18-20
core 2-4
inner rim 2-3
outer rim 4-5
groundmass 43-45
reaction rim 40-44
groundmass 40.2-50.7
reaction rim 48.5-58.0

peakd 990

retrod 650

peakd 880

retrod 720
Notes
a) UTM NAD 83, zone 18N
b) Xalm, Xprp, Xgrs, Xsps, Fe/(Fe+Mg) and are given as %
c) T: temperature; P : pressure
d) peak: metamorphic peak; retro: retrograde metamorphism

Eastinga

Northinga

Grt

Fe/(Fe+Mg)b

Xgrs
b

Xsps
b

Pc MPa

Tc °C

Hbl Fe/(Fe+Mg)b

Pl An

Table
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Table 2. Summary of 40Ar/39Ar results
Sample Eastinga Northinga Mineral Ageb %39ArK

dated (Ma) (Ma) defining
plateau

Core of the Mékinac -Taureau domain (12 and 8 km below the ETSZ)
RS11-002 657793 5196510 Hbl 998.6 7.4 85.8
RS11-002 657793 5196510 Bt 923.2 7.0 96.5
RS11-115 666117 5191538 Hbl 1010.0 7.4 93.4
RS11-115 666117 5191538 Bt 969.8 7.2 74.8
External zone of the Mékinac-Taureau domain (3 km below the ETSZ)
RS11-015 671176 5177599 Bt 926.1 7.0 88.2
Eastern Taureau shear zone (within the ETSZ)
RS11-089 680697 5178880 Hbl 1031.6 7.6 86.4
Shawinigan domain (2 and 4 km above the ETSZ)
RS11-113 685301 5177182 Hbl 1022.3 7.6 49.2
RS11-113 685301 5177182 Hbl (pert.c) 1012.3 8.0 13.6
RS11-113 685301 5177182 Bt 930.4 7.0 79.3
RS11-105 670199 5158530 Bt 905.8 6.8 83.1
Notes
a) UTM NAD 83, zone 18N
b) all dates are plateau ages except for RS11-113 Hbl
c) pert. : thermal perturbation pseudo-plateau.

Table
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