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Abstract

We develop a model to couple acoustic waves and the motion of rigid movable grains in a sub-
merged suspension. To do so, we use the fictitious domain method based on distributed Lagrange
multipliers to enforce the natural jump condition of the wave equation and a rigidity constraint.
One can then model the granular medium with ”Molecular Dynamics” or related methods. Both
dynamic and acoustic numerical results are compared with analytic solutions of acoustics and an
estimation of the error is given. We show energy transfers between two submerged grains sepa-
rated by water and linked to their own spring while oscillating. The model is applied at large scale
with a suspension of many grains to foresee its future possibilities.

Keywords: granular medium, suspension, fictitious domain method, distributed Lagrange
multipliers, movable rigid grains, acoustic wave equation

1. Introduction

In marine Geosciences, acoustic probing is commonly used to detect subsurface reflectors,
characterize their physical properties and study geophysical processes such as slope instabilities.
In particular, undersea sediment layers constitute granular materials which pore space is filled
with waver, i. e. grains are movable bodies. Such layers are acoustically complex materials where
sound waves can be multi-scattered and reflected at fluid-grain interfaces. Experiments with model
spherical grains under water have been performed to better understand the acoustic behavior of
granular media in equilibrium [1] or tilted under gravity [2, 3]. These experiments clearly highlight
the contribution of the fluid-grain interaction on the acoustic measurements, which can also be
affected by inter-particle contacts [4].

In the case of pores filled with air, dry granular materials are commonly modeled using discrete
element methods such as ”Molecular Dynamics” [5, 6]. Each grain is represented using a rigid and
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incompressible sphere completely characterized by the position of its center and its radius. The air
filling the pores can be neglected because its density is very low, so that the momentum it transmits
is negligible. In the case of pores filled with water, the momentum transmitted by the fluid can no
longer be neglected. Thus, discrete element methods can not be used to model submerged granular
media. Well known numerical models exist to model sound waves in a liquid: for example finite
differences [7, 8] or finite elements [9, 8]. But to our knowledge, none of them usually consider
neither the coupling between the wave and the motion of grains, nor the inter-particles contacts.

The fictitious domain method based on Lagrange multipliers was introduced in [10] and started
to be popular two decades ago when applied to Navier-Stokes equations [11] and then for scatter-
ing problems in acoustics [12]. The particularity of this method is to work with two independent
finite element meshes: the first one regular and time-independant and the second one unstruc-
tured and possibly time-dependant. This last attribute was first applied for forced displacement
of particles in [13] and to model vibrations of the membrane of a kettledrum [14]. Introduction
of distributed Lagrange multipliers [15] allowed simulation of freely movable particles through
a rigid body motion constraint applied inside particles[16]. The fictitious domain method based
on distributed Lagrange multipliers was also developed in [17] for the mixed formulation of the
acoustic wave equation with Dirichlet conditions.

In this work, we unite a finite element method to a discrete element model through the fictitious
domain method, yielding a single method capable of describing acoustic propagation by both the
fluid and inter-granular contacts.

To our knowledge, our model introduced in [18] is the first to couple the acoustic wave equa-
tion governing the fluid to the dynamic equations governing the motion of rigid movable grain.
However, in that work, we simulated a single rigid sphere in a sound wave, and we compared only
its velocity to the analytic solution. In addition to results on the dynamic of the grain, our model
allows each grain to generate its own acoustic field when it is under a force due to another incident
wave but also due to any other forces acting on it such as a contact force or the gravity. These
resulting acoustic fields have never been validated and confronted to analytic solutions.

In the present paper, we present a major development of the model introduced in [18]. First of
all, we take on a new mixed finite elements method based on standard conforming finite elements
to fix severe convergence issues of the fictitious domain method. We also change the numerical
scheme to improve energy conservation. Finally, the model is now able to work with several grains
and we illustrate that with new numerical experiments.

The paper is subdivided into 2 main parts. In section 2 and 3, we are describing the model,
i. e. governing equations, the fictitious domain method, and the computational scheme. Section 4
deals with three numerical experiments, involving one, two and many movable grains submerged
in water, respectively. With the first experiment, both dynamic and acoustic numerical results are
compared with analytic solutions of acoustics and an estimation of the error is given. With the
second experiment, we analyse the energy transfers between two oscillating grains separated by
water and linked with their own springs. In the last experiment, we highlight the potential of the
model to sound a suspension of grains with acoustic pulses.
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Figure 1: System with the different domains: domains Gk are the domain of each grain k ; and the
hatched rectangle is the whole domain Ω and Γ its boundary.

2. Governing equations

A schematic representation of rigid bodies in a fluid matrix is considered on Fig. 1. Let Ω be
the domain which includes a set of grains G and a fluid matrix Ω \G. The domain G is subdivided
into NG circular subdomains Gk, one for each grain, such that G = ∪Gk. Let Γ be the boundary of
the whole domain Ω, ∂Gk the boundary of each domain Gk, and therefore let ∂G be the boundary
of the domain G. We also define nk the outgoing normal unit vector of the boundary ∂Gk, tk the
tangential unit vector, and Xk the position of the center of the subdomain Gk.

We consider that the fluid is perfect, i.e. non viscous, non heat conducting and isentropic. The
perfect fluid approximation is commonly used in acoustics because the scatteering and transport
of energy are much more important than dissipation due to viscosity. Moreover, the variations
of the pressure fields are small compared to their mean value and the density of the fluid ρ0 and
the velocity of sound in the fluid c0 are constant. These assumptions allow use of the mixed
formulation of the acoustic wave equation governing the fluid.

2.1. Strong forms

We can write the acoustic wave equation as a system of two equations in terms of pressure
field p and velocity field u: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ0
∂u
∂t
+ ∇ p = 0 in Ω \G

1

ρ0c2
0

∂p
∂t
+ ∇ · u = 0 in Ω \G

(1a)

(1b)

The second system of equations governs the motion of grains:

ρ S k
dUk

dt
= −

∫
∂Gk

p nk d� + Fk ∀ k = 1, 2, ...,NG (2)

3



Here S k and Uk are the surface (in a 2D domain) and the velocity of the grain k, respectively. All
grains have the same density ρk = ρ ∀ k = 1, 2, ...,NG. Fk can handle any other extra force, for
example if the grain is subjected to the gravity, a spring force, or some interaction forces. Contrary
to system (1), Eq. (2) is discrete and therefore allows use of discrete elements methods such that
the Molecular Dynamics algorithm [5].

Then, to link systems (1) and (2), we add the natural jump condition of the acoustic wave
equation for movable rigid bodies:

u · nk = Uk · nk on ∂Gk ∀ k = 1, 2, ...,NG (3)

Eq. (3) is essential to couple the grains velocity Uk and the acoustic velocity field u.
Eq. (3) is just the ”slip” boundary condition appropriate for the perfect fluid we are consider-

ing, applied to the surface of the grains. The particle rotations do not appear because they couple
to the fluid only through tangential viscous stresses exerted by the viscosity of the particle surface.
Our fluid is inviscid and therefore this coupling is absent.

Note that the jump condition (3) does not prevent particle rotation. In the special case where Fk

includes friction forces between grains, then an additional term including angular velocity should
be added to the first member of Eq. (2). But even in this case, rotations of a sphere in a perfect
fluid can not generate any sound.

Another natural consequence of Eq. (3) is that only the normal component of the acoustic
velocity field is constrained at the interface. Because of the perfect fluid, we have no information
on the tangential component of the velocity field. This is consistent with the governing equation
Eq. (1) which allows more freedom for the velocity and pressure fields than the Navier-Stokes
equation would do.

Two kinds of boundary conditions are set on the outer frontier Γ = ∪Γ j of Ω. On one hand,
Perfectly Matched Layers (PML) [19] are set on the bottom side Γ1 and the top side Γ3 of the
domain Ω but we will not focus on that point to keep equations simple. See [20] for details on the
construction of the PML based on a coordinate stretching approach for Maxwell’s equations and
[17] for the acoustic wave equation. These layers end with a Dirichlet condition applied on the
pressure field:

p = 0 on Γ1 ∪ Γ3 (4)

On the other hand, we set periodic boundary conditions on the right side Γ2 and the left side Γ4 of
the domain Ω

p|Γ2
= p|Γ4

on Γ2 ∪ Γ4 (5)

u|Γ2
= u|Γ4

on Γ2 ∪ Γ4 (6)

In that way, we can easily generate plane waves which are useful when comparing with analytic
solutions of acoustics.
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2.2. Weak forms

We write now the weak form of Eqs. (1a) and (2) into a single equation with the unknowns
u ∈ H(div,Ω \G), Uk ∈ R2 ∀ k = 1, ...,NG and p ∈ L2(Ω \G):∫

Ω\G
ρ0
∂u
∂t
· v dx −

∫
Ω\G

p∇ · v dx +
∫
Γ

p nΓ · v d� −
∫
∂G

p n · v d�

+
∑

k

[
ρ S k

dUk

dt
·Vk − Fk ·Vk +

∫
∂Gk

p nk ·Vk d�

]
= 0 (7)

Here v ∈ H(div;Ω \G)2, Vk ∈ R2, and q ∈ L2(Ω \G) are the respective test functions of u, Uk, and
p. Eq. (7) was called combined equation of motion in [21] and it expresses the conservation of the
momentum in the whole domainΩ. We note that the integral on ∂G (last term of the 1st line of (7))
and the sum of hydrodynamic forces (last term of the 2nd line of (7)) cancel each other out if and
only if we extend Eq. (3) to the test functions and require v · nk = Vk ·nk ∀ k = 1, 2, ...,NG. To take
this condition into account, we define a new functional space W̃Ω\G that we also called combined
variation space in reference to the space introduced in [16] for the Navier-Stokes equation:

W̃Ω\G =
{
(v,Vk)

∣∣∣ v ∈ H(div;Ω \G), Vk ∈ R2 ; v · nk = Vk · nk on ∂Gk ∀k = 1, 2, ...,NG

}
(8)

Moreover, boundary conditions (4) and (5) make the integral on Γ vanish, and therefore lead to
find (u,Uk) ∈ W̃Ω\G and p ∈ L2(Ω \G) such as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω\G
ρ0
∂u
∂t
· v dx −

∫
Ω\G

p∇ · v dx +
∑

k

[
ρ S k

dUk

dt
·Vk − Fk ·Vk

]
= 0

∫
Ω\G

1

ρ0c2
0

∂p
∂t

q dx +
∫
Ω\G
∇ ·u q dx = 0

(9a)

(9b)

∀ (v,Vk) ∈ W̃Ω\G and q ∈ L2(Ω \G).

2.3. Fictitious domain method formulation

The fictitious domain method consists in extending Eq. (9) defined in the fluid domain Ω \G
to the domain Ω such that the acoustic fields p and u are also defined in the whole regular domain
Ω. To do so, we proceed in three steps :

1. first, we extend the combined equation of motion (9a) to the whole domain Ω;
2. then, constraints acting on the grain are enforced in a weak sense using Lagrange multipliers;
3. finally, we extend the linearized continuity equation (9b) to the whole domain using the

same constraints

2.3.1. Combined equation of motion for the extended domain
First, we follow the method described in [16] to develop an equation analogous to Eq. (9a)

valid in the domain Gk. The extension from one grain Gk to the whole domain G =
⋃

Gk is
straightforward. However, we start with a different hypothesis from [16] because we use a different
boundary condition on the grain, namely Eq. (3).
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Let (Xk, er, eθ) be an orthonormal basis with the center of the grain Xk as its origin and er =

nk and eθ = tk orthogonal unit vectors. The following development to find an equation for the
extended domain Gk is split into two steps: one to find an expression involving the projection of u
on er and another one for the projection of u on eθ.

Firstly Eq. (3) is extended from ∂Gk to Gk:

u · er = Uk · er in Gk (10)

Let’s call ur the projection of u on er:
ur = Uk · er (11)

We can derive Eq. (11) with respect to the time and multiply each member by ρ0:

ρ0
∂ur

∂t
= ρ0,

d
dt

(Uk · er) in Gk (12)

We introduce the combined variation space W̃Gk , counterpart of the space W̃Ω\G in Gk :

W̃Gk =
{
(v,Vk)

∣∣∣ v ∈ H(div; Gk), V ∈ R2 ; v · nk = Vk · nk on ∂Gk

}
(13)

The weak form of Eq. (12) can be written:
∫

Gk

ρ0
∂ur

∂t
vr dx =

∫
Gk

ρ0
d
dt

(Uk · er) Vkr dx (14)

Then, knowing that er = cos(θ) ex + sin(θ) ey:

∫
Gk

ρ0
∂ur

∂t
vr dx = ρ0

∫ Rk

0
dr

∫ 2 π

0

d
dt

(
Ukx cos(θ) + Uky sin(θ)

) (
Vkx cos(θ) + Vky sin(θ)

)
dθ (15)

we compute integrals in the right hand side of (15):
∫

Gk

ρ0
∂ur

∂t
vr dx = ρ0 S k

dUk

dt
·Vk dx (16)

Now, we do the same for the tangential component of the velocity field uθ = u · tk (see Fig. 1
for the direction of tk). We begin with another natural jump condition of the wave equation derived
from the continuity of the pressure through the interface ∂Gk [22]:

ρ0
∂

∂t
(u · tk) = ∇ p · tk on ∂Gk (17)

As described above, we extend Eq. 17 to Gk, multiply by the test function vθ and we integrate
using the gradient theorem on a closed surface so that:

∫
Gk

ρ0
∂uθ
∂t

vθ dx = 0 (18)
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Injecting Eq. (18) in Eq. (16) leads to:∫
Gk

ρ0
∂u
∂t
· v dx = ρ0 S k

dUk

dt
·Vk dx ∀(v,Vk) ∈ W̃Gk (19)

To go further, we enforce a divergence free constraint of the velocity field inside the grain Gk

to prevent propagation of waves through the grain:

∇ ·u = 0 in Gk (20)

The associated constraint ∇ · v = 0 related to Eq. (20) has to be joined to the functional space W̃Gk

(13):

WGk =
{
(v,Vk)

∣∣∣ v ∈ H(div; Gk), Vk ∈ R2 ; v ·nk = Vk · nk on ∂Gk ; ∇ · v = 0 in Gk

}
(21)

In that way, we can add the missing integral to obtain the analog of Eq. (9a) and the problem is
now to find (u,Uk) ∈WGk such as:∫

Gk

ρ0
∂u
∂t
· v dx −

∫
Gk

p∇ · v dx = ρ0 S k
dUk

dt
·Vk dx ∀(v,Vk) ∈WGk (22)

Then, performing the symbolic operation ”(9a) +
∑

k (22)” yields to the combined equation of
motion for the extended domain with solutions (u,Uk) ∈WΩ:∫

Ω

ρ0
∂u
∂t
· v dx −

∫
Ω

p∇ · v dx +
∑

k

[
(ρ − ρ0) S k

dUk

dt
·Vk − Fk ·Vk

]
= 0 ∀(v,Vk) ∈WΩ (23)

with WΩ the combined variation space extended to Ω:

WΩ =
{
(v,Vk)

∣∣∣ v ∈ H(div;Ω), Vk ∈ R2 ; v · nk = Vk · nk on ∂Gk ; ∇ · v = 0 in Gk ∀ k = 1, ...,NG

}
(24)

2.3.2. Enforcement of constraints using Lagrange multipliers
In a second phase, the two constraints v · n = V ·n and ∇ · v = 0 have to be extracted from the

combined variation space (24) and added explicitly to Eq. (23) with Lagrange multipliers. For each
unknown Lagrange multiplier added, an equivalent equation have to be joined to Eq. (23). The
jump condition of the wave equation (3) is enforced using boundary Lagrange multipliers λ∂G on
∂G and distributed Lagrange multipliers [15] λG are used to enforce the divergence free constraint
(20) inside G. The problem is to find u ∈ H(div,Ω), Uk ∈ R2, λ∂G ∈ H1/2(∂G), λG ∈ H1(G) such
as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

ρ0
∂u
∂t
· v dx −

∫
Ω

p∇ · v dx +
∑

k

[
(ρ − ρ0) S k

dUk

dt
·Vk − Fk ·Vk

]

+
∑

k

[∫
∂Gk

λ∂G (v · nk − Vk · nk) d�

]
+

∫
G
λG ∇ · v dx = 0

for k = 1, 2, ...,NG

{ ∫
∂Gk

(u · nk − Uk · nk) μ∂G d� = 0
∫

G
∇ ·u μG dx = 0

∀v ∈ H(div,Ω), Vk ∈ R2, μ∂G ∈ H1/2(∂G), μG ∈ H1(G)

(25a)

(25b)

(25c)
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with μG and μ∂G test functions of λ∂G et λG respectively.

2.3.3. Linearized continuity equation for the extended domain
Now, let us include Eq. (9b) into the system (25). We write the weak form of the divergence

free constraint (20): ∫
G
∇ · u q dx = 0 ∀q ∈ L2(G) (26)

Note that Eq. (26) is redundant with Eq. (25c). Consequently, we can directly extend Eq. (9b) toΩ
because Eq. (25c) is enforced anyway. The final problem consists in finding u ∈ H(div,Ω), Uk ∈
R

2, p ∈ L2(Ω), λ∂G ∈ H1/2(∂G), and λG ∈ H1(G) such as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

ρ0
∂u
∂t
· v dx −

∫
Ω

p∇ · v dx +
∑

k

[
(ρ − ρ0) S k

dUk

dt
·Vk − Fk ·Vk

]

+
∑

k

[∫
∂Gk

λ∂G (v · nk − Vk · nk) d�

]
+

∫
G
λG ∇ · v dx = 0

∫
Ω

1

ρ0c2
0

∂p
∂t

q dx +
∫
Ω

∇ ·u q dx = 0

for k = 1, 2, ...,NG

{ ∫
∂Gk

(u · nk − Uk · nk) μ∂G d� = 0
∫

G
∇ ·u μG dx = 0

∀v ∈ H(div,Ω), Vk ∈ R2, q ∈ L2(Ω), μ∂G ∈ H1/2(∂G), μG ∈ H1(G)

(27a)

(27b)

(27c)

(27d)

Eq. (27) can be solved only if ρ0 � ρ, otherwise the unknown disappears from Eq. (27a). A
similar case occurs in [16] for Navier-Stokes equations but another fictitious domain formulation
was found to deal with this specific issue in [23]. We do not treat the case where the density of
the fluid ρ0 is the same as the density of the grain ρ because it is not relevant in the case of our
geophysical applications. Moreover, [23] does not refer to an explicit velocity of the grain Uk

which we need for the discrete algorithm we use.

3. Computational scheme

3.1. Finite elements

With the fictitious domain approach, two independent meshes have to be considered: one for
the global domain Ω and one for the domain of grains G. A regular grid TΩh (see Fig. 2a) is used
for the rectangular domain Ω to allow use of optimization techniques for the computation of the
pressure and velocity fields p and u. The second grid TGh (Fig. 2b) refers to the domain of grains
G: this grid may be unstructured but requires specific quadrature formula to perform the numerical
integration on triangles. So we prefer to choose a pseudo-regular grid as in [24] to keep variational
spaces simple.

8



(a) TΩh (b) TGh

Figure 2: The regular grid TΩh (on the left) is the grid where the physical variables u and p are
computed and the unstructured grid TGh (on the right) is the domain of the Lagrange multipliers.

Furthermore, TGh is independent from the grid TΩh and can be shifted during the simulation.
However, the size of the two meshes cannot be chosen independently; there is a compatibility
condition that must be satisfied so that the fictitious domain method converges [10]. Concretely,
we choose in our experiments a mesh ratio of κ ≈ 1.2 which yields results in good agreement with
analytic solutions.

We use the free software FreeFEM++ [25] to generate meshes and solve the partial differential
equations. In fact, FreeFEM++ works in the same way as Matlab does, i.e. with its own high-
level programming scripting language, close to the C language. So it is easy to implement both
finite elements and the discrete element method governing the motion of grains. The full access to
matrices also allows them to be modified to include constraints of the fictitious domain method.

In [18], we based our finite element approximation on the lowest order Raviart-Thomas ele-
ment RT0 [26] which is the natural choice to discretize the functional space H(div;Ω). Despite the
validation of the particle velocities in [18], the examination of the acoustic fields pointed out se-
rious issues with RT0 element. Indeed, convergence issues were also revealed in [27] while using
the fictitious domain method with Neumann boundary condition and the RT0 element. We solve
these problems in the present paper by opting for mixed methods using standard conforming finite
elements [28]. Lagrangian finite elements are used to approximate the solutions: the piece-wise
constant element P0h for the pressure space L2(Ω) is defined as:

P0h =
{
qh ∈ L2(Ωh)

∣∣∣∀K ∈ TΩh , qh|K = βK

}
(28)

with K a triangular finite element. The continuous piece-wise linear element P1h is used to dis-
cretize the velocity space H(div;Ω) in TΩh:

P1h =
{
vh ∈ C0(Ωh) | ∀K ∈ TΩh , vh|K ∈ P1

}
(29)

and also the Lagrange multipliers spaces H1(G) in TGh and H1/2(∂G) on T∂Gh .
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3.2. Finite-differences time-domain method

3.2.1. Operator splitting scheme
System (27) is too intricate to be solved directly using a standard finite difference scheme. It

has to be separated into smaller subproblems using the Marchuk’s first order operator splitting
scheme [29]. Consider the problem :

∂ϕ

∂t
+ A (ϕ) = f and ϕ|t=0 = ϕ0 (30)

where A =
∑N
α=1 Aα, Aα ≥ 0, N ≥ 2 and A is time-independent. The absolutely stable algorithm is,

for j = 0, 1, ...,N:

ϕ j+ 1
N − ϕ j

Δt
+ A1

(
ϕ j+ 1

N

)
= f j+1

1

...

ϕ j+1 − ϕ j+ N−1
N

Δt
+ AN

(
ϕ j+1

)
= f j+1

N (31)

with Δt the time step. To apply this algorithm, the system (27) is subdivided into two steps dis-
cussed in detail below:

1. propagate the acoustic wave in the fluid (step 1a); compute position, velocity and forces
acting on the grains (step 1b),

2. enforce constraints applied on the grains (step 2).

We compute the acoustic velocity field and grain velocities at the same time because they are
linked through the same velocity space, so they both correspond with step 1 of Marchuk’s algo-
rithm. However, resolutions of the acoustic wave equation and the equation of motion are totally
independent inside step 1.

3.2.2. Step 1a: wave equation with semi-implicit Euler
Firstly, we solve the wave equation system by finding uh ∈ P2

1h
and ph ∈ P0h such as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

1

ρ0c2
0

∂ph

∂t
qh dx +

∫
Ω

∇ ·uh qh dx = 0

∫
Ω

ρ0
∂uh

∂t
· vh dx −

∫
Ω

ph ∇ · vh dx = 0

(32a)

(32b)

∀ vh ∈ P2
1h

and qh ∈ P0h . We can solve successively equations (32a) and (32b) using the following
first order semi-implicit Euler scheme :

1. find p
n+ 1

2
h ∈ P0h such as:

∫
Ω

1

ρ0c2
0

p
n+ 1

2
h − pn

h

Δt
qh dx +

∫
Ω

∇ ·un
h qh dx = 0 ∀ qh ∈ P0h (33)
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2. find u
n+ 1

2
h such as:

∫
Ω

ρ0
u

n+ 1
2

h − un
h

Δt
· vh dx −

∫
Ω

p
n+ 1

2
h ∇ · vh dx = 0 ∀ vh ∈ P2

1h
(34)

with t = Δtmin. In the semi-implicit Euler scheme, the minimal time step Δtmin is related to the
minimal spatial step hmin by:

Δtmin ≤
α

c0
hmin (35)

where α is a positive number.

3.2.3. Step 1b: equation of motion with Verlet algorithm
Independently to the computation of the wave equation (33) and (34), we can solve the part of

the system corresponding to the equation of motion. Find Uk ∈ R2 ∀k = 1, 2, ...,NG such as:

(ρ − ρ0) S k
dUk

dt
·Vk − Fk ·Vk = 0 ∀ Vk ∈ R2 (36)

We use the Molecular Dynamics algorithm [5, 6] to compute forces, integrate the equation of mo-
tion for each grain and govern interactions between rigid grains. We choose to solve the equation
of motion in three parts using the Verlet algorithm [30, 31].

1. First, position of the grain X
n+ 1

2
k is computed:

X
n+ 1

2
k = Xn

k + Δt Un
k +
Δt
2

An
k (37)

2. Secondly, all forces F depending on the positions are computed:

A
n+ 1

2
k =

F
(
X

n+ 1
2

k

)
(ρ − ρ0) S k

(38)

3. Finally, the velocity is deduced from the acceleration values:

U
n+ 1

2
k = Un

k +
Δt
2

(
A

n+ 1
2

k + An
k

)
(39)

3.2.4. Step 2: enforcement of constraints with conjugate gradient algorithm
In the second time step of Marchuk’s operator splitting scheme, the jump condition of the

acoustic wave equation is applied on the boundary ∂G and the rigid body motion constraint is
applied inside the grain G. This leads to find un+1

h ∈ P2
1h

, Un+1
k ∈ R

2, λn+1
∂Gh
∈ P1h and λn+1

Gh
∈ P1h

11



such as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

ρ0
un+1

h − u
n+ 1

2
h

Δt
· vh dx +

∑
k

⎡⎢⎢⎢⎢⎢⎢⎢⎣(ρ − ρ0) S k

Un+1
k − U

n+ 1
2

k

Δt
·Vk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

∑
k

[∫
∂Gk

λn+1
∂Gh

(vh · nk − Vk · nk) d�

]
+

∫
G
λn+1

Gh
(∇ · vh) dx = 0

NG times

{ ∫
∂Gk

(
un+1

h · nk − Un+1
k · nk

)
μ∂Gh d� = 0

∫
G

(
∇ ·un+1

h

)
μGh dx = 0

(40a)

(40b)

(40c)

∀ vh ∈ P2
1h

, Vk ∈ R2, μ∂Gh ∈ P1h and μGh ∈ P1h .
The discretized system (40) can also be represented as matrices:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1 0 CT

1 CT
3

0 A2 CT
2 0

C1 C2 0 0
C3 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
un+1

Un+1

λ∂G
λG

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

un+ 1
2

Un+ 1
2

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(41)

To simplify the notation, we introduce block matrices A, C; and vectors b, d, and λ:

A =
(
A1 0
0 A2

)
C =

(
C1 C2

C3 0

)
b =

(
un+1

Un+1

)
d =

(
un+ 1

2

Un+ 1
2

)
λ =

(
λ∂G
λG

)
(42)

and we rewrite system (41) as: (
A CT

C 0

) (
b
λ

)
=

(
d
0

)
(43)

Such system can be solved using Uzawa’s method for the conjugate gradient algorithm [32]. We
initialize the algorithm with an initial approximation λ0 and we construct an approximation of the
solution b for i = 0 until convergence by successively solving:

A bi+1 = d − CT λi (44)

and computing:
λi+1 = λi + βC bi+1 (45)

with β a scalar.
The optimal rate of convergence of the algorithm is given by [33]:

β =
2

μ1 + μ2
(46)

with μ1 and μ2 the minimum and maximum eigenvalues of the Schur complement of sytem (43)
C A−1 CT .
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3.2.5. Velocity integration
Independently of Marchuk’s algorithm and after solving the system (40b), we integrate the

final velocity Un+1
k of the grains to get their next position. We simply integrate the velocity for the

whole time step to retrieve updated position of grains:

Xn+1
k = Xn

k +
Δt
2

(
Un+1

k + Un
k

)
(47)

Then the mesh TGh is updated with the new positions Xn+1
k without modifying the regular mesh

TΩh (Fig. 2).

4. Numerical experiments

In this part, we apply the method developed in sections 2 and 3 on three examples. On one
hand, one movable grain is subject to an incident plane wave, and numerical results on dynamics
and the acoustics are compared to analytic solutions. On the other hand two movable grains
fixed by springs but without any incident plane wave illustrates energy transfers between fluid
and grains. Finally we test a more realistic configuration of a random granular suspension with
hundreds of grains to illustrate the possibilities of the model.

4.1. Movable grain in sound

To study the error compared to an analytic solution, we send a plane wave on a movable grain
(Fig. 3). We first define a harmonic plane wave coming from the top (with θi = −π/2 the incident
angle) and defined as:

pi(r, θ, t) = A ei(k r cos(θ+θi)−ω t) (48)

with r the distance from the center of the grain and θ the observation angle. The pulsation ω
and the wavenumber k are related to the frequency by f = ω

2 π =
k c0
2 π . The diameter of the grain

is d = 2 R = 1 mm. At the beginning of the experiment, the center of the grain is located at
coordinates (5; 4.5) mm. The size of the domain Ω is 10 × 10 mm and the size of PML layers on
the top and bottom is 5 hΩ. The source line is located at ysrc = 8.3 mm and there are PML layers
of thickness 0.4 mm on the top and on the bottom of the domain.

The wave velocity in the fluid medium is c0 = 1,500 m/s. The density of the fluid medium is
ρ0 = 1,000 kg/m3 and the density of the material of grains is: ρ = 2,500 kg/m3. The frequency
of the incident wave is f = 1.5 MHz which corresponds to a of λ/d = 1. The amplitude of the
incident wave is A = 1.5 Pa in terms of pressure or 1μm/s in terms of velocity.

We discretize the domain Ω with N2 = 120 × 120 nodes and so hΩ = 1/12 mm and the
maximum mesh size of the fictitious domains satisfy hG ≈ 1.2

√
2 hΩ. We set parameter α of

Eq. (35) related to the CFL condition of Euler semi-implicit scheme for the time discretization to
α = 0.65/

√
2. The duration of the simulation is t f = H/c0 with H the height of the domain Ω.
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Figure 3: Scheme of the experiment with 1 grain

4.1.1. Pressure and velocity fields
The reference analytic solution for the pressure field scattered by a movable rigid disc can be

written in cylindrical coordinates as [34]:

ps(r, θ) =
∞∑

n=0

Bn H(1)
n (k r) cos (n (θ − θi)) ∀r ≥ R, 0 ≤ θ ≤ 2 π (49)

with n an integer number and H(1)
n is the Hankel function of the first kind. The incident pressure

field can also be rewritten as a sum of Bessel functions of the first kind Jn:

pi(r, θ) = A

⎡⎢⎢⎢⎢⎢⎣J0(k r) + 2
∞∑

n=1

in Jn(k r) cos (n (θ − θi))
⎤⎥⎥⎥⎥⎥⎦ ∀r ≥ R, 0 ≤ θ ≤ 2 π (50)

Bn is a constant determined using Eqs. (49) and (50), and the boundary conditions applied on the
grains defined in Eq. (3):

Bn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−A
J′0(k R)

H(1)′
0 (k R)

when n = 0

−2 A i
k R J′1(k R) − ρ0

ρ
J1(k R)

k R H(1)′
1 (k R) − ρ0

ρ
H(1)

1 (k R)
when n = 1

−2 A in J′n(k R)

H(1)′
n (k R)

when n ≥ 2

(51)

Then the total pressure field is the sum of the incident field pi and the scattered field pr :

p(r, θ) = pi(r, θ) + pr(r, θ) (52)
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(a) Numerical solution (b) Analytic solution

Figure 4: Numerical solution of the total pressure field computed using the fictitious domain
method (4a) versus the analytic solution (4b) for hΩ = 1/12 mm.

Fig. 4a shows the total pressure field computed with the fictitious domain method and Fig. 4b
shows the analytic solution computed using Eqs. (49) and (50). When comparing figures 4a and
4b, we observe that the numerical solution presents good agreements with the analytic solution.

Our model also provides the acoustic velocity field. The analytic solution of the total velocity
field can be deduced from the solution of the pressure field Eq. (52):

u(r, θ) =
−i
ω c0
∇ p(r, θ) (53)

Figure 5 represents numerical and analytic solutions of the total velocity field. We can see that the
two velocity fields are quite similar. The difference at the top of the domain is a numerical artifact
due to the source line that generates a plane wave in two opposite directions.

We define the relative error eΦ for any field Φ during a period T as:

eΦ = sup
tref≤t≤tref+T

⎛⎜⎜⎜⎜⎜⎝‖Φnum − Φan‖L2

‖Φan‖L2

⎞⎟⎟⎟⎟⎟⎠ (54)

with tref = H/c0 the time for the wave to propagate through the entire medium. The relative error
eΦ is computed inside a square of size [1.5; 8.5] × [1; 8] mm to avoid PML and the effect of lateral
periodic boundary conditions. Relative errors computed for fields p, ux and uy are reported in
Table 1. The growth of the error on the acoustic fields is not optimal, revealing the weakness of
Lagrangian finite elements when used in mixed methods [28]. The agreement of the numerical
solution with the analytic solution (Figs. 5 and 4) shows nevertheless that the fictitious domain
method converges with the element P1-P0 on the contrary of the Raviart-Thomas element used in
[18].

15



(a) Numerical solution (b) Analytic solution

Figure 5: Numerical solution of the norm of the total velocity field computed using the fictitious
domain method (5a) versus the analytic solution (5b) for hΩ = 1/12 mm.

Table 1: Relative errors computed for pressure and velocity fields for different discretizations

N2 hΩ ep eux euy

1202 1/12 mm 1.44 × 10−1 2.38 × 10−1 1.47 × 10−1

2402 1/24 mm 9.19 × 10−2 1.28 × 10−1 9.01 × 10−2

4802 1/48 mm 8.00 × 10−2 1.09 × 10−1 7.93 × 10−2
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Figure 6: Velocity of the grain function of the time computed using the fictitious domain method
for several discretizations.

4.1.2. Velocity of the grain
The main feature of the model is to take into account the dynamic of the grain submitted to

an incident wave. We plot on Figure 6 the velocity of the grain as a function of the time for three
discretizations at t = 2.2μs. We observe on Fig. 6a that grains start to oscillate at the same
frequency as the incident wave, when the wavefront reaches its location.

The x-component of the velocity of the grain can also be assimilated to an absolute error
because it should be Ux = 0 according to the analytic solution. So we note on Fig. 6b that the
decrease of maximal error is better for the velocity of the grain than for the norm of the velocity
field. Indeed, the scale of the grain is larger than the one of the finite elements and the grain is
therefore less sensitive to small perturbations of the pressure field.

4.2. Two movable grains fixed by springs

We perform a second experiment to show that the model can describe acoustic emissions di-
rectly coming from one grain subject to an external force Fk. Most numerical methods in acoustics
can not work without an incident wave. In this experiment, we link each grain with its own spring
of stiffness kG = 100 GN/m (to keep approximately the same frequency as in the previous example
f =
√

(k/m)/(2 π)), so that the external force Fk from Eq. (2) p. 3 becomes:

Fk = −kG

(
Yk − Ykeq

)
y (55)

with y the unitary vector of the y-axis and Ykeq the equilibrium position of the spring of the grain
k. The bottom grain has an initial displacement from equilibrium ΔY0(t = 0) = +1 pm and the top
grain is at its equilibrium position (see scheme Fig. 7a). Both are put in the middle of a domain
of size 15 × 17 mm and at a distance of 1 mm of each other. We set PML on each side of the box
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Figure 7: Numerical experiment of two movable grains fixed by springs. Fig. 7a shows a simplified
representation of the experiment and Fig. 7b the pressure field at the final time t = 4.3μs.

but we stop the simulation before the wavefront reaches the layer. Figure 7b shows the numerical
pressure field for a discretization step hΩ = 1/12 mm at the final time t = 4.3μs.

We examine now to the energy inside the system which is composed, according to system (27),
on one hand of acoustic energy in Ω :

Ea =

∫
Ω

1

2 ρ0 c2
0

p2 dx +
∫
Ω

1
2
ρ0 u2 dx (56)

and on the other hand of the mechanical energy of each grain k:

Emk =
1
2

kG

(
Yk − Ykeq

)2
+

1
2

(ρ − ρ0) S k U2
k (57)

Energies of the wave and the two grains are plotted in Figure 8. First we observe that the total
energy in the system is well conserved considering the first order numerical scheme used for the
time discretization. We observe that at t = 0, all the energy is in the grain 0 (in blue Fig. 8) in
the form of mechanical potential energy due to the initial stretching of the spring. Then the grain
0 starts to oscillate and generates an acoustic field so its mechanical energy is partially converted
to acoustic energy (in red Fig. 8). At t = 1μs, the wavefront of the wave coming from the grain
0 reaches the other grain 1 and a part of the acoustic energy is converted to mechanical energy of
grain 1 (in green Fig. 8). Then because the grain 1 is starting to oscillate, it is also radiating and
gives back some mechanical energy in the form of acoustic energy.

As a comparison, we do the same experiment replacing water by air. Results reported in table
2 confirms that a numerical model able to link the wave equation and the equation of motion is
essential to take in account transfers of energy through both water and grains. On the contrary, it
is insignificant in the air.

18



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t [μs]

0

10

20

30

40

50

60
E
[f
J
]

Wave

Grain k=0

Grain k=1

Figure 8: Evolution of the distribution of energy in the system containing two glass grains fixed
by springs and surrounded by water

Table 2: Comparison of average energy distribution in water and in the air during the last period
of oscillation

water air
c0 1,500 m/s 340 m/s
ρ0 1,000 kg/m3 1.2 g/m3

Ea 95.9 % 0.6 %
Em0 1.7 % 99.4 %
Em1 2.4 % ≈ 0 %
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Figure 9: Propagation of a pulse through a granular suspension at t = 20μs. Fig. (a) shows the
acoustic pressure field, Fig. (b) the mean of the y-component and the norm of the velocity field and
Fig. (c) positions, velocities (represented by red arrows) and acceleration (in grayscale) of each
grain.

4.3. Acoustic pulse propagation through a granular suspension

The last experiment involves a random suspension of 400 movable grains subject to a unique
pulse. We show that the model is able to work with many grains, contrary to the one developed in
[18]. The source is on a horizontal line located at ysrc = 4.4 cm and the pulse is a the 4th derivative
of a Gaussian with the central frequency fc = 150 kHz. We choose a pulse to follow easily
the propagation of the wave through the medium. We consider a case where the characteristic
wavelength λ/d = 10 because displacement of grains is maximum at λ/d � 1. The domain Ω is a
rectangle 2 cm width and 4.8 cm height discretized by Nx ×Ny = 108× 260 and so hΩ = 5/27 mm.
The boundary conditions are the same as in section 4.1: PML on the top and on the bottom; and
periodic boundary conditions on the left side and right sides.

Fig. 9 show snapshots of the pressure field (a), the velocity field (b) and positions, velocities
and acceleration of each grain (c). The thin figure between the velocity field snapshot and the
pressure field snapshot shows the mean value of the y-component of the velocity field and helps
the reader to follow the propagation of the pulse. The variations of pressure (Fig. 9a) around the
grains determine the value of the hydrodynamic force acting on them. Since the hydrodynamic
force is the unique force, its value is proportional to the acceleration A (in gray scale Fig. 9c).

Moreover, by observing red arrows in Fig. 9c, we can see that the wave sets in motion grains
under its acoustic field. The result of the ratio between the amplitude of the velocity of one grain
and the amplitude of the velocity field is provided by the following 2D analytic solution for low
wavelength (inspired from the 3D version in [35]) :

‖U‖
‖u‖ =

2 ρ0

ρ + ρ0
≈ 0.57 (58)
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Comparison of Figs. 9b and 9c shows that numerical results are similar to the one predicted by the
analytic solution.

Then, we can see Fig. 10 that the pulse propagates through the granular suspension from the
top to the bottom. The mean value of the amplitude the velocity field Fig. 10b shows that the
amplitude of the wave is decreasing as the energy of the wave is transmitted to the grains Fig. 10c.
We also observe on Fig. 10a several other reflections after the wave pass. Thus, we can use solution
(58) only at the beginning of the propagation when grains only subject to the incident wave not
yet reflected waves from their neighbors.

5. Conclusions and discussion

Our results show that this fictitious domain method can couple the acoustic wave equation
and the equation of motion for rigid grains. We show this using three numerical experiments.
First, both acoustic fields and dynamics of grains computed using this model satisfy the analytical
solution of a plane wave diffracted by a movable grain. In the second case, energy is transmitted
between two grains and the fluid without loss of total energy. The last experiment shows that
this method can also be expanded to hundreds of grains and used in the framework of acoustic
experiments on granular suspensions.

The strength of this model is the ability of each grain to generate its own acoustic field when
subject to an external force or due to an incident wave. As far as we know, there are no other
acoustic model capable of coupling dynamics of rigid grains and waves. The rigidity of grains im-
plies an infinite velocity inside the grains but still a finite velocity through the contacts network of
a granular packing. In our knowledge, our model is the only one able to record acoustic emissions
related to any forces acting on the grains of a granular medium.

Nevertheless interesting comparative studies could be done by observing changes in the re-
flected wave signal while changing parameters related to contact forces or materials of the grains.
In the particular framework of compact granular media, interaction forces are defined according
to linear or elastic models to simulate repulsion and friction between grains. So waves generated
by grains are then directly related to the parameters of these models. Therefore we plan to use our
model to study acoustic waves emitted by a granular medium during a gravitational destabilization.
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Figure 10: Propagation of a pulse through a granular suspension at t = {25; 30; 35}μs.
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