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ABSTRACT

Precipitation minus evapotranspiration, the net flux of water between the atmosphere and Earth’s surface,

links atmospheric and terrestrial water budgets and thus represents an important boundary condition for both

climatemodeling and hydrological studies. However, the atmospheric–terrestrial flux is poorly constrained by

direct observations because of a lack of unbiased measurements. Thus, it is usually reconstructed from at-

mospheric reanalyses. Via the terrestrial water budget equation, water storage estimates from the Gravity

Recovery and Climate Experiment (GRACE) combined with measured river discharge can be used to assess

the realism of the atmospheric–terrestrial flux in models. In this contribution, the closure of the terrestrial

water budget is assessed over a number of European river basins using the recently reprocessed GRACE

release 05 data, together with precipitation and evapotranspiration from the operational analyses of high-

resolution, limited-area NWP models [Consortium for Small-Scale Modelling, German version (COSMO-

DE) and European version (COSMO-EU)] and the new COSMO 6-km reanalysis (COSMO-REA6) for the

European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain. These closures are

compared to those obtained with global reanalyses, land surface models, and observation-based datasets. The

spatial resolution achieved with the recent GRACE data allows for better evaluation of the water budget in

smaller river basins than before and for the identification of biases up to 25mmmonth21 in the different

products. Variations of deseasoned and detrended atmospheric–terrestrial flux are found to agree notably

well with flux derived from GRACE and discharge data with correlations up to 0.75. Finally, bias-corrected

fluxes are derived from various data combinations, and from this, a 20-yr time series of catchment-integrated

water storage variations is reconstructed.

1. Introduction

Redistribution and phase changes of water have a

strong impact on Earth’s climate. The hydrological cycle

is linked to the energy cycle via fluxes, such as evapo-

transpiration E and precipitation P. Water evaporates
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from the oceans and the land surface because of solar

radiation, thereby cooling them, and is transported

through the atmosphere, released as precipitation, and

finally returns to the oceans via surface runoff and river

discharge R.

An ‘‘intensification’’ of the water cycle (Huntington

2006) should be associated with observable positive

rates of continental P and E. In fact, an increase of land

precipitation has been observed in the higher latitudes,

that is, over North America and Eurasia (Trenberth

2011). For these regions, changes in P usually implicate

an increase of extreme precipitation events (Coumou

and Rahmstorf 2012) leading to more frequent and se-

vere flooding (Hall et al. 2013). On the other hand, ob-

served positive trends inE have been attributed to rising

temperatures and radiation and are found to be con-

strained by moisture supply (Jung et al. 2010). Pre-

cipitation minus evapotranspiration (P 2 E) controls

the amount of water stored in soils, groundwater, and

surface water bodies. With freshwater representing a

major natural resource, monitoring systems are indis-

pensable in order to manage the various components of

water consumption. Quantifying spatiotemporal varia-

tions in fluxes and storages is thus a necessity in order to

assess their impact on local and global climatic, eco-

logical, and environmental conditions. For all these

reasons, long, unbiased, and consistent time series of

fluxes P, E, R, and of total water storage (TWS) are

required.

At all spatial scales (i.e., grid cell, catchment, and

continent) water storage changes DS are linked to P, E,

and R via the terrestrial water budget equation DS5
P2E2R.

These terms can be evaluated from different data-

sets. Since 2002, the Gravity Recovery and Climate

Experiment (GRACE) twin-satellite mission enables

the direct observation of total water storage variations

from space. At catchment scale, river discharge is usu-

ally derived from gauging stations, and P and E are ei-

ther obtained from observation-based datasets or from

numerical weather prediction (NWP) model analyses or

reanalyses. However, the representation of P and E in

global reanalyses is subject to large uncertainties (e.g.,

Lorenz and Kunstmann 2012).

At the core of this study is the closure of the water

budget at river basin scale, in order to assess the realism

of the representation of theP andEfluxes inNWPmodels.

In particular, high-resolution output fields from the Con-

sortium for Small-Scale Modelling, German version

(COSMO-DE) and European version (COSMO-EU),

which are analysis runs of the nonhydrostatic regional

atmosphericCOSMOmodel developed by theDeutscher

Wetterdienst (DWD), are evaluated and compared to

global models and observation-based datasets. Our

study area covers the catchments of the Rhine–Meuse

(189 780km2 combined), Ems–Weser–Elbe (178 040km2

combined), Oder (109560km2), andDanube (807000km2)

as illustrated in Fig. 1. First, the water budget equation

is solved for the atmospheric–terrestrial fluxes P 2 E

and E. Then, the residuals �5DS2 (P2 E2 R) of the

catchment-averaged water budget are quantified and

an error model is derived for individual combinations

of datasets. Finally, the storage term S is assessed

through comparing time-integrated, error-corrected

P 2 E 2 R to the reprocessed GRACE release 05a

(RL05a) data.

Prior to the launch of the GRACE mission, inves-

tigations of catchment-scale water storage were based

on modeling (e.g., Döll et al. 2003), but with the avail-

ability of the GRACE products, comparisons between

terrestrial water storage derived from hydrological

models and those measured from space were enabled

(e.g., Tapley et al. 2004). Subsequently, a large number

of studies began to use GRACE in combination with

hydrological models for validation, calibration, or as-

similation purposes (e.g., Zaitchik 2008; Werth and

Güntner 2010).
Closure of the water budget in central European river

basins was previously investigated by Hirschi et al.

(2006) and Seitz et al. (2008). Hirschi et al. (2006) found

the agreement of GRACE-derived TWS and integrated

European Centre for Medium-Range Weather Fore-

casts (ECMWF) operational moisture flux conver-

gence data to be rather poor because of the very limited

resolution of early GRACE releases. Seitz et al. (2008)

identified a phase shift of 30 days between integrated

moisture flux convergence data from National Centers

for Environmental Prediction–National Center for

Atmospheric Research (NCEP–NCAR) and GRACE

FIG. 1. Central European river basins: Rhine–Meuse, Ems–Weser–

Elbe, Oder, and Danube.
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for the years after 2006. Compared to Hirschi et al.

(2006), they obtained better agreements betweenGRACE

and model data because of reprocessed GRACE solu-

tions and a larger study area. In particular, the Danube,

the largest of the European river basins, was subject to

several investigations in the context of water budget

studies: for example, Ramilien et al. (2006) and Rodell

et al. (2011) used GRACE data in conjunction with

observedP andR in order to estimateE, which was then

compared to results from different atmospheric and

land surface models. Rodell et al. (2011) confirmed the

benefit of GRACE-based E estimates for the assess-

ment of the phase and amplitude of the annual cycle,

especially for regions where model-derived E estimates

disagree.

The global NWP models and observation-based

datasets, which we employ as a reference for compari-

son and validation purposes in this study, have been

widely used in the context of water budget studies. For

example, Hirschi et al. (2006), Rodell et al. (2011), and

Syed et al. (2009) worked with the ECMWF reanalysis

and the Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA). In addition, Fersch

et al. (2012) included high-resolution regional atmo-

spheric simulations produced with the Weather Re-

search and Forecasting (WRF) Model for six different

climatic regions. They found dynamic downscaling of

global atmospheric fields generally useful for reducing

the bias in these fields, but time series of basin-averaged

TWS change estimates did not improve with respect to

the global models. Outputs of different models and ob-

servational datasets were merged using assimilation

techniques by Pan et al. (2012) to derive trends and

annual water budget terms over 32 major river basins.

Furthermore, the quality of observation-based P and E

datasets has been assessed in several studies. For in-

stance, the Global Precipitation Climatology Centre

(GPCC) dataset and the European daily high-resolution

gridded dataset (E-OBS) are discussed in detail by

Roebeling et al. (2012). Acquisition of evapotranspira-

tion fields on an observational basis is considered more

challenging (Wang and Dickinson 2012). An overview

and evaluation of recently derived global evapotrans-

piration datasets can be found, for example, in Mueller

et al. (2011) and Jiménez et al. (2011), including a data-

set of upscaled FLUXNET data derived by Jung et al.

(2011), which is also used in our study. Furthermore,

Long et al. (2014) used the three-cornered hat method in

order to compute uncertainties of evapotranspiration

from three different methods, including the water budget

approach.

Continental-scale atmospheric fluxes ofP,E, andP2E

produced by three global reanalyses, including MERRA

and Interim ECMWF Re-Analysis (ERA-Interim), were

assessed by Lorenz and Kunstmann (2012). They de-

termined inconsistent continental and oceanic P 2 E for

MERRA, whereas ERA-Interim showed a good closure

of the water balance. Miralles et al. (2011) provide P, E,

andP2E estimates froma combination of remote sensing

observations.

In this contribution, we focus on the atmospheric part

of the water cycle. However, we found moisture flux

convergence derived from the high-resolution COSMO

models as being very noisy; therefore, we directly eval-

uate P and E fields. We will demonstrate that the

COSMO model shows superior skills in closing the wa-

ter budget over Europe compared to the global models.

Until now, most water budget studies have concentrated

on large river basins and/or the annual cycle ofE,P2E,

or S only; here, we will include month-to-month vari-

ability and trends. Moreover, we will evaluate the wa-

ter budget equation for smaller European river basins.

We find this possible now thanks to the increased ac-

curacy of the reprocessed GRACE RL05a data and to

a consistent and thorough postprocessing of GRACE

and flux deficit data. This contribution is organized as

follows. In section 2, we introduce the investigated

datasets and the methods. The results are presented in

section 3. First, the characteristics of the four compo-

nents of the water budget equation are assessed. Then,

the water budget equation is solved for P 2 E and

compared to the independent GRACE and discharge

observations. As the observation and modeling of E is

particularly challenging, the derivation of E via the

water budget equation is evaluated. In the next step,

the residuals of the water budget are quantified and

error models for the individual datasets of P 2 E are

derived. Finally, error-corrected fluxes are computed

and used in order to extend the GRACE-derived time

series of TWS change and TWS (since 2002) backward

in time (to 1990).

2. Data and methods

a. Data

Assessing the closure of the terrestrial water budget

requires that datasets of P, E, R, and DS are combined.

Evapotranspiration is related to latent heat flux QL via

the relation

E5 l21QL , (1)

with the latent heat of vaporization for water l 5 2.5 3
103 kJ kg21. Table 1 provides an overview of the datasets

that are described in the following.
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1) GRACE

The primary objective of the National Aeronautics

and Space Administration (NASA)–German Aero-

space Center (DLR) GRACE mission, launched in

2002, is the measurement of Earth’s time-variable

gravity field. In a seminal paper, Wahr et al. (1998) an-

ticipated the benefits and limitations of the mission for

resolving water storage variations from space; this was

later confirmed by a great number of applications in

large-scale hydrology as described, for example, in the

review by Güntner (2008). With GRACE, a dual one-

way K-band microwave ranging system measures the

distance and its rate between two satellites in coplanar

orbit, with accuracy of a few micrometers. From the

distance change and from complementary tracking of

the individual spacecraft positions with GPS, Earth’s

changing gravity field is inferred on a monthly basis.

Many users are interested in the temporal variations due

to changes in Earth’s terrestrial hydrosphere, which are

obtained in a straightforward way since other gravity

signals like Earth and ocean tides, nontidal ocean mass

variability, and atmospheric pressure changes have al-

ready been removed in the gravity recovery processing

by using so-called background models.

With release 05 (Dahle et al. 2013), the Geo-

ForschungsZentrum (GFZ) Helmholtz-Zentrum in Pots-

dam provides improved (Chambers and Bonin 2012)

monthly gravity solutions in the form of spherical har-

monic coefficients starting in January 2003. Release 05was

recently reprocessed because of some shortcomings in the

satellite orbit determination, and the new dataset, which is

applied in this contribution, has been distributed as release

05a.Wewill compare theGFZ solution to those generated

at the Jet Propulsion Laboratory (JPL), California In-

stitute of Technology, and the Center for Space Research

(CSR), The University of Texas at Austin. In addition, we

willmake use of error estimates forGFZ coefficients in the

form of so-called calibrated errors; these do account for

measurement and processing errors, but they neglect error

correlations and cannot account for errors introduced by

background model imperfections.

The same postprocessing is performed for each of

the three GRACE solutions. First, the gravity effect

resulting from ongoing isostatic adjustment of Earth’s

crust and mantle, in response to past ice age degla-

ciation, is removed from the harmonic coefficients us-

ing the model of Klemann and Martinec (2011). Then,

since coefficients of degree 1 cannot be measured by

GRACE, these are substituted from a time series of

geocenter motion provided by Rietbroek et al. (2012).

Furthermore, the zonal c2,0 coefficient, related to the

flattening of Earth, is known to be not well determined

by GRACE. Therefore, it is replaced using a time series

derived from satellite laser ranging (SLR) by Cheng and

Tapley (2004).

2) WGHM

As an alternative to GRACE, the WaterGAP Global

Hydrology Model (WGHM; Döll et al. 2003) is used to

obtain TWS anomalies. WGHM represents a global

conceptual model of the terrestrial water cycle, with the

objective of providing indicators of freshwater avail-

ability worldwide. All storage compartments relevant

for calculating TWS are modeled, including surface

water and groundwater. In WGHM, the water balance

is solved at daily time steps with a spatial resolution of

0.58. Monthly precipitation forcing data from GPCC are

disaggregated to daily rain rates. The computation of

daily potential evapotranspiration is based on Priestley

and Taylor (1972). The model has been calibrated against

long-term discharge. Special emphasis is paid to anthro-

pogenic effects like water consumption.

TABLE 1. Components of the water budget are available from the datasets with different time frame and horizontal resolution. GRACE

data are available since 2003with gaps in June 2003; January, June, andNovember 2011; andMay andOctober 2012.GRDCprovides river

discharge data until 2009 for Ems,Weser, Elbe, andOder and until 2010 forMeuse, Rhine, andDanube. BfG provides discharge data until

2012 for all German rivers including the Meuse and until 2010 for the Danube.

Dataset Type (version) Horizontal resolution Time frame Parameter(s)

COSMO-DE Analysis 0.0258 3 0.0258 Jan 2007–present P, E

COSMO-EU Analysis 0.06258 3 0.06258 Jan 2006–present P, E

CORDEX Reanalysis 0.0558 3 0.0558 Jan–Dec 2011 P, E

ERA-Interim Reanalysis 1.58 3 1.58 Jan 1979–present P, E

MERRA Reanalysis 0.678 3 0.58 Jan 1980–present P, E

E-OBS Observations (v8.0) 0.258 3 0.258 Jan 1950–Dec 2012 P

GPCC Observations (v6.0) 0.58 3 0.58 Jan 1901–Dec 2010 P

MPI Observations 0.58 3 0.58 Jan 1982–Dec 2011 E

GRACE Observations (RL05a) — Jan 2003–present S, DS
GRDC Observations — Jan 1857–Dec 2009 (2010) R

BfG Observations — Jan 1951–Dec 2010 (2012) R
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3) TWS CHANGE FROM PAN ET AL. (2012)

A reference dataset for TWS change was provided

to us by Ming Pan. Pan et al. (2012) evaluated the

components of the water budget by merging a number

of different datasets using a data assimilation tech-

nique to enforce the water balance. As a prerequisite,

they had performed a thorough error investigation.

Thus, the estimation of the water budget components

is optimized and includes error information derived

from confronting independent datasets. Pan et al.

(2012) utilized in situ observations, remote sensing

retrievals, and model outputs, among other datasets.

For TWS change, GRACE data and outputs from the

Variable Infiltration Capacity (VIC) model were ap-

plied. The study was performed for 32 river basins and

for the time span 1984–2006. In our contribution, we

use the TWS change estimate provided for the Danube

basin.

4) REGIONAL ANALYSES AND REANALYSES

The COSMO-EU and -DE analyses and the COSMO

6-km reanalysis (COSMO-REA6) are based on the

COSMONWPmodel developed by theDWD.COSMO

represents a nonhydrostatic regional atmospheric model,

where atmosphere–surface coupling is realized with

the soil and vegetation model TERRA_ML. Lateral

boundary conditions are obtained for COSMO-EU

from the operational global numerical weather pre-

diction model (GME) at DWD and for COSMO-DE

from the COSMO-EU model. Continuous data assim-

ilation is performed based on observation nudging

(Schraff 1997) with hourly model outputs. COSMO-EU

output fields are available to us from 2006, and COSMO-

DE outputs are available from 2007 onward.

COSMO-EU covers the eastern Atlantic and Europe

with a grid resolution of 0.06258 (;7 km) and 40 vertical

layers. COSMO-DE has a higher resolution of 0.0258
(;2.8 km) and 50 vertical layers and covers Germany,

Switzerland, Austria, and parts of neighboring countries

with a total area of about 1300 3 1200 km2. The major

differences to COSMO-EU are that COSMO-DE resolves

deep convection and assimilates surface precipitation

rates from the German radar network. Additionally,

we investigate the COSMO-based reanalysis COSMO-

REA6 for the European domain (EUR-11) of the Co-

ordinated Regional Climate Downscaling Experiment

(CORDEX) but with 0.0558 (6.2 km) horizontal grid

spacing (Bollmeyer et al. 2014, manuscript submitted

to Quart. J. Roy. Meteor. Soc.). It is currently being

developed and processed within the Hans-Ertel Centre

for Weather Research and has been completed for the

years 2007–12.

5) GLOBAL REANALYSES

For comparison and validation, we use the global

ERA-Interim andMERRA. ERA-Interim was initiated

in 2006 and covers the period since 1979. It is the suc-

cessor of the 40-yr ECMWFRe-Analysis (ERA-40) and

was designed to improve, for instance, the representa-

tion of the hydrological cycle, the quality of the strato-

spheric circulation and the handling of biases and

changes in the observing system (Berrisford et al. 2011).

A sequential data assimilation scheme with 12-hourly

analysis cycles is performed, and every 3 h output fields

of the 2D variables are produced (Dee et al. 2011). In the

vertical dimension, 37 levels are considered. Synoptic

monthly means of precipitation and latent heat flux

evaluated in this study have a resolution of 1.58 3 1.58.
MERRA is from NASA’s Global Modeling and As-

similation Office (GMAO) and covers the period from

1979 until today. TheGoddard EarthObserving System,

version 5 (GEOS-5), is applied for data assimilation,

with special attention paid to improving the hydrological

cycle (Rienecker et al. 2011). Uncertainties in pre-

cipitation and high-frequency variability are reduced

(Lucchesi 2012), rendering themodel more adequate for

climate studies. We use monthly output products that

are archived and distributed by the Goddard Earth

Sciences Data and Information Services Center (DISC).

The horizontal grid resolution is dl 5 0.678 in longi-

tude and df 5 0.58 in latitude; 72 vertical levels are

considered.

6) OFFLINE LAND SURFACE MODEL

Since MERRA’s land surface fluxes are known to

contain errors, we also consider its land component from

the revised, land-only, offline version, MERRA-Land

(Reichle et al. 2011). MERRA is prone to errors in the

intensity of precipitation, resulting from the atmospheric

general circulation model and the land surface model it-

self (Reichle et al. 2011). MERRA-Land is driven with

hourly atmospheric fields from MERRA, with the pre-

cipitation forcings corrected using an observation-based

product of the Global Precipitation Climatology Project

(GPCP). Furthermore, MERRA-Land contains an up-

dated catchment land surface model with revised model

parameters. These changes were shown to lead to im-

proved land surface fluxes (Reichle et al. 2011).

7) OBSERVATIONAL DATASETS

In this study, we compare analysis and reanalysis re-

sults to three gridded, observation-based datasets. Global

monthly latent heat flux grids are provided by the

Max Planck Institute (MPI) for Biogeochemistry (Jung

et al. 2011) at a resolution of 0.58 3 0.58. They used
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amachine learning approach to upscale observations from

FLUXNET together with meteorological and remote

sensing observations. FLUXNET is a global network of

more than 570 tower sites (200 stations in Europe) where

the eddy covariance method is applied to assess atmo-

spheric variables such as latent heat flux.

Second, we use a precipitation product from the

GPCC, established in 1989 at the DWD. It is based on

67 200 rain gauge stations worldwide. Monthly total

precipitation on 0.58 3 0.58 grids was downloaded from

the GPCC website. We use the GPCC Full Data Re-

analysis, version 6.0, the most accurate GPCC in situ

precipitation reanalysis dataset (Schneider et al. 2011) that

covers the period 1901–2010. Using GPCC data for as-

sessing the global water cycle is discussed in Schneider

et al. (2014). Finally, we consider the European gridded

rain gauge dataset E-OBS from the European Union

6th Framework Programme (EU-FP6) project Ensemble-

Based Predictions of Climate Change and Their Impacts

(ENSEMBLES) and from the data providers in the Eu-

ropean Climate Assessment &Dataset (ECA&D) project

(www.ecad.eu). Daily gridded observational precipitation

data cover the European land surface and are available at

different resolutions. We use version 7.0 with a grid reso-

lution of 0.258 3 0.258, which contains data from January

1950 to December 2012, collected from 2316 stations.

8) RIVER DISCHARGE DATA

Here we use monthly discharge data measured at the

gauging stations located at the most downstream part of

each river provided by the Global Runoff Data Centre

(GRDC) and Bundesanstalt für Gewässerkunde (BfG).
The BfG time series agree with the GRDC time series
but provide more complete and recent information for
German rivers. In a few cases, missing data have been
inferred from upstream gauging stations. Data are
available up to 2012 for Rhine–Meuse, Ems–Weser–

Elbe, and Oder and up to 2010 for the Danube.

b. Methods

1) THE WATER BUDGET EQUATION

At all spatial scales, DS within a given region is bal-

anced by inflow (P) and outflow (E and R):

DS5P2E2R . (2)

While Eq. (2) describes the terrestrial water budget, the

atmospheric water balance can be expressed by ap-

proximating P 2 E through atmospheric water storage

and vertically integrated moisture flux convergence

(e.g., Fersch et al. 2012). However, fields of horizontal

moisture flux represented in high-resolution atmo-

spheric models such as COSMO are relatively noisy. We

found that computing the divergence amplifies noise and

leads to results that are contaminated with large errors.

Therefore, in this contribution, we use the flux deficit

P 2 E as represented in Eq. (2).

The GRACE solutions determine the temporal resolu-

tion with which we evaluate the water budget equation at

catchment scale. Monthly mean, spatially averaged TWS

fromGRACEhas to be numerically differentiated in order

to approximate DS. Performing this in a way consistent

with the flux terms involves some subtle issues that are

often overlooked in the literature; therefore, we will pro-

vide a full account here. Moreover, as an alternative, we

will discuss an approach that seeks to consistently time

integrate the spatially averaged fluxes.

Monthly averaged DS within an arbitrary (catchment)

area is related to the monthly accumulated P, E, and R

according to

DS5 �
n
i

i51

P(ti)2 �
n
j

j51

E(tj)2 �
n
k

k51

R(tk) , (3)

where t is discretized with daily or subdaily time steps

and t1 and tn denote the first and the last value of one

particular month. The indices i, j, and k correspond to

the individual time steps of the P, E, and R datasets.

The monthly water budget of a catchment can then be

represented as in Eq. (2). Monthly accumulated fluxes

are obtained from the data providers or calculated

through Eq. (3).

In Eq. (2), DS is usually obtained by numerically dif-

ferentiating GRACE-derived S. Instead, the integral of

the right side of the water budget equation can be

equated at time t, after discretizing according to

SF(t)5 �
m

i51

[P(t0i)2E(t0i)2R(t0i)] , (4)

where t0i represents monthly intervals; P(t0i), E(t
0
i), and

R(t0i) represent the monthly sums; and SF represents

TWS inferred from fluxes. Variable SF(t) equates to

TWS, derived from integrating fluxes, at time t with

respect to (unknown) TWS at time t1. However, as we

will show, spatially averaged P 2 E is usually contami-

nated with nonnegligible errors. Thus, we prefer to use

error-corrected precipitation minus evapotranspiration

(gP� E). The estimation and modeling of this error will

be described in section 2b(3). TWS from error-corrected

fluxes fSF is then defined as

fSF(t)5 �
m

i51

[(gP� E)(t0i)2R(t0i)] . (5)

In the following, we will limit our deliberations to error-

corrected TWS estimates; therefore, the tilde will be

omitted and the left-hand side ofEq. (5)will be abbreviated
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by SF(t). Flux-integrated TWS anomalies SaF(t) are ob-

tained by removing the long-termmean over a time span

from ta to te, for example, the GRACE period, ac-

cording to

SaF(t)5SF(t)2
1

te 2 ta
�
e

i5a
SF(t

0
i) . (6)

Correspondingly, GRACE-derived TWS anomalies Sa(t)

for the same time frame are obtained from

Sa(t)5S(t)2
1

te 2 ta
�
e

i5a
S(t0i) . (7)

To be consistent, the long-term mean removed in both

approaches must refer to the same time period. Apart

from observation errors and incorrect representation of

analysis and reanalysis fields, TWS anomalies obtained

from integrating fluxes [Eq. (6)] and from GRACE

[Eq. (7)] should match. In section 3e, these two ap-

proaches are compared.

Both direct and time-integrated evaluations of the

water budget equation have advantages and drawbacks.

Because of the integration of fluxes in Eq. (4), errors

in P, E, and R accumulate. While white noise leads to

random walk–type patterns, constant biases introduce

trends into SaF . Therefore, for evaluating primarily the

fluxes, the approach of Eq. (2) is well suited as it employs

flux information directly. On the other hand, storage

change exhibits much variability, whereas storage

evolves at longer time scales. Short-term variations are

easier to interpret analyzing TWS instead of TWS

change. Furthermore, the GRACE signal-to-noise ratio

is better when TWS is evaluated and not its derivative.

We will show that, despite unfavorable error prop-

agation, fluxes from NWP models enable us to infer

storage variation. This is the key to reconstructing re-

alistic spatially averaged TWS prior to the GRACE

period, whichmay be then spatially disaggregated through

land surface models. However, this requires a well-

determined error model for the fluxes from storage data

collected within the GRACE period. Yet we found that,

especially in global reanalyses, biases in P 2 E may

change with time.

2) GENERATING CONSISTENT TIME SERIES

Assessing closure of the water budget, that is, studying

the residuals �5 DS2 (P2 E2 R), requires consistent

time series of TWS change,P,E, andR. Spatial averages

of P and E are simply accumulated over all output grid

cells of the target region, defined as the catchment area

down to the gauging station where river discharge is

measured.

For deriving TWS from the GRACE data products, it

is possible to accumulate over gridded TWS maps, as

provided online through the NASA Tellus, GFZ In-

ternational Centre for Global Earth Models (ICGEM),

or Groupe de Recherche de Géodésie Spatiale (GRGS)
GRACE Plotter websites, in a similar way as with the
fluxes. However, it is more consistent to map the original
spherical harmonic coefficients into spatial averages for
a number of reasons: (i) TWSmaps have to be filtered to
suppress ‘‘striping,’’ but less filtering is required to de-

rive catchment averages, so using gridded products

usually involves a loss of information; (ii) filtering re-

duces amplitude, but counteracting this effect for TWS

maps is more difficult than for region averages; and

(iii) for TWSmaps, usually no consistent error information

is provided.

First, the GRACE potential coefficients cn,m and sn,m,

postprocessed as described in section 2a(1), are reduced

by a long-term mean field corresponding to the period

ta, te to Dcn,m and Dsn,m, and converted to coefficients of

surface densityDcsn,m andDssn,m (Wahr et al. 1998) via the

relation

�
Dcsn,m
Dssn,m

�
5

M

4pR2
E

2n1 1

11k0n

 
Dcn,m
Dsn,m

!
. (8)

In Eq. (8), M is Earth’s mass, RE is its radius, and

(2n1 1)/(11 k0n) accounts for the elastic deformation of

the solid Earth under a changing water storage load

through applying the load Love numbers k0n [we use

LLNs from Gegout (2014)]. The total mass variation

over a given area—which corresponds to TWS since

atmospheric mass variations have been removed

already—is calculated directly from the coefficients of

surface density according to

S5 4pR2
E �

n
max

n51
�
n

m50

"
f cn,m �

n

n051
�
n0

m050

w(c,c),n0 ,m0
n,m Dcsn0 ,m0 1w(c,s),n0 ,m0

n,m Dssn0 ,m0 1 f sn,m �
n

n051
�
n0

m050

w(s,c),n0 ,m0
n,m Dcsn0 ,m0 1w(s,s),n0 ,m0

n,m Dssn0 ,m0

#
.

(9)
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The geographical extent of the target region is repre-

sented by the shape coefficients f cn,m and f sn,m (Wahr et al.

1998). Applying filter coefficients w(.,.),n0,m0
n,m is generally

deemed necessary to reduce correlated noise contained

in the potential coefficients of high degree. In this contri-

bution, we use the nonisotropic DDK4 filter (Kusche

2007) that seeks to decorrelate and smooth the GRACE

solutions simultaneously. Finally, mass variations are

converted to equivalent water height by dividing Eq. (9)

by a reference density of water.

Spatially averaged TWS from maps or from Eq. (9)

includes an error due to the limited spectral bandwidth

recovered by GRACE and the necessity to smooth the

solutions through filtering. The resulting amplitude

underestimation, or in some cases, overestimation, has

been termed the leakage effect (Klees et al. 2007;

Longuevergne et al. 2010). Depending on the mass

distribution inside and outside of the basin (i.e., water

storage variability and, in coastal regions, ocean mass

change), the filter averaging width, and the extent of

the region, the signal is either transported out of the

target area (leakage out) or leaks into it (leakage in).

Therefore, it is imperative to rescale water storage

signals derived from GRACE. Rescaling factors are

derived as multiplicative corrections separately for

every river catchment and for each month through as-

suming the spatial distribution of P 2 E as ‘‘true TWS

change’’ and monitoring the effect of the truncation of

the spherical harmonic expansion and the damping

effect of GRACE filtering. Magnitudes of the rescaling

factors and the associated TWS variability are dis-

cussed in section 3a(4).

The time derivative of storageDS(t) for themonth t is

obtained from central differences using storage of the

following month St11 and the previous month St21 as

DS(t)5
1

2
(St112 St21) . (10)

FIG. 2. Monthly total P for different river basins and models. The black dashed line represents

monthly river discharge.

2404 JOURNAL OF HYDROMETEOROLOGY VOLUME 15

Unauthenticated | Downloaded 03/03/21 10:17 AM UTC



Unlike with backward or forward difference operators,

central difference schemes avoid introducing a phase

shift in GRACE storage change time series.

3) ERROR MODEL OF THE FLUX DEFICIT

We find that the residuals of the water budget equa-

tion differ most notably for every set of model output

fields and for every catchment. Since R is small, � can

thus be safely assumed to be associated with errors in

P 2 E, which means that we will use DS 1 R as a refer-

ence for fitting an error model to the catchment re-

siduals for each model output.

First, differentmodels for representing the residuals were

assessed. We observe that the difference of monthly P

datasets appears to be characterized primarily by an offset,

and E is generally smoother, mainly characterized by an

annual signal. Sincewebelieve that both errors inP and inE

contribute to the residual of the water budget, these char-

acteristics suggest the consideration of an offset and the

modeling of an annual and a semiannual signal. The offset

can be considered using an additive model according to

�5 (P2E)2 (DS1R)1 a1 b sin

�
2p

T
t

�
1 c cos

�
2p

T
t

�
1d sin

�
2p

T/2
t

�
1 e cos

�
2p

T/2
t

�
,

(11)

or a multiplicative model according to

�5 a(P2E)2 (DS1R)1b sin

�
2p

T
t

�
1 c cos

�
2p

T
t

�
1d sin

�
2p

T/2
t

�
1 e cos

�
2p

T/2
t

�
,

(12)

whereT is the annual period. The estimated error model

� is applied toP2E of Eqs. (3) and (4) in order to obtain

error-corrected TWS change and TWS estimates.

TABLE 2. Mean value m, annual amplitude A, and the trend of P for the time period 2006–10 for individual river basins are compared.

The RMSE is calculated for each model with reference to the mean precipitation of all datasets. The total RMSE is a measure for the

variability between all products.

Basin Model

m

(mmmonth21)

A

(mmmonth21)

Trend

[(mmmonth21) yr21]

RMSE

(mmmonth21)

Total RMSE

(mmmonth21)

Rhine–Meuse COSMO-EU 90 2 20.5 16 9

ERA-Interim 75 9 0.7 6

MERRA 69 6 0.4 11

MERRA-Land 74 13 20.4 6

GPCC 81 11 20.4 5

E-OBS 76 12 20.8 5

Ems–Weser–Elbe COSMO-EU 66 4 1.2 11 8

ERA-Interim 62 12 1.0 5

MERRA 52 6 1.3 11

MERRA-Land 60 15 2.1 5

GPCC 61 15 2.1 5

E-OBS 56 15 1.9 6

Oder COSMO-EU 57 6 1.0 9 8

ERA-Interim 56 13 3.4 5

MERRA 45 4 1.4 13

MERRA-Land 53 20 4.2 6

GPCC 56 22 3.9 7

E-OBS 51 19 3.8 6

Danube COSMO-EU 73 9 0.9 11 8

ERA-Interim 68 20 3.1 5

MERRA 57 11 2.0 11

MERRA-Land 64 20 3.4 5

GPCC 68 21 3.6 6

E-OBS 62 18 3.7 5

EUR COSMO-EU 73 6 0.8 11 7

ERA-Interim 67 17 2.5 4

MERRA 57 8 1.6 11

MERRA-Land 64 19 2.7 5

GPCC 68 19 2.8 5

E-OBS 62 17 2.8 5
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4) ERROR ASSESSMENT

The GFZ provides calibrated errors [assessed, for ex-

ample, by Wahr et al. (2006)] for the monthly spherical

harmonic coefficients that are mapped to error estimates

for spatially averagedTWS change. These error estimates

include the effects of noise in the distance measurement

between the satellites as well as those of the precise orbit

determination, while they disregard noise of some other

relevant instruments such as accelerometers and errors in

the background models. However, since spatial correla-

tions (i.e., correlations between different coefficients) are

not provided, the result is expected to somewhat un-

derestimate the real error. Besides, the standard de-

viation of discharge is assumed to be 15%of the discharge

value itself. We believe this is a conservative assumption,

compared to the relative uncertainties between 5% and

10% assumed by Rodell et al. (2011) and Pan et al.

(2012). Finally, uncertainties of P and E fields are in-

ferred from the spreading of these datasets around the

mean of the various products.

3. Results

First, in section 3a, we describe the variability of the

fluxes and storages and the contributionof each component

to the water budget. In section 3b, the atmospheric–

terrestrial flux as represented by the models and obser-

vational datasets is evaluated using GRACE and river

discharge data as an independent reference. The obser-

vation andmodeling ofE is particularly challenging; this is

whywe assess the approach of solving thewater budget for

E in section 3c. Next, in section 3d, the residuals of the

water budget are analyzed and an errormodel forP2E is

established. Finally, in section 3e, this error model is used

to correct the flux P 2 E in order to reconstruct TWS

change and TWS prior to the GRACE period.

All results are presented for the combined river basins

Rhine–Meuse, Ems–Weser–Elbe, the Oder and Danube

catchments, and the total catchment area of these four

regions, referred to here as EUR. The statistics we provide

refer to the time period 2006–10. COSMO-DE (available

from 2007 to 2010) andCOSMO-REA6 (at the time of the

FIG. 3. Monthly total E for different river basins and models.
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computations available for 2011) do not cover the entire

time span, and therefore, these results will only be illus-

trated in the figures. Throughout the analysis we pay

particular attention to the high-resolution COSMO-EU

model, as this relatively newmodel has not been discussed

much in the literature so far.

a. Fluxes and storages: The components of the
terrestrial water budget

1) PRECIPITATION

Monthly total precipitation over Europe is highly var-

iable (Fig. 2). Spatial averaging causes smaller variability

in large target areas (e.g., EUR) than in small target areas

(e.g., Rhine–Meuse). The P time series are controlled by

the intensity of individual precipitation events and not by

the annual cycle. Table 2 details similarities and differ-

ences between the individual basins and precipitation

products.

Over EUR, Danube, and Ems–Weser–Elbe, average

P amounts to about 65mmmonth21. In contrast, mean

P is significantly smaller in the Oder basin, with about

55mmmonth21, and higher in the Rhine–Meuse basin,

with about 80mmmonth21. While over the catchment

of Rhine–Meuse no significant precipitation trend can

be seen during 2006–10, for the other basins we do

find positive trends between 2 and 4mmmonth21. As

already mentioned, the annual cycle is rather small, with

amplitudes between 10 and 20mmmonth21 for the in-

dividual basins.

Differences among the individual P datasets are

mainly characterized by an offset (Fig. 2). Generally,

mean P from the different datasets has a similar order

in every basin (Table 2). Most of the time, COSMO-

EU exhibits the highest values followed by GPCC,

ERA-Interim, MERRA-Land, E-OBS, and MERRA.

As a gridded dataset, which is based on spatial in-

terpolation of observed precipitation, GPCC is natu-

rally less prone to a model-induced bias. This is

complemented by thorough quality control as de-

scribed by Schneider et al. (2014). GPCC and E-OBS

differ by an offset of 5–6mmmonth21. ERA-Interim

and MERRA-Land tend to underestimate P, yet am-

plitudes and trends are consistent with the observation-

based datasets. In agreement with Lorenz and Kunstmann

(2012), we find that MERRA generally predicts signifi-

cantly less P than the other datasets. Furthermore, com-

pared to the other models, the annual amplitude of

MERRA is only half as large and the trend also appears

to be notably smaller.

In total, COSMO-EU overestimates P by about

5mmmonth21 compared to GPCC. This is mainly be-

cause of high precipitation rates in the first years of the

model run, which also lead to a large root-mean-square

TABLE 3. As in Table 2, but for E.

Basin Model

m

(mmmonth21)

A

(mmmonth21)

Trend

[(mmmonth21) yr21]

RMSE

(mmmonth21)

Total RMSE

(mmmonth21)

Rhine–Meuse COSMO-EU 49 40 20.8 8 8

ERA-Interim 49 46 0.7 3

MERRA 54 54 0.4 8

MERRA-Land 53 57 20.4 8

MPI 42 43 20.4 10

Ems–Weser–Elbe COSMO-EU 44 41 1.9 7 6

ERA-Interim 48 45 1.0 4

MERRA 46 48 1.3 6

MERRA-Land 48 56 2.1 9

MPI 41 44 2.1 7

Oder COSMO-EU 44 43 3.8 5 6

ERA-Interim 45 44 3.4 4

MERRA 40 44 1.4 6

MERRA-Land 44 53 4.2 7

MPI 41 45 3.9 5

Danube COSMO-EU 46 44 3.7 7 7

ERA-Interim 53 52 3.1 5

MERRA 50 49 2.0 7

MERRA-Land 53 55 3.4 7

MPI 44 46 3.6 8

EUR COSMO-EU 46 43 2.8 6 6

ERA-Interim 51 49 2.5 4

MERRA 49 49 1.6 6

MERRA-Land 52 55 2.7 7

MPI 43 45 2.8 7
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error (RMSE). However, the agreement of COSMO-EU

with the observation-based datasets improves with time,

which is likely because of ongoing changes in the data

assimilation scheme. We find that one year of reanalysis

data from COSMO-REA6 in 2011 closely resembles

COSMO-EU.We further note that in 2007, COSMO-DE

differs significantly with respect to the othermodels in the

catchments of Rhine–Meuse and Ems–Weser–Elbe. We

speculate that this effect is likely due to the introduction

of radar-derived rain rates via latent heat nudging.

2) EVAPOTRANSPIRATION

Evapotranspiration variability over EUR is rather

smooth, with a clear annual cycle with large values in

summer and limited signal in winter (Fig. 3). Mean

values and amplitudes are similar in all river basins

(Table 3). The E trend is nearly zero in the catchment of

Rhine–Meuse, whereas the other basins have clear

positive trends.

Especially in summer, large biases of up to

45mmmonth21 between themodels persist (Fig. 3). The

only observational dataset, MPI, indicates the smallest

mean E, followed by E from COSMO-EU (Table 3).

ERA-Interim, MERRA, and MERRA-Land predict

larger mean E in equal measure. The characteristic

seasonal cycle has amplitudes of about 50mmmonth21,

which differ largely for the individual models. MERRA-

Land, in particular, overestimates the annual cycle in

comparison to MPI with amplitude differences of up to

13mmmonth21, that is, more than 20% of the ampli-

tude. This spread reflects the large uncertainties of E

datasets.

FIG. 4. (a) TWS and (b) TWS changes (TWSC) of the EUR catchment from different

GRACE processing centers. For the GFZ solution, error information is propagated from

calibrated errors (shaded in red).

TABLE 4. This table shows the accuracy of the time series of DS 1 R and quantifies the error of the individual P 2 E time series. The

value ŝDS1R is the std dev ofmonthlyDS1R values, sDS1R represents the std dev of the temporal mean ofDS1R, and h is the correction of

mean DS due to the rescaling factor. The constant part of the error model for each P2 E dataset is represented by the bias a. Finally, the

bottom part of the table shows the RMSE of remaining residuals after applying the error model to the fluxes.

Basin Rhine–Meuse Ems–Weser–Elbe Oder Danube EUR

Accuracy of DS 1 R (mmmonth21) ŝDS1R 24 23 25 11 9

sDS1R 3.1 3.0 3.3 1.4 1.1

h 3 3 4 2 1

a (mmmonth21) COSMO-EU 22 23 0 22 22

ERA-Interim 13 5 3 10 9

MERRA 25 13 9 17 18

MERRA-Land 19 7 5 14 13

GPCC 1 MPI 0 21 22 0 0

E-OBS 1 MPI 5 4 3 6 6

RMSE residuals (error model applied)

(mmmonth21)

COSMO-EU 26 27 21 18 16

ERA-Interim 23 25 20 16 14

MERRA 21 23 19 16 13

MERRA-Land 26 27 22 17 16

GPCC 1 MPI 25 26 21 16 15

E-OBS 1 MPI 25 25 21 16 15
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3) RIVER DISCHARGE

Measured river discharge was obtained from the

GRDC and the BfG. Monthly discharge amounts to

about one-third of precipitation (Fig. 2). The monthly

values lead to a rather smooth time series with strong

annual signal with its maximum in winter or spring.

4) TOTAL WATER STORAGE CHANGE

Three GRACE solutions are compared for the EUR

study area in Fig. 4. We find that the reprocessed

GFZ release 05a fits much better to the JPL and CSR so-

lutions than the previous GFZ release 05 (not shown).

Figure 4a shows TWS and Fig. 4b shows TWS change,

derived using central differences. We find that the com-

putation of backward derivatives instead (not shown)

would introduce a phase shift of at least 8 days.

Table 4 provides, in the first three rows, information

about the error budget of themodel-independent part of

the water budget, DS 1 R. Depending on the basin size,

discharge contributes 4–20 times less to the error budget

as compared to GRACE; that is, its effect is small or

even negligible in the error budget. Also, we find that

the rescaling procedure has a small influence of only

1–4mmmonth21 on the TWS change estimate. We es-

timate that in the EURbasin,DS1R exhibits a standard

deviation of 9mmmonth21, and that for the smaller

basins the error of DS 1 R amounts to about

24mmmonth21. In comparison, the time series of P 2
E have a standard deviation of about 23mmmonth21

for EUR.

b. Evaluation of atmospheric–terrestrial flux P 2 E

The water budget is now solved for the atmospheric–

terrestrial flux P 2 E in order to validate the individual

datasets. In Fig. 5, both sides of the water budget

equation are pictured. We find that, in particular,

FIG. 5. The water budget equation is solved for P 2 E 5 DS 1 R. The right side of the

equation is represented by the red line (TWSC 5 DS) and includes error bars. For Danube

discharge, data are only given until 2010, resulting in a shorter time series of DS 1 R in the

basins of Danube and EUR. Time series are smoothed with a 3-month moving average to

facilitate interpretation.
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COSMO-EU and the observational datasets are in good

agreement with DS 1 R, even for smaller basins. Also,

ERA-Interim performs quite well, whereas both

MERRA models drift, that is, they systematically un-

derestimate P 2 E. A closer look at deseasoned and

detrended variability of the time series is obtained by

removing mean value, trend, and signals of 6 and 12

months; this result is shown in Fig. 6. The deseasoned

and detrended time series reflect the influence of specific

meteorological conditions on P2E. Correlations of the

deseasoned and detrended variations ofP2E andDS1
R reach values of about 0.6–0.75. An exception is the

basin of Ems–Weser–Elbe, for which we obtain corre-

lations of only 0.5. In this context, it should also be

mentioned that the application of central (instead of

backward) differences to GRACE time series signifi-

cantly increases the correlations by about 0.2.

A more detailed interpretation of P 2 E 5 DS 1 R is

provided in Table 5. Mean P2E for the complete EUR

region agrees well with the estimate of Miralles et al.

(2011) of 22.4mmmonth21 for mean European P 2 E

and the estimate of globally averaged P 2 E computed

by Lorenz and Kunstmann (2012) of 26.6mmmonth21.

In contrast, the basin of Rhine–Meuse shows a large flux

deficit (about 30mmmonth21) and the Oder basin shows

a rather small flux deficit (about 10mmmonth21). All

basins have a positive trend inP2E andDS1R between

2 and 5mmmonth21; only the trend in the combined

catchment area of Rhine–Meuse appears smaller.

We find, in particular, that the mean of COSMO-EU

in all basins is in good agreement with the GRACE-

derived time series. In contrast, ERA-Interim and

MERRA underestimate mean P 2 E by up to 12 and

25mmmonth21, respectively. Additionally, we find that

MERRA andMERRA-Land are shifted with respect to

DS1 R by up to 6 and 10 days. All models overestimate

the annual amplitude, whereas the amplitudes of the

observational datasets are close to DS 1 R. Among the

models, the amplitude of ERA-Interim agrees best with

DS 1 R. In all basins, ERA-Interim and the observa-

tional datasets have the highest correlation of detrended

and deseasoned P2E and DS1R, but the difference to

the other models is small. Obviously, the correlations

depend primarily on the basin size and less on the

FIG. 6. Deseasoned and detrended variability of P 2 E and DS 1 R for the individual basins.
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dataset. Finally, the RMSE was derived; this represents

the deviation of P 2 E from the time series derived

from GRACE and discharge data. For MERRA and

MERRA-Land, the RMSE is significantly larger than

for the other datasets.

c. Evapotranspiration: Comparison of two
approaches

We now have two ways of computing spatially aver-

aged evapotranspiration: first, based onE obtained from

the NWP models and observational datasets, and sec-

ond, based on E derived from the water budget equation

via P 2 DS 2 R. In Fig. 7, dashed lines represent the

E model outputs and solid lines represent E estimates

from the water budget equation. The figure shows the

annual cycle of E (annual amplitude and phase shift).

The spread of the E datasets is particularly large during

summer. During winter, estimates via the water budget

equation tend to be smaller than model outputs and

MPI. However, during summer both sides of the water

budget equation agree very well for the observational

datasets and for COSMO-EU. Also, the estimate of P2
DS2 R from ERA-Interim fits well to the observational

datasets, while modeled E slightly overestimates E

during summer. MERRA clearly underestimates E

when derived via the water budget approach, while

MERRA-Land performs well for this way. Modeled E

of both MERRAmodels is too high during summer and

slightly lagged compared to the other datasets.

We suggest that, while over Europe, the two ap-

proaches do not lead to very different results (except for

the MERRA models); the water budget approach has

the potential to significantly improve E estimates in re-

gions with limited availability of observational data.

TABLE 5. The water budget equation is solved for P 2 E and compared to GRACE and observed discharge DS 1 R. The mean value

over the time span 2006–10, the annual amplitude, and the trend are considered. Moreover, the phase shift f and the RMSE of the two

sides of the equation are presented, and the correlation coefficient r refers to the deseasoned and detrended time series.

Basin Model

m

(mmmonth21)

A

(mmmonth21)

Trend

[(mmmonth21) yr21] f (days)

RMSE

(mmmonth21) r

Rhine–Meuse COSMO-EU 41 38 1.5 26 26 0.61

ERA-Interim 26 37 1.3 24 27 0.62

MERRA 14 48 1.2 27 34 0.62

MERRA-Land 20 45 0.2 210 34 0.59

GPCC 1 MPI 39 33 20.1 27 26 0.64

E-OBS 1 MPI 34 32 20.5 27 26 0.63

DS 1 R 39 6 3.1 39 6 5.2 1.3 6 2.0 — — —

Ems–Weser–Elbe COSMO-EU 22 38 2.2 24 28 0.40

ERA-Interim 14 34 1.9 25 27 0.48

MERRA 6 44 1.3 27 29 0.48

MERRA-Land 12 44 1.8 28 32 0.46

GPCC 1 MPI 21 32 2.3 26 27 0.49

E-OBS 1 MPI 15 32 2.1 26 26 0.49

DS 1 R 19 6 3.0 28 6 4.9 3.6 6 2.0 — — —

Oder COSMO-EU 13 38 1.4 4 25 0.66

ERA-Interim 11 32 2.9 2 22 0.68

MERRA 5 41 1.6 21 26 0.63

MERRA-Land 9 35 2.9 22 26 0.67

GPCC 1 MPI 15 25 4.0 21 21 0.69

E-OBS 1 MPI 11 28 3.9 1 22 0.67

DS 1 R 14 6 3.3 22 6 4.8 5.0 6 2.2 — — —

Danube COSMO-EU 27 36 2.0 21 19 0.68

ERA-Interim 15 31 3.0 22 19 0.71

MERRA 7 38 1.6 26 25 0.63

MERRA-Land 11 36 2.8 29 24 0.66

GPCC 1 MPI 24 25 3.5 23 17 0.71

E-OBS 1 MPI 18 28 3.6 23 18 0.71

DS 1 R 24 6 1.4 32 6 2.3 3.8 6 1.0 — — —

EUR COSMO-EU 27 36 1.9 22 17 0.66

ERA-Interim 16 32 2.6 22 17 0.74

MERRA 8 41 1.5 26 24 0.69

MERRA-Land 12 38 2.3 28 23 0.69

GPCC 1 MPI 25 27 2.8 24 15 0.73

E-OBS 1 MPI 19 29 2.8 24 16 0.72

DS 1 R 25 6 1.1 32 6 1.9 3.3 6 0.8 — — —
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d. The residuals of the water budget

In theory, perfect closure of the water budget equa-

tion implies �5DS2 (P2E2R)5 0. Yet this is not the

case, as we have shown above, suggesting that model

outputs and observational datasets are contaminated

with errors. In Fig. 8, we display the residuals or non-

closure of the water budget equation for the different

models and the individual basins. In the first step, the

two error models introduced in section 2b(3) were as-

sessed. We find that the error model using a constant

offset reduces the water budget residuals by 47%

whereas a multiplicative model reduces the residuals

only by 35%. Therefore, we choose the additive

model as represented in Eq. (11) for the following

investigations.

The estimated time-invariant bias a of the errormodel

is specified in the middle of Table 4. It is notably large

for MERRA with values of up to 25mmmonth21. Be-

sides, MERRA-Land and ERA-Interim also appear to

have large biases of up to 19 and 13mmmonth21, re-

spectively. In contrast, we find COSMO-EU relatively

unbiased with values between 0 and 23mmmonth21.

The combination of GPCC and MPI data leads to the

best closure of the water budget. Whether this bias is

statistically significant is assessed with respect to the

accuracy of the GRACE and discharge data (given in

the upper part of Table 4). Mean values of the time se-

ries of DS 1 R have standard deviations of 1–

4mmmonth21; consequently, only the bias estimates of

MERRA, MERRA-Land, and ERA-Interim can be

considered as significant in all of the basins except for

the Oder catchment. We find it surprising that the bias

for the small Oder catchment is very small, with a max-

imum of 10mmmonth21 for MERRA.

With respect to Tables 2 and 3, we hypothesize that

the bias, observed in the nonclosure of the water budget,

originates from P andE fields in ratios depending on the

specific data products. Additionally, the annual ampli-

tude of E is more than twice as large as the annual am-

plitude of P. Phase shifts ofE and the annual amplitudes

themselves will therefore contribute largely to the an-

nual component of the residual. These are revealed in a

power spectral density (PSD) computation shown in

Fig. 9. Distinct annual frequencies are contained

in MERRA and MERRA-Land, which may be due to

FIG. 7. The annual cycle of E (A and f) is represented. The solid lines show E calculated via the water budget equation according to

P 2 DS 2 R. The dashed lines show the E outputs from the models and from MPI.
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a phase shift in the models. Besides, we observe similar

features for all of the models in the higher frequencies.

In general, the detected seasonal signal of the residuals

decreases with increasing catchment area.

Applying the individual errormodels to the fluxesP2
E, we can again assess the closure of the water budget.

The lower part of Table 4 provides the RMSE of the

remaining residuals. It can be interpreted as a measure

for the performance of the models at the higher fre-

quencies. MERRA has the smallest RMSEs, followed

by ERA-Interim. This shows that, although the mean of

the global models is biased, they perform well for the

higher frequencies. The RMSEs of the other models and

observational datasets are a bit larger. Overall, the

RMSE of the remaining residuals mainly depends on the

basin size.

e. Flux-derived total water storage

As already discussed, the best use of GRACE in-

formation content is achieved when working with TWS

instead of TWS change; therefore, we pursue the

evaluation of the integrated water budget equation here.

First, GRACE-derived TWS change (Fig. 10a) and TWS

(Fig. 10b) are illustrated with red curves exemplarily for

the Danube basin. Then, GRACE is contrasted against

(catchment integrated) TWS change and TWS derived

from NWP model outputs and observational datasets.

Furthermore, we consider the dataset of Ming Pan

(Pan et al. 2012) as a reference, and for TWS we ad-

ditionally use storage information from the WGHM

for comparison. Error-corrected P 2 E 2 R data are

evaluated for the time span since 1990; this provides

storage information for the period before the start of

the GRACE mission and can be termed a ‘‘GRACE/

model reconstruction’’ of TWS.

We find that error-corrected model estimates of TWS

change are in good agreement with each other and also

fit to GRACE and TWS change from the multisource

approach of Pan et al. (2012) (magenta line). As errors in

P 2 E accumulate through integration, the differences

are larger in Fig. 10b. It is difficult to clearly distinguish

specific meteorological conditions, such as the flood in

FIG. 8. The bias � of the water budget equation for individual basins and models.
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summer 1999, high precipitation rates at the beginning

of 2000, or the hot summers of 2000 and 2003. In fact, the

reconstructed time series show the evolution of long-

term storagemixedwith the remaining errors of the flux-

based datasets.

In all cases, the error models for the fluxes were de-

rived from data of the time span 2006–10. In Fig. 10b, we

observe that these models lead to surprisingly close flux-

based TWS estimates for 2002–10, as described before.

Before this period, the models drift, likely because of

temporal changes of the bias that we did not account for.

The propagation of the MERRA time series, for ex-

ample, indicates a negative bias from 1990 to 2002,

which leads to a positive trend. In contrast, ERA-

Interim first has a negative trend that changes to a pos-

itive trend in 1995 (Fig. 10c). Although in the approach

of Pan et al. (2012) the water balance is constrained,

remaining errors also lead to a trend in storage. In total,

drifts exist that amount to up to 5 times the size of the

annual amplitude. If the errormodel is not applied, large

biases lead to drifts of more than 40 times the size of the

annual amplitude (not shown here). This shows the

value of GRACE for better constraining the long-term

evolution of storage. To our knowledge, this is the first

attempt to reconstruct TWS from flux information for

a time span of 20 years in the Danube basin.

4. Conclusions and outlook

In this contribution, the terrestrial water budget was

(almost) closed over European river basins using

GRACE-derived TWS change, river discharge, and at-

mospheric fluxes P and E from a number of different

datasets and by developing a catchment-wide error

model. Output fields from the analyses COSMO-EU

and COSMO-DE and the reanalysis COSMO-REA6;

the global reanalyses ERA-Interim and MERRA; the

land surface model MERRA-Land; and the observation-

based datasets GPCC, E-OBS, and MPI were inves-

tigated. The quality of P 2 E in the NWP models was

assessed by analyzing the residuals of the water budget

equation. Furthermore, an error model for the fluxes was

derived. Finally, model-derived, error-corrected fluxes

were used to reconstruct TWS change and TWS previous

to the GRACE period.

In line with other studies, we find that the GRACE

data offer great potential for assessing the realism of

atmospheric–terrestrial fluxes. The representation of

FIG. 9. PSD of the residuals of the water budget equation.
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P 2 E in the high-resolution COSMO-EU model was

identified as relatively unbiased in all river basins. Mean

P 2 E from ERA-Interim was found as biased with

values of 3–13mmmonth21, whereas we found that

MERRA andMERRA-Land contain offsets of up to 18

and 24mmmonth21 and a phase shift of up to 9 days. In

contrast, MERRA seems to perform better for the

month-to-month signals than the other models. The

value of P from COSMO-EU differs, at the beginning of

the model run, from the other datasets. Therefore, the

evaluation of the corresponding COSMO-REA6, which

is available now, appears as a very promising endeavor.

COSMO-DE P was found to be contaminated with er-

rors at the beginning of the model run, likely due to the

introduction of radar-derived rain rates, and this prob-

lem was apparently removed over time.

Detrended and deseasoned variations derived from

GRACE and discharge data were found to be highly

correlated with the outputs of NWP models, with corre-

lations of about 0.6–0.75. In this context, it should be

mentioned that the residuals of the water budget equation

can be significantly reduced when using central differ-

ences for the GRACE derivative instead of backward

differences. At the same time, this increases the correla-

tion between the detrended and deseasoned variations by

about 0.2.Wedare to say thatwith the improved quality of

release 05, GRACE products can now be used to assess

smaller basins than before (e.g., the Oder catchment with

110 000km2) and to study the evolution of the water

storage clearly beyond its annual behavior, even for

European regions.

The water budget equation was solved for evapo-

transpiration in order to obtain an independent estimate

for this most uncertain component of the water budget.

An even better estimate of E could be obtained by

separating the bias of P and E. Especially for regions

with poor coverage of observational data, the water

budget equation represents a valuable tool for assessing

P and in particular E.

In the last step, we used the fluxes P, E, and R in

order to reconstruct catchment-integrated water stor-

age (change) prior to the GRACE period and to

identify the effect of yearly weather conditions on these

time series. We believe that extending this approach

to an even longer time span could become possible,

whenever suitable models of a time-variable bias of

P 2 E can be found.

Finally, we acknowledge that the GRACE Follow-

On Mission, to be launched in 2017 and equipped

with a more precise laser ranging interferometer in-

strument, will enable us to reduce TWS and TWS change

uncertainties and to evaluate the terrestrial water

budget at smaller spatial scales. At the same time, im-

proved regional reanalyses such as COSMO-REA6

FIG. 10. (a) TWS change and (b) TWS from GRACE is compared to P 2 E 2 R for the

Danube catchment (smoothed with a 3-month moving average). From NWP models and ob-

servational data of P 2 E, storage information can also be obtained for the time before the

start of the GRACEmission. (c) The long-term evolution of TWS. As a reference, we use TWS

change provided by Ming Pan (magenta) and TWS from WGHM (black).
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will hopefully provide more realism to model-derived

fields.
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