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Abstract Increasing interest in use of GRACE satellites and a variety of new products to monitor changes
in total water storage (TWS) underscores the need to assess the reliability of output from different products.
The objective of this study was to assess skills and uncertainties of different approaches for processing
GRACE data to restore signal losses caused by spatial filtering based on analysis of 1� 3 1� grid-scale data
and in 60 river basins globally. Results indicate that scaling factors from six LSMs, including GLDAS-1 four
models (Noah2.7, Mosaic, VIC, and CLM 2.0), CLM 4.0, and WGHM, are similar over most of humid, subhumid,
and high-latitude regions but can differ by up to 100% over arid and semiarid basins and areas with inten-
sive irrigation. Temporal variability in scaling factors is generally minor at the basin scale except in arid and
semiarid regions, but can be appreciable at the 1� 3 1� grid scale. Large differences in TWS anomalies from
three processing approaches (scaling factor, additive, and multiplicative corrections) were found in arid and
semiarid regions, areas with intensive irrigation, and relatively small basins (e.g., �200,000 km2). Further-
more, TWS anomaly products from gridded data with CLM4.0 scaling factors and the additive correction
approach more closely agree with WGHM output than the multiplicative correction approach. This compre-
hensive evaluation of GRACE processing approaches should provide valuable guidance on applicability of
different processing approaches with different climate settings and varying levels of irrigation.

1. Introduction

Total water storage (TWS) change is defined as changes in water stored on the surface (e.g., lakes and reser-
voirs, rivers, and snow water equivalent), over the entire soil profile, and in groundwater. Traditional obser-
vations of TWS components (e.g., surface water storage (SWS) change, soil moisture storage (SMS) change,
and groundwater storage (GWS) change) are made at point scales. Land surface models (LSMs) or hydrolog-
ical models can simulate components of TWS changes; however, these models often lack processes to simu-
late some important components, e.g., deep SMS and GWS changes [Rodell et al., 2004]. In addition, large
variability in simulated water balance components among different models suggests a high level of uncer-
tainty in some components, e.g., soil moisture during extremely dry conditions [Long et al., 2013] and evap-
otranspiration during extremely wet conditions [Long et al., 2014]. Furthermore, it is difficult to evaluate the
reliability of TWS change and its components from LSMs due to the lack of observations at appropriate
scales.

Since its launch in March 2002, Gravity Recovery and Climate Experiment (GRACE) satellite-observed TWS
changes have been widely used to evaluate groundwater depletion in major aquifers [e.g., Feng et al., 2013;
Rodell et al., 2009; Scanlon et al., 2012b; Strassberg et al., 2007], monitor droughts [e.g., Chen et al., 2010b;
Leblanc et al., 2009; Long et al., 2013; Tourian et al., 2015], and floods [e.g., Chen et al., 2010a; Reager and
Famiglietti, 2009], and in data assimilation for improving LSMs [e.g., Eicker et al., 2014; Houborg et al., 2012;
Lo et al., 2010]. Because GRACE data are noisy, processing is required (truncating high degree and order of
the spherical harmonic (SH) solutions and further filtering) to reduce noise; however, truncation and filtering
also attenuate some of the signal [Eicker et al., 2014]. Signal restoration for basin-scale studies generally
includes bias and leakage corrections before applying GRACE data to resolve TWS changes, in most cases,
in combination with synthetic data, e.g., global output of LSMs or based on hypotheses [Swenson and Wahr,
2002]. GRACE processing may not be a critical issue over large basins (e.g., area� 106 km2) because bias
and leakage offsets each other, but may be problematic for applying GRACE data to smaller basins less than
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the GRACE footprint. The GRACE footprint is estimated to be �200,000 km2 based on the inherent resolu-
tion as a result of the satellite elevation (�450 3 450 km 5�200,000 km2). In addition, it is important to
consider the impacts of different aspects of processing on estimated TWS changes, e.g., varying a priori
LSMs and time periods considered, and climate and basin size to be applied.

There are generally three approaches to restore GRACE TWS change signals. (1) The first approach (the scal-
ing factor approach) calculates a scaling factor for a grid cell or river basin by least squares fit between the
filtered and unfiltered modeled TWS changes from LSMs. The GRACE TWS change is consequently restored
by multiplying the filtered GRACE TWS change with the scaling factor. Traditional GRACE processing
requires expertise in processing the standard GRACE SH geopotential coefficients. The gridded GRACE TWS
anomaly products at a spatial resolution of 1� 3 1� (111 3 111 km �12,300 km2 at the equator) developed
using scaling factors derived from CLM4.0 are extremely valuable data sets because they do not require
additional processing and have greatly popularized application of GRACE data by the hydrological commu-
nity [Landerer and Swenson, 2012; Swenson and Wahr, 2006]. (2) The second approach (the additive correc-
tion approach) uses output from a LSM to add the signal loss between the unfiltered basin function used to
extract TWS signal for a specific region and the filtered basin function using the same filters as applied to
the GRACE data (bias correction), and removes the signal from the area surrounding the basin (leakage cor-
rection) [Klees et al., 2007; Longuevergne et al., 2010]. (3) The third approach (the multiplicative correction
approach) requires calculation of a multiplicative factor that scales the amplitude of the filtered basin func-
tion to that of the unfiltered basin function and applies the multiplicative factor to the difference between
filtered GRACE signal and the leakage [Longuevergne et al., 2010; Swenson and Wahr, 2007; Velicogna and
Wahr, 2006]. Alternate methods for leakage corrections encompass the mascon-type approach [Tiwari et al.,
2009], refocusing methods [Guo et al., 2010], or statistical modeling [Forootan et al., 2014].

The scaling factor approach is the most widely used and has been applied to individual basins or regions
globally, and also to the more recent gridded GRACE TWS anomaly products [e.g., Cai et al., 2014; Pokhrel
et al., 2013; Proulx et al., 2013; Sun, 2013]. However, the scaling factor may be sensitive to the LSM used
because we assume that the LSM represents the actual mass changes but may neglect critical processes,
such as irrigation and lateral water redistribution or storage compartments, such as surface water and
groundwater [Longuevergne et al., 2013; Scanlon et al., 2012b]. Most applications use a single scaling factor
over time; however, scaling factors may vary temporarily because of changes in spatial variability of TWS
inside and outside a basin (typically different for seasonal variations and secular trends [Rodell et al., 2009]).
In addition, performance of the scaling factor approach may vary in basins subject to different climatic forc-
ing or anthropogenic conditions, particularly irrigation. The additive and multiplicative correction
approaches require different assumptions, with the additive correction approach taking advantage of a pri-
ori information on spatial variability from LSMs to compute bias and leakage, and the multiplicative correc-
tion approach assuming uniform spatial distribution of TWS changes within a basin [Longuevergne et al.,
2010]. However, differences in TWS anomalies from the three different approaches have not been system-
atically investigated. With the relatively recent development of the gridded product, it is important to com-
pare TWS anomalies from this approach with output from more traditional processing approaches applied
at the basin scale and also to consider varying climatic, anthropogenic, and basin size conditions.

There are other approaches of correcting bias and leakage in filtered GRACE TWS anomalies through an iter-
ative process without using output from LSMs [e.g., Baur et al., 2009; Chen et al., 2013; Jacob et al., 2012;
Wouters et al., 2008] or a regularization approach [Save et al., 2012]. These forward modeling approaches
have been mostly used in cryosphere studies, and may also be suited for land hydrology studies. Global
analyses of these approaches are still ongoing and will be discussed in the future.

The objectives of this study were therefore to: (1) examine variability in scaling factors with use of different
LSMs (i.e., GLDAS-1 four LSMs, NCAR’ CLM4, and the WaterGAP Global Hydrological Model (WGHM) at the
gridded 1� 3 1� scale and river basin scale); (2) quantify temporal variability in scaling factors at monthly
scale using the GLDAS-1 Noah LSM at the 1� 3 1� scale and river basin scale; and (3) compare TWS anomaly
time series from the scaling factor, additive correction, and multiplicative correction approaches at the basin
scale using the WGHM model TWS output as reference. This study builds on the work of Landerer and Swen-
son [2012] by expanding the number of LSMs considered from 46 in [Landerer and Swenson, 2012] to the 60
LSMs in this analysis. The impact of model dependence and temporal variability in scaling factors has not
been thoroughly evaluated previously. Although different processing approaches have been compared in
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some studies, most comparisons have been restricted to individual basins and none has been done at the
global scale. Global analysis of these algorithms and related products should provide a holistic view of per-
formance of different approaches, uncertainties in GRACE-derived TWS changes, and guidance on appropri-
ate use of different processing approaches for hydrologic studies. As GRACE analysis continually evolves
with the GRACE Follow-On Mission expected to launch in 2017, we need to understand impacts of process-
ing and associated uncertainties to assess reliability of output.

2. Materials and Methods

2.1. GRACE Data and Processing
GRACE SH coefficients from the Center for Space Research (CSR, University of Texas at Austin) release 5
(RL05) were destriped [Swenson and Wahr, 2006], truncated at the maximum degree and order of 60, and fil-
tered using a 300 km Gaussian filter and were subsequently converted into TWS anomalies for 60 river
basins globally (Figure 1 and Table 1) for January 2003 through July 2013. Gridded GRACE TWS anomaly
products at the spatial resolution of 1� 3 1� from SH coefficients provided by CSR, the Jet Propulsion Labo-
ratory (JPL), and German Research Center for Geoscience (GFZ) centers, and scaling factors derived from
NCAR’s CLM4.0 [Landerer and Swenson, 2012] were also obtained for comparison with TWS anomalies from
the additive and multiplicative correction approaches. All these GRACE TWS anomalies were evaluated with
TWS anomalies from the WGHM model (Version 2.2, STANDARD) (see below).

2.2. Land Surface Models
Here we adopted six LSMs to investigate the model dependence, including Noah2.7, Mosaic, VIC, and
CLM2.0 in Global Land Data Assimilation System-1 (GLDAS-1) [Rodell et al., 2004], NCAR’s CLM4.0 [Gent et al.,
2011], and the WaterGAP WGHM2.2 model [Alcamo et al., 2003; Doll et al., 2003; M€uller Schmied et al., 2014].
Temporal variability in scaling factors for 2003 through 2009 was investigated using the GLDAS-1 Noah
model as an example.

There is no GWS component for LSMs in GLDAS-1. Both CLM4.0 and WGHM have a groundwater compart-
ment accommodating natural recharge and discharge. In addition, WGHM2.2 simulates GWS changes
resulting from human activities, e.g., irrigation. In this study, WGHM TWS changes are considered as a refer-
ence for comparison with the three approaches to restore GRACE signals because WGHM2.2 comprehen-
sively considers water storage changes in surface water, soil layers, and aquifers, and accommodates
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Figure 1. Sixty river basins globally from the Simulated Topological Networks (STN-30p) examined in this study, containing the 46 basins selected in Landerer and Swenson [2012]. Basins
ID and corresponding names are provided in Table 1.
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Table 1. Characteristics of Global River Basins Studieda

Basin ID Name Area (km2) AI Climate
TWSa

(mm)
TWSsa

(mm)
Total Error

(mm) STNR

1 Amazon 5,854,000 1.27 H 211.4 13.5 12.5 79.1
2 Nile 3,826,000 0.29 SA 41.9 6.0 8.5 17.3
3 Congo 3,699,000 0.89 H 50.8 16.0 13.0 26.6
4 Mississippi 3,203,000 0.68 H 62.6 9.9 8.0 36.2
5 Ob 3,026,000 0.74 H 64.0 9.5 6.5 27.0
6 Parana 2,664,000 0.71 H 75.6 6.6 16.6 22.7
7 Yenisei 2,579,000 0.82 H 52.7 13.8 7.1 20.5
8 Lena 2,442,000 0.78 H 41.4 13.5 9.5 27.0
9 Niger 2,240,000 0.32 SA 88.4 18.3 12.6 17.1
10 Aral 2,148,000 0.30 SA 46.3 3.4 5.2 28.2
11 Tamanraset 1,818,000 0.02 A 2.2 1.2 5.9 2.3
12 Changjiang 1,794,000 0.98 H 58.0 12.1 15.5 22.8
13 Amur 1,755,000 0.77 H 10.0 5.8 6.9 22.9
14 Mackenzie 1,695,000 0.76 H 57.2 7.3 11.9 19.1
15 Ganges 1,628,000 0.90 H 139.9 46.6 21.6 31.7
16 Volga 1,476,000 0.94 H 80.7 6.4 14.6 22.0
17 Zambezi 1,364,000 0.54 SH 147.0 33.9 20.0 22.1
18 Missouri 1,352,000 0.49 SA 48.2 8.4 8.4 25.5
19 Indus 1,143,000 0.37 SA 22.3 25.2 18.2 11.5
20 Orinoco 1,039,000 1.33 H 195.0 44.8 25.2 41.6
21 Murray 1,032,000 0.35 SA 19.9 4.6 13.5 12.5
22 Yukon 856,000 0.68 H 78.3 9.4 18.4 16.2
23 Senegal 847,000 0.16 A 43.0 11.7 11.3 9.7
24 Tigris 823,000 0.28 SA 91.6 4.7 12.3 21.8
25 Colorado 808,000 0.25 SA 37.3 3.0 9.4 9.6
26 Huanghe 795,000 0.50 SH 23.5 7.2 10.8 11.9
27 Danube 788,000 0.92 H 86.6 4.8 17.9 18.9
28 Mekong 759,000 1.02 H 214.4 19.9 28.5 30.5
29 Columbia 732,000 0.68 H 103.2 12.4 16.1 20.3
30 Okavango 701,000 0.29 SA 41.2 10.4 20.9 4.6
31 Kolyma 666,000 0.75 H 48.2 12.1 15.1 16.8
32 Arkansas 544,000 0.54 SH 46.8 3.6 15.1 12.5
33 Dnieper 500,000 0.80 H 75.0 2.7 19.7 11.9
34 Zhujiang 450,000 1.18 H 100.2 16.1 31.2 15.6
35 Don 423,000 0.62 SH 89.2 3.9 19.9 14.8
36 Limpopo 420,000 0.33 SA 33.0 11.2 16.5 10.0
37 Irrawaddy 406,000 1.24 H 107.6 15.8 41.6 5.9
38 Indigirk 334,000 0.73 H 34.2 9.1 17.1 10.0
39 Pechora 314,000 1.24 H 100.1 26.3 27.1 11.0
40 Godavari 312,000 0.64 SH 176.2 54.1 34.5 14.1
41 Ural 296,000 0.37 SA 69.4 2.8 16.4 9.8
42 N. Davina 288,000 1.11 H 88.1 12.4 31.4 7.0
43 Huai 244,000 0.73 H 45.3 28.8 28.6 10.1
44 Fraser 238,000 0.97 H 163.0 17.0 32.4 15.5
45 Anadyr 226,000 1.00 H 90.4 17.0 17.2 13.6
46 Olenek 223,000 0.75 H 44.4 15.4 21.7 5.7
47 Chubut 197,000 0.23 SA 66.1 9.7 29.1 8.4
48 Rufiji 187,000 0.62 SH 124.2 15.2 32.4 13.1
49 Taz 171,000 1.34 H 101.8 39.5 34.4 6.6
50 Pyasina 164,000 1.35 H 93.8 33.3 27.6 7.7
51 Central Valley 156,000 0.55 SH 128.1 7.5 25.2 14.2
52 Essequibo 151,000 1.17 H 153.2 45.2 62.6 8.0
53 Koksoak 150,000 1.69 H 67.5 18.5 33.7 5.3
54 Loire 118,000 0.88 H 82.7 12.5 34.8 7.8
55 Narmada 114,000 0.64 SH 190.5 72.7 51.7 8.6
56 Flinders 110,000 0.27 SA 44.7 18.8 26.2 4.7
57 Cunene 98,000 0.40 SA 151.2 27.5 45.6 4.2
58 Douro 97,000 0.64 SH 77.5 16.2 35.1 5.1
59 Barito 74,000 2.02 H 70.9 28.4 48.3 4.8
60 Gambia 72,000 0.46 SA 152.8 39.2 36.6 7.9

aP denotes mean annual precipitation. The aridity index (AI, mean annual precipitation/mean annual potential evapotranspiration) is
available at the Consultative Group for International Agricultural Research Consortium for Spatial Information (CGIAR CSI) (http://www.
cgiar-csi.org/data/globalaridity-and-pet-database). Climate of the river basins is categorized as humid (AI> 0.65), subhumid (AI� 0.65
and> 0.5), semiarid (AI� 0.5 and> 0.2), arid (AI� 0.2 and> 0.05), and hyperarid (AI� 0.05). In this study, arid and hyperarid are
grouped into arid. TWSa and TWSsa are annual and semiannual variability of TWS changes using the CSR gridded product and least
squares fit using sine and cosine functions. Total errors are the standard deviation of time variable measurement error and leakage
error. STNR represents signal-to-noise ratio of TWSa to total error.
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human impacts on SWS and GWS changes. Detailed descriptions about these LSMs are provided in the sup-
porting information.

2.3. Studied River Basins
Sixty river basins globally representing a broad range of climate, land cover, and extent of irrigation were
selected in this study. These 60 basins include all 46 basins used in the analysis of gridded and basin-scale
GRACE products in Landerer and Swenson [2012]. More basins in our study were selected especially those in
relatively dry areas to provide a more comprehensive evaluation of difference approaches for deriving
GRACE TWS changes. Characterization of climate of the selected basins is based on the mean annual aridity
index (AI, the mean of annual precipitation over annual potential evapotranspiration, see a global map of AI
in Figure S1) [Trabucco and Zomer, 2009], including humid (AI> 0.65), subhumid (AI� 0.65 and> 0.5), semi-
arid (AI� 0.5 and> 0.2), arid (AI� 0.2 and> 0.05), and hyperarid (AI� 0.05). In this study, arid and hyperarid
are grouped into arid. Precipitation from the TRMM Multisatellite Precipitation Analysis (TMPA 3B43) Prod-
uct (lat: 50�S–50�N; long: 180�W–180�E) [Huffman et al., 2007] or GLDAS-1 forcing (lat: 60�S–90�N; long:
180�W–180�E) [Rodell et al., 2004] were extracted to calculate monthly precipitation anomalies for these
basins.

Based on these criteria, 57% of the river basins (34) are categorized as humid climate, 15% (9) as subhumid
climate, 25% (15) as semiarid, and 3% (2) as arid (including the hyperarid). Some of the basins have been
subjected to large-scale groundwater depletion from irrigation, including the upper reach of the Arkansas
basin (the Central High Plains), Sacramento-San Joaquin River basin in California, the Tigris basin in the Mid-
dle East, and the lower reach of the Indus River [Rodell et al., 2009; Scanlon et al., 2012a, 2012b; Voss et al.,
2013].

2.4. Scaling Factor Approach
For the scaling factor approach [Landerer and Swenson, 2012], GRACE TWS anomalies are derived by two
steps. First, GRACE SH coefficients are destriped, truncated at the maximum degree and order of 60, and fil-
tered using a 300 km Gaussian filter. After performing a series of low-pass filtering in the spectral domain,
the filtered SH coefficients were converted to the spatial domain at a resolution of 1� 3 1�. Second, the scal-
ing factors (k), termed gain factors in [Landerer and Swenson, 2012], were computed by applying the same
filters as applied to GRACE data to a numerical LSM (NCAR’s CLM4). The filtered GRACE TWS anomalies at a
grid cell were corrected by multiplying with the scaling factor for the same grid cell. Spatially averaging
TWS anomalies over an arbitrary region with an area� 200,000 km2 is still required when using the gridded
products. Applying filtering to a synthetic mass distribution is sometimes referred to as ‘‘forward modeling’’
and generates a mass distribution similar to what GRACE sees.

In short, the scaling factor is the multiplicative factor that minimizes the difference between the filtered and
unfiltered modeled monthly TWS anomalies for a specific region of interest at both 1� 3 1� and river basin
scales (equation (1)).

M5
XT

i51

�Sm;i2k�̂Sm;i

� �2
(1)

where M is the objective function that we want to minimize; �Sm;i and �̂Sm;i are the unfiltered and filtered
modeled TWS anomalies, respectively, for month i; k is the scaling factor derived through a least squares
regression; T is the number of months used (January 2003 through December 2009), i.e., 84 months consist-
ent with the time period in Landerer and Swenson [2012]. The scaling factors are provided separately from
the filtered gridded GRACE data on the JPL website (http://grace.jpl.nasa.gov/data/gracemonthlymassgrids-
land/). A schematic of GRACE data processing using the scaling factor approach is shown in Figure S2 (sup-
porting information). The scaling factor ranges from negative values up to 220, with 90% ranging from 0.3
to 3.0 based on GLDAS-1 Noah (see Figure 2 in section 3.1.1). Spatially, variability in scaling factors is gener-
ally smooth, with some pixels showing up. Estimation of scaling values relies on a priori LSM quality to
model both pixel and large-scale behavior. Computed values need to be compared to references for inter-
pretation (Table 2). At grid cell scale, the scaling factor translates the modeled pixel behavior with respect
to a large-scale behavior. For example, if the pixel behavior is exactly similar to the large scale, then k 5 1.
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Values beyond the 90% range, i.e., negative values, below 0.3, or larger than 3.0 should be carefully
interpreted.

Errors in the restored TWS anomalies include GRACE Level 1 (L1) measurement error in monthly gravity field
solutions [Wahr et al., 2006] and leakage error (leakage error here includes both bias and leakage errors
defined in our study, see section 2.5). The leakage error results from the deviation from the filtered TWS
anomalies applied with the scaling factors and original TWS anomalies from a LSM [Landerer and Swenson,
2012]. Both measurement error and leakage error for each grid cell are available at the JPL website (http://
grace.jpl.nasa.gov/data/gracemonthlymassgridsland/). Measurement and leakage errors are assumed to be
constant over time for each grid cell in the gridded products and are summed in quadrature to estimate

the total error for each grid.

At the basin scale, measurement or leakage errors of a
study basin are spatially correlated and should be
lower than those calculated by simply averaging errors
of grid cells within a basin. Therefore, to obtain a more
realistic error estimate for a study basin based on mea-
surement error or leakage error at grid cells for the
basin, an approach accommodating spatial correlation
of errors was used following [Landerer and Swenson,
2012]:

rmbðlbÞ5
ffiffiffiffiffiffiffi
var
p

=N (2)

Table 2. Interpretation of Magnitudes of Scaling Factors in
Terms of Pixel Behavior With Respect to Large-Scale Mean

Scaling Factor
Value Interpretation

k< 0 Out of phase
k 5 0 Uncorrelated behavior
0< k< 0.3 Leakage prominent (e.g., desert)
0.3< k< 1 Regular, lower amplitude at pixel,

leakage important
1 Exact same behavior
1< k< 3.0 Regular, larger amplitude of pixel
k> 3.0 Region close to ocean (average with 0),
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Figure 2. Spatial distributions of scaling factors (spatial resolution 1� 3 1�) across the global land surface derived from GLDAS-1 four LSMs (Noah2.7, Mosaic, VIC, and CLM2.0),
WGHM2.2, and the scaling factors generated by CLM4.0 provided by the JPL website. Scaling factors greater than 3 were set to 3 whereas negative scaling factors were set to 0.
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where rmb is the measurement error of a basin; rlb is the leakage error of a basin; N is the number of grid
cells in a basin; subscripts i and j represent two different grid cells in a basin; var is the measurement or leak-
age error variance of mean TWS anomalies of a basin; w is the area weight at each grid cell in the basin and
simplified to 1/N under the assumption of equal contribution from each grid cell to the basin average TWS
anomalies; cov is the covariance between two grid cells; r is the standard deviation of measurement or
leakage error of a grid cell; di,j is the distance between two grid cells; d0 is a decorrelation-length scale, i.e.,
300 km for measurement error and 100 km for leakage error; a is Earth’s radius (6371 km); long and lat
denote longitude and latitude of a grid cell.

To investigate the dependence of scaling factors on LSMs, TWS anomalies for January 2003 to December
2009, consistent with the time period in Landerer and Swenson [2012] from Noah2.7, Mosaic, VIC, and CLM2.0
in GLDAS-1 and WGHM2.2 were used to create scaling factors at both 1� 3 1� and river basin scales globally.
In combination with the scaling factors from NCAR’s CLM4.0, there are six sets of scaling factors examined in
this study. To investigate temporal variability in scaling factors, monthly scaling factors at 1� 3 1� and basin
scales for January 2003 to December 2009 were derived from the Noah model as an example. The coefficient
of variation (CV) was used to quantify variability in scaling factors in the model and over time.

2.5. Additive Correction Approach
To extract TWS anomalies for a specific region of interest R with an area of R0, a basin function h(X) (referring
to the red rectangle in Figure S3a) is defined as 1 inside the basin (R) and 0 outside the basin:

hðXÞ5
1 if X 2 R

0 if X 2 X2R

(
(6)

where X is position on the Earth’s surface X 5 (h,w) and X represents the entire Earth surface. If the maxi-
mum degree and order of SH coefficients (Lmax) approaches infinity, the basin function approaches its ideal
shape. However, for finite Lmax (degree 60 in this study), the basin function only approximates the exact
h(X). The effective basin function (EBF) ĥ is defined as the spatial function of the sphere and its correspond-
ing SH coefficients have the same Lmax and filtered with the same filter as applied to GRACE data (referring
to the black curve in Figure S3a). The EBF also describes the ability of GRACE to determine an average water
storage change within the basin of interest [Longuevergne et al., 2010]. Attributes of the EBF are twofold: (1)
mean value of the EBF over the basin of interest is no longer utility, resulting in a biased estimate; and (2)
the EBF is not zero outside the basin, making the estimates sensitive to water storage changes outside the
basin (leakage).

The filtered GRACE TWS anomaly for a specific basin of interest (Figure S3b) can therefore be written as
[Wahr et al., 1998]:

�̂S05
1

R0

ð
X

�̂S � hdX (7)

where �̂S is the filtered GRACE global TWS anomaly.

The additive correction approach uses output from an LSM, GLDAS Noah in this study, as a priori knowledge
to estimate bias and leakage that can be numerically computed according to [Klees et al., 2007]:

SB5
1

R0

ð
R

S0ðh2ĥÞdX (8)
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SL5
1

R0

ð
X2R

Sleak � ĥdX (9)

where SB and SL are bias and leakage, respectively; S0 and Sleak are assumed to reflect true water storage
changes within and outside a study basin approximated by output from a LSM. Based on the definition of the
additive correction approach, the final estimate of GRACE TWS anomaly is the filtered GRACE TWS anomaly,
plus the bias (signal loss in a basin, referring to the gray area in Figure S3a), and minus the leakage (signal
gain outside a study basin, referring to the blue area in Figure S3a), given as follows [Klees et al., 2007]:

�S05�̂S01SB2SL (10)

A schematic on the additive approach is provided in Figure S4. Errors in GRACE-derived TWS anomaly from the
additive approach include: (1) GRACE measurement error and (2) propagation of bias/leakage correction [Lon-
guevergne et al., 2010] due to uncertainties in a priori SMS changes and/or missing components (e.g., deep
SMS or GWS changes) in LSMs. Uncertainties in SMS changes were caused by missing components of LSMs
(e.g., deep SMS (>2 m), redistribution of soil moisture due to irrigation, and GWS changes) and were quantified
from the standard deviation of SMS changes among four LSMs (i.e., Noah, Mosaic, VIC, and CLM) in GLDAS-1.
Uncertainty quantification for the additive correction approach needs to be further refined in the future to
include the impact of missing components on the leakage correction. However, it would not impact most
basins examined in this study because intensive irrigation is relatively localized (see the last part of section 2.3).

2.6. Multiplicative Correction Approach
The multiplicative correction approach assumes a uniform distribution of TWS changes within a basin [Chen
et al., 2005; Fenoglio-Marc et al., 2006; Swenson and Wahr, 2007; Velicogna and Wahr, 2006], but considers
the leakage error outside the basin. The multiplicative factor km is calculated as follows:

km5
1

R0

ð
R

ĥdX

0
@

1
A21

(11)

The corrected GRACE TWS anomaly based on the concept of the multiplicative correction approach can be
computed as:

�S05ð�̂S02SLÞ � km (12)

A schematic showing the processing of the multiplicative approach is given in Figure S5. It is worthwhile to
emphasize the assumptions of the three approaches examined. The scaling factor approach assumes that
the scaling factors from a LSM can correct for the bias and leakage effects integrally. The additive correction
approach makes use of output from a LSM to correct for bias and leakage separately. The multiplicative cor-
rection approach partially uses output from LSMs for leakage correction and assumes uniform distribution
of TWS changes within a basin. It is also emphasized that GLDAS-1 four LSMs and WGHM are used for gen-
erating scaling factors for examining the model dependence of the scaling factor approach (referring to sec-
tion 3.1 in the following); the GLDAS-1 Noah model was adopted to examine the temporal variability model
because it is one of the most widely used LSMs for GRACE signal restoration and groundwater disaggrega-
tion (referring to section 3.2); and GLDAS-1 Noah output was also taken as the a priori information for bias
and leakage correction for the additive correction approach, and leakage correction for the multiplicative
correction approach, both of which were compared with the scaling factor approach represented by
CLM4.0 scaling factors and WGHM (referring to section 3.3). Again, the WGHM model output was consid-
ered as a reference for the three approaches for GRACE signal restoration, though uncertainties exist in the
hydrological model, either [Haddeland et al., 2014; Schewe et al., 2014].

3. Results and Discussion

3.1. Model Dependence of Scaling Factor
3.1.1. Global Scale at 1� 3 1� Spatial Resolution
Magnitudes and spatial patterns of six sets of scaling factors were compared (Figure 2). In general, scaling
factors from all the LSMs examined are similar over most grid cells, with 53% of the land surface showing
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CV (defined as the ratio between the standard deviation and the mean of scaling factors among models,
and interpretable as a relative uncertainty)� 0.3 (i.e., 30% uncertainty) and 75% showing CV� 0.5 (Figure
3). However, 12% of the land surface shows CV> 0.8 and even 8% show CV> 1. Relatively low dispersion in
scaling factors was found at high latitudes, e.g., Russia and Europe, and humid areas, e.g., Central Amazon,
eastern North America, and Central Africa (Figure 3). In contrast, large disparities in scaling factors (e.g.,
CV� 0.6) were found in relatively dry areas, e.g., the southern U.S. and Mexico, southwest and southern
South America, North Africa, Middle East, Northwest China, Mongolia, and Central-South Australia where
annual precipitation is generally �200 mm. For areas with intensive irrigation, scaling factors derived from
different LSMs also show large differences, including the central U.S. (the central High Plains Aquifer), the
Tigris and Euphrates region, North India region, and North China Plain. Detailed analyses of scaling factors
at the basin scale and causes of variability are described in the following section.

The six LSMs generated similar global mean scaling factors ranging from 1.23 for CLM4.0 to 1.38 for Noah (Fig-
ure 4), which confirms that the processes of destriping (decorrelation), truncation, and filtering result in signal
loss over most of the land surface; the filtered GRACE signal therefore needs to be compensated by multiply-
ing by a scaling factor that is generally >1.0. However, there are areas with scaling factors <1.0, mainly in rela-
tively dry areas with signal gain from the surrounding regions, e.g., the central and west U.S., southwestern
South America, North Africa, Middle East, Central Asia, Northwest China, Mongolia, and Southeast/South Aus-
tralia. The low-pass filtering process over these regions tends to amplify the signal; therefore, signal restora-
tion is to remove signal gain (error from leakage into the basin) by multiplying by a scaling factor <1.0.

Furthermore, the WGHM model generated the most heterogeneous scaling factors with the highest stand-
ard deviation of 1.61 of all LSMs. High spatial variability in TWS changes from WGHM is attributed to vari-
ability caused by human impacts on water storage changes related to agricultural, industrial and municipal
water use which are not accounted for in GLDAS-1 LSMs. Standard deviations in scaling factors for the other
five LSMs range from 0.92 for CLM4.0 to 1.43 for VIC. In terms of asymmetry in probability distributions
(skewness), all LSMs are positively skewed, i.e., the mass of the probability distribution is concentrated on
the left, with a longer tail to the right. Large scaling factors appear when local-scale behaviors differ from
regional-scale behaviors, e.g., river storage changes and pumping in a small groundwater system. Skewness
of scaling factors ranges from �3.5 for CLM4.0 to �8.0 for VIC. Relatively higher values of scaling factors
(k> 3) are localized and linked to a large mass concentration, with very high variations in TWS being filtered
out during low-pass filtering, including areas along surface water bodies (e.g., the Nile and lower Yangtze)
shown in CLM4.0 and areas with intensive irrigation (e.g., the upper Arkansas basin, the Middle East, North
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Figure 3. Coefficient of variation (CV) of scaling factors (1� 3 1�) derived from GLDAS-1 four LSMs (Noah2.7, Mosaic, VIC, and CLM2.0), WGHM2.2, and CLM4.0 across the global land sur-
face. CVs greater than 1 were set to 1.
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India, and North China Plain) shown in WGHM. Low values (k< 0.3) are located in dry areas adjacent to
regions with higher signal. Negative values mean local out of phase behavior with respect to the surround-
ing areas. In all these cases, the quality of the model (processes and parameterization) to represent small
spatial-scale variability on 1� 3 1� grids is critical and large uncertainties are expected in such regions.

3.1.2. Basin Scale
At the basin scale, CVs of scaling factors for the 60 basins evaluated are generally� 0.3, 53 basins (88%)
with CVs� 0.2, and 47 basins (78%) with CVs� 0.1 (Figure 5). Lower CVs of scaling factors are generally dis-
tributed in large (e.g., basin size� 1,000,000 km2 except Nile, Aral, Tamanraset, Changjiang, Indus, and
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Murray) and/or humid basins, e.g., Amazon (0.04), Zaire (0.02), Mississippi (0.03), Ob (0.04), Parana (0.1), Yeni-
sei (0.05), and Lena (0.06). Relatively small differences in scaling factors reflect similarity in LSM TWS output
[Landerer and Swenson, 2012]. Consistency in scaling factors over large and/or humid basins (CVs� 0.1)
derived from varying LSMs provides confidence in using GRACE data and its signal restoration with the scal-
ing factor approach. Similarity in scaling factors in these large basins may be ascribed to bias and leakage
of GRACE signals generally offsetting each other. Spatially averaging LSM output over a large region tends
to filter out differences among various LSMs, resulting in similar scaling factors. However, this is not the
case for some of the large basins, such as the Changjiang (Yangtze) River basin in China where the scaling
factors range from 1.0 to 1.42 (Table 3). These differences may be related to the interactions between sur-
face water and groundwater due to irrigation that are simplified or treated differently by various LSMs.

The scaling factors are generally much more variable across dry basins, though basin sizes are often enough
for the footprint of GRACE, e.g., Tamanraset (0.3), Nile (0.2), Murray-Darling (0.24), Limpopo (0.27), and Chu-
but (0.26) (Figure 6 and Figure S6). For instance, the Nile basin shows the highest scaling factor of 1.21 from
CLM4.0 but the lowest scaling factor of 0.55 from VIC. Therefore, CLM4.0 indicates signal loss but VIC indi-
cates signal gain during the low-pass filtering process, which results in differences in amplitudes and surely
long-term trends in TWS changes. This is also the case for the Murray-Darling basin where scaling factors
vary from 0.63 (Mosaic) to 1.36 (CLM4.0) resulting in large variations in TWS recovery after the Millennium
drought in 2010 (referring to precipitation anomalies in Figure S6). Differences in scaling factors over these
arid regions are largely attributed to differences in partitioning water between infiltration and evapotranspi-
ration in the LSMs; parameters associated with surface conductance for the land and atmosphere heat flux
exchanges may differ markedly, resulting in large differences in output of TWS changes from LSMs [Long
et al., 2014, 2013].

Variability in scaling factors over humid to arid regions could be explained in part by the signal-to-noise-
ratio (STNR, i.e., seasonality of TWS anomalies fitted using sine and cosine functions over the standard devi-
ation of TWS anomalies). Scaling factor CVs seem to be negatively correlated with the STNR at the basin
scale (Figure 5). This is reasonable because the lower STNR suggests a drier climate with amplified differen-
ces (errors) in partitioning energy and water fluxes among LSMs. Over arid and semiarid basins, the STNR
values for both model output and GRACE are greatly reduced, highlighting the challenge in accurately sim-
ulating hydrological state and flux variables over these regions. The opposite may be true over humid/sub-
humid regions, with generally higher STNRs favoring more consistent patterns among LSMs output.

However, some humid regions also exhibited relatively large variability in scaling factors, e.g., Irrawaddy
(0.22) (Figure S7). For Irrawaddy, WGHM resulted in signal loss (scaling factor 1.35) and CLM4.0 showed a
signal gain (scaling factor 0.67). A potential reason for this may be linked to proximity of basins with high
amplitudes of storage variations, e.g., Irrawaddy (seasonal amplitude of TWS anomalies, TWSa: 107.6 mm)
adjacent to Ganges-Brahmaputra (TWSa: 139.9 mm). To that end, LSM output in some of the humid may not
be consistent and the associated scaling factors should be used with great caution. Deriving scaling factors
from different LSMs provides an additional uncertainty estimate for GRACE signal.

As was expected, basins with intensive irrigation show relatively large differences in scaling factors, attrib-
uted to whether natural and/or human-induced GWS changes are simulated. The Arkansas basin with inten-
sive irrigation in its upper reaches (the Central High Plains) shows a scaling factor CV of 0.15 and the
Sacramento-San Joaquin basin shows a CV of 0.14 (Figure 5). CLM4.0 provides a scaling factor of 0.79 but
WGHM provides a scaling factor of 1.11 for the Arkansas basin (Figure 7). In this case, CLM4.0 indicates that
the leakage is greater than the bias that is primarily due to a higher leakage-in signal in the eastern U.S.
than the central and western U.S. The WGHM model accommodates human-induced groundwater storage
changes over the Arkansas basin and the low-pass filtering process resulted in signal loss. Therefore, a scal-
ing factor of 1.11 is required for signal restoration in the Arkansas basin. The situation is different in the
Sacramento-San Joaquin basin where the six LSMs all indicated that the filtered TWS signal was dampened
due to proximity of the ocean, with scaling factors from all LSMs exceeding 1.0, ranging from 2.67 (CLM4.0)
to 3.66 (WGHM) (Figure 7). Basins with glacier melting also show relatively high scaling factor CVs, e.g.,
Yukon (0.13) ranging from 0.98 (WGHM) to 1.43 (Mosaic) (Figure S8). Different scaling factors suggest varia-
tions in both the seasonal cycles and long-term trends of TWS changes. Specific processing approaches are
therefore imperative for these regions with intensive irrigation or glacial melting, generally unmodeled in a
priori global models, to restore realistic TWS and GWS changes from GRACE and LSMs.
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Scaling factors derived from the Noah model in GLDAS-1 in this study differ slightly from those from Land-
erer and Swenson [2012] (Figure S9) showing a mean absolute percentage difference (MAPD) of 11%, which
may be related to slightly different destriping (decorrelation) filters used in different studies. The point we

Table 3. Scaling Factors From GLDAS-1 Noah2.7 Published in Landerer and Swenson [2012], GLDAS-1 Noah2.7, Mosaic, VIC, and CLM2.0,
and WGHM 2.2 in This Studya

Basin ID Name kLanderer & Swenson kNoah2.7 kMosaic kVIC kCLM2.0 kWGHM2.2 kCLM4.0 STNR

1 Amazon 1.11 1.19 1.21 1.17 1.23 1.11 1.15 79.1
2 Nile NaN 0.74 0.77 0.55 0.67 0.89 1.21 17.3
3 Congo 1.24 1.23 1.22 1.25 1.24 1.20 1.20 26.6
4 Mississippi 1.11 1.13 1.06 1.07 1.11 1.11 1.05 36.2
5 Ob 1.08 1.09 1.11 1.18 1.09 1.16 1.06 27.0
6 Parana 1.38 1.40 1.14 1.49 1.47 1.35 1.27 22.7
7 Yenisei 1.19 1.18 1.07 1.10 1.08 1.00 1.05 20.5
8 Lena 1.21 1.33 1.31 1.29 1.25 1.26 1.12 27.0
9 Niger 0.94 0.81 0.85 0.75 0.73 0.82 0.88 17.1
10 Aral NaN 1.11 1.05 1.09 1.02 1.11 1.04 28.2
11 Tamanraset 0.14 0.32 0.44 0.26 0.24 0.25 0.47 2.3
12 Changjiang 0.88 1.26 1.35 1.38 1.10 1.00 1.42 22.8
13 Amur 1.08 1.24 1.12 1.23 1.32 1.20 1.17 22.9
14 Mackenzie 1.15 1.18 1.15 1.14 1.07 1.21 0.99 19.1
15 Ganges 1.09 1.11 1.14 1.11 1.02 1.06 1.14 31.7
16 Volga 1.16 1.19 1.17 1.18 1.20 1.17 1.07 22.0
17 Zambezi 1.20 1.21 1.19 1.23 1.33 1.12 1.16 22.1
18 Missouri 0.89 0.90 0.87 0.86 0.92 0.95 0.80 25.5
19 Indus 1.34 1.26 1.08 0.99 1.12 1.05 1.29 11.5
20 Orinoco 1.26 1.33 1.35 1.28 1.15 1.29 1.36 41.6
21 Murray 1.02 1.13 0.63 1.17 1.00 0.96 1.36 12.5
22 Yukon 1.40 1.34 1.43 1.16 1.26 0.98 1.10 16.2
23 Senegal NaN 0.64 0.73 0.65 0.56 0.68 0.78 9.7
24 Tigris NaN 1.43 1.44 1.22 1.60 1.38 1.40 21.8
25 Colorado 1.21 1.15 1.07 1.06 1.14 1.09 0.88 9.6
26 Huanghe Nan 1.11 0.93 0.84 0.91 1.12 1.07 11.9
27 Danube 1.17 1.18 1.19 1.16 1.18 1.20 1.28 18.9
28 Mekong 1.39 1.44 1.38 1.41 1.28 1.24 1.70 30.5
29 Columbia 1.36 1.37 1.17 1.35 1.39 1.25 1.17 20.3
30 Okavango 1.24 1.23 1.13 1.13 1.40 0.99 0.74 4.6
31 Kolyma 1.31 1.30 1.31 1.27 1.28 0.98 1.21 16.8
32 Arkansas 1.07 1.06 0.85 0.83 1.06 1.11 0.79 12.5
33 Dnieper NaN 1.13 1.15 1.21 1.19 1.03 1.09 11.9
34 Zhujiang NaN 1.36 1.43 1.36 1.22 1.09 1.53 15.6
35 Don NaN 1.41 1.39 1.40 1.45 1.27 1.27 14.8
36 Limpopo NaN 1.54 0.93 1.48 1.53 0.75 1.21 10.0
37 Irrawaddy 1.12 1.17 1.16 1.04 0.93 1.35 0.67 5.9
38 Indigirk NaN 1.16 1.21 1.10 0.94 1.01 0.98 10.0
39 Pechora NaN 1.31 1.29 1.33 1.37 1.37 1.30 11.0
40 Godavari 1.31 1.33 1.19 1.16 1.05 1.18 1.43 14.1
41 Ural NaN 1.12 1.06 1.08 1.10 1.09 1.09 9.8
42 N. Davina NaN 1.24 1.23 1.18 1.20 1.14 1.04 7.0
43 Huai 1.32 1.41 1.45 1.67 1.14 1.13 1.57 10.1
44 Fraser 1.66 1.69 1.49 1.59 1.53 1.33 1.41 15.5
45 Anadyr 1.66 1.69 1.66 1.63 1.58 1.94 1.49 13.6
46 Olenek NaN 1.20 1.23 1.27 1.17 1.44 1.11 5.7
47 Chubut 1.93 1.90 1.71 2.48 1.39 1.23 2.15 8.4
48 Rufiji 1.25 1.27 1.02 1.27 1.42 1.18 1.34 13.1
49 Taz 1.35 1.36 1.29 1.39 1.26 1.51 1.21 6.6
50 Pyasina 1.59 1.62 1.59 1.51 1.50 1.68 1.29 7.7
51 Central Valley 3.22 2.81 2.74 3.41 2.70 3.66 2.67 14.2
52 Essequibo 1.18 1.18 1.22 1.25 1.15 1.39 1.41 8.0
53 Koksoak 1.69 1.73 1.54 1.56 1.64 1.77 1.37 5.3
54 Loire 1.51 1.58 1.56 1.61 1.56 1.47 1.72 7.8
55 Narmada 1.38 1.40 1.36 1.30 1.02 1.39 1.53 8.6
56 Flinders 1.55 1.54 1.62 1.73 1.62 1.37 1.01 4.7
57 Cunene 1.59 1.61 1.61 1.64 1.66 1.38 2.28 4.2
58 Douro 1.96 1.98 1.85 1.93 2.07 1.74 2.03 5.1
59 Barito 2.47 2.49 2.32 2.49 2.31 2.09 2.55 4.8
60 Gambia 1.46 1.48 1.25 1.39 1.16 1.00 1.68 7.9

aSTNR represents the Signal-To-Noise-Ratio. NaN means no data.
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are trying to make is that the additional LSMs examined in this study provide more comprehensive uncer-
tainty estimates (CV) in scaling factors and that we need to pay special attention to regions with higher CVs.
Furthermore, as stated by Landerer and Swenson [2012], TWS changes from LSMs tend to be dominated by
the seasonal cycle of water storage variations, and may not be suitable for restoring secular trends in GRACE
TWS change time series. Use of TWS anomalies from the scaling factor approach alone to quantify secular
trends in groundwater depletion over areas with intensive groundwater pumping for irrigation may be
inappropriate.

3.2. Temporal Variability in Scaling Factors
Temporal variability in scaling factors was computed from CVs of monthly scaling factor time series for Jan-
uary 2003 to December 2009 for each grid cell using GLDAS-1 Noah. Extreme values, i.e.,<5% or >95%, of
the monthly k samples were excluded from the analysis of CVs. Areas with negative CV values that often
occur in relatively dry climate were also excluded from this analysis below.

3.2.1. Global Scale at 1� 3 1� Spatial Resolution
From a global-scale perspective, 13.5% of the grid cells show CVs� 0.5 and 42%� 1. Temporal variability in
scaling factors was generally lower in humid areas, e.g., the equatorial region, eastern North America, and in
some high-latitude regions, e.g., Europe and Russia (Figure 8). However, 58% of grid cells show CVs> 1.0,
30%> 2.0, and even 19.5%> 3.0. Higher temporal variability in scaling factors is generally found in dry
areas where uncertainty in scaling factors from LSMs has been shown to be high (Figure 3), e.g., North
Africa, the Middle East, North China, Mongolia, and southeast Australia. In addition, some high-latitude
regions also display relatively high temporal variability in scaling factors, e.g., southern South America,
northern North America, and east Russia. Furthermore, areas with intensive irrigation also have temporally
variable scaling factors, e.g., the central High Plains (the upper Arkansas basin), Tigris and Euphrates areas,
Indus basin, and North China Plain. High temporal variability in scaling factors may reflect: (1) local proc-
esses with respect to the large-scale mean that often occur in rivers or narrow mountain ranges, resulting in
local model parameterization errors, and (2) the water cycle driven by episodic localized events (e.g., semi-
arid climate), in contrast to temperate or tropical climates. Monthly scaling factors amplify local (space and
time) variability in storage, and therefore are more sensitive to LSM errors.

3.2.2. Basin Scale
Temporal variability in scaling factors at the basin scale is much lower than that at the grid cell described in
section 3.2.1. Spatially averaging the monthly scaling factors acts as a low-pass filter, resulting in lower tem-
poral variability. Results show 33 basins (55%) with CV values� 0.4, and 23 basins� 0.3. However, 12 basins
(20%) have CV values> 0.7, and even 8 basins (13%) with CV values> 1 (Figure 9).
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Examples of basins with low temporal variability in scaling factors in large basins and/or humid regions
include the Zambezi, Amazon, Volga, Ob, Niger, Ganges, Mississippi, and Yenisei basins where CVs are-
� 0.15 (Figure 9). Relatively lower variability in scaling factors indicates that the relative relationship of
changes in TWS between a river basin and its surrounding region remains stable, including both relatively
steady contributions from climate and human activities (e.g., human water use such as irrigation does not
change substantially over the GRACE period). In this case, scaling factors derived from some LSM should be
valuable in characterizing seasonal cycles in TWS variations. Relatively dry areas generally have high scaling
factor variability, e.g., the Tamanraset (CV 3.94) and Aral (CV 1.57) (Figure 10 and Figure S10), attributed to
precipitation variability showing less seasonality and predictability, likely resulting in large variability in rela-
tive differences in changes in TWS.

Alternatively, temporally uniform scaling factors in heavily irrigated basins, such as the Indus River basin (CV
1.34) and Sacramento-San Joaquin (CV 1.14) (Figure 10 and Figure S10) may be an artifact of the LSM
(Noah) not considering human-induced GWS changes. In this case, separate scaling factors would be
required to restore the natural variability and the long-term trends [Landerer and Swenson, 2012]. Again, the
Yukon basin indicates relatively higher temporal variability (CV 1.4, Figure 10), which may be attributed to
snow accumulation and melting processes that is time variable and may require use of a time varying scal-
ing factor for signal restoration.
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3.3. Comparison of GRACE With WGHM Anomalies
3.3.1. Statistical Results of Comparison
Statistics of the differences between GRACE TWS anomalies (i.e., CSR, JPL, and GFZ gridded products with
CLM4.0 scaling factors and CSR SH coefficients with signal restoration using the additive correction and
multiplicative correction approaches) and WGHM TWS anomalies for the 60 basins are shown in Figures 11
and 12 and Tables S1–S3. Correlations between GRACE and WGHM anomalies are high (r> 0.8) over 40%
(24) of the basins, moderate (r 5 0.7–0.8) over 23% (14) of the basins, and lower (r� 0.6) over 37% (22) of
these basins (Figure 11). The three gridded products (CSR, JPL, and GFZ) with CLM4.0 scaling factors and
the CSR anomalies from the additive correction approach show similar orders of uncertainty with respect to
WGHM TWS output, with medians of correlation coefficient, RSMD, and MAB of 0.8–0.84, 30–40, and 25–
30 mm, respectively (Figure 12). However, GRACE TWS anomalies from the multiplicative correction
approach resulted in the largest deviations from the WGHM TWS output, showing medians of r of 0.6,
RMSD of 64 mm, and MAB of 50 mm. The multiplicative correction approach generally enhances amplitudes
of TWS change signals over small basins (e.g., <200,000 km2) that are mostly higher than the amplitudes of
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TWS anomalies from other correction approaches and WGHM (Figure 11). This results in the TWS anomalies
based on the multiplicative approach having higher uncertainty than other products relative to the WGHM
model from a global perspective.

The primary difference between the multiplicative correction and the other two approaches is the assump-
tion of uniformity in TWS changes within a basin, which is rarely met in reality because of the heterogeneity
of water storage variations. Signal restoration from the scaling factor and additive correction approaches is
based largely on the patterns of TWS variations from LSMs, as opposed to the multiplicative correction
approach with a simple assumption of uniform TWS changes within a basin. This attribute tends to make
TWS anomalies from the scaling factor and additive correction approaches closer to the output from the
WGHM model that is taken as reference in this study. It should be noted that for relatively large basins, e.g.,
areas> 1,000,000 km2 (basins ID number� 21, Figure 11), all of these approaches resulted in similar TWS
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anomalies, showing mean correlation coefficient of �0.8, RMSD of �33 mm, and MAB of �27 mm, though
consistencies between GRACE TWS anomalies and WGHM output may differ to a varying degree. General
similarity in large basins is most likely related to offsets between bias and leakage, reducing the importance
of GRACE signal restoration.

TWS anomalies from the additive correction approach showed slightly lower RMSD of 31 mm and MAB of
24 mm relative to the CSR, JPL, and GFZ gridded products with signal restored using CLM4-based scaling
factors. The GFZ gridded TWS product showed a slightly higher RMSD of 40 mm and MAB of 32 mm.

3.3.2. Comparison Over Basins With Varying Climates and Irrigation
By linking these statistics with the climate of the basins examined, we found that correlations between
GRACE TWS anomalies from the five outputs (three gridded products with CLM4.0 scaling factors and addi-
tive and multiplicative correction approaches) and WGHM TWS output are generally higher in humid areas
with an overall correlation coefficient of 0.84. Examples include the Amazon, Parana, Zambezi, and Orinoco
basins that show mean correlation coefficients between GRACE TWS anomalies and WGHM TWS output of
0.93, 0.90, 0.84, and 0.97, respectively, and mean RMSD of 66.7, 25.0, 75.6, and 51.2 mm, respectively (Figure
S11 and Tables S1–S3).

However, the arid and some semiarid basins have lower r (mean �0.6). Examples include Aral (semiarid) in
Central Asia (r 5 0.74, RMSD 5 29.6 mm), Tamanraset (hyperarid) in North Africa (r 5 0.32; RMSD 5 10.6 mm),
Colorado (semiarid) in the Southwest U.S. (r 5 0.72; RMSD 5 21.7 mm), and Murray-Darling (semiarid) in
southeast Australia (r 5 0.47; 25.2 mm) (Figure 13 and Tables S1–S3). Differences in magnitudes of RMSD
over these arid or semiarid basins relative to humid basins are attributed primarily to relatively lower
seasonal (annual) amplitudes of TWS changes in arid and semiarid basins, e.g., Aral (46.3 mm),
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Tamanraset (2.2 mm), Colorado (37.3 mm), and Murray-Darling (19.9 mm) (Table 1). However, seasonal
amplitudes of TWS changes over the Amazon (211.4 mm), Parana (75.6 mm), Zambezi (147 mm), and Ori-
noco (195 mm) are much higher than other regions globally, resulting in relatively large RMSD.

As far as basins in high-latitude regions are concerned, the mean r between GRACE TWS anomalies and
WGHM output is also low (r 5 0.63; RMSD 5 55.4 mm), e.g., Mackenzie (r 5 0.60, RMSD 5 33.7 mm), Yukon
(r 5 0.64; RMSD 5 64.4 mm), Koyama (r 5 0.66; RMSD 5 37.9 mm), and Indigirk (r 5 0.54; RMSD 5 37.8 mm)
(Figure S12). Large differences in amplitude and timing of TWS variations over the high-latitude basins may
be related to: (1) poor quality of LSMs, CLM, or GLDAS Noah used in the scaling factor and additive correc-
tion approaches to simulate hydrological processes in the cryosphere, and (2) poor performance of WGHM
over these high-latitude regions. GRACE TWS anomalies are moderately correlated with WGHM TWS output
over semiarid (mean r 5 0.76; RMSD 5 32.7 mm) and subhumid regions (mean r 5 0.72; RMSD 5 41.8 mm).

STNRs over the 60 river basins provide additional information to assess relationships between uncertainties
in GRACE TWS anomalies and climate (Table 1). Humid regions have the highest STRNs (mean: 18) relative
to arid (mean: 6) with subhumid regions (mean: 13) and semiarid regions (mean: 13) in between. These
results suggest that GRACE TWS anomalies may be more accurate in relatively humid regions, based on
comparisons with WGHM, and on the intrinsic attributes of GRACE signal, i.e., uncertainties in GRACE signal
relative to its seasonal amplitude are lower in humid regions relative to arid or cold regions.

Apparently, basin size also partially determines the STNRs. Mean STNR values generally decrease with basin
area, i.e., large basins (�1,000,000 km2, mean: 26), medium basins (1,000,000–200,000 km2, mean: 13), and
small basins (�200,000 km2; mean: 8). Therefore, use of GRACE TWS anomaly outputs may be more appro-
priate in humid and/or large basins than in arid (cold) and/or small basins.

As far as irrigation impacts on GRACE TWS signal restoration, basins with intensive irrigation examined in
this study are found mostly in humid or subhumid regions, e.g., Ganges (humid), Arkansas (subhumid, Cen-
tral High Plains aquifer), and the North Central Valley (subhumid), except for the Tigris (semiarid). Interest-
ingly, correlations between GRACE TWS anomalies and WGHM output differ, e.g., 0.96 for Ganges (mean
RMSD: 37.6 mm), 0.89 for the Tigris (mean RMSD: 47.7 mm), and 0.63 for the Arkansas (mean RMSD:
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38.8 mm), and 0.76 for the Sacramento-San Joaquin (mean RMSD: 72.3 mm) (Figure 14). For the Ganges
basin, TWS time series from GRACE and WGHM are highly consistent in terms of timing and amplitude
(mean r 5 0.96; mean RMSD 5 37.6 mm). For the Tigris basin, GRACE-derived TWS time series exhibit higher
seasonal amplitudes than those of WGHM, with the scaling factor and multiplicative factor approaches gen-
erating higher amplitudes of TWS variation than the additive correction approach. It is also noted that the
relatively high consistencies between GRACE and WGHM TWS anomalies in the Ganges (1,628,000 km2) and
Tigris (823,000 km2) basins may be related to their large size. Signal restoration over large areas is not criti-
cal. For the Arkansas and Sacramento-San Joaquin basins, large differences in both timing and amplitude
occur between the GRACE and WGHM TWS anomalies, especially with the multiplicative correction
approach resulting in lower r values of only 0.58 and 0.51 than the scaling factor or additive correction
approach. These results indicate that caution should be exercised in restoring GRACE signal over aquifers
with intensive irrigation, especially over relatively small aquifers. The additive correction approach and
gridded products based on CLM4.0 scaling factors provide more accurate TWS anomalies relative to the
WGHM counterparts.

4. Summary

Derivation of GRACE TWS anomaly requires removal of high-frequency noise through destriping (decorrela-
tion), truncation, and low-pass filtering of high degree and order SH coefficients. Estimation of signal
attenuation (bias) and signal interference from the area surrounding a study basin (leakage) requires (1)
approximation to the true signal, generally a LSM output and/or (2) some hypotheses on the mass distribu-
tion within a basin (following LSM spatial distributions or homogeneity) to restore signal losses. We investi-
gated the impact of LSM model errors (forcing and local process representation) and impact of approaches
(scaling factor, additive, and multiplicative correction approaches) on restoration of GRACE TWS anomalies
over the global land surface. Results are relatively independent of LSMs and approaches over most nonarid
and/or large or medium river basins (area� 1,000,000 km2 or 1,000,000–200,000 km2). This implies that
selection of LSMs for generating scaling factors and approaches for bias and leakage corrections for some
of these areas is not critical. However, different approaches yield varying results for most arid and semiarid
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regions, small regions (area< 200,000 km2), some humid regions, as well as regions with intensive irrigation
due mostly to lack of relevant components (e.g., GWS changes) and irrigation in LSMs and limitations of
LSMs in environments of high temporal and spatial variability (arid and semiarid), specifically:

1. Scaling factors are insensitive to selected LSMs for most nonarid basins; however, appreciable differences
are found over most arid and semiarid regions (e.g., Tamanraset, Nile, and Murray-Darling), areas with
intensive irrigation (e.g., Upper Arkansas and Sacramento-San Joaquin), and some humid basins adjacent
to basins with large mass variability (e.g., Irrawaddy);

2. Temporal variability in scaling factors is relatively high (CV> 1) over some arid and semiarid regions (e.g.,
Tamanraset and Aral), basins with intensive irrigation (e.g., Indus and Sacramento-San Joaquin), and
basins with glacier melting (e.g., Yukon). A temporally variant scaling factor is highly dependent on the
ability of the LSM to describe episodic events in semiarid regions; and

3. The additive correction approach and the gridded products with CLM4.0-based scaling factors more
closely agree with WGHM output (taken as a reference) than the multiplicative correction approach.
Large differences in TWS anomalies from the three approaches to restore GRACE signal are found in
most arid and semiarid regions, areas with intensive irrigation, and relatively small basins. Therefore, the
gridded products based on the scaling factor approach to restore signal losses over areas with intensive
irrigation may not be suitable and the signal restoration method should be adapted. The multiplicative
correction approach, in most cases, deviates from the other two approaches especially in smaller basins.

Areas with intensive irrigation and/or arid and semiarid regions have large variability in spatial, temporal,
and model variability in scaling factors linked to misrepresented processes in LSMs. Different approaches
for bias and leakage corrections yield largely different TWS anomalies with respect to the WGHM output,
which may impact results of studies related to groundwater depletion and hydrological extremes, including
droughts and floods. Accurate estimation of TWS and GWS anomalies over these regions should consider a
priori knowledge (e.g., spatial patterns in groundwater depletion) through forward modeling schemes of
GRACE data [e.g., Chen et al., 2014; Feng et al., 2013; Longuevergne et al., 2013; Rodell et al., 2009; Scanlon
et al., 2012b]. The gridded TWS anomaly products and regular processing for bias and leakage corrections
may not be appropriate for these areas as the a priori LSM does not include these important processes.
LSMs play an integral role in GRACE processing. Improving LSMs to simulate all storage compartments, their
interactions and irrigation is very important for applications of GRACE to groundwater depletion and hydro-
logical extreme studies. Future studies may consider multiple global hydrological models and the uncertain-
ties among models examined in [Haddeland et al., 2014; Schewe et al., 2014]. Results of this study should be
valuable in assessing uncertainties in GRACE-derived TWS anomalies and guide appropriate use of various
approaches of correcting bias and leakage of GRACE signals.
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