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-Ureilites displays 
56

Fe values higher than average chondrite. 29 

-Segregation of Fe-sulfide melts explains the high 
56

Fe values in ureilites.  30 

-Formation of a core can begin at very low degrees of melting through the circulation of a Fe-S melt 31 

through a silicate mantle. 32 

 33 

Earth and Planetary Science Letters, in press (11/3/15).34 



2 

 

 35 

Abstract 36 

  37 

 Ureilite meteorites are achondrites that are debris of the mantle of a now disrupted 38 

differentiated asteroid rich in carbon. They provide a unique opportunity to study the differentiation 39 

processes of such a body. We analyzed the iron isotopic compositions of 30 samples from the Ureilite 40 

Parent Body (UPB) including 29 unbrecciated ureilites and one ureilitic trachyandesite (ALM-A) 41 

which is at present the sole large crustal sample of the UPB. The 
56

Fe of the whole rocks fall within a 42 

restricted range, from 0.01 to 0.11‰, with an average of +0.056 ± 0.008 ‰, which is significantly 43 

higher than that of chondrites. We show that this difference can be ascribed to the segregation of S-44 

rich metallic melts at low degrees of melting at a temperature close to the Fe-FeS eutectic, and 45 

certainly before the onset of the melting of the silicates (< 1100 °C), in agreement with the marked S 46 

depletions, and the siderophile element abundances of the ureilites. These results point to an efficient 47 

segregation of S-rich metallic melts during the differentiation of small terrestrial bodies. 48 

 49 

1. Introduction 50 

One of the most significant issues for understanding the differentiation of telluric bodies is 51 

when and how their cores formed. Trace element abundances and W isotopic compositions obtained 52 

on a series of iron meteorites indicate that the cores in the first differentiated planetesimals aggregated 53 

metallic melts with various S contents, and formed from ca. 0.6 to 3 Myrs after the first solids 54 

condensed in the Solar System (e.g., Blichert-Toft et al., 2010; Kruijer et al., 2014 and references 55 

therein). The mechanisms of core formation are still highly debated, especially for the early stages of 56 

the process. The percolation of Fe-S melts into an olivine matrix has been suggested and 57 

experimentally investigated, but the contribution of such melts to the cores of the planetary embryos or 58 

of larger bodies, is a matter of debate (Bruhn et al., 2000; Yoshino et al., 2003; Bagdassarov et al., 59 

2009; Rushmer and Petford, 2011; Watson and Roberts, 2011). However, important constraints on the 60 
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early stages of the differentiation of some small bodies are potentially recorded in their mantles, which 61 

can be investigated using meteorite samples. 62 

Ureilites are remnants of the mantle of a now-disrupted carbon-rich body (Downes et al., 63 

2008), and are among the most common achondrites in the meteorite collections (about 400 ureilites 64 

are currently reported in the Meteoritical Bulletin Database). They are ultramafic achondrites (e.g., 65 

Mittlefehldt et al., 1998) which are widely considered as mantle restites (Scott et al., 1993) formed 66 

after extraction of magmas and S-rich metallic melts. The vast majority of them are unbrecciated. 67 

They are coarse-grained peridotites consisting chiefly of olivine and pyroxenes (pigeonite, and more 68 

rarely augite and orthopyroxene), abundant carbon (< 7 wt%, graphite and diamond), with accessory 69 

metal and sulfides. Olivine grains classically have distinctive iron-depleted rims and veins (Fig. 1). 70 

They were formed by local reduction reactions with adjacent carbon. These rims give important 71 

constraints on the Ureilite Parent Body’s (UPB) history. The Fe-Mg zonings of the olivines indicate 72 

that ureilites equilibrated at high temperatures (1200-1300°C), and subsequently rapidly cooled down 73 

(~2-6°C/h), consistent with impact-excavation or disruption of the UPB (e.g., Myiamoto et al., 1985). 74 

Except these rims and veins in olivine, silicates (i.e., olivine cores and pyroxenes) are quite uniform in 75 

Mg# number [= 100 Mg/(Mg+Fe), atomic] within any given ureilite. However, their compositions 76 

among samples show a huge variation, as shown by the olivine-core Mg# (= forsterite content), which 77 

range from 74 to 97. The Fe/Mn ratios (ranging from 3 to 57) and 
17

O values (= -0.2 to -2.5 ‰) are 78 

correlated with this parameter (e.g., Clayton and Mayeda, 1996; Mittlefehldt et al., 1998; Fig. 2). The 79 

origin of these variations is a matter of discussions, but no consensus emerges at present. Certainly, 80 

they cannot be explained by igneous fractionation (e.g., Mittlefehldt et al., 1998). Instead, it has been 81 

often argued that the Mg# range was ascribed to redox processes during the differentiation of the UPB 82 

or alternatively is inherited from the pre-igneous (nebular) history of the accreted materials (see 83 

Warren (2012) and Goodrich et al. (2013a) for extensive discussions of the current models on its 84 

origin).  85 

 A score of ureilites are polymict breccias consisting of debris of these peridotites, various 86 

chondritic clasts , and some feldspathic clasts which are remnants of the UPB’s lavas (e.g., Cohen et 87 
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al., 2004; Downes et al., 2008). A large clast (ALM-A) has been recently discovered among the 88 

numerous stones of the Almahata Sitta fall, and demonstrate that at least part of these melts was 89 

trachyandesitic (Bischoff et al., 2014). 90 

Unlike asteroids such as Vesta whose O isotopic compositions were homogenized by a magma 91 

ocean (Greenwood et al., 2005), the wide range of 
17

O values displayed by the ureilites demonstrates 92 

that the UPB was never totally melted (Clayton and Mayeda, 1996). Nevertheless, it was heated 93 

enough to generate magmas (e.g. Cohen et al., 2004; Bischoff et al., 2014) and a small S-rich core 94 

(Warren et al., 2006; Rankenburg et al., 2008; Goodrich et al., 2013b). 95 

Iron isotope ratios can track the involvement of iron sulfides during the early stages of the 96 

formation of the asteroidal cores. Marked enrichments in the lighter iron isotope are found in iron 97 

sulfides formed at ca. 1000°C or below (Schuessler et al., 2007; Polyakov and Soultanov, 2011; Wang 98 

et al., 2014), whereas no iron isotope fractionation has been detected between iron sulfide, metal and 99 

silicate melts at ca. 1250°C (e.g., Hin et al., 2012). Here, we report high-precision iron isotope 100 

compositions of 30 meteorites from the UPB, and show that its mantle displays iron isotopic 101 

compositions heavier than average chondrite. This indicates that a significant fraction of the sulfides 102 

was efficiently segregated during the early stages of the melting, possibly before the melting of the 103 

silicates. Therefore, core formation in an asteroid can begin at very low degrees of partial melting 104 

through the circulation of a Fe-S melt through a silicate mantle. 105 

 106 

2. Samples and analytical procedures 107 

We analyzed 30 meteorites from the UPB (29 unbrecciated ureilites and a unique lava sample, 108 

Table 1). Samples were kindly provided by the NASA meteorite working group (MWG), the National 109 

Institute of Polar Research (NIPR), the Ecole Normale Supérieure de Lyon (ENSL),  the Westfälische 110 

Wilhelms-Universität Münster, the Washington University in Saint Louis, and finally from the first 111 

author’s collection. The samples from Antarctica have been extensively studied by different teams. 112 

The compositions of their phases have been repeatedly determined and their chemical features are well 113 
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known (the references are too numerous to be cited here). Our meteorites from Sahara have been less 114 

studied, and for most of them, only their descriptions in the Meteoritical Bulletin are available. They 115 

are all regular ureilites. We have examined polished sections of all these samples to confirm their main 116 

petrographical features, and determine the compositions of their silicates. The Saharan samples were 117 

selected in order to complement the range of compositions displayed by the Antarctic ones. Although 118 

the terrestrial weathering is pervasive in hot desert samples, the samples we selected were not severely 119 

weathered, and display partly preserved metal and sulfides. 120 

The major-element compositions of the phases were determined by electron microprobe 121 

analysis using a Cameca SX100 at Service Commun de Microsonde Ouest (SCMO), Plouzané, or a 122 

JEOL JXA8200 at NIPR (Table 2). Minerals and metal standards were used for calibration. All 123 

analyses used wavelength dispersive spectrometers at 15 kV accelerating voltage, 10–30 nA beam 124 

current at NIPR, and 20 kV accelerating voltage, 40 nA beam current with the same counting time as 125 

Pierre Hudon and David Mittlefehdt (in Downes et al., 2008) at Plouzané .  126 

Fragments (each of 300-1,000 mg) were crushed to a homogeneous fine powder using a boron 127 

carbide mortar and pestle. Twenty mg of crushed material was digested by sequential mixtures of 128 

HF/HNO3, HNO3 and HCl for the samples analyzed in Brest and in HF/HNO3 and HCl for the samples 129 

analyzed in St Louis. These procedures allow a perfect dissolution of all the phases except graphite 130 

and diamond, which are Fe-free, have no effect for our study.  131 

Aliquots of the solutions were used for the determination of the Fe and Mg concentrations of  132 

in the solutions were determined by ICP-AES (inductively coupled plasma-atomic emission 133 

spectrometry) using a Horiba Jobin Yvon Ultima 2 spectrometer in Plouzané, and the Mg# numbers 134 

are given in Table 1. Iron in the dissolved samples was then purified by ion-exchange chromatography 135 

procedure previously described (Wang et al., 2012). The purification was repeated twice, thus 136 

ensuring the removal of all the matrix elements. A majority of the Fe isotopic compositions were 137 

measured on the Thermo Electron Neptune multi collector-inductively coupled plasma-mass 138 

spectrometer housed at Ifremer, Plouzané, while the rest was analyzed in Saint Louis. In both Saint 139 

Louis and Brest the instrument was operated in high resolution mode to resolve isobaric interferences, 140 
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such as ArO on 
56

Fe, ArOH on 
57

Fe, and ArN on 
54

Fe. We also used the sample-standard bracketing 141 

technique to correct for instrumental mass discrimination by normalizing Fe-isotope ratios to the 142 

average measured composition of the standard that was run before and after the sample. In Plouzané, 143 

we performed an additional correction using Ni as an internal standard for mass bias correction 144 

(Dauphas and Rouxel, 2006). Fe isotope values are reported relative to the standard IRMM-14 using 145 

the -notation: 146 


x
Fe = 1000 [ (

x
Fe/

54
Fe)sample/(

x
Fe/

54
Fe)IRMM-14 – 1] where x=56 or 57. 147 

Results for several georeference materials are similar to previously reported analyses (Table 3). 148 

Errors are reported as 2 standard errors, which are calculated as the standard deviation divided by the 149 

square root of the total number of analyses and multiplied by the Student’s t-value for the relevant 150 

degree of freedom at the 95% confidence level. Results for the samples are listed in Table 4. 151 

 152 

3. Results 153 

The 
56

Fe values obtained for 30 meteorites from the UPB, fall within a restricted range, from 154 

0.01 to 0.11‰ (Fig. 3, Table 4). The mean of all these samples is significantly heavier (
56

Fe = 0.056 155 

± 0.008 ‰, n=30) than that of primitive meteorites, such as carbonaceous, ordinary and enstatite 156 

chondrites (
56

Fe = 0.005 ± 0.008 ‰, n=42, Craddock et al., 2013). The heavy Fe isotope composition 157 

displayed by the ureilites is striking because the early Solar Nebula was well homogenized for Fe 158 

isotopes (Schoenberg and von Blanckenburg, 2006; Wang et al., 2013), and because the Fe isotope 159 

compositions of the bulk silicate portions of most differentiated bodies investigated so far are 160 

chondritic [e.g., the Earth (Craddock et al., 2013), Mars and Vesta (Poitrasson et al., 2004; Weyer et 161 

al., 2005; Schoenberg and von Blanckenburg, 2006; Wang et al., 2012), and probably the Moon 162 

(Weyer et al., 2005; Halliday et al., 2013)]. One noteworthy exception is the angrite parent body 163 

whose lavas display high 
56

Fe ratios (≈ 0.12 ‰, Wang et al., 2012). 164 

 165 
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4. Discussion 166 

4.1.  Iron inventory in ureilites 167 

Iron in ureilites is hosted by many phases: silicates (olivine and pyroxenes), metal, sulfides, 168 

phosphides, carbide (cohenite), and their weathering products (Fig. 1). It is very difficult to obtain a 169 

reliable picture of the iron budget in ureilites from modal analyses. Goodrich et al. (2014) estimated 170 

that ureilites contain ~1-3 vol.% of grain boundary metal, and less sulfides, in agreement with the 171 

abundances of metal and sulfur determined by chemistry (Vdovykin, 1970; Wänke et al., 1972; 172 

Hintenberger et al., 1978; Yanai et al., 1995). We used the standard wet chemical analyses compiled 173 

by Yanai et al. (1995) to estimate the proportions of Fe hosted by silicates, metal and troilite in 174 

ureilites (Fig. 4). Our calculations indicate that silicates are the main hosts of Fe, and represent more 175 

than 70 % of the budget of this element. Metal (14-29 % of the Fe budget) and sulfides (< 8 % of the 176 

Fe budget) are clearly subordinate hosts. These conclusions are strengthened by the striking 177 

correlation between the Mg# numbers (=100 x Mg/(Mg + Fe), atomic) of our samples and the 178 

composition of their olivine cores, which are representative of the Mg# numbers of their silicates (Fig. 179 

5). 180 

4.2.  Origin of the high 
56

Fe values in ureilites 181 

The high 
56

Fe values in ureilites cannot be the result of terrestrial weathering. Alteration of 182 

sulfides in meteorites is accompanied by the release of light Fe. Heavier Fe isotopic compositions have 183 

been measured in weathered ordinary chondrite finds compared to fresh falls. However, the increase is 184 

rather limited, about +0.07 ‰ of the 
56

Fe were observed only for the most weathered L and H 185 

chondrites (Saunier et al., 2010). Ureilites are less prone to such an effect because sulfides control here 186 

a much lesser proportion of Fe than in L and H chondrites (Fig. 4). Although the alteration of ureilite 187 

finds is pervasive, our samples were not extensively weathered, and still displayed metal and sulfides. 188 

Indeed, the fresh fall samples (Novo Urey and Almahata Sitta) display the same isotopic compositions 189 

as find samples (Tables 1 and 4). 190 
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Because the Fe isotopic compositions are certainly pristine, they could be inherited from the 191 

materials which accreted to form the UPB, or alternatively they could result of the differentiation of 192 

the UPB. A heavy Fe isotopic composition could be observed in bodies that suffered evaporative loss 193 

of volatile elements following high-energy impacts during accretion. This explanation was initially 194 

proposed for the Earth and the Moon by Poitrasson et al. (2004) but is controversial for these bodies 195 

(e.g., Halliday, 2013). It is probably valid for the angrite parent body (APB), where a strong depletion 196 

in volatile elements such as the alkalis, is accompanied by heavy Fe and Si isotopic compositions 197 

(Wang et al., 2012; Pringle et al., 2014). The UPB did not accrete from volatile depleted materials, 198 

because the magmas generated by the melting of its mantle were alkali and volatile-rich as shown by 199 

the compositions of the plagioclases in the feldspathic clasts found in polymict ureilites and the 200 

geochemistry of ALM-A, a trachyandesitic lava from the UPB (e.g., Cohen et al., 2004; Bischoff et 201 

al., 2014). Nevertheless, losses of volatile elements were possible during the disruption of the UPB, as 202 

shown previously for Zn (Moynier et al., 2010). However, the lack of correlation between 
56

Fe values 203 

and abundances of volatile elements (e.g., Zn, Rb, Li, not shown) rules out this possibility for Fe. 204 

The high 
56

Fe values in ureilites cannot be created by either the extraction of silicate melts, or 205 

by possible high temperature redox processes. Partial melting does not generate residues with 
56

Fe 206 

values significantly distinct than those of the initial mantle (Weyer et al., 2005; Craddock et al., 2013). 207 

High 
56

Fe values in bulk rocks are certainly not the result of the reduction reactions that produced the 208 

Fe-depleted rims of the olivine during the disruption of the body. Although, the possibility of local 209 

isotopic heterogeneities in olivine have not yet been investigated, the possibility of a detectable effect 210 

is unlikely: 1/ the relative volume of the Fe-depleted rims is always limited (Fig. 1), and consequently 211 

the impact of these rims on the Fe budget is probably negligeable; 2/ the formation of the Fe-depleted 212 

olivine rims was a very fast process (e.g., Myiamoto et al., 1985), and a noticeable metal loss during 213 

the post-disruption cooling of the ureilites is not plausible; 3/ ALM-A, the ureilitic trachyandesite, 214 

displays a high 
56

Fe value which indicates that this feature predates the disruption of the body. 215 

Moreover, the high 
56

Fe values displayed by the ureilites are certainly not generated by the processes 216 
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that produced the striking range of olivine-core compositions. The lack of correlation between the Fe 217 

isotope compositions of ureilites and their olivine-core compositions demonstrates that both features 218 

are unrelated (Fig. 2). 219 

Alternatively, removal of S-rich metallic melts could explain the high 
56

Fe values in ureilites. 220 

When a chondritic assemblage is heated, melting begins with Fe-sulfide (troilite) and metal at a 221 

temperature close to 980°C defined by the eutectic in the Fe-FeS system (Keil, 2000). Since at this 222 

temperature FeS displays a marked enrichment in the lighter Fe isotope (Schuessler et al., 2007, 223 

Polyakov and Soultanov, 2011; Wang et al., 2014), an increase of the 
56

Fe value of the solid residue 224 

is anticipated. If the metallic melt is efficiently removed from the solid residue (fractional melting), all 225 

melting happens at the eutectic until either metal or troilite is exhausted. The effect on the isotopic 226 

compositions of the residues can be easily estimated. 227 

The eutectic in the Fe-FeS system contains about 31.6 wt% S and 68.4 wt% Fe (e.g., Kullerud, 228 

1963), and is equivalent to about 85 wt% troilite +15 wt% metal. We calculate the 
56

Femetallic melt-silicate 229 

using these proportions, the 
56

Fetroilite-silicate value (-0.21 ‰) selected by Wang et al. (2014) and the 230 


56

Femetal-troilite at ca. 1250 K (+0.1 - +0.2 ‰) estimated from theoretical calculations (Polyakov et al., 231 

2007; Polyakov and Soultanov, 2011). For the calculations presented in Figure 6, we used a 232 


56

Femetallic melt-silicate = -0.18 ‰, and assumed that 
56

Femetallic melt-silicate≈
56

Femetallic melt-residue. 233 

The composition of a source after extraction of a S-rich metallic melt at the eutectic were 234 

calculated using an isotope mass balance:  235 


56

Fesource= 
56

Femetallic melt . fFemetallic melt  +
 


56
Feresidue . fFeresidue

 
 (1) 236 

where f is the mass fraction of 
54

Fe in the metallic melt or in the solid residue. This equation 237 

can be recast in terms of the residue: 238 


56

Fesource= (
56

Femetallic melt-residue + 
56

Feresidue) (1 - fFeresidue
 
) + 

56
Feresidue . fFeresidue (2) 239 

And consequently: 240 
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56

Feresidue= 
56

Fesource - 
56

Femetallic melt-residue + 
56

Femetallic melt-residue . fFeresidue (3) 241 

Calculations show that detectable shift of the Fe isotopic compositions is possible, depending 242 

on the initial Fe and S contents of the starting assemblage (Fig. 6). If the starting assemblage is Fe-rich 243 

and displays moderate S contents (e.g., like a H chondrite), segregation of the metallic melt produces 244 

at best a marginal shift of the isotopic composition of the residue. In contrast, for S-rich chondritic 245 

assemblages, an increase of ca. 0.1 ‰ of the 
56

Fe can be achieved by this process.  246 

If the metallic melt is not removed from the residue (batch melting), the degree of melting 247 

increases with the temperature. The composition of the metallic melt is consequently variable, and the 248 

situation becomes much more complex (melting of the silicates, involvement of carbon…). More 249 

importantly, fractionation of Fe isotopes between S-rich metallic melts and silicates becomes much 250 

less detectable with increasing temperature, and is usually supposed negligible considering our present 251 

level of precision, above 1250°C as determined through experimental studies (Poitrasson et al., 2009; 252 

Hin et al., 2012). [Notice that this view has been recently challenged by Shahar et al. (2015) whose 253 

results indicate significant fractionations between metallic melts and melted silicates at 1600°C. 254 

However, the magnitude and direction of these isotopic fractionations are not consistent with the 255 

available analyses on magmatic irons (bulk samples) and the results presented here. A discussion of 256 

these results and previous ones is beyond the scope of this paper. Additional works are necessary to 257 

confirm these experimental results and to evaluate the effects of B or Sn used in previous 258 

experiments.] 259 

Siderophile element systematics (e.g. platinum group elements) demonstrate that ureilites 260 

experienced separation of S-rich metallic melts, with possibly entrainment of metal (Warren et al., 261 

2006; Rankenburg et al., 2008; Goodrich et al., 2013b), but the process (batch or fractional) and 262 

temperatures of segregation are not well constrained by these data. The heavy Fe isotopic 263 

compositions and the low S contents of the ureilites are consistent with the separation of S-rich 264 

metallic melts (Fig. 6), and indicate that the removal of these melts was efficient probably at a 265 

temperature close to the eutectic, and certainly before the onset of the melting of the silicates (< 1100 266 
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°C). Indeed, ALM-A, the sole ureilitic lava sample available at present (Bischoff et al., 2014), displays 267 

a high 
56

Fe value (Fig. 3), similar to the highest values measured on ureilites. Although partial 268 

melting can generate melts with Fe isotopic compositions heavier than their sources as exemplified by 269 

terrestrial basalts (e.g., Teng et al., 2013), this effect is negligible for mantles with low Fe
3+

/Fetotal 270 

ratios (Dauphas et al., 2014), like ureilites (Goodrich et al., 2013c). Consequently, ALM-A strongly 271 

suggests that the UPB’s mantle acquired its specific isotopic composition early, before it was heated 272 

enough to generate magmas. 273 

4.3. Comparison with mantles of other small bodies. 274 

The heavy Fe isotopic compositions displayed by ureilites contrast with those of the 275 

brachinites and the olivines from the Main Group Pallasites, the samples of the other asteroidal 276 

mantles for which data are available (Fig. 3). Brachinites were possibly derived from multiple parent 277 

bodies. They are mantle restites similar to ureilites, but are more ferroan than the latter (Keil, 2014). 278 

GRA 06128/29, a brachinitic melt shows a light Fe isotopic composition (
56

Fe = -0.08 ± 0.06 ‰), 279 

which was ascribed to the involvement of Fe-sulfides during magma genesis (Wang et al., 2014). 280 

Probably because of the high Fe content of their protoliths, the average composition of the brachinites 281 

does not deviate from the chondritic value (
56

Fe = 0.01 ± 0.02 ‰, n=7, Wang et al., 2014), although 282 

S-rich metallic melts and sulfides were certainly involved during their differentiation (Day et al., 283 

2012). Main Group Pallasites (MGPs) are mixtures of mantle-derived olivines and core-derived metal 284 

from a single disrupted asteroid (Greenwood et al., 2006). The homogeneous O isotopic composition 285 

of these pallasites provides a strong evidence for an early extensive melting event on their parent 286 

body, possibly resulting in the formation of a global magma ocean (Greenwood et al., 2006). Fe 287 

isotopes in MGPs cannot record the early stages of core segregation, because the temperatures reached 288 

during the global melting event were too high (>> 1300°C) to fractionate these isotopes between 289 

silicates and metallic melts. Indeed, the average Fe isotopic composition of olivines (
56

Fe = 0.009 ± 290 

0.014 ‰, n=11, Weyer et al., 2005) is indistinguishable from the chondritic average. 291 

 292 
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5. Conclusions 293 

The marked S depletions, the siderophile element abundances and the high 
56

Fe values 294 

displayed by ureilites point to an efficient segregation of S-rich metallic melts in the body, more likely 295 

before the onset of silicate melting. Although the UPB has been disrupted, samples of its core have not 296 

yet been recovered. The lack of such samples is not surprising because the number of meteorites from 297 

the UPB is still limited. The fact that only one large clast of ureilitic lava is actually known 298 

demonstrates that our ureilite meteorites provide only a partial sampling of the whole parent body. 299 

The percolation of S-rich metallic melts has been extensively investigated in a solid matrix 300 

rich in olivine, analogous to an asteroidal mantle. Metallic melts over a percolation threshold ranging 301 

from about 6 vol% to 18 vol% (Yoshino et al., 2003; Bagdassarov et al., 2009; Watson and Roberts, 302 

2011) can potentially create a stable interconnected network in an olivine-rich solid matrix that could 303 

have allowed the early segregation of some core material. Yet the permeability of the core forming Fe-304 

FeS melts within a silicate matrix is very low, and it was inferred that percolation of these melts 305 

cannot be a major process of core formation in planetesimals (Watson and Roberts, 2011). The 306 

geochemical data on ureilites seem at odds with previous experiments. Certainly other factors can 307 

contribute to the segregation of Fe-FeS melts and to fast core formation in planetesimals, such as shear 308 

deformation of the body (Bruhn et al., 2000; Rushmer and Petford, 2011). 309 
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Table 1. Details of meteorite samples studied. Olivine compositions are from this study except D 484 

(Downes et al., 2008), SG (Singletary and Grove, 2004), G (Goodrich et al., 2006), and WR (Warren 485 

and Rubin, 2010). 486 

  Source # or split Ol. core bulk rock 

   Fo % Mg# 

     

Fall     

Novo Urei Saint Louis  78.5
SG

  

     

Hot desert finds     

El Gouanem ENS Lyon  80.7
SG

  

NWA 2236 NIPR ,41 96.8 91.8 

NWA 4471 JAB  78.1 70.2 

NWA 4509 ENS Lyon  78.5  

NWA 4511 ENS Lyon  77.8 77.2 

NWA 4512 ENS Lyon  78.3  

NWA 4513 ENS Lyon  90.5  

NWA 4516 ENS Lyon  81.3 76.9 

NWA 5555 JAB  90.8 87.3 

NWA 5602 JAB  79.0 76.5 

NWA 5884 JAB  78.6 75.0 

NWA 6056 JAB  84.8 81.4 

NWA 7349 JAB  76.5 75.4 

NWA 7630 JAB  79.1 73.4 

NWA 7686 JAB  91.0 84.3 

NWA 7880 JAB  78.6 77.7 

NWA 8049 JAB  84.3 81.3 

     

Antarctic finds     

A-881931 NIPR ,65 78.7 76.5 

ALHA 77257 NIPR ,104 86.1
D
 83.7 

ALH 82130 MWG ,43 95.2
 D

 89.9 

EET 83225 MWG ,37 88.3
D
 85.5 

LAP 03587 MWG ,10 74.7
WR

 74.1 

LAR 04315 MWG ,46 81.9
WR

 79.1 

MET 01085 MWG ,23 no olivine 84.9 

Y-791538 NIPR ,126 91.3
D
 87.1 

Y-981810 NIPR ,88 78.3 74.4 

     

Other finds     

Kenna Saint Louis  78.0
G
  

Goalpara Saint Louis  76.6
 D

  

     

Ureilitic trachyandesite (Almahata Sitta fall)   

ALM-A Münster   no olivine   

 487 
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Table 2. Olivine core compositions of the samples analyzed during the course of this study (oxides in 488 

wt%, Fe/Mn atomic). 489 

 490 

  lab. n SiO2  Cr2O3 FeO  MnO  MgO  CaO  total Fo% Fe/Mn 

            

A-881931 NIPR 13 38.07 0.49 19.72 0.40 40.78 0.29 99.75 78.7 48.1 

NWA2236 NIPR 28 42.38 0.38 3.21 0.45 53.91 0.28 100.64 96.8 7.0 

NWA 4471 SCMO 10 38.75 0.49 19.92 0.39 39.92 0.29 99.76 78.1 50.1 

NWA 4509 SCMO 10 39.06 0.75 19.73 0.41 40.49 0.37 100.80 78.5 48.0 

NWA 4511 SCMO 10 38.80 0.54 20.32 0.40 40.03 0.31 100.40 77.8 50.7 

NWA 4512 SCMO 10 39.47 0.71 19.75 0.40 39.95 0.37 100.67 78.3 48.2 

NWA 4513 SCMO 10 40.82 0.59 9.08 0.43 48.52 0.30 99.74 90.5 20.8 

NWA 4516 SCMO 10 39.19 0.67 17.38 0.41 42.28 0.32 100.26 81.3 41.5 

NWA5555 SCMO 10 41.07 0.62 8.89 0.45 49.36 0.31 100.72 90.8 19.5 

NWA 5602 SCMO 10 38.60 0.72 19.32 0.41 40.88 0.35 100.28 79.0 46.3 

NWA5884 SCMO 10 39.32 0.70 19.36 0.40 39.92 0.32 100.06 78.6 47.4 

NWA6056 SCMO 10 40.26 0.75 14.27 0.44 44.73 0.39 100.87 84.8 31.8 

NWA 7349 SCMO 10 38.54 0.39 21.55 0.41 39.29 0.23 100.41 76.5 51.3 

NWA 7630 SCMO 10 38.89 0.74 19.26 0.41 40.78 0.33 100.40 79.1 46.6 

NWA 7686 SCMO 10 40.88 0.64 8.65 0.45 49.16 0.34 100.15 91.0 19.1 

NWA 7880 SCMO 10 38.82 0.74 19.69 0.40 40.58 0.28 100.54 78.6 49.2 

NWA 8049 SCMO 10 39.85 0.71 14.66 0.42 44.11 0.37 100.11 84.3 34.5 

Y-981810 NIPR 18 38.64 0.55 20.05 0.39 40.54 0.35 100.51 78.3 50.2 

 491 

492 
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 493 

Table 3. Iron isotopic compositions of international standards obtained during the course of this study 494 

in Saint Louis and in Plouzané, and compared with literature values. (N# = number of runs of the same 495 

solution). 496 

  N# δ
56

Fe 95% C.I. δ
57

Fe 95% C.I. 

BIR1      

Plouzané, average (n=6)  0.073 ±0.017 0.116 ±0.013 

      

Wang et al. (2012)  0.043 ±0.016 0.058 ±0.026 

Craddock & Dauphas (2011)  0.053 ±0.015 0.087 ±0.023 

      

BHVO2      

Plouzané, average (n=14)  0.117 ±0.011 0.181 ±0.023 

      

Wang et al. (2012)  0.102 ±0.012 0.159 ±0.018 

Craddock & Dauphas (2011)  0.114 ±0.011 0.174 ±0.016 

      

Allende USNM3529     

Plouzané #1 5 0.015 ±0.015 0.014 ±0.069 

Plouzané #2 5 0.021 ±0.035 -0.019 ±0.039 

Plouzané, average (n=2)  0.018  -0.003  

      

Craddock & Dauphas (2011)  -0.007 ±0.012 0.003 ±0.019 

      

AC-E      

Plouzané #1 5 0.316 ±0.025 0.501 ±0.065 

      

Wang et al. (2012)  0.313 ±0.018 0.457 ±0.028 

Craddock & Dauphas (2011)   0.320 ±0.010 0.478 ±0.015 

 497 

498 
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 499 

Table 4. Iron isotopic compositions of unbrecciated and trachyandesitic ureilites. 500 

  lab. N# δ
56

Fe 95% C.I. 
57

Fe 95% C.I. 

Fall       

Novo Urei #1 St Louis 9 0.024 ±0.030 0.027 ±0.050 

Novo Urei #2 St Louis 9 0.039 ±0.038 0.084 ±0.057 

       

Northwest Africa finds      

El Gouanem St Louis 9 0.068 ±0.028 0.085 ±0.052 

NWA 2236 Plouzané 6 0.076 ±0.017 0.129 ±0.047 

NWA 4471 Plouzané 8 0.086 ±0.021 0.133 ±0.033 

NWA 4509 St Louis 9 0.024 ±0.033 0.060 ±0.058 

NWA 4511 #1 Plouzané 8 0.051 ±0.032 0.073 ±0.052 

NWA 4511 #2 St Louis 8 0.023 ±0.032 0.062 ±0.059 

NWA 4512 St Louis 8 0.046 ±0.032 0.082 ±0.059 

NWA 4513 St Louis 9 0.054 ±0.038 0.098 ±0.057 

NWA 4516 Plouzané 9 0.047 ±0.030 0.073 ±0.044 

NWA 5555 Plouzané 7 0.053 ±0.031 0.081 ±0.047 

NWA 5602 Plouzané 10 0.043 ±0.029 0.065 ±0.049 

NWA 5884 Plouzané 7 0.057 ±0.017 0.087 ±0.028 

NWA 6056 #1 Plouzané 5 0.040 ±0.025 0.027 ±0.027 

NWA 6056 #2 Plouzané 7 0.054 ±0.021 0.080 ±0.035 

NWA 7349 Plouzané 8 0.059 ±0.018 0.094 ±0.027 

NWA 7630 Plouzané 7 0.081 ±0.026 0.124 ±0.037 

NWA 7686 #1 Plouzané 5 0.090 ±0.017 0.117 ±0.066 

NWA 7686 #2 Plouzané 7 0.067 ±0.029 0.103 ±0.047 

NWA 7880 Plouzané 6 0.040 ±0.022 0.063 ±0.030 

NWA 8049 Plouzané 7 0.067 ±0.031 0.109 ±0.055 

       

Antarctic finds       

A-881931 Plouzané 5 0.109 ±0.039 0.209 ±0.062 

ALHA 77257 Plouzané 6 0.058 ±0.030 0.079 ±0.057 

ALH 82130 Plouzané 8 0.044 ±0.034 0.053 ±0.045 

EET 83225 Plouzané 6 0.035 ±0.026 0.038 ±0.067 

LAP 03587 #1 Plouzané 7 0.035 ±0.030 0.075 ±0.016 

LAP 03587 #2 St Louis 9 0.055 ±0.033 0.082 ±0.058 

LAR 04315 Plouzané 6 0.059 ±0.029 0.088 ±0.057 

MET 01085 Plouzané 6 0.023 ±0.023 0.036 ±0.055 

Y-791538 Plouzané 6 0.071 ±0.018 0.121 ±0.045 

Y-981810 Plouzané 5 0.077 ±0.015 0.125 ±0.073 

       

Other finds       

Kenna  St Louis 9 0.009 ±0.030 0.030 ±0.049 

Goalpara #1 St Louis 9 0.048 ±0.030 0.095 ±0.049 

Goalpara #2 St Louis 9 0.056 ±0.038 0.092 ±0.057 

       

Ureilitic trachyandesite      

ALM-A #1 Plouzané 5 0.095 ±0.032 0.155 ±0.066 

ALM-A #2 Plouzané 4 0.096 ±0.019 0.107 ±0.045 

ALM-A #3 Plouzané 8 0.105 ±0.023 0.159 ±0.038 

 501 
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 504 
 505 
Figure 1. Maps of Mg, Fe and S of Northwest Africa 8049, a typical ureilite, showing the zoning of the olivine 506 
grains (Ol), the homogeneity of the pigeonite (Pg), and the repartition of metal (Mt - mainly interstitial and in 507 
tiny inclusions into olivine) and sulfides (Sulf.). 508 
 509 
 510 
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 511 
 512 
Figure 2. Plots of molar Fe/Mn ratios in olivine cores, 

17
O (Clayton and Mayeda, 1996) and 

56
Fe in the bulk 513 

rocks vs. the composition of the olivine cores (data from Table 2, and mainly from Downes et al. (2008), 514 
Singletary and Grove (2003), Goodrich et al. (2006, 2014) and references therein).  515 
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 516 
 517 

 518 
 519 
Figure 3. Iron isotope frequency distributions of chondrites (Craddock et al., 2013), ureilites and ALM-A, a 520 
ureilitic lava (this work), brachinites and GRA 06128/9, a brachinitic melt (Wang et al., 2014), and olivines from 521 
main group pallasites (Weyer et al., 2005). 522 
 523 



23 

 

 524 
 525 

 526 
Figure 4. Ternary diagram showing the proportions of Fe hosted in the silicates, in metal and in sulfides for 527 
ureilites and non-carbonaceous chondrites (the proportions were estimated from the analyses compiled by Yanai 528 
et al.,1995). 529 
 530 
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 531 
 532 
Figure 5. Bulk-rock Mg# values vs. olivine-core compositions for the ureilites analyzed in Plouzané. 533 
 534 
 535 
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 536 
 537 

Figure 6. Evolution of the isotopic compositions of residual lithologies as a function of the extraction of a Fe-538 
FeS melt with a eutectic composition. Starting assemblages have a 

56
Fe = 0 ‰ and the Fe and S contents of 539 

selected chondritic types (Wasson and Kallemeyn, 1988). The S abundance in the average ureilite is from 540 
Warren et al. (2006). A protolith with S and Fe abundances similar to average CM can account for the ureilite 541 
features, but this solution is not unique. Notice that the protolith of the ureilites is not a known carbonaceous 542 
chondrite (Warren, 2011). 543 
 544 


