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Abstract 

Obduction emplaces regional-scale fragments of oceanic lithosphere (ophiolites) over continental 

lithosphere margins of much lower density. For this reason, the mechanisms responsible for 

obduction remain enigmatic in the framework of plate tectonics. We present two-dimensional 

(2D) thermo-mechanical models of obduction and investigate possible dynamics and physical 

controls of this process. Model geometry and boundary conditions are based on available 

geological and geochronological data and numerical modeling results are validated against 

petrological and structural observations of the Oman (Semail) Ophiolite. Our model reproduces 

the stages of oceanic subduction initiation away from the Arabian margin, the emplacement of 

the Oman Ophiolite on top of it, and the domal exhumation of the metamorphosed margin 

through the ophiolitic nappe. A systematic study indicates that 350-400 km of bulk shortening 

provides the best fit for both the maximum Pressure-Temperature conditions of the 

metamorphosed margin (1.5-2.5 GPa / 450-600°C) and the dimension of the ophiolitic nappe 

(~170 km width). Our results confirm that a thermal anomaly located close to the Arabian 

margin (~100 km) is needed to initiate obduction. We further suggest that a strong continental 

basement rheology is a prerequisite for ophiolite emplacement. 
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1. Introduction 

 

Obduction remains a mysterious process with respect to why, how and where it develops. 

Obduction emplaces unmetamorphosed fragments of dense, oceanic lithosphere (ophiolites) atop 

light continental ones over distances of several hundred kilometres. Such large-scale ophiolite 

exposures can be found in Oman, Turkey, Newfoundland, New Caledonia, Papua New Guinea 

[Monié and Agard, 2009 and references therein; Cluzel et al., 2001; Lus et al., 2004; Pubellier et 

al., 2004]. However, compared to subduction or collision, obduction is a relatively infrequent 

mode of convergence, apparently transient (i.e. < ~10-15 My) yet recurrent through time 

[Nicolas, 1989; Agard et al., 2007 and references therein]. One obvious possible explanation 

could be that obduction is rare only because of a seldom realized, particularly restrictive set of 

necessary boundary conditions. 

Previous interpretations on how obduction proceeds are of two main types and comprise (1) 

thrusting of ophiolite onto the continent [flake tectonics; Oxburgh, 1972; Dewey, 1976] or (2) 

continental subduction beneath oceanic lithosphere following subduction initiation [Michard et 

al., 1984; Figure 1a]. Tethyan-style ophiolites [Moores, 1982] are indeed characterized by the 

presence of metamorphosed high-pressure low-temperature (HP-LT) continental units exposed in 

tectonic windows below the ophiolite [Searle and Malpas, 1980] and of a high-temperature (HT) 

amphibolitic to granulitic metamorphic sole welded to the base of the ophiolite. HT soles pre-

date ophiolite emplacement on continental domains and are interpreted as remnants of obduction 

initiation [Jamieson, 1986; Boudier et al., 1988]. HP continental metamorphism is coeval with 

the underthrusting of the continental lithosphere beneath the ophiolite. In the second 
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interpretation, ophiolite emplacement (i.e., its juxtaposition onto the continent as a 'passive' lid) 

is mechanically tied to the exhumation of the HP continental rocks [Agard et al., 2007]. 

Conceptual models of obduction initiation either involve mid-ocean ridges [Le Pichon and 

Nicolas, 1981; Boudier et al., 1985, 1988] or transform faults [Hacker et al., 1996, Breton et al., 

2004]. Although exact initiation sites remain debated [e.g., Rioux et al., 2013], models have to 

take into account that oceanic lithosphere is thermally young during obduction initiation, in 

particular to conform to the HT conditions recorded by metamorphic soles [Hacker, 1994]. This 

also implies that such lithosphere is mechanically weak [e.g., Burov, 2011] and hence can be 

relatively easily deformed. 

Since obduction mechanisms remain actively debated, we hereby develop and systematically 

investigate thermo-mechanical models of ophiolite emplacement. Our regional-scale modeling 

shows that the proposed conceptual models are thermo-mechanically feasible under a number of 

reasonable assumptions on the rheological properties and thermal structure of the interacting 

lithospheric units. We assess the validity of the models by comparing their results to first order 

geological features of the Oman Ophiolite and of the underlying Arabian continental margin (P-

T histories, dimensions, geometries and timescales; Figure 1). We also show that the developed 

models can be used to constrain additional kinematic and rheological parameters.  

 

2. Geological Constraints From the Oman Setting 

The goal of this study is not only to develop a model explaining Oman Ophiolite emplacement 

but also to characterize the key parameters involved in the obduction process. For this, we need 

to find natural constraints that could be used to test (validate or invalidate) the model results. The 
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first order constraints used in our study are based the well-studied Oman case, and can be 

summarized as follow: 

(1) Final morphology of the ophiolite. The overall structure of the Oman Mountains and crust is 

well documented by structural data and geophysical data [Al Lazki et al., 2002]. The ophiolite 

length atop the continental margin is of ~150-200 km and the ophiolite sequence characterized 

by a thickness of 0 to 15 km (see Figures 1b and 1c). Too short ophiolite nappe propagation on 

top of the passive margin or too limited thinning of the oceanic lithosphere will thus be a first 

order criterion to invalidate a model.  

(2) Nappes stacking and reconstitution of the Arabian margin: The ophiolite emplacement is 

characterized by nappe stacking of different units structurally delimited by tectonic contacts 

(Figures 1b and 1c). From top to bottom, the Allochthonous units consists of the Samail Nappe 

(ophiolite sequence) underlain by a thin tectonic high-temperature metamorphic sole and located 

on top of the Hawasina nappes (slope to basin sedimentary rocks initially deposited north-east of 

the Arabian platform from Permian to Cretaceous times), themselves thrusted onto autochtonous 

units (the so-called “Autochthonous A” consisting of Proterozoic to Palaeozoic sedimentary 

sequences unconformably overlain by the “Autochthonous B”, mainly made of Permian to 

Cretaceous shelf carbonates) [Breton et al., 2004; Glennie et al., 1974; Searle, 2007]. The 

Hawasina basin was located at the tip of Arabia and underlain by thinned Arabian continental 

crust and/or continent to ocean transitional material [Béchennec et al., 1990 and references 

therein)]. Restoration of the Hawasina nappes suggests a minimum of 300 km of shortening, 

which places strong constraints on minimum amounts of convergence in the model. The 

autochthonous units are strongly deformed and metamorphosed in the northeastern part of Oman 

where they crop out as the high-pressure low-temperature (HP-LT) Saih Hatat metamorphic 
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dome [Michard et al., 1984; Yamato et al., 2007b; Agard et al., 2010; Figure 1b and 1c]. This 

nappe stack is unconformably overlain by the Post-Nappes Autochthonous units, which consist 

of sedimentary deposits ranging in age from Late Cretaceous [Nolan et al., 1990; Abbasi et al., 

2014] to Quaternary. The Late Cretaceous to Mid-Miocene sediments are affected by a Miocene 

to Oligocene deformation phase [Zagros phase: Saddiqi et al., 2006; Searle, 2007] at the origin 

of an important uplift in the the Jabal Akhdar and the Saih Hatat domes. 

(3) Syn-obduction sedimentation: The maximum thickness of syn-obduction, "foreland" 

sediments is recorded in front of the ophiolite nappe (Coniacian to Maastrichtian Fiqa 

Formation) [Forbes et al., 2010], where it reaches 1-3.5 km [1.35 km in Al-Lazki et al. 2002; > 

1.5 km in Boote et al., 1989 and 3.5 km in Ravault et al., 1997]. However the thickness of syn-

tectonic sediments below the nappes (Turonian to Santonian; Muti Formation) does not exceed a 

few tens to a few hundred of meters [Rabu, 1988; Le Métour, 1988]. This also constitutes an 

import point allowing us to discuss the validity of a model. 

(4) P-T-t paths (see Figure 1d). P-T-t paths are considered as key constraints to validate or 

invalidate a model in addition to the overall final structure. Such constraints have been 

successfully used in the past [e.g. Gerya et al., 2002; Yamato et al., 2007a, 2008; Warren et al., 

2008]. They indeed allow checking the model evolution through time and not only the final 

deformation. In the Oman case, as below all large-scale obducted ophiolites, the existence of the 

HP-LT metamorphic dome and of the HT metamorphic sole found beneath the ophiolite should 

be accounted for, and the burial/exhumation of the continental passive margin confronted with 

the P-T-t evolution as shown in Figure 1d. 

 

3. Model setup  
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We use the thermo-mechanically coupled visco-plastic 2D code I2VIS [Gerya & Yuen, 2003], 

which is based on a combination of a finite difference method, applied on a staggered Eulerian 

grid, and a marker-in-cell technique. The momentum, continuity and energy equations are solved 

on the Eulerian frame. Lagrangian markers move according to velocity field obtained on the 

fixed grid and carry physical properties as well as pressure and temperature throughout the 

model domain. Surface processes are taken into consideration by gross-scale erosion law taking 

into account fixed erosion and sedimentation rates (1 mm.yr
-1

). 

 

3.1. Initial Geometry and thermal Structure 

The material properties used in our thermomechanical modeling experiments can be found in 

Table 1 and their initial geometries are presented in Figure 2. Our model design is built around  a 

number of key observations that pertain to the Oman realm: 

The classic, well-preserved Oman Ophiolite (Penrose conference, 1972) belongs to the Late 

Cretaceous Peri-Arabic obduction event, which affected the Neotethys almost synchronously 

along thousands of km from Turkey to Oman [<~5 My; Ricou, 1971; Agard et al., 2007; Monié 

and Agard, 2009]. The Neotethyan oceanic lithosphere first formed as a result of Permo-Triassic 

rifting [Lippard et al., 1986; Chauvet et al., 2009]. Despite numerous studies devoted to oceanic 

lithosphere formation [Nicolas et al., 2000; Shervais, 2001; Le Mee et al., 2004], the exact nature 

and original setting of the Oman Ophiolite is still a matter of debate, with evidence for both 

ocean basin formation and supra-subduction geochemical imprints [Pearce et al., 1981; Nicolas 

et al., 2000; Shervais, 2001; Godard et al., 2003; McLeod et al., 2013; Rioux et al., 2013]. 

However, whatever its exact petro-geodynamic setting, (1) the 96.4 to 95.5 Ma on-axis igneous 

ages of the obducted Oman Ophiolite [Rioux et al., 2012, 2013] and (2) the 95 Ma plagiogranite 
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dykes cross-cutting the ophiolite [Tilton et al., 1981] show that the Oman ophiolite was a piece 

of young oceanic lithosphere formed during the late Cretaceous within a much older, at least 

early Mesozoic, Neotethyan lithosphere.  

 

Whatever its exact setting, the Oman Ophiolite was thermally and magmatically young [< 10 

My, e.g. Hacker, 1994] at the time of its emplacement. Based on the amount of shortening of the 

Hawasina nappes, constraints on obduction duration and Neotethyan kinematics at the time, the 

corresponding oceanic domain was formed relatively close to the Arabian continental margin 

[i.e., no more than 300-400 km away; Searle and Cox, 1999], probably in response to regional 

scale geodynamic reorganization [~115 Ma; Agard et al., 2007].  

We therefore herein focus on the likely scenario of subduction/obduction initiation in a young, 

hot oceanic domain (taken as a proxy for the young oceanic lithosphere obducted in Oman, as 

discussed above) located in the vicinity of a continental passive margin (i.e., Arabia), followed 

by short-lived continental subduction. 

 

In the model, we define this hot oceanic domain by a temperature anomaly within the oceanic 

plate (Figure 2). Such temperature anomaly represents mechanically weak oceanic lithosphere 

and thus either corresponds to a ridge or back-arc setting. The position of this anomaly with 

regard to the OCT (dOCT) will hence control the location of obduction initiation. In our reference 

model, we located the center of the anomaly 100 km (x = 1800 km) away from the ocean-

continent transition (OCT). The length of the OCT is 100 km. Within this domain crustal 

thickness linearly decreases from 35 km to 7 km and the thermal structure progressively evolves 

from a continental geotherm (15 °C/km) to a an oceanic geotherm (thermal age = 80 Ma). The 
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thermal age of the rightmost oceanic plate (i.e., future ophiolite) linearly varies from 0 to 80 Ma 

away from this thermal anomaly (x = 2600 km, Figure 2) simulating a spreading rate () of 1 

cm.yr
-1

. Crustal thickness of the oceanic lithosphere is set to 7 km, accounting for a fast 

spreading ridge setting with voluminous crustal production [Boudier et al., 1988]. 

 

3.2. Time-dependent Boundary Conditions 

We first impose far-field compression plate kinematics with a total convergence velocity (Vcomp) 

of 4 cm.yr
-1

. A 10 My period of compression and subduction is indeed required between 

subduction initiation, constrained at 96-95 Ma by radiometric data on HT metamorphic soles 

[Hacker, 1991, 1994; Rioux et al., 2013], and peak HP-LT metamorphism of the Arabian 

continental margin at 82-79 Ma [Warren et al., 2003, 2005; Gray et al., 2004]. Far-field 

extension, through a linear decrease of the convergence rate (from Vcomp = 4 cm.yr
-1

 to Vext = -1 

cm.yr
-1

 within 1 My), is then applied to account for the resumption of subduction beneath 

Eurasia [Monié & Agard, 2009], for the likely slab detachment beneath Oman [Chemenda et al., 

1996] and for expulsion-like exhumation of HP-LT rocks [Agard et al., 2010]. 

 

4. Model Results 

4.1. Reference model 

Our reference model assumes a bulk shortening (dx) of 400 km during the first 10 My of the 

model. The onset of compressional tectonics is responsible for the inversion of the proximal 

young oceanic basin. As a result, subduction localizes at the thermal anomaly with an orientation 

dictated by the initial asymmetry of the thermal structure (Figure 3). HT conditions attributable 

to the metamorphic sole are reached within 1.5 My after subduction initiation (Figure 3). After 4 
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My of oceanic subduction, further compression leads to the underthrusting of the continental 

margin and, consequently, to the passive emplacement of oceanic lithosphere above the continent 

(Figure 3). After 10 My of compression, P-T conditions of 1.5-2.5 GPa / 450-600°C are reached 

along the upper crust of the continental slab. 

Following the inception of extension (at 11 My), stress transfer through the strongly coupled 

subduction interface enables the deformation of the ophiolitic upper plate. Thinning of the 

obducted oceanic lithosphere takes place coevally with the exhumation of the buried continental 

margin. With ongoing extension (after 10 My), the subducted crust is exhumed beneath the 

ophiolite, resulting in the formation of a large metamorphic dome. No significant internal 

deformation is observed in the buried crust and HP rocks exhibiting different peak metamorphic 

conditions are exhumed in a coherent fashion [plate eduction; Duretz et al., 2012]. Note that 

model resolution does not allow to track complex deformation of the thin meta-sedimentary units 

on top of the autochthonous pile (e.g., Searle et al., 2004; Agard et al., 2010). Exhumation lasts 

about 15 My and results in retrograde paths that are close to adiabatic during the first ~10 My (-4 

°C/My). Further erosion results in the development of tectonic windows and brings rocks to the 

surface. The surface extent of the ophiolite nappe is ~170 km and its thickness varies between 5 

and 15 km. HP-LT metamorphic domes develop in the exhumed margin with a wavelength of 

~30 km.  

 

4.2. Model validation: Case of the Oman Ophiolite 

This model successfully reproduces a number of key features of the Oman obduction (see section 

2).  

(1) Characteristic dimensions and geometries of the Oman (or Semail) Ophiolite: 
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A specific feature of our model is its ability to reproduce an ophiolitic nappe with dimensions 

comparable to nature [i.e., ~150 km, Searle et al., 2004] atop the underthrusted continental 

margin. The final structural thickness of the model’s ophiolite varies between 0 and 15 km, 

hence matching the thickness of the Oman Ophiolite [Glennie et al., 1974; Ceuleneer et al., 

1988]. Although the model's ophiolite thickness reaches more than 30 km during overthrusting, 

significant thinning occurs during the exhumation stage. Such results are obtained if a period of 

far-field extension, after 10 My in our model, accompanies ophiolite emplacement, which 

accords with the resumption of efficient subduction beneath Eurasia after 85 Ma [Monié and 

Agard, 2009] and field evidence of extension during the latest obduction stages [Fournier et al., 

2006]. The obducted lithospheric section comprises fragments of oceanic crust, together with 

serpentinized and pristine mantle. Our reference model also reproduces a characteristic structural 

relationship between the ophiolite and the metamorphosed continental margin, with the 

formation of the Saih Hatat dome [Michard et al., 1984].  

 (2) Pressure-Temperature-time evolution: 

Modeled P-T conditions of the metamorphic sole at ~1 GPa / 750°C are short-lived (< 2 My) and 

match petrological data and previous thermal models [e.g., Hacker, 1991], both in terms of 

duration [< 1-2 My; Hacker, 1994; Hacker et al., 1996; Searle and Cox, 1999; Warren et al., 

2005; Rioux et al., 2013] and P-T estimates [0.8-1 GPa, 700-800°C on average; Gnos, 1998]. P-

T conditions inferred for the subducted continental HP-LT metamorphic rocks match remarkably 

well natural occurrences (Figure 2), either for low-grade blueschist facies [1 GPa / 300°C; Agard 

et al., 2010], high-grade blueschist [from 1-1.2 GPa / 350°C to 0.8 GPa / 450-470°C; Yamato et 

al., 2007b] or eclogite facies conditions [2-2.3 GPa / 550°C; Searle et al., 2004; Warren and 

Waters, 2006]. The calculated metamorphic gradient along prograde paths is comprised between 
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8-10°C/km, which is consistent with natural record of short-lived continental subduction [Agard 

and Vitale-Brovarone, 2013]. 

(3) Plate kinematics and emplacement model: 

The relative timing of oceanic thrusting and HP-LT peak metamorphism is largely prescribed by 

the choice of plate kinematics from available geological data (see Model setup section, above). 

In our model the timing of retrograde metamorphism, showing that HP-LT rocks are largely 

exhumed after ~22 My after the onset of compression (Figure 2), fits particularly well available 

fission-track data [i.e., 70-75 Ma; Saddiqi et al., 2006]. The final domal exhumation associated 

with erosion and thinning of the obducted ophiolite mantle contributes to realistic ophiolite 

thickness. In our model, the ophiolite is thus emplaced passively on the continental margin 

through continental underthrusting [Searle and Malpas, 1980; Yamato et al., 2007b; Lagabrielle 

et al., 2013]. 

(4) Structures and sedimentation: 

As described above (in section 2), field evidence shows that the nappes stack consists of (from 

bottom to top): the autochthonous units topped by very thin (< km) syn-obduction sediments, the 

Hawasina nappes, and the ophiolitic sequence (oceanic crust and mantle, underlain by the 

metamorphic sole). Because of their thickness (a few hundred meters only), the Hawasina nappes 

could not be modeled (below the spatial resolution of our model). In the model, the few syn-

tectonic sediments produced by the erosion of both the ophiolitic nappe and the Arabian platform 

are mainly deposited in front of the advancing nappes and progressively migrating towards the 

continent. The first (oldest) deposits are progressively dragged at various depths in the 

subduction zone (from shallow depths down to ~30 km). As a result, after 30 My, the sediments 

preserved below the nappes are relatively thin or even absent where the metamorphic dome is 
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formed. The thickest sequence, corresponding to the latest (youngest) syn-obduction deposits, is 

located in front of the nappes and has not been dragged in the subduction zone. Exhumation of 

metamorphic rocks occurs simultaneously with the sedimentation on top of the ophiolitic nappes. 

These results are consistent with the geological data. Indeed, the oldest syn-obduction deposits 

[Muti Formation of Turonian to Santonian age, Rabu et al., 1990] are preserved below the 

nappes and has been affected by various degrees of metamorphism [increasing from SW to NE, 

Le Métour et al., 1990], while the youngest deposits [Fiqa Formation of Coniacian to 

Maastrichtian age, Forbes et al. 2010] are located further south. The maximum thickness of syn-

tectonic sediments (3 to 4 km) in front of the nappes fits the maximum thickness of the syn-

obduction Fiqa Formation obtained from sub-surface data [1.5 km to 3.5 km, Al-Lazki et al. 

2002; Boote et al. 1990; Ravault et al., 1997]. The amount of sediments below the nappes might 

be slightly over-estimated (~1 km instead of the few hundred meters observed in the field). 

However these differences are negligible considering the numerical resolution of the model and 

the amount of sedimentation is relatively low compared to other models (see sections 4.3.3 and 

4.3.4). The distance between these thick syn-tectonic sediments and the metamorphic dome 

(~200 km) in the model fits with the distance between the depocenter of the Fiqa (Suneinah) 

basin and the Sail Hatat dome [Boote et al., 1990]. Last, sedimentation on top of the ophiolitic 

nappe starting as soon as Late Cretaceous [Qahlat Formation, Nolan et al., 1990; Abbasi et al., 

2014] is then contemporaneous with the final exhumation of metamorphic rocks and the 

formation of the Saih Hatat dome [75 to 70 Ma; Saddiqi et al., 2006]. 

 

4.3. Sensitivity of obduction process to model parameters  
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The merits and the sensitivity of the model’s results to variable parameters are discussed 

in the following section. 

 

4.3.1. Amount of convergence  

 

As outlined above, available metamorphic age datings place strong constraints on the time 

interval between subduction initiation and burial of the continental margin (~10 My). The 

convergence rate across the newly formed subduction zone, however, and consequently the 

amount of relative plate convergence, remains poorly constrained [Ricou, 1994; Barrier and 

Vrielynck, 2008]. We thus tested the influence of the amount of compression on the final result. 

Figure 4 compares the results of all models at their final stage (30 My) for models that 

underwent variable amounts of bulk shortening (from dx = 300 km to dx = 450 km). The models 

display a roughly linear dependency between the main obduction parameters, namely maximum 

pressure-temperature conditions and ophiolitic nappe width. Maximum pressure and temperature 

conditions range from 1.5 GPa / 550°C for dx = 300 km up to 3.5 GPa / 800°C with dx = 450 

km. Similarly, the width of the obducted ophiolite linearly increases from ~120 km to ~220 km. 

Varying the convergence rate, however, does not notably affect the thickness of the ophiolite. A 

bulk shortening between 350 and 400 km (Figure 4) yields the most realistic P-T range in the 

exhumed continental margin.  

 

4.3.2. Continental basement rheology 

The rheology of the continental basement represents another key parameter for obduction. We 

have explored the sensitivity of the reference model to four types of rheological layering. The 
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weakest crustal model consists of Wet Granite (Ranalli, 1995) upper and lower crust, whereas 

the strongest is represented by felsic granulite (Ranalli, 1995). Upper/lower crust rheological 

stratifications (strong/weak and weak/strong) using similar flow laws were also tested. Figure 5 

depicts material configurations (after 25 My of model time) obtained using the different 

rheological models and a shortening of 400 km. The weakest crust end-member is subjected to 

homogeneous thickening (Figure 5a), which limits the thrusting of oceanic units above the 

continent. In the weak/strong crust model, the deformation is decoupled. As the lower crust 

subducts, the upper crust thickens resulting in a reduced ophiolitic nappe (Figure 5b). A 

strong/weak crustal model localizes extensional deformation by necking of the upper crust 

(Figure 5c), inhibiting the preservation of the ophiolite. Only the strongest crust end-member 

allows for the overthrusting of the oceanic plate and the preservation of the ophiolite during the 

extension phase (Figure 5d). These results clearly indicate that a strong continental basement 

rheology, which minimizes the strength contrast between the oceanic and continental crust, is a 

necessary condition for ophiolite emplacement. 

 

4.3.3. Thermal anomaly location 

Available geochronological data provide constrains concerning the distance that was separating 

the location of initiation obduction and the Arabian OCT. It is however difficult to accurately 

evaluate the location of obduction initiation. For this reason, we tested the influence of the 

thermal anomaly location using our reference model. The distance that separates the OCT from 

the center of the thermal anomaly is referred to as dOCT. As the compression duration is fixed to 

10 My, total shortening and compression rates will subsequently vary with dOCT. We first 

considered the case where dOCT = 50 km (dx = 350 km, Vcomp = 3.5 cm.yr
-1

; Figure 6a). Such 
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setting is equivalent to the reference model (Figure 6b) since neither the dimensions of the 

ophiolite nor the crustal structures are changed. Considering thermal anomalies located at dOCT = 

200 km (dx = 500 km, Vcomp = 5 cm.yr
-1

, Figure 6c) and dOCT = 300 km (dx = 600 km, Vcomp = 

6.00 cm.yr
-1

, Figure 6d) leads to drastically different results. For dOCT equal or larger than 200 

km, slab pull generated by the subduction of the oceanic plate leads to enhanced subducting plate 

deflection. A longer period of oceanic subduction favors the development of an accretionary 

wedge, which further inhibits the emplacement of the ophiolite on the continental plate. 

Moreover, the presence of very thick syn-subduction sedimentary sequences (~ 50 km) an 

exhumation throughout the upper plate in these models is inconsistent with field observations in 

Oman (See Sec. 4.2). 

 

4.3.4. Thermal anomaly intensity 

In order to investigate the model sensitivity to the intensity of the thermal anomaly, we have 

varied the spreading rate correspond to the hot oceanic domain (). This parameter controls the 

thermal structure of the right oceanic plate, which will potentially be subjected to obduction. The 

colder model is characterized by a  = 0.5 cm.yr
-1

 (Figure 7a). The upper plate is thus thicker, 

stronger and denser than in the reference model (Figure 7b). In such setting, enhanced 

subduction erosion leads to the development of a thick sedimentary pile at the plate interface, 

which greatly reduces the possibility of ophiolite emplacement and is not supported by field and 

subsurface data (see Sec. 4.2). In contrast, the hotter ocean model ( = 2.0 cm.yr
-1

) allows the 

development of ophiolite obduction. A hotter structure induces more internal deformation 

(thickening) within the ophiolitic nappe. As a result, the final width of the ophiolite is reduced by 

about 50 km compared to the reference model. The exhumation of the continental margin 
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through the ophiolite (doming) also occurs earlier, as it is facilitated by the hotter structure of the 

oceanic plate.  

 

4.3.5. Timing of compression to far-field extension transition 

The compression duration is well constrained by the geological record of Oman (~10 My, see 

Sec. 2.1). We nevertheless tested the model's sensitivity to the compression duration (tcomp), 

while keeping the total amount of shortening constant (dx = 400 km). Figure 8 depicts models 

geometries obtained with tcomp varying from 5 My (Vcomp = 8.0 cm.yr
-1

, Figure 8a) to 15 My 

(Vcomp = 2.66 cm.yr
-1

, Figure 8c). Our results indicate that this parameter does not significantly 

influence obduction dynamics. After 25 My of model time, final model geometries are indeed 

similar to the reference model (Figure 8b), except for the amount of mantle thinning. 

 

4.3.6. Impact of far-field extension 

The occurrence of far-field extension after obduction [as suggested by the resumption of efficient 

subduction beneath Zagros, Monié & Agard, 2009; Agard et al., 2011] is an important element of 

our reference model. We thus tested the influence of such kinematic forcing, while maintaining 

similar compressional history (dx = 400 km during 10 My). Firstly, we considered the case 

where no kinematic extensional constraints are applied after compression. In such setting, the 

plate boundary is let free to rebound in response to buoyancy force readjustment [i.e. plate 

eduction, Duretz et al., 2012]. During the compression stage, the lack of significant sedimentary 

input entering the subduction plate interface, which is consequently strongly coupled, inhibits 

any dynamic plate rebound (Figure 9a). Models subjected to kinematic extension (Vext) of 0.5 

cm.yr
-1

 and 2.0 cm.yr
-1

 were investigated. Our results suggest that far-field extension rates only 
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have a limited impact on the dimension of the ophiolite nappe. Slower rates seem to favor crustal 

exhumation (Figure 9b). This effect is apparent since the experiments were stopped at different 

model times (but for the same amount of extension): for the slowest case (Vext = 0.5 My, Figure 

9b) buoyant emplacement of the continental dome has thus more time to develop than in faster 

cases (Figures 9c, 9d). In our visco-plastic models, materials can be subjected to both ductile and 

brittle deformation. In our model, late orogenic extension is responsible for extensional ductile 

deformation in the exhumed continental margin. The overlying ophiolite, which consists of 

relatively stronger lithologies (mafic and ultramafic), undergoes normal faulting. This is in good 

agreement with field data documenting extensional shears and normal faults in the exhumed 

continental margin as well as high and low normal faults within the overlying ophiolite and 

metamorphic sole [Michard et al., 1994; Gray and Gregory, 2010; Al Wardi and Butler, 2007; 

Gomez-Rivas et al., 2014]. 

 

5. Discussion  

 

Results obtained from both our reference model and the parametric study show that a number of 

physical parameters are crucial for enabling the ophiolite emplacement process. The required 

conditions are: (i) a shortening of 350 - 400 km, (ii) the involvement of a strong continental crust 

and (iii) the presence of a thermal anomaly both close to the passive margin (no more than 100 

km) and intense (young thermal ages, equivalent to oceanic lithosphere < 0-5 My). 

 

Further modeling should systematically explore the range of parameters favorable to obduction 

(i.e., rheology, velocities, range of coupling conditions required to promote intraoceanic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

subduction) and help to constrain triggering mechanisms [e.g., Agard et al., 2007, 2014]. Models 

should in particular take into account regional-scale plate kinematics on a larger scale (including 

convergence partitioning between existing subduction zones and incipient obduction) and 

consider the role of far-field tectonics in a more self-consistent way than was done here (i.e., by 

decreasing convergence and adding extension). 

In this study, we only considered the case of subduction initiation (and therefore obduction 

initiation) induced by far-field push at a pre-existing thermal anomaly. However, subduction 

could possibly initiate in a spontaneous manner [Stern, 2004], when a sufficiently large 

buoyancy contrast exists between tectonic plates [e.g., Marques et al., 2013]. Other geological 

settings might be considered for obduction/subduction initiation in the vicinity of a passive 

margin, such as pre-existing vertical fracture zones [Gurnis et al., 2004] or dipping fault zones 

[Toth and Gurnis, 1998]. The presence of a thermal anomaly in the oceanic plate is nevertheless 

a key element in order to match the HT conditions retrieved from metamorphic soles [Jamieson, 

1986; Hacker, 1990]. Our numerical experiments predict metamorphic sole temperatures that are 

slightly colder than those estimated in the Oman metamorphic sole [i.e., within uncertainties yet 

50-100 °C colder; Searle and Cox, 1999]. Here, we did not investigate the influence of the 

strength of the oceanic lithospheric layers. It should however strongly control the amount of 

shear heating [Brun and Cobbold, 1980; Duprat-Oualid et al., 2013] produced during oceanic 

yielding and thrusting. As shear heating potentially plays a key role in the development of 

subduction [Thielmann et al., 2013], it might as well facilitate the development of metamorphic 

soles. Detailed thermo-mechanical models of ophiolite generation at the scale of the oceanic 

lithosphere are therefore needed to understand the formation of metamorphic soles. 
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Similarly, due to limited spatial resolution, our model partially reproduces the sedimentary 

history recorded on the Arabian platform during the obduction of the Oman Ophiolite. In 

consequence, precise location and timing of migration of the forebulge (large wavelengh but low 

amplitude) and the detailed sedimentary architechture described, for instance, in Warburton et al. 

[1990] and Al Lazki et al. [2002] are not discussed in this paper. Despite its role for 

reconstructing the paleogeography of the Arabian margin [Béchennec et al., 1990], the inversion 

of the Hawasina basin could not be taken into account. Further high resolution models 

emcompassing a more realistic paleogeography may bring more insights into the dynamics of 

tectono-sedimentary processes associated with obduction.  

 

6. Conclusions 

 

We investigated the dynamics of obduction using 2D thermo-mechanical numerical models. The 

reference numerical model, whose set-up and boundary conditions were designed using available 

geological/geodynamic data from the Oman ophiolite, is validated against petrological and 

structural observations. We show that the compression of a thermal anomaly related to proximal 

oceanic magmatism can result in subduction initiation, eventually leading to obduction and 

ophiolite emplacement. Our results show that obduction is stable in a broad physical parameter 

range and does not require unusual plate kinematics. Key ingredients of obduction reside in the 

initial lithospheric structure and long-term plate dynamics: (1) the emplacement of ophiolitic 

nappes requires a strong continental basement rheology, and (2) net extension due to far-field 

plate reorganization is essential for the thinning of the ophiolite nappe and the formation of 

metamorphic domes. Our model also allows constraining the amount of convergence 
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accommodated in Oman (~400 km) and the locus of obduction initiation (< 200 km from the 

OCT). 
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FIGURE CAPTIONS 

 

Figure 1. Geological setting of the Semail ophiolite (Oman) and associated petrological data. A) 

Simplified geological map highlighting the dimensions of the ophiolitic nappe and the location 

of high pressure (HP) units. B) Interpretative cross section through the ophiolite and the 

metamorphic dome of Muscat. 4 symbols (filled square, white square, white star and black star) 

indicate continental units of decreasing metamorphic grade. C) Conceptual model of 

emplacement of oceanic units atop the continental margin. The four symbols correspond to those 

used in the above panel. D) Compilation of thermobarometric and geochronological data related 

to the continental margin metamorphism. The four pressure-temperature paths correspond to the 

symbols used in above panels. 

 

Figure 2. Initial model configuration. The upper panel (A) represents focuses on the transition 

between the continental plate and the oceanic plate. The lower panel (B) depicts the entire model 

domain (the red rectangle indicates the location of A). Different colors symbolize the lithologies 

used in the model (see palette). The whites contours denotes the thermal structure, isotherms are 

plotted at each 200°C increment. The symbol  denotes the gradient of oceanic plate thermal age. 

Internal time-dependent velocity boundary conditions are imposed along lithospheric columns 

(0<y<80 km) located at x = 1000 km and x = 3000 km (c.f. arrows). The abbreviations U.C., 

L.C., Lit., Ast. and Serp., respectively correspond to upper crust, lower crust, lithospheric, 

asthenospheric and serpentinized. 
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Figure 3. Temporal evolution of the model starting from intra-oceanic subduction to the domal 

exhumation of continental material beneath the overlying ophiolite. The colored stars denote 

material points used to trace the P-T evolution in the continental margin. The red dot corresponds 

to a tracer located in the oceanic crust, whose P-T evolution is represented by the red dashed 

line. The color panel is similar to Figure 2.   

 

Figure 4. Ophiolite structure and P-T paths of material tracers for varying amount of bulk 

shortening (dx). The compositional field is displayed after 30 My (10 My of compression at Vcomp 

and 20 My of extension). The amount of bulk shortening controls both the dimension of the 

ophiolite and the amplitude of the P-T paths. The thick brown, red, and yellow lines represent the 

retrograde path for the HP and UHP continental units of the Arabian margin (Fig. 1D). Material 

fields colors correspond to those employed in Figure 2. 

 

Figure 5. This figure shows sensitivity of the reference model with regard to the rheology of the 

upper (U.C) and lower crust (L.C.). The strong and weak crustal end-members (A, D) 

respectively represent dry granulite and wet quartz rheologies [Ranalli, 1995]. Layered models 

are depicted in panels B and C. The four models were stopped after 25 My of model time (10 My 

compression + 15 My extension). This figure highlights the importance of a strong felsic crust 

rheology for ophiolite emplacement (see Figure 2 for color legend).  

 

Figure 6. Location of the temperature anomaly with regard to the ocean-continent transition. 

Numerical models were run for dOCT varying between 50 km (A), 100 km (B, reference model), 
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200 km (C) and 300 km (D). The panels depicts material configurations reached after 25 My of 

model time for each of these models. Color scheme is similar to that employed in Fig. 2. 

 

Figure 7. Importance of the temperature anomaly intensity. Material configuration of three 

models are depicted after 25 My of model time. Panel A), B), and C) respectively correspond to 

 values of 0.5 cm.yr
-1

, 1.0 cm.yr
-1

 (reference model) and 2.0 cm.yr
-1

. The colors corresponding 

to material phases are listed in Fig. 2.  

 

Figure 8. Impact of the timing of the compression/extension transition. Material configurations 

(see Fig. 2 for legend are represented after both compression and extension (15 My at 1cm.yr
-1

). 

Panel A) shows material configuration obtained for tcomp = 5 My. The reference model (tcomp = 

10 My) is depicted in panel B). C) shows the model geometry considering tcomp = 15 My. 

 

Figure 9. The role of far-field extensional kinematic forcing. A) shows the material configuration 

obtained after 25 My of model time, while no extension was prescribed. B) corresponds to a Vext 

of 0.5 cm.yr
-1

 during 30 My, while C) underwent 1.0 cm.yr
-1

 extension during 15 My (25 My 

model time, reference model). In C) the model was subjected to 2.0 cm.yr
-1

 extension during 7.5 

My (17.5 My model time). The color palette is similar to Fig. 2. 
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Material properties 

 

Material k(T) 

(W/m/K) 

Hr 

(W/m
3
) 

Cp 

(J/kg/K) 

sin() C 

(MPa) 

0 

(Pa
n
.s) 

n Ea 

(J/mol) 

Va 

(J/bar/mol) 

Felsic U. C. 0.64+ 

807/(T+77) 

1.00e-6 1000 0.45 20 4.97e20 3.1 154e5 1.2 

Felsic L. C. 1.18+ 

474/(T+77) 

0.25e-6 1000 0.45 20 4.97e20 3.1 154e5 1.2 

Mafic U. C. 0.64+ 

807/(T+77) 

0.25e-6 1000 0.00 20 1.97e17 2.3 154e5 0.8 

Mafic L. C. 1.18+ 

474/(T+77) 

0.25e-6 1000 0.60 20 4.80e22 3.2 238e5 0.8 

Lit. mantle 0.64+ 

807/(T+77) 

2.20e-8 1000 0.60 40 3.98e16 3.5 532e5 0.8 

Ast. mantle 0.64+ 

807/(T+77) 

2.20e-8 1000 0.60 40 3.98e16 3.5 532e5 0.8 

Sediments 0.64+ 

807/(T+77) 

1.50e-6 1000 0.15 10 1.97e17 2.3 154e5 0.8 

Serpentinized 

mantle 

0.64+ 

807/(T+77) 

2.20e-8 1000 0.10 1 3.21e36 3.8 890e3 0.8 

 

Table 1. Thermal and mechanical parameters employed in the numerical models: k is the 

temperature dependent thermal conductivity, Hr is the radiogenic heat production, Cp is the 

specific heat capacity, sin() is the friction coefficient, C is the cohesion, 0 is the reference 

viscosity, n is the stress exponent, Ea is the activation energy, and Va is the activation volume. 
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Highlights 

We have set up thermo-mechanical numerical models of obduction 

 

Model allow to reproduce first order geological features of the Oman Ophiolite  

 

Crustal rheology and locus of obduction initiation are first order parameters 


