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Highlights
We found eclogite-facies assemblage in a Barroe@anplex of northern Greece
The pelitic eclogites re-equilibrated later undepaibolite-facies conditions

Our results suggest subduction of the Barroviangterprior to the overprint



ABSTRACT

The Chalkidiki block in Northern Greece represetits southwesternmost piece of the
ultrahigh-pressure Rhodope and has played an ieapiorole in the evolution of the North
Aegean. The eastern part of the Chalkidiki block ls|asement complex (Vertiskos Unit) that
is made largely of Palaeozoic granitoids and alaséidiments metamorphosed during the
Mesozoic. This basement is traditionally consideasdhart of the Rhodopean hanging-wall,
an assignment mainly supported by the absencegbfgressure mineral indicators and the
presence of a regional medium-pressure/medium-teatyge amphibolite-facies Barrovian
metamorphic imprint. Toward the west, the baseneixtaposed with meta-sedimentary
(Circum-Rhodope belt) and arc units (Chortiatis kiagic Suite) that carry evidence of a
Mesozoic high-pressure/low-temperature event. is study, garnet-staurolite-mica schists
from the eastern part of the basement were exanbgemieans of micro-textures, mineral
chemistry and isochemical phase-diagram sectionghén system NCKFMASHMnN(Ti)
[Na,O-CaO-K0O-FeO-MgO-AbOs-SiO,-H,O-MnO-(TiO,)]. The schists represent former
Mesozoic sedimentary sequences deposited on tled2aic basement. We document the
presence of a relict eclogite-facies mineral assegeb(garnet + chloritoid + phengite +
rutile) in an amphibolite-facies matrix composedgafnet + staurolite + phengite + kyanite.
Model results suggest the existence of a high-presmedium-temperature metamorphic
event (1.9GPa / 520°C) that preceded regional udietion at medium-pressure/medium-
temperature conditions (1.2GPa / 620°C). Cleatg, ¢astern part of the Chalkidiki block
(basement complex) retains memory of an as yet eatiited Mesozoic eclogitic
metamorphic event that was largely erased by tiee Barrovian overprint. In the light of our
findings, the basement complex of the Chalkidikodd shares a common tectono-
metamorphic evolution with both the high-pressungtsuto the west, and the high-grade

Rhodopean gneisses further to the northeast. Oswltse are consequential for the



geodynamic reconstruction of the Rhodope since tegyire participation of the Chalkidiki

block to the well-established Mesozoic subductigstem.

K eywor ds: Aegean, Serbo-Macedonian, garnet-staurolite schists, eclogite, high-pressure

low-temper ature metapelites, isochemical phase diagrams



1. Introduction

High-pressure (HP) metamorphic assemblages are oatgnoverprinted under
medium- (MT) or high-temperature (HT) conditions different stages of the thermal
evolution of an orogen. At regional scale, the pescresponsible for such overprint can be
linked to radiogenic heating of a thickened crimat produced by viscous dissipation or
thermal pulses related to upwelling mantle (e.gurgBand Gerya, 2005; England and
Thompson, 1984; Molnar and England, 1990). A comiieaiture in many mountain belts is
the juxtaposition of rocks that underwent high-ptes/low-temperature (HP/LT)
metamorphism with rocks that are dominated by mmadwessure/medium-temperature
(MP/MT) or medium-pressure/high-temperature (MP/Hii¢tamorphic assemblages (e.g.,
Okay, 1989; Whitney et al., 2011). Two scenariad #xplain such juxtaposition can be: (i)
either all rocks experienced early HP/LT metamaphibut subsequently some of them
completely re-equilibrated under MT or HT condisoor (ii) that the juxtaposition occurred
during a post-metamorphic stage and thus, is dbméc nature. Deciphering between the
mentioned scenarios can be hard in the absenagyqiraserved HP relicts from the MP/MT

(or MP/HT) rocks.

The Rhodope Metamorphic Province (northern Greeamuthern Bulgaria) is a
recently established ultrahigh pressure (UHP) metphic province (Mposkos and
Kostopoulos, 2001; Perraki et al., 2006; Schmidalet 2010; see recent review by Burg,
2012). Peak metamorphic conditions and subsequemthiolite-facies metamorphic
overprint are recorded by metapelites that locadiptain microdiamond inclusions and by
variably retrogressed mafic eclogites (e.g., Litid Seidel, 1996; Moulas et al., 2013,
Mposkos and Kostopoulos, 2001). The southwestem gfathe Rhodope Metamorphic
Province is exposed at the Chalkidiki Peninsulanofthern Greece and has attracted

relatively less attention. There, three major uaityp out: a) an HP Upper Jurassic magmatic



arc sequence in the west, b) an HP Triassic - digraseta-sedimentary sequence in the
middle and c) a Palaeozoic - Lower Mesozoic basémemplex that records MP/MT

metamorphic conditions in the east. The latter agstdered as part of the Rhodopean
hanging-wall, an assignment which is supported Iy &bsence of HP relicts and the

dominant MP amphibolite-facies regional metamorpmivierprint.

In this contribution we study key metapelitic saggpfrom Chalkidiki by means of
micro-textures and mineral chemistry. We then camsalected samples (chloritoid-bearing
garnet-staurolite-mica schists) to modelled minesdemblages in the NCKFMASHTIMn
(NaO-Ca0-K0O-FeO-MgO-AbOs-SiO,-H,0O-TiO,-MNO)  model  system and  using
isochemical phase-diagram sections we infer thé& psstamorphic conditions. This allows
us to link, both genetically and temporally, thetameorphic events of the Chalkidiki and
define the nature of juxtaposition of the HP umitth the MP/MT basement. Our results are
consequential for the geodynamic reconstructiorthef Rhodope Metamorphic Province
since their interpretation requires to re-define glosition of the Chalkidiki to better fit into

the overall Mesozoic convergence setting.

2. Geological background
2.1 TheHeéellenides

The Hellenides constitute an integral part of tHpie-Himalayan mountain chain
and are the product of convergence between theestabuth European margin and
northward-driven Gondwana-derived continental fragta (e.g., Stampfli and Borel, 2002).
They are formed by Mesozoic - Cenozoic southwestwaling-up of three continental
blocks (namely the Rhodopia, Pelagonia and ther&atdHellenides) and the closure of two

intervening oceanic domains, now forming the Vai#igios and Pindos Suture Zones, to the



north and south, respectively (Papanikolaou 2008¢d aeferences therein). Seismic
tomography illustrates beneath the Hellenides amandto 1600 Km depth a northward-

dipping slab, anchored into the lower mantle (Bgwehet al., 1998). A review of a number of
studies (e.g., Jolivet and Brun, 2010; Papanikql2013; Royden and Papanikolaou, 2011)
can summarise the geodynamic evolution of the Heles into: (i) a Mesozoic crustal

thickening phase followed by (ii) a continuous $wueard retreat of the subducting Hellenic
slab since the Eocene that triggered large-scaknsion concomitant with thrusting at the

southern part of the Hellenic domain.

2.2 The Rhodope M etamor phic Province (RMP)

The Rhodope Metamorphic Province, or simplyRhodope, constitutes the hinterland of
the Hellenides (northeast Greece - southwest BialgéBurg et al., 1996; 2012; Krenn et al.,
2010; Ricou et al., 1998) (Fig.1a). It can be vidvas a Mesozoic southwestward piling-up,
crustal-scale, syn-metamorphic, amphibolite-fadeplex (Burg et al., 1996; Ricou et al.,
1998) strongly affected by Cenozoic extension akecocomplex type (Bonev et al., 2006;
Brun and Sokoutis, 2007) and syn- to post-tectoragmatism (e.g., Kolocotroni and Dixon,
1991; Marchev et al., 2013). The Rhodope is bodi¢oethe north by the Maritza dextral
strike-slip fault, to the east by the Middle Eocém&uaternary Thrace Basin, to the south by
the Vardar-Axios - Thermaikos basins which in tewaghly correlate with the Vardar Suture
Zone (VSZ) and to the south by the North Aegeanu@io Following Kydonakis et al.
(2015), we adopt here a simple threefold divisidrere Rhodope is divided, from northeast
to southwest, into three tectonic domains: (i) Mwoethern Rhodope Domain (NRD), (ii) the
Northern and Southern Rhodope Core Complexes (NRCC - SRCC), and (iii) th€halkidiki

block (Fig.1a).



To the northeast, within the NRD, typical rocktyee orthogneisses, mafic eclogites
and amphibolites, paragneisses, ultramafics andcescmarble horizons (e.g., Liati and
Seidel, 1996; Moulas et al., 2013; Proyer et @08). Although upper amphibolite-facies
metamorphic rocks are widespread, many occurreoiceariably retrogressed eclogites that
preserve evidence of a precursor HP phase haverbeeeried in the literature (e.g. Burg,
2012; Moulas et al., 2013; and references ther&wence of UHP conditions is due to the
presence of micro-diamond inclusions in metapel{téposkos and Kostopoulos, 2001;
Perraki et al., 2006; Schmidt et al., 2010) thdtdate minimum local pressure of 3.0GPa (for
60C°C). Jurassic and Cretaceous zircon metamorphic @grea 150 and 75 Ma) from both
garnet-kyanite gneisses and amphibolitised ecleditere been reported (Liati et al., 2011;
and references therein). Metamorphic conditionglierHP event recorded in mafic rocks are
estimated at 1.9GPa / 7A@ (Liati and Seidel, 1996) and for the regional aibplite-facies
overprint at 0.7GPa / 720 (Moulas et al., 2013). Metapelite assemblagesrdebigher

pressure for the high-temperature overprint (13Pa / 700-730°C; Krenn et al. 2010).

2.3 The Chalkidiki block

The southwestern part of the Rhodope is the sed&erbo-Macedonian Massif
Kockel et al. (1971). The term “Massif’ has beefeceed by many, if not all, workers
afterward and the term Serbo-Macedonian Domain ldhbe used instead. Based on the
reference map of Kockel and Mollat (1977) it is gmsed, from west to east, of four units
namely the Chortiatis Magmatic Suite, the Circum-Rhodope belt, the Vertiskos Unit
(equivalent to Vertiskos Formation/Series) and Kleedylion Unit (equivalent to Kerdylion
Formation/Series) (see also Kauffmann et al., 186gkel et al., 1971; 1977). The latter unit

that is located below the Kerdylion Detachment ehaa common tectono-thermal history



with the SRCC (Brun and Sokoutis, 2007; Himmerktusle 2012). The remaining three
units define collectively the Chalkidiki block ancbnstitute the hanging-wall of the
Kerdylion Detachment, the structure responsible fhe exhumation of the SRCC
immediately to the east (Fig.1b). During exhumatmithe latter, the Chalkidiki block

underwent a circa 3@lockwise rotation (Brun and Sokoutis, 2007; agfgrences therein).

The Vertiskos Unit is an elongated basement belt with complex teetoatamorphic
history (Burg et al., 1995; Kilias et al., 1999)gHDb). It is a distinct basement fragment that
detached from Gondwana and incorporated into theh®on European Arcs by the end of
the Palaeozoic (Kydonakis et al., 2014; and refarentherein). Typical rock types are
Silurian - Ordovician granitoids later transformedo orthogneisses (Himmerkus et al.,
2009; and our data), paragneisses and thin madsieons, leucocratic granitic/pegmatitic
intrusions, deformed amphibolites, scarce eclolggadins and serpentinites (Kockel et al.,
1971, 1977). Evidence of an early HP episode inviaiskos Unit comes from rare eclogite
occurrences. For example, Kourou (1991) describeldgite relicts in the cores of
amphibolite boudins enclosed in gneisses. Kostaoet al. (2000) reported an eclogite lens
mantled by trondhjemite enclosed, in turn, in arbphies near Galarinos village.
Korikovsky et al. (1997) studied partially retrodeal eclogite lenses within an amphibolite-
gneiss metamorphic sequence from the Buchim Bled& (km SE of Stip, F.Y.R.O.M.).
With the exception of a Sm-Nd mineral isochron 602t 49 Ma for the afore-mentioned
lenses (mentioned in passing by Korikovsky et 97), the age of the HP event remains
unknown and its attribution to Alpine processes oaither be inferred nor excluded. A
regional medium-pressure amphibolite-facies eveestimated at 0.45-0.75GPa / 510&80
from the study of quartz + white mica + biotitegarnet + oligoclase + staurolite + kyanite
schists (Kilias et al., 1999) and at 0.4GPa / 45(°G from meta-ultramafics with the

assemblage antigorite + Fe-Cr spinel + ilmenitehfoite + talc + tremolite (Michailidis,



1991). Deformed amphibolites from the basementyilké crucial assemblage amphibole +
epidote/zoisite + garnet + quartz + plagioclase iatite indicating amphibolite-facies
conditions at 0.85GPa / 6D (our unpublished results). Upper Jurassic - Cestas
metamorphic age$%Ar/*°Ar, K/Ar and Rb/Sr on micas and amphiboles) havenbeported
from the basement (e.g., Lips et al., 2000; Papadlop and Kilias, 1985; de Wet et al.,

1989).

The Circum-Rhodope belt is a Triassic - Jurassic meta-sedimentary sequiecadly
involving Triassic rhyolites and quartzites at these (see recent review in Meinhold and
Kostopoulos, 2013) (Fig.1b). The term Circum-Rhasldgelt was originally introduced by
Kauffmann et al. (1976) to describe low-grade rottksging the basement complex of the
Vertiskos Unit to the west, thought of as represgnthe original Mesozoic stratigraphic
cover of the basement. Indeed, Meinhold et al. 9208ported detrital zircon ages from the
base of the meta-sedimentary sequences of the niRlwodope belt and assigned the
Vertiskos Unit as their source area. Remnants oheajekyanite-staurolite-mica schists
toward the eastern part of the Vertiskos Unit haeen originally mapped as parts of the
Circum-Rhodope belt (Kockel et al., 1977). Somekaos interpreted them as separate units
and local names where assigned to them (i.e., ‘Madytos Unit” of Sakellariou and Dirr,
1993; “Bunte Serie” of Papadopoulos and Kilias, 39&owever, their map continuity with
the Circum-Rhodope belt further to the west strgraglggests that those sequences are part
of the Mesozoic sedimentary cover (Dixon and Dimadis, 1984) (Fig.1b). Th€hortiatis
Magmatic Suite, immediately to the west of the Circum-Rhodopéd,bglmade of intensively
deformed acidic and intermediate igneous rocks ppdy Jurassic protolith age (Monod,

1964) (Fig.1b).

Evidence of a HP event from the Circum-Rhodope &ett the Chortiatis Magmatic

Suite is found in Asvesta (1992) who reported Hgjiphengite from the base of the former



and in Monod (1964) who mentioned “amphiboles whibbw sometimes a sodic character”
from the latter. Michard et al. (1994) also repdrthe existence of high-Si phengite (3.52
apfu) from basal rhyolitic meta-tuffs of the CirctRmodope belt and relict phengite-
glaucophane assemblage from the Chortiatis Magn&iite. The same authors estimated
peak conditions at circa 0.8GPa / 350or the HP event. However, a pervasive greenschis
facies overprint seems to have almost completelgezt the evidence of this early HP event.
We note here that further to the west, lawsonitg lda-amphibole (winchite and barroisite)
have been reported from the Paikon Arc (Baroz et E387) which is considered as

equivalent to the Chortiatis Magmatic Suite (Andetral., 2005).

3. Methods/ Sampling

3.1 Whole-rock chemistry

Selected key samples were first crushed in a geetrusher and then ground in an
agate mortar. The powders were digested using atdridhium metaborate (LiB£) fusion
and acid dissolution techniques and subsequendgndally analysed for major elements by

ICP-MS (ACME Labs, Vancouver, Canada).

3.2 Mineral chemistry

Mineral analyses and garnet elemental maps weraingat at ETH Zurich,
Switzerland and at Ifremer (Institut francgais deherche pour I'expoitation de la mer), Brest,
France using a JEOL JXA 8200 and a Cameca SX l&fireh probe, respectively. Both
probes were equipped with 5 wavelength dispersipectsometers operating at an

accelerating voltage of 15 kV with ap®n beam diameter and 20 nA beam current. Natural



and synthetic materials were used as standardsaa@tlrZAF correction procedure was
applied. Back-scattered images were obtained atdgsité de Rennesl, France and National
Technical University of Athens, Greece using a JEJSIM-7100F Field-Emission Scanning
Electron Microscope and a JEOL JSM-6380 Low Vacusranning Electron Microscope,

respectively, both operating at an acceleratingpgel of 20 kV.

3.3 Phase equilibria ther modynamic modelling

Isochemical phase-diagram sections were calculatsthg Gibbs free-energy
minimisation (Connolly, 2005). Calculations perf@thin the NCKFMASHMnN(Ti) [NgO-
Ca0-K0-FeO-MgO-AbOs-SiO,-H,0-MnO-(TiO,)] model system using the solution models
given in Tablel and the thermodynamic database afahid and Powell (1998, revised
2002). Calcium oxide (CaO) present in apatite walstracted from the total CaO since
apatite is not considered in the thermodynamicuations. The solution model files can be

found at http://www.perplex.ethz.ch/ (Perple_X_6.data_files.zip/solution_models.dat).

3.4 Sampling grid / Strategy

We have selected three key samples for thermodynaradelling and P-T estimates
(Fig.1b). CR4 is a phyllite from the Mesozoic metdimentary cover (Circum-Rhodope
belt) that has experienced an early HP imprintrentioned before, relict HP minerals are
extremely rare along this belt due to later grelissdacies overprint. Sample CR4 does not
contain any HP index mineral and thus, our targetoi provide a minimum temperature

estimate during the later thermal overprint. Sas@154 and SM40 are typical garnet-



staurolite schists from the eastern part of thelystarea and belong to a series of small

outcrops embedded in basement rocks (Fig.1b).

4. Petrography

Sample CR4 is a fine-grained quartz-mica phyllite.the field it has a dominant
foliation and a prominent NW-trending crenulatiarebtion. The main mineral phases are, in
decreasing modal amount, quartz, white mica, dielogarnet and opaque minerals. A typical
crenulation cleavage is developed by differentrat the limps of the microlithon domains
(Fig.2a,b). The microlithons are dominated by quartd kinked, often chloritised, medium-
grained white micas (Figs.2a,b). The cleavage doesnaie made of fine-grained K-rich white
micas or a fine-grained aggregate composed of Kawbite mica, paragonite and chlorite
(Fig.2c). Garnet (typically 2-3 mm in diameter) apps heavily replaced by chlorite and is
only preserved as small patches within the chlontass (Fig.2d). Despite the chlorite
alteration, syn-tectonic features are still preedrvQuartz in the microlithon domains has
healing features and is recrystallised with shagingboundaries and virtually no undulose

extinction.

Sample SM54 is a representative garnet-staurotitess Major phases are white
mica, quartz, chlorite, garnet, staurolite, bigtiéend sub-ordinate kyanite. Chloritoid also
occurs in small amounts but only as inclusion imnga Accessory minerals are rutile
(commonly rimmed by ilmenite), apatite, zircon amgaques. Garnet appears with
exceptionally large grains measuring up to 1 cmdiameter and is the dominant
porphyroblast enveloped by a medium- to fine-grdif@iation made of white micas and
guartz-rich bands. Shear bands and macroscopizallyle spiral garnet indicate top-to-SW

sense of shear in hand specimen (Fig.3a). Undemtbescope garnet appears euhedral to



subhedral. It contains a relict internal foliatiorade of aligned quartz, chloritoid, chlorite,
margarite, paragonite, phengite and rutile (ofiemred by ilmenite). The internal foliation
of the garnet is in continuity with the externaleoimplying syn-tectonic garnet growth
(Figs.4a). The matrix foliation is made of quartphengite and intergrowths of
phengite/paragonite (Fig.4b). Staurolite shows lsimsyn-tectonic features and contains
guartz, biotite and chlorite as inclusions (Figsddc The internal foliation in garnet and
staurolite is virtually linear/flat while the exteal one is heavily folded. Extremely rare
kyanite crystals are observed exclusively in thérimaRutile exists also in the matrix where
it is rimmed by ilmenite. Hematite occurs in tram®ounts in the matrix and in association

with chlorite in late cracks.

Sample SM40 is similar to SM54 in terms of textureneralogy and deformation
pattern. Major phases are white mica, quartz, gachéorite, staurolite and rutile. Accessory
minerals are monazite, zircon, and rarely ilmerated allanite. The matrix is made of
phengite, paragonite, rutile and quartz. Garneteapp as euhedral to subhedral grains
measuring up to 1.5 cm in diameter (Fig.3b) andtaioa white mica, rutile, ilmenite,
chlorite, rare pyrite and an impressive amounbafraline as aligned inclusions. Staurolite
is relatively rare compared to SM54 but appeatarger crystals. As in sample SM54, both
garnet and staurolite show syn-tectonic featuresildRalso appears as large porphyroblasts
in the matrix often surrounded by chlorite. Contrex SM54, no chloritoid was found in this

sample.

5. Mineral chemistry

A mineralogical assemblage table as well as th& bamposition of each studied

sample are given in Table2. Selected mineral aealygom the phyllite and the garnet-



staurolite schists are given in Table3. An overvigiwithe micas and garnet compositions is

shown in Fig.5 and Fig.6, respectively.

CR4

The foliation is made of locally chloritised phetegparagonite intergrowths. The Si
content of the K-rich mica from the matrix rangesni 3.1 to 3.25 apfu and contains up to
2.4 wt% NaO. Paragonite from the matrix has Na/(Na+K) rattoins per formula unit -
apfu) around 0.9 and contains small amount of @sas(lthan 0.1 apfu). No systematic
chemical variation between the large (microlithoomains) and the smaller (crenulation
domains) mica grains was observed. Quartz anddkihes are also common in the matrix.
Garnet is extremely rare as it has been almostregntreplaced by chlorite. Garnet
composition is between AlgGresSpsPyrn and AlmyGresSpsPyrs. The maximum

measured Mg# (Mg/[Mg+Fe], apfu) of the chloritettheplaces garnet is 0.38.

SM54

White micas show a range of compositions. Potassicimwhite mica is dominant in
the matrix and along with paragonite form the nfaimation of the rock. The Si content of
the K-rich mica ranges from 3.08 to 3.25 apfu. Whiticas that are included in the garnet
have more paragonite-rich and margarite-rich coitipas. Paragonite and margarite
inclusions in the garnet show fine-grained intevgies (Fig.4a) compared to the more
coarse-grained intergrowths of matrix K-rich whitéca and paragonite (Fig.4b). Paragonite
inclusions have Na/Na+K (apfu) ratio up to 0.94 aondtain small amount of Ca (less than
0.13 apfu). Margarite contains between 0.17 an8 @@#u Na content. Chloritoid is Fe-rich
(Mg# between 0.18 and 0.22 apfu) and appears exelysas inclusion in garnet parallel to
an internal, virtually linear/flat, foliation in k&ion with margarite, paragonite and rutile

(sometimes surrounded by ilmenite) (Fig.4a). Annité biotite is dominant in the matrix



(Mg# between 0.32 and 0.47) and phlogopite-richtiteioqMg# up to 0.65) is found as
inclusion in staurolite (Fig.4d). Similar to bi@jtmatrix chlorite has lower Mg# (0.35-0.48)
compared to the chlorite crystals included in sihigr (0.6). The Al content of biotite varies
between 2.5 and 3 apfu. Garnet shows zoning in medgonents and its composition ranges
from Almg;GrsgsSpsiPynn to  Alm;sGrs;SpsPyns, from core to rim, characteristic,
characteristic for growth during temperature inseede.g., Harris et al., 2004) (Fig.7).

Staurolite Mg# ranges from 0.18 to 0.23.

Sv40

Potassium-rich white mica is dominant in the maand its composition has up to
3.25 apfu Si and up to 0.24 apfu Na contents. Paitgis less abundant with Na/Na+K ratio
up to 0.9 and it contains less than 1 wt% CaO (@yifd). Chlorite shows a narrow range of
compositions with Mg# between 0.45 and 0.51. Gahaet composition similar to that of
SM54 and displays zoning in major elements with &Br1$0SpsiPyrs cores and
AlmgoGrgSpsPyn1 rims. As mentioned before, tourmaline is abundeninclusion in the
garnet but it has never been observed elsewhereeldings to the dravite series and it
contains about 3 wt% Na@ and less than 1 wt% CaO. Staurolite Mg# rangas 10.19 to

0.22.

6. | sochemical phase-diagram P-T sections

6.1 Gar net-bearing phyllite

An isochemical phase-diagram section for the saf@fléd has been calculated for the
range 0.4-1.6GPa and 350-860(Fig.8). Due to the absence of rutile, titanitel dmenite

this particular sample composition was modellethen NCKFMASHMnN (i.e., TiQ was not



considered). For the calculations, total Fe wasirassl to be Fé and water was taken in
excess using the CORK equation of state (EOS) dfard and Powell (1998). Quadri-
variant fields dominate over the calculated P-TaaRenta-variant fields are common at low
pressure and low temperature whereas few tri-vefields are mostly related to the garnet-in
and biotite-in reactions. Glaucophane and lawsoaitethe Na- and Ca-bearing phases at
HP/LT conditions. Potassium- (Wmcal) and Na-whitea®s (Wmca2) are present in the
studied P-T range and they reduce to a single white only at T > 6T for low pressure
conditions. Chloritoid is stable above 1.1GPa fer 350C. Garnet and biotite are stable at T
> 500C and T > 55€C, respectively. Calculations on the mineral voliane Mg# as well as

the garnet end-member molar amounts are given peAgixAl.

The only evidence for HP metamorphism in the sangale be considered the Si
content of the white micas that reaches up to 8#6. According to the results of the phase-
diagram section, this is attained at maximum pmessf 1.5GPa (at arbitrarily-chosen
temperature of 35C; see also AppendixAl). At these conditions, dtdad, glaucophane
and lawsonite participates with 3, 2 and less tt#anin the volume of the rock, respectively,
and can be considered as easy to be consumediar athge. In the presence of Mn in the
system, garnet can be stable at lower temperatare those predicted for Mn-free systems
(Symmes and Ferry, 1992; White et al., 2014). Tioeee the garnet isograd in the
NCKFMASHMn is an excellent marker for the minimuentperature attained during the
overprint. As described in the petrography sectgarnet is extensively replaced by chlorite
(Fig.2d) and this can potentially shift garnet’smgmsition (particularly the  and Xug
components) during replacement. As a result, thesored garnet’s compositional isopleths
do not cross at a narrow area. The Mn content wfegauggests that the temperature reached
55(°C and this is accordance with the maximum measthktite Mg# (Fig.8). Based on the

intersection of the spessartine content of theegaaind the Mg# of the chlorite that replaces



garnet, the conditions can be roughly constraired®a< 0.8GPa and T = 5%0D (Fig.8).
Biotite is stable at T > 55Q (in small amounts, see AppendixAl) but was nateobed in
the rock. Thus, although no reliable pressure edion can be made, the temperature during

the retrogression more likely reached ¥5@or P < 0.8GPa.

6.2 Garnet-staurolite schists

Isochemical phase-diagram sections have been atdcuin the range 0.4-2.4GPa and
450-750C for the garnet-staurolite schists (samples SM5dd aSM40) in the
NCKFMASHMNTi model system. For the calculationgatd=e was assumed to be £&his
is supported by the absence of hematite from tha p@phyroblasts (garnet and staurolite).
On the contrary, rare hematite is found in the mdtliation and thus, it is safe to conclude
that oxidisation occurred at the post-peak staghefock evolution. Water was assumed as
a phase in excess using the CORK EOS after Holtard Powell (1998). For reasons of
clarity, we will thoroughly describe the results 8M54. Those of the SM40 are given in
AppendicesA2, A3 and A4. We note that very similaase-diagram sections were calculated

for both samples and the inferred P-T paths ageieral agreement.

The topology of the phase-diagram section for sangi154 is shown in Fig.9.
Quadri-variant fields dominate over the entire PATi-variant fields are dominant at
medium-to high-pressure and low-temperature camasti The P-T phase-diagram section
predicts the existence of glaucophane and laws@stéhe Na- and Ca-bearing phases at
HP/LT conditions. Potassium- (Wmcal) and Na-whitea®s (Wmca2) are present in the
studied P-T range and they reduce to a single whitzn only at HT and P < 1.0GPa
conditions. Garnet is stable at T > 800 Chloritoid is restricted at P > 0.8GPa and it

disappears for T > 60G. Biotite is stable at T > 520 and both with staurolite are stable at



P < 1.3GPa. Calculations on the mineral volume Mgé as well as the garnet end-member

molar amounts are given in AppendixA>5.

Based on textural observations, a first minera¢iedage is characterised by the co-
existence of garnet, chloritoid, white mica andleutFig.4a). The relative large size of the
garnet crystals (cm scale) and the temperaturenatsti that is below 65Q (see section
below) implies that garnet’'s growth composition hast been significantly changed by
diffusion (e.g., Caddick et al., 2010). This allo& to use composition isopleths to infer the
metamorphic P-T history. Garnet core isoplethsd@ridritoid Mg# (0.18 - 0.22) cross at 1.8-
2.0GPa / 52C (Fig.9). This in agreement with the maximum meeduSi content in
phengite which also constrains the pressure toxamuen of 2GPa. Based on the calculated
P-T section, this first metamorphic assemblagedsited within a tri-variant field that also
includes lawsonite and/or glaucophane as Ca- antbeldang phases (Fig.9). The modal
amount is less than 1% for the lawsonite and less 8% for the glaucophane and thus, it is
reasonable to assume that if ever co-existed whilbritoid at the first stage, they were
subsequently consumed at a later stage of the temolof the rock (c.f. Cruciani et al., 2013).
Besides, both Ca- and Na-white micas are seeneéristence with chloritoid inclusion in
garnet and may represent phases after former latesamd glaucophane (Fig.4a). The garnet
rim composition isopleths cross at 1.5GPa /°870n close proximity to the chloritoid-out
reaction. We note that chloritoid is found sole$yiaclusion in garnet, both in its core and
rim. Thus, a heating decompression path within stebility field of chloritoid with
increasing garnet volume can be drawn (Fig.9). jémk thermal overprint is deduced from
the co-existence of staurolite (Mg# 0.18 - 0.23uapbfarnet, biotite (maximum Mg# 0.65
apfu as inclusion in staurolite), chlorite (Mg# @pfu as inclusion in staurolite) and scarce
kyanite. The inferred conditions for that stage eoastrained at 1.0 - 1.3GPa and 600 -

640°C (Fig.9). Matrix biotite and chlorite record lowslg# compared to that as inclusion in



staurolite, compatible with the P-T section pradits (Fig.9, AppendixA5) and thus we can
infer that both biotite and chlorite record furtheooling/decompression metamorphic

conditions.

7. Discussion

7.1 Revised P-T path of the gar net-staurolite schists: Barrovian path revisited

The basement complex of the Chalkidiki block hagylbeen considered as showing
exclusively a Barrovian MP amphibolite-facies peag&tamorphic conditions and as such it
has been traditionally considered as part of thesddeic Rhodopean hanging-wall. This is
supported by i) the predominance of garnet-staer@chists (typical of amphibolite-facies
conditions) that are quite often intercalated witlirthogneisses and ii) the lack of any,
reliable, evidence for a Mesozoic HP event. In toldj detrital garnet and staurolite are
commonly found in recent sedimentary basins souficed the basement (Georgiadis, 2006)

attributing a regional character to the amphibdkteies overprint.

We have chosen here to study key garnet-staurstitests (Fig.3) exposed as thin
slivers toward the eastern part of the basememwvestigate the hypothesis of a preceding
HP event of Alpine age before the regional amplidacies overprint (Fig.1b). The schists
belong to the Triassic - Jurassic meta-sedimentamer (Dixon and Dimitriadis, 1984;
Kockel and Mollat, 1977; Kockel et al., 1977) aherefore they are excellent candidates to
record Alpine tectono-metamorphic events. Similashists have been studied by
Papadopoulos and Kilias (1985) and Sakellariou Rinat (1993) who identified the mineral

assemblage of garnet and staurolite as crucialtier estimation of peak metamorphic



conditions of the area. The previous authors a¢ésmgnised the existence of kyanite and

chloritoid in these rocks but their significancevéaot been clearly highlighted.

Since the early petrogenetic grids that incorparéitermodynamic data in the simple
system KFMASH (KO-FeO-MgO-AbO;-SiO,-H,0) for pelitic schists, it is known that
chloritoid can co-exist with garnet at MP to HP dridto MT conditions whereas staurolite
has a narrow stability field at MP/MT conditionsge Powell and Holland, 1990; Spear and
Cheney, 1989; Wei and Powell, 2003). Kyanite isdmted to be present with garnet +
chloritoid at eclogite-facies conditions for AlhiVig-poor bulk compositions but is
restricted to the higher temperature for decrea8ingpntent (Wei and Powell, 2003). Indeed
garnet + chloritoid assemblage (often co-existint Wyanite, phengite and rutile) has been
found in eclogite-facies metapelites from the Alpg., Smye et al., 2010), the Carpathians
(e.g., Negulescu et al., 2009), Norway (e.g., Haekal., 2003) and Sardinia (Cruciani et al.,

2013).

Based on micro-textures, we show that the ecldgitees garnet + chloritoid +
phengite + rutile assemblage precedes the amptakalies garnet + staurolite + kyanite
assemblage (Fig.4). Using phase-diagram sectiodsraneral chemistry (Figs.5, 6, 7) and
with reference to the results of SM54, we infereadly HP conditions at 1.8-2.0GPa / 820
and subsequent re-equilibration at 1.0-1.3GPa /68@C (Fig.9). Thus, the garnet-staurolite
schists carry evidence of a preceding HP event hie tclogite-facies (close to
blueschist/eclogite-facies transition) before thgional amphibolite-facies overprint. Based
on their protolith age, the HP event is essentiaflyMesozoic age. This has an important
consequence and necessitates the re-consideréatiba egional evolution of the Chalkidiki

(see next paragraph).



7.2 Metamor phic evolution of the southwestern Rhodope M etamor phic Province

The Chalkidiki block of northern Greece is the $wwastern part of the Rhodope
Metamorphic Province and thus, an important elenoérnbe latter (Fig.1). There the cover
and arc units that are exposed to the west ang eaidence for a HP event are in contact
with a basement complex that experienced MP/MT metphic conditions (Fig.1b). At a
first glance, such juxtaposition seems to impose distence of a strong discontinuity
between the HP units, to the west, and the MP/MK mmits lying to the east. However, as
we exemplified here, there is also a preceding ElBgée-facies event from the basement

that was followed by thermal re-equilibration unté?/MT conditions.

At the scale of the whole Chalkidiki block thereasgradient in the metamorphic
conditions: from east to the west, they decreasen fieclogite-facies (and subsequent
amphibolite-facies overprint) to blueschist-fac{esd greenschist/lower amphibolite-facies
overprint). In detail, according to Michard et @1994) peak pressure to the west is of the
order of 0.8GPa and based on our results (infeordy from the silica content of white
micas), the maximum pressure may have reached a.f@Parbitrarily chosen temperature
of 35(°C) (Fig.8). However, our robust estimation for #esternmost part is between 1.8 and
2.0GPa (Fig.9). The same holds true for the tentperavariation. According to Michard et
al. (1994) the temperature at the peak pressuratavas of the order of 380 for the
western part and based on our calculations, theoMeFprint reached at least S80(Fig.8).

However, the MT overprint to the east, was in thieo of 650C (Fig.9).

The discovery of an early HP Alpine event from t@/MT basement imposes a
model that involves common early metamorphic hysfor both the basement and the HP
cover/arc units further to the west. Despite thie leariable degree of overprint of the

basement and its cover, we argue that their NW¢8kding contact should not be considered



as an important geological discontinuity (Fig.1b)is definitely of tectonic origin but both
foot-wall and hanging-wall rocks experienced themeanetamorphic event reaching, though,

different metamorphic conditions.

7.3 M esozoic metamor phic gradient of the Rhodope M etamor phic Province

As briefly described in the introduction, the RhpdoMetamorphic Province forms
the hinterland of the Hellenic Orogen. Followinglarassic - Cretaceous piling-up phase
(Burg et al., 1995; 1996; Ricou et al., 1998), Teztiary collapse of the Hellenic Orogen
resulted in large-scale extension of core compyge tand exhumation of migmatitic gneiss
domes that dismembered the Rhodopean gneiss irtdwitrun and Sokoutis, 2007). Block-
type behaviour is shown by the NRD to the northeastl the Chalkidiki block to the
southwest, which were separated during the Eocebkgecene exhumation of the SRCC
(Brun and Sokoutis, 2007) (Fig.1). In other wonasstoring the pre-collapse geometry of the
Rhodope, thus virtually closing the SRCC, wouladhgrihe NRD and the Chalkidiki block in
close proximity (see also Kydonakis et al., 2016kan be further stressed that due to their
present-day position the Chalkidiki block occupiafier restoring the pre-collapse geometry,
a position immediately south of the NRD. Based lun fact that the Mesozoic convergence
occurred in a northward subduction regime, tharegthmetamorphic conditions are expected

to increase northward.

In Fig.10, we compiled the available P-T estimdteshe Chalkidiki block (western
and eastern parts) and selected reliable estinfiatethe central and western parts of the
NRD. It can be concluded that the metamorphic gmtdinferred before for the Chalkidiki
block (between its western and eastern parts)noanbe expanded to include also the NRD

where higher peak-pressure and peak-temperaturegdigcompression is recorded (Fig.10).



This is also in line with the discovery of micrcadionds from the NRD (Mposkos and
Kostopoulos, 2001; Perraki et al.,, 2006; Schmidtakét 2010) that implies higher
metamorphic conditions toward the northeast. Timéngy for the peak pressure event is rather
unknown for the Chalkidiki block but it is (pre-)ger Jurassic for the NRD (Liati et al.,
2011; and references therein). Subsequent re-biibn at peak temperature conditions is
confined at Cretaceous for both the Chalkidiki klde.g., Lips et al., 2000; Papadopoulos
and Kilias, 1985; de Wet et al., 1989; and our unlighed data) and the NRD (e.g., Bosse et

al., 2010; Didier et al., 2014; Krenn et al., 200Li&ti et al., 2011).

We therefore argue that the NRD and the Chalkibli&ck participated into the same
Mesozoic convergence as part of the same down-gaatg along a northward subduction.
Both domains recorded early, possibly (pre-)Uppenasisic, eclogite-facies metamorphic
conditions and subsequent Cretaceous re-equililorati amphibolite-facies conditions. The
prevailed metamorphic conditions were differeninesn the domains, both during the peak-
pressure and peak-temperature stages, implyingXiséence of a metamorphic gradient that

coincides with increasing metamorphic grade towhednortheast.

8. Conclusions

In this contribution we studied key chloritoid-beay garnet-staurolite-mica schists
(Fig.3) from the eastern part of the basement ef @alkidiki block (northern Greece)
(Fig.1b). The schists represent former Mesozoicnsestary sequences deposited on a
Palaeozoic basement which was prior considereave kxperienced exclusively Barrovian
MP amphibolite-facies metamorphism of Alpine ageas®& on micro-textures, we
documented a relict eclogite-facies mineral assag#l(garnet + chloritoid + phengite +

rutile) in an amphibolite-facies matrix composedgafnet + staurolite + phengite + kyanite



(Fig.4). Using mineral chemistry and isochemicahg#tdiagram sections in the system
NCKFMASHMNTI we inferred early HP conditions at 1280GPa / 528C and subsequent

re-equilibration at 1.0-1.3GPa / 600-6@0(Fig.9). This finding supports the idea that the
basement complex of the Chalkidiki block retainsmwoey of an as yet unidentified Mesozoic
eclogite-facies metamorphic event that was largeised by the Barrovian overprint. At the
scale of the Chalkidiki we inferred a gradienthie tnetamorphic conditions: from blueschist-

facies to the west to eclogite-facies toward trst.ea

In the light of this finding we are able to incorpte the Chalkidiki block into the
Mesozoic convergence setting of the Rhodope. Thalk@hki block and the high-grade
Rhodopean gneisses, exposed further to the notthEssicipated into the same Mesozoic
convergence as part of a northward down-going pfaier to their exhumation and
incorporation into the upper plate. Both domaingegienced similar metamorphic conditions
- yet of varying intensity - that include an ea#dglogite-facies metamorphic event and
subsequent retrogression at MP/MT (or MP/HT) coodg during the Cretaceous. The
recorded metamorphic conditions increase northwiagd, from the Chalkidiki block to the
Northern Rhodope Domain, compatible with the wethélished northward-dipping Jurassic

- Cretaceous subduction.
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FIGURE CAPTIONS

Figure 1. (a) Simplified geological map of the North Aegesiter Ricou et al. (1998), Brun
and Sokoutis (2007) and Burg (2012). The Vardau®uZone separates Pelagonia, to the
west, from Rhodopia, to the east. The Rhodope cavarge part of the latter and its two
extreme parts are the Northern Rhodope Domaimembortheast, and the Chalkidiki block,
to the southwest. Both parts recorded Mesozoiddalamd were separated only after Eocene
extension and formation of the Southern Rhodope @momplex (Brun and Sokoutis, 2007)
whose timing of development partly overlaps thathaf Northern Rhodope Core Complex
(see Kydonakis et al., 2015; and references thefeither to the northeast. The study area
(Chalkidiki block) is shown in a red rectangle. €3esection re-drawn after Kydonakis et al.
(2015). (b) Geological map of the Chalkidiki bloaker Kockel and Mollat (1977). Sample
localities are shown in orange stars both on thp aral on the regional cross-section. The
three units of interest are the Vertiskos Unit @masnt), the Circum-Rhodope belt (cover)

and the Chortiatis Magmatic Suite (arc).

Figure 2. Back-scattered images of sample CR4. (a,b) Theolithons are made of coarse-
grained phengite, quartz and chlorite whereas lé®vage domains are made of fine-grained
intergrowths of phengite, paragonite, chlorite apdhrtz. (c) Close view of the cleavage
domain. (d) Rare garnet relict that escaped replaoé by chlorite. Mineral abbreviation

scheme after Siivola and Schmid (2007).

Figure 3. Field occurrences of the studied garnet-stagratitcaschists: (a) Sample SM54,

(b) Sample SM40. Garnet appears as porphyroblastedded in a matrix made mainly of



white micas and staurolite. Shear bands (dashed)liare associated with shearing toward
the SW (white arrows). Please note also the macpasally-visible spiral garnet at the centre

of the right picture.

Figure 4. Back-scattered images of sample SM54. (a) Thenat foliation (9 in the garnet
is made of elongated chloritoid, paragonite, matgaand rutile rimmed by ilmenite. (b)
Fine-grained intergrowths of phengite and paragofidom the matrix. (c,d) The internal

foliation (S) in the staurolite contains quartz, rutile (ofteplaced by ilmenite) and biotite.

Figure 5. Mineral chemistry of the white micas for the trstudied samples. (left)
Tschermak substitution [A$ii(FeMg):] compositional trend and (right) & vs

Na/(Na+K) plot.

Figure 6. Garnet chemistry for the three studied samples.semple CR4 garnet is heavily
replaced by chlorite and thus, the acquired analissambiguous whether they represent core
or rim compositions. For samples SM54 and SM40earccompositional trend exists from

core to rim.

Figure 7. Representative garnet Ca, Fe, Mg and Mn elememsnileft) and microprobe
elemental profiles (right) for sample SM54. Colaade in the elemental maps corresponds

to counts per second (cps) (warm-redish coloursaximum cps; cool-bluish colours —



minimum cps). The profile corresponds to red dashied superimposed on the Ca

compositional map.

Figure 8. (left) Isochemical phase-diagram section for dan@R4. Colour code for field
variance (darker colour for higher variance fieldsight) Selected compositional isopleths
for garnet, phengite and chlorite are superimpasethe section. Inferred P-T conditions are

shown in pale grey. See text for details.

Figure 9. (left) Isochemical phase-diagram section for dean§M54. Colour code for field
variance (darker colour for higher variance fieldsight) Selected compositional isopleths
for garnet, chloritoid, phengite, staurolite andtie are superimposed on the section.
Inferred P-T conditions are shown in pale grey Hase 1: Garnet core composition,
chloritoid composition (as inclusion in garnet) attte maximum silica content of the
phengite, 2: Garnet rim composition, 3: Kyanite dndtite composition (as inclusion in
staurolite) and 4: Staurolite composition. The teslametamorphic path is drawn. See text for

details.

Figure 10. Compilation of representative P-T estimates lfier €halkidiki block (light grey)
and the central/western Northern Rhodope Domairk(geey). M94: Michard et al. (1994),
K91: Kourou (1991), K99: Kilias et al. (1999), M@ichailidis (1991), DK: Dimitrios
Kostopoulos, pers. comm. 2014, LS96: Liati and 8e{d996), K10: Krenn et al. (2010),

M13: Moulas et al. (2013), KM02: Krohe and Mposk2602). See text for details.



Appendix Al. Mineral compositional contours and mineral isog®tbr sample CR4.

Appendix A2. (left) Isochemical phase-diagram section for dangM40. Colour code for
field variance (darker colour for higher variandelds). (right) Selected compositional
isopleths for garnet, phengite and chlorite areesugposed on the section. The inferred P-T
conditions (pale grey areas) and related metamopdth are shown based on 1: Garnet core
composition, chlorite composition (as inclusiorgarnet) and the maximum silica content of
the phengite, 2: Garnet rim composition, 3: Exisgeof staurolite (in the absence of kyanite)

and 4: Matrix chlorite composition.

Appendix A3. Mineral compositional contours and mineral isoe®tbr sample SM40.

Appendix A4. Representative garnet Ca, Fe, Mg and Mn elemapsr{ieft) and microprobe
elemental profiles (right) for sample SM40. Colaade in the elemental maps corresponds
to counts per second (cps) (warm colours — maxiropsy cool colours — minimum cps). The

profile corresponds to red dashed line superimposetie Ca compositional map.

Appendix A5. Mineral compositional contours and mineral isoe®tbr sample SM54.
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Table 1. Solid solution models used for the phase-diagram sections.

Mineral / Phaze Solution Model

Source
Bictite Bwo(TCC) Tajémanova et al. (2009)
Feldspars feldspar Fuhrman and Lindsley (1988)
Garnet Gt{GCT) Ganpuly et al. (1996)
Imemite DGEPy Ideal
White Mica Mica{CHAI})  Avzarmeau et al (2010); Coggon and Holland (2002)
Chlonte Chl{HF) Holland et al. (1998)
Staurolite SHHF) parameters from THERMOCATLC
Chloritoid Ctd{HF) White et al {20007}

Clino-amphibole GITrT=Pg Wei and Powell (2003); White et al. (2003)
Clno-pyroxene  Omph({GHPZ) Dhener and Powell (2012)



Table 1. AMineralogical assemblage table and corresponding bulk rock compositions of the stodied samples.

Sample CRS SMED S
Latitmde 40,526 mawdal 40761 muovdal 40,510 maedal
Longitude 2312 % 23415 Ya 23.503 %
Rockiype et pinllite Fmnel-staurolite-mica schist
Mugjor phases quartz X 4@ x 15 X 1520
muscovite x 25-30 X 4 x 30-35
paragomite x 10-15 X Ig-15 x 19
B - <5
chloritoid - =3
bintite chloritised 3 x
Earmet x 19 X 115 x 19
keyamite x =3
stamrolite x 3 x F
chlorite X 10-15 x Fid X 15
Aecesory phases rutile x X
ilmenite X x
momazite X
apatite x
Zircon x x x
allamite X
fe-oxides X X
Whole rock chemisry
Sy, 63.67 4446 56.12
Ti0, 057 115 0.82
ALOD, 16.60 2765 2177
Fe,0, 424 300 318
Fel m 532 361
MnO 006 012 0.14
Mg0 144 226 1.56
Cal 031 0.85 0.80
Na,0 1.04 1.55 1.34
K0 281 4.68 332
P00, 017 014 01
Lol 530 7.06 546
Tuotal DE.32 9825 0E.32

* Omly as inchosion




mineral analyses (in wt

%).
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