Supplementary Materials

Rate coefficients for the reaction of ozone with 2- and 3-carene

H. Chen^{1,2}, Y. Ren², M. Cazaunau², V. Daële², Y. Hu^{1,2}, J. Chen^{1,3}, A. Mellouki^{2,3}*

¹ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), Department

of Environmental Science & Engineering, Fudan University, Shanghai 200433, China

² Institut de Combustion, Aérothermique, Réactivité et Environnement/OSUC, CNRS,

45071 Orléans Cedex 02, France

³School of Environmental Science & Engineering, Shandong University,

Shandong 250100, China

* Corresponding author:

A. Mellouki, ICARE-CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 02,France (Fax: (33) 238 696004, e-mail: mellouki@cnrs-orleans.fr)

1 1. Materials

2 The purities of the chemicals were as follows: synthetic air, O_2 and N_2 , UHP certified

- 3 to >99.9995% (Alphagaz); 2-carene (Sigma-Aldrich, \geq 97); 3-carene (Sigma-Aldrich, \geq 98.5%);
- 4 cyclohexene (Fluka, \geq 99.5); 2-butanol (Fluka, \geq 99.5).
- 5 The purity of 3-carene was 95% determined by GC-MS, as shown in Fig. S1. The 3-carene
- 6 sample also consists of impurity of camphene (2%), limonene (1%) and terpinolene (2%).

8 Supplementary Figure 1: Chromatogram spectrum for 3-carene sample.

Supplementary Figure 2: Example for (a) concentration profile and (b) decay rate of ozone

13 before and after correction in the presence of excess 3-carene in SC.

Supplementary Figure 3: Example of PTR-TOF mass spectra of Exp. 2CAR-3T using TMB as

Supplementary Figure 4: Example of PTR-TOF mass spectra for isobaric peaks: m/z 83.05 21 $(C_5H_7O^+)$ and m/z 83.09 $(C_6H_{11}^+)$ during measurements of relative rates.

Experiment ^(a)	Temperature	carene	ozone ^(b)	c-hexane ^(c)	TMB	2-butanol	Injection sequences
	Κ	ppbv	ppbv	ppbv	ppbv	ppbv	
2-carene							
2CAR-1C	298 ± 1	11.3	104	1700			2car; c-hexane; $O_3^{(c)}$
2CAR-2C	300 ± 1	22.7	254	3990			2car; c-hexane; $O_3^{(c)}$
2CAR-3T	305 ± 1	19.1	190		288		TMB; O ₃ ; 2car
2CAR-4B	293 ± 1	23.9	255			2640	2-butanol; 2car; O ₃
2CAR-5BR ^(d)	293 ± 1	6.7	410			4290	2-butanol; 2car; O ₃
<u>3-carene</u>							
3CAR-1C	299 ± 1	29.2	298	6820			c-hexane; O ₃ ; 3car ^(c)
3CAR-2C	295 ± 1	19.1	179	4490			c-hexane; 3car; O ₃ ^(c)
3CAR-3C	295 ± 1	11.3	96	2240			c-hexane; 3car; O ₃ ^(c)
3CAR-4B	294 ± 1	9.6	347			1320	2-butanol; 3car; O ₃
3CAR-5B	295 ± 1	7.7	213			1150	2-butanol; O ₃ ; 3car
3CAR-6BR ^(d)	296 ± 1	9.7	347			3960	2-butanol; 3car; O ₃
3CAR-7BR ^(d)	296 ± 1	29.1	^(e)			6630	2-butanol; 3car; O ₃

22 Supplementary Table 1: Initial experimental conditions performed in HELIOS.

^(a) C = cyclohexane as a scavenger; B = 2-butanol as a scavenger; BR= cyclohexene as a reference in the presence of excess 2-butanolas a scavenger; T = 1,3,5-trimethylbezene as a scavenger.

^(b) [O₃] was monitored by APOA-360 UV-absorption monitor, which is in agreement with FTIR within 5% uncertainty.

26 $^{(c)}$ c-hexane = cyclohexane.

27 ^(d) In the presence of 29.6 ppbv cyclohexene as a reference.

28 ^(e) O₃ was injected into HELIOS in several additions.