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Abstract. The concentrations of sulfate, black carbon (BC)

and other aerosols in the Arctic are characterized by high val-

ues in late winter and spring (so-called Arctic Haze) and low

values in summer. Models have long been struggling to cap-

ture this seasonality and especially the high concentrations

associated with Arctic Haze. In this study, we evaluate sulfate

and BC concentrations from eleven different models driven

with the same emission inventory against a comprehensive

pan-Arctic measurement data set over a time period of 2

years (2008–2009). The set of models consisted of one La-

grangian particle dispersion model, four chemistry transport

models (CTMs), one atmospheric chemistry-weather fore-

cast model and five chemistry climate models (CCMs), of

which two were nudged to meteorological analyses and three

were running freely. The measurement data set consisted of

surface measurements of equivalent BC (eBC) from five sta-

tions (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental

carbon (EC) from Station Nord and Alert and aircraft mea-

surements of refractory BC (rBC) from six different cam-

paigns. We find that the models generally captured the mea-

sured eBC or rBC and sulfate concentrations quite well, com-

pared to previous comparisons. However, the aerosol season-

ality at the surface is still too weak in most models. Con-

centrations of eBC and sulfate averaged over three surface

sites are underestimated in winter/spring in all but one model

(model means for January–March underestimated by 59 and

37 % for BC and sulfate, respectively), whereas concentra-

tions in summer are overestimated in the model mean (by

88 and 44 % for July–September), but with overestimates

as well as underestimates present in individual models. The

most pronounced eBC underestimates, not included in the

above multi-site average, are found for the station Tiksi in

Siberia where the measured annual mean eBC concentration

is 3 times higher than the average annual mean for all other

stations. This suggests an underestimate of BC sources in

Russia in the emission inventory used. Based on the cam-

paign data, biomass burning was identified as another cause

of the modeling problems. For sulfate, very large differences

were found in the model ensemble, with an apparent anti-

correlation between modeled surface concentrations and to-

tal atmospheric columns. There is a strong correlation be-

tween observed sulfate and eBC concentrations with con-

sistent sulfate/eBC slopes found for all Arctic stations, in-

dicating that the sources contributing to sulfate and BC are

similar throughout the Arctic and that the aerosols are in-

ternally mixed and undergo similar removal. However, only

three models reproduced this finding, whereas sulfate and

BC are weakly correlated in the other models. Overall, no

class of models (e.g., CTMs, CCMs) performed better than

the others and differences are independent of model resolu-

tion.

1 Introduction

Aerosols are important climate forcers (Ramanathan and

Carmichael, 2008; Myhre et al., 2013), but the magnitude

of their forcing is highly uncertain and depends on altitude,

position relative to clouds, the surface albedo and the op-

tical properties of the aerosol as well as cloud indirect ef-

fects. While absorbing aerosols such as black carbon (BC)

are likely to increase climate warming (Shindell and Falu-

vegi, 2009), scattering aerosols such as sulfate have a cool-

ing effect (Myhre et al., 2013). In addition to atmospheric

radiative forcing, deposition of absorbing aerosols on snow

or ice reduces the albedo and can thus induce faster melt-

ing and efficient surface warming (Jacobson, 2004; Flanner

et al., 2009). The highly reflective surfaces of snow and ice

as well as strong feedback processes make the Arctic a re-

gion of particular interest for aerosol research (Quinn et al.,

2008).

The Arctic aerosol consists of a varying mixture of sul-

fate and organic carbon (OC), as well as ammonium, ni-

trate, BC and mineral dust (Quinn et al., 2007; Brock et al.,

2011). Aerosols in the Arctic feature a strong annual cycle

with a late winter–spring peak (the so-called Arctic Haze)

and a summer minimum. Increased transport during the cold

season (Stohl, 2006) and increased removal by wet deposi-

tion during the warm season can explain this annual varia-

tion (Shaw, 1995; Law and Stohl, 2007) and also shape the

aerosol size distribution (Tunved et al., 2013).

Models have for a long time struggled to capture the dis-

tribution of aerosols in the Arctic (Shindell et al., 2008; Koch

et al., 2009). The concentrations of BC during the Arctic

Haze season in particular were underestimated, in some cases

by more than an order of magnitude (Shindell et al., 2008),

whereas summer concentrations were sometimes overesti-

mated. The simulated aerosol seasonality is strongly depen-

dent on the model treatment of aerosol removal processes.

For instance, changes in the calculation of aerosol micro-

physical properties, size distribution and removal can change

simulated concentrations by more than an order of magnitude

in remote regions such as the Arctic (Vignati et al., 2010)

and the calculated Arctic BC mass concentrations are very

sensitive to parameterizations of BC aging (conversion from

hydrophobic to hydrophilic properties) and wet scavenging

(Liu et al., 2011; Huang et al., 2010).

The seasonal decrease of aerosol concentrations from win-

ter to summer in the Arctic is likely also due to the different

efficiency of scavenging by different types of clouds. There

is a transition from inefficient ice-phase cloud scavenging in

winter to more efficient warm cloud scavenging in summer,

and there is also the appearance of warm drizzling cloud in

the late spring and summer boundary layer. Including these

processes in one model clearly improved its performance

both in terms of absolute concentrations as well as season-

ality for sulfate and BC (Browse et al., 2012). This result is

in agreement with the observation-based findings that scav-

Atmos. Chem. Phys., 15, 9413–9433, 2015 www.atmos-chem-phys.net/15/9413/2015/



S. Eckhardt et al.: Current model capabilities for simulating BC and sulfate concentrations 9415

enging efficiencies are increased in summer both for light-

scattering (of which sulfate is an important component) as

well as for light-absorbing (of which BC is an important

component) aerosols (Garrett et al., 2010, 2011). Another

modeling problem may be excessive convective transport and

underestimation of the associated wet scavenging in convec-

tive clouds, which can lead to model overestimates of BC in

the upper troposphere and lower stratosphere (Allen and Lan-

duyt, 2014; Wang et al., 2014). Despite remaining difficul-

ties, simulations of Arctic aerosols with many models have

improved considerably in the last few years by updating the

model treatment of some or all of the above-mentioned pro-

cesses (Fisher et al., 2011; Breider et al., 2014; Sharma et al.,

2013; Lund and Berntsen, 2012; Allen and Landuyt, 2014).

Remaining problems may also be due to missing emis-

sion sources or incorrect spatial or temporal distribution of

emissions in the inventories used for the modeling. The main

sources of BC are biomass burning and incomplete combus-

tion of fossil fuels and biofuels (Bond et al., 2004). Sulfate

aerosols are formed by sea spray or originate from natural

sources such as oxidation of dimethyl sulfide (DMS) or vol-

canoes. It is also produced from oxidation of SO2 emitted

when sulfur-containing fossil fuels are burned or by metal

smelting. Studies based on observed surface concentrations

repeatedly suggest that the main source regions for Arctic BC

and sulfate are located in high-latitude Eurasia (e.g., Sharma

et al., 2006; Eleftheriadis et al., 2009; Hirdman et al., 2010).

Stohl et al. (2013) suggested that gas flaring in high-latitude

Russia is an important source of BC that is missing from

most inventories. In their simulations, BC emissions from

gas flaring accounted for 42 % of the annual mean BC sur-

face concentrations in the Arctic. However, they also noted

the large uncertainty of the gas flaring emissions.

The radiative effects of aerosols are not so much deter-

mined by the surface concentrations as by the column load-

ings as well as the altitude distribution of the aerosol (Sam-

set et al., 2014; Samset and Myhre, 2011). Nevertheless, in

the past, model results for the Arctic were evaluated mainly

against surface measurements due to their availability over

long time periods. However, surface concentrations are not

representative of concentrations aloft, which are controlled,

at least in part, by different source regions and different pro-

cesses. It is therefore important to evaluate models not only

against surface measurements but also using vertical profile

information.

The purpose of this study is to explore the capabilities of a

range of chemistry transport models (CTMs) and chemistry

climate models (CCMs) widely used to simulate the Arctic

aerosol concentrations. The models use a common emission

inventory, which includes gas flaring emissions and provides

monthly resolution of the domestic burning emissions. Dif-

ferences between their modeled aerosol concentrations are

therefore solely due to differences in the simulated transport,

aerosol processing (e.g., sulfate formation, BC aging) and re-

moval. We concentrate our investigations on BC and sulfate,

for which we collected data from six surface stations and five

aircraft campaigns in the Arctic.

2 Methods

2.1 Measurement data

We have collected measurements of BC performed with dif-

ferent types of instruments, and these measurements may not

always be directly comparable. Following the nomenclature

of Petzold et al. (2013), we refer to measurements based

on light absorption as equivalent BC (eBC), measurements

based on thermal-optical methods as elemental carbon (EC)

and measurements based on refractory methods as refractory

BC (rBC). All these data are compared to each other as far as

possible and to modeled BC values.

Aerosol light absorption data were obtained from five

sites in different parts of the Arctic: Alert, Canada

(62.3◦W, 82.5◦ N; 210 m above sea level (a.s.l.)), Zep-

pelin/Ny Ålesund, Spitsbergen, Norway (11.9◦ E, 78.9◦ N;

478 m a.s.l.), Tiksi, Russia (128.9◦ E, 71.6◦ N; 1 m a.s.l.),

Barrow, Alaska (156.6◦W, 71.3◦ N; 11 m a.s.l.) and Pallas,

Finland (24.12◦ E, 67.97◦ N; 565 m a.s.l.). The locations of

these measurement stations are shown in Fig. 1. Differ-

ent types of particle soot absorption photometers (PSAPs)

were used for the measurements at Barrow, Alert and Zep-

pelin, a multi-angle absorption photometer was used at Pal-

las (Hyvärinen et al., 2011), and an aethalometer was used

at Tiksi. All these instruments measure the particle light ab-

sorption coefficient σap, each at its own specific wavelength

(typically at around 530–550 nm), and for different size frac-

tions of the aerosol (typically particles smaller than 1, 2.5

or 10 µm are sampled at different humidities). Conversion of

σap to eBC mass concentrations is not straightforward and

requires certain assumptions (Petzold et al., 2013). The mass

absorption efficiency used for conversion can be specific to

a site, the instrument and the wavelength used, and is uncer-

tain by at least a factor of 2. For Tiksi, the conversion is done

internally by the aethalometer. For the other sites, a mass ab-

sorption efficiency of 10 m2 g−1, typical of aged BC aerosol

(Bond and Bergstrom, 2006), was used. Concentrations of

eBC can be particularly uncertain and biased high when sub-

stantial amounts of organic carbon are present (Cappa et al.,

2008; Lack et al., 2008).

For Barrow, Alert, Pallas and Zeppelin, eBC data were

available for the years 2008–2009 and could be compared

directly with model data that were available for the same pe-

riod. At Tiksi, the measurements started only in 2009 and

thus measured values for the period July 2009 to June 2010

were compared with modeled values for the year 2009.

Barrow and Alert data are routinely subject to data clean-

ing, which should remove the influence from local sources.

The Tiksi data have been quality controlled as well and

episodes of local pollution have been removed. Zeppelin gen-

www.atmos-chem-phys.net/15/9413/2015/ Atmos. Chem. Phys., 15, 9413–9433, 2015
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Tiksi
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Figure 1. Map showing the locations of the measurement stations

(yellow circles) and the flight tracks north of 70◦ N of all aircraft

campaigns used in this study. Aircraft data were from the HIPPO

(winter 2009 and fall 2009), ARCTAS (spring and summer 2008),

ARCPAC (spring 2008) and PAMARCMiP (spring 2009) cam-

paigns.

erally is not strongly influenced by local emissions; how-

ever, summer values are enhanced by some 11 % due to lo-

cal cruise ship emissions (Eckhardt et al., 2013). Thermo-

optical measurements of EC were available from Station

Nord, Greenland (16.67◦W, 81.6◦ N; 30 m a.s.l.) and from

Alert. At Station Nord, weekly aerosol samples were col-

lected during 2008–2009 and the EC–OC filter samples at

Alert were collected as bi-weekly integrated samples. For

Station Nord a Digitel DHA 80 high-volume sampler (HVS,

Digitel/Riemer Messtechnik, Germany) was used for PM10.

Both stations’ samples were analyzed with a thermo-optical

lab OC–EC instrument from Sunset Laboratory Inc. (Tigard,

OR, USA). Punches of 2.5 cm2 were cut from the filters

sampled at Station Nord and analyzed according to the

EUSAAR-2 protocol (Cavalli et al., 2010). The samples from

Alert were analyzed by using the EnCan-total-900 thermal

method originally developed by carbon isotope analysis for

OC–EC (Huang et al., 2006) and further optimized (Chan et

al., 2010).

Sulfate measurement data were available from the stations

Pallas, Zeppelin, Barrow, Nord and Alert. The sulfate data

were obtained on open face filters and cations and anions

were subsequently quantified by ion chromatography. Non-

sea salt (nss) sulfate concentrations were obtained by sub-

tracting the sea salt contribution via analysis of Na+ and Cl−

data, thus making the sulfate data directly comparable to the

modeled nss sulfate values. For Station Nord, the contribu-

tion from sea salt is only minor (Heidam et al., 2004); no

correction was applied there. Samples were taken with daily

to weekly resolution, depending on station and season.

Aircraft data were obtained from several campaigns. In

the framework of POLARCAT (Polar Study using Aircraft,

Remote Sensing, Surface Measurements, and Models of Cli-

mate Chemistry, Aerosols, and Transport; Law et al., 2014),

two ARCTAS (Arctic Research of the Composition of the

Troposphere from Aircraft and Satellites) campaigns in April

and June–July 2008 with a DC-8 aircraft covered mainly

the North American Arctic (Jacob et al., 2010). The AR-

CPAC (Aerosol, Radiation, and Cloud Processes affecting

Arctic Climate; Brock et al., 2011) campaign was conducted

from Alaska together with ARCTAS in April 2008. The PA-

MARCMiP (Polar Airborne Measurements and Arctic Re-

gional Climate Model Simulation Project) campaign covered

the entire western Arctic in April 2009 (Stone et al., 2010).

Two HIPPO (High-Performance Instrumented Airborne Plat-

form for Environmental Research Pole-to-Pole Observations;

Schwarz et al., 2010, 2013; Wofsy et al., 2011) campaigns

during January and October 2009 explored the North Amer-

ican Arctic. Flight legs north of 70◦ N for all of these cam-

paigns are shown in Fig. 1. Refractory BC (rBC) was mea-

sured during these campaigns with single particle soot pho-

tometer (SP2) instruments (Kondo et al., 2001; Schwarz

et al., 2006). Observations of submicrometer aerosol sul-

fate mass during ARCTAS were made with a particle-into-

liquid sampler (PILS) (Sullivan et al., 2006) coupled to an

ion chromatograph. Sulfate measurements during ARCPAC

were made with a compact time-of-flight aerosol mass spec-

trometer (Bahreini et al., 2008).

During April 2008 agricultural and boreal biomass

burning influence was widespread throughout the Arctic

(Warneke et al., 2010; Brock et al., 2011) and ARCTAS and

ARCPAC often targeted these fire plumes. Anthropogenic

pollution from Asia was also sampled by these campaigns in

the western Arctic, particularly in the mid-upper troposphere

(see Law et al., 2014, and references therein). Pollution from

Europe also made a significant contribution in the lower tro-

posphere. In contrast, PAMARCMiP and HIPPO sampled the

Arctic atmosphere at times with little influence from biomass

burning and also did not target pollution plumes. Thus, the

higher mean rBC concentrations found during ARCTAS and

ARCPAC than during PAMARCMiP a year later are caused

both by the sampling strategy of these campaigns as well as

the early start of the biomass burning season in 2008. Even

though all available rBC and sulfate data from several cam-

paigns were used for model evaluation, the data coverage and

representativity for the Arctic as a whole must still be con-

sidered as rather poor. The eastern Arctic, in particular, was

not sampled by any campaign.

ARCTAS-B was the only summertime POLARCAT cam-

paign to make detailed measurements of BC and sulfate (Ja-

cob et al., 2010). These flights focused mainly on boreal

fires over Canada in July 2008, but several flights into the

high Arctic sampled, for example Asian pollution close to

Atmos. Chem. Phys., 15, 9413–9433, 2015 www.atmos-chem-phys.net/15/9413/2015/
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the North Pole (Sodemann et al., 2011). Plumes of Asian ori-

gin were also sampled in the upper troposphere over Canada

(Singh et al., 2010).

2.2 Emissions

All models made use of an identical emission data set, the

ECLIPSE (Evaluating the Climate and Air Quality Impacts

of Short-Lived Pollutants) emission inventory version V4a

(Klimont et al., 2015a, b). The ECLIPSE inventory was

created using the GAINS (Greenhouse gas – Air pollution

Interactions and Synergies) model (Amann et al., 2011),

which provides emissions of long-lived greenhouse gases

and shorter-lived species in a consistent framework. The

proxies used in GAINS are consistent with those applied

within the RCP (representative concentration pathway) pro-

jections as described in Lamarque et al. (2010) and as fur-

ther developed within the Global Energy Assessment project

(GEA, 2012). They were, however, modified to accommo-

date more recent information where available, e.g., on pop-

ulation distribution and open biomass burning, effectively

making them year specific (Riahi et al., 2012; Klimont et al.,

2013). Emissions for the years 2008 and 2009 were lumped

into the following source categories: industrial combustion,

residential combustion, energy production, transport, agri-

culture, waste treatment, shipping, agricultural waste burning

and gas flaring. All emission data were gridded consistently

to a resolution of 0.5◦× 0.5◦. Monthly disaggregation fac-

tors were provided for the domestic heating emissions, based

on ambient air temperatures. For a more detailed description

of the ECLIPSE emission data set, see Klimont et al. (2015a,

b). A detailed description of the high-latitude emissions in

the ECLIPSE inventory and comparisons with other emis-

sion inventories can be found in AMAP (2015).

Non-agricultural biomass burning emissions were not

available through GAINS and were therefore taken from the

Global Fire Emission Database (GFED), version 3.1 (van der

Werf et al., 2010). No attempt was made to harmonize sulfur

emissions from volcanic sources or the ocean, which could

explain some differences in simulated sulfate concentrations.

2.3 Models

We show results of 11 different models, whose main charac-

teristics and references are summarized in Table 1. In prin-

ciple we are using two types of atmospheric models: off-line

models and on-line models. Both model types have certain

advantages and disadvantages. Off-line models based on me-

teorological re-analysis data can capture actual meteorolog-

ical situations, thus facilitating a direct comparison of mea-

sured and modeled aerosol quantities. Often, they also have

higher resolution than the on-line global models. However,

off-line models cannot be used for predictions and the off-

line coupling can also cause inaccuracies in the treatment of

transport, chemistry and removal processes. The global on-

line models in our study are free-running and thus produce

their own model climate, which means that they cannot re-

produce a given meteorological situation. Nevertheless, their

modeled climate for the present time should correspond to

the current climatic conditions and, thus, seasonally averaged

quantities (i.e., averages over many different meteorological

situations) should be comparable to measured quantities. The

main advantage of the on-line models is that they can also be

used for predictions.

Furthermore, there were two different types of off-line

models used, namely Eulerian chemistry transport mod-

els (CTMs) and one Lagrangian particle dispersion model

(LPDM). Our on-line models were climate chemistry models

(CCMs), where a climate model is coupled with a chemistry

and aerosol module. We also use one global climate model

coupled with an aerosol module that, however, does not sim-

ulate atmospheric chemistry. We refer to this as an aerosol

climate model (ACM) to distinguish it from the CCMs. Fur-

thermore, we use one regional weather forecast model cou-

pled on-line with a chemistry model (WRF-Chem). This

model is similar to the CCMs but only used for regional

simulations, and it is designed for short-term simulations

rather than simulations over climate timescales. WRF-Chem

is also nudged towards re-analysis data and therefore can

capture actual meteorological situations, similarly to the off-

line models.

The horizontal resolution of the individual models ranges

from about 0.6◦× 0.8◦ to 2.8◦× 2.8◦. We use one La-

grangian particle transport model, FLEXPART (Flexible Par-

ticle Dispersion Model), which is run in backward mode

for 30 days (thus, older source contributions are not ac-

counted for). The simulation is driven by 1◦× 1◦ opera-

tional analyses from the European Centre for Medium Range

Weather Forecasts (ECMWF). The OsloCTM2, TM4-ECPL

(Tracer Model version 4–Environmental Chemical Processes

Laboratory) and SMHI MATCH (Swedish Meteorological

and Hydrological Institute Multi-scale Atmospheric Trans-

port and Chemistry Model) are CTMs and also use me-

teorological data from ECMWF (for details, see Table 1).

The DEHM (Danish Eulerian Hemispheric Model) CTM is

driven by NCEP (National Centers for Environmental Pre-

diction) meteorological data. WRF-Chem (Weather Research

and Forecasting Model coupled with Chemistry) is an on-

line atmospheric chemistry-weather forecast model that was

nudged to NCEP FNL (final analysis) data for this study.

The aerosol climate model (ACM) ECHAM6-HAM2 (for

brevity, referred to as ECHAM6 in figures) is the Euro-

pean Centre for Medium-Range Weather Forecasts Ham-

burg model version 6 (Stevens et al., 2013) extended with

the Hamburg aerosol module version 2 (HAM2) (Zhang

et al., 2012). ECHAM6-HAM2 and the CCMs including

HadGEM3 (Met Office Hadley Centre Climate Model, ver-

sion 3) and CanAM4.2 (Canadian Atmospheric model, ver-

sion 4.2) were nudged to ECMWF data. CESM1-CAM5.2

(Community Earth System Model version 1–Community At-

www.atmos-chem-phys.net/15/9413/2015/ Atmos. Chem. Phys., 15, 9413–9433, 2015
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Table 1. Model overview.

Model name Model type∗ Horizontal/vertical

resolution;

model domain

Meteorological fields;

treatment of aerosol

mixtures

Periods simulated/

output temporal

resolution

References

FLEXPART LPDM Met. input data:

1◦× 1◦,

92 L global

ECMWF operational

analyses; none

2008–2009, 3 h Stohl et al. (1998, 2005)

OsloCTM2 CTM 2.8◦× 2.8◦,

60 L global

ECMWF IFS forecasts;

aerosol externally mixed

2008–2009, 3 h Myhre et al. (2009), Skeie et al. (2011a, b)

NorESM CCM 1.9◦× 2.5◦,

26 L global

Internal, observed SST

prescribed; BC internally

mixeed

2008–2009, 3 h Kirkevåg et al. (2013), Bentsen et al. (2013)

TM4-ECPL CTM 2◦× 3◦,

34 L global

ECMWF ERA-Interim;

aerosols externally mixed

2008–2009, 24 h Myriokefalitakis et al. (2011), Kanakidou et

al. (2012), Daskalakis et al. (2015)

ECHAM6-HAM2 ACM 1.8◦× 1.8◦,

31 L global

ECMWFReanalysis;

aerosols internally mixed

March–August

2008, 1 h

Stevens et al. (2013), Zhang et al. (2012)

SMHI-MATCH CTM 0.57◦× 0.75◦,

38 L 20–90◦ N

ECMW – ERA-Interim;

BC internally mixed

2008, 2009, 1 h Andersson et al. (2007), Robertson et

al. (1999)

CanAM4.2 ACM 2.8◦× 2.8◦,

49 L global

Nudged to ECMWF temp.

and winds; aged BC inter-

nally, near emission exter-

nally

2008–2009, 3 h Von Salzen et al. (2013), von Salzen (2006)

DEHM CTM 150 km< 60◦,

50 km> 60◦ N,

29 L 0–90◦ N

NCEP; internally mixed

aerosols

2008–2009, 3 h Christensen (1997), Brandt et al. (2012)

CESM1/CAM5.2 CCM 1.9◦× 2.5◦,

30 L global

Internal, observed SST

prescribed; internally

mixed aerosols

2008–2009, 1 h Liu et al. (2012), Wang et al. (2013)

WRF-Chem RCCM 100 km× 100 km,

50 L 27–90◦ N

Nudged every 6 h to FNL

to all levels above the

PBL; internally mixed

aerosols

March–July

2008, 3 h

Grell et al. (2005), Zaveri and Peters (1999),

Zaveri et al. (2008)

HadGEM3 CCM 1.9◦× 1.3◦,

63 L global

ECMWF ERA-Interim;

internally mixed aerosol

March–June,

November 2008,

January, May and

November 2009,

2 h

Hewitt et al. (2011), Mann et al. (2010)

∗ Chemistry transport model (CTM), Lagrangian particle dispersion model (LPDM), chemistry climate model (CCM), aerosol climate model (ACM), regional climate model coupled with a chemistry

module (RCM).

mosphere model version 5.2) and NorESM1-M (Norwegian

Earth System Model version 1 with intermediate resolution

and used here in a version where aerosols are fully cou-

pled with a tropospheric gas-phase chemistry scheme, here-

after referred to as NorESM) are also CCMs but were run-

ning freely, thus producing their own meteorological data.

These latter models cannot be compared point-to-point with

the measurement data because they produced meteorological

conditions that were different from the actual ones; however,

longer-term (e.g., seasonal) medians should still be compara-

ble with the measurements, especially since sea surface tem-

peratures (SSTs) and sea-ice extent were prescribed and spe-

cific to the years 2008–2009. All models were sampled ex-

actly at the locations of the measurement stations and along

the flight tracks at the highest possible (mostly hourly) tem-

poral resolution. Notice that not all models simulated the full

2008–2009 period and that FLEXPART only simulated BC.

3 Simulated BC and sulfate concentrations

Figure 2 shows the simulated BC and sulfate column mass

loadings as a function of latitude for the time periods of the

Arctic Haze (March) and the much cleaner summer (July)

in the Arctic, for the models for which this information was

available. For BC in March, most models show a maximum

near 20◦ N, with some models extending this maximum to

40◦ N. This approximately covers the latitude range with the

highest global emissions where the models agree at least

within a factor of 2 in their simulated column loadings. In

contrast, larger differences between the models are found

in the Arctic, where column mass loadings vary by more

than an order of magnitude. Similar results are also found

for sulfate in March, for which most models also show a

maximum around 20–40◦ N; however, compared to BC, the

models show a less pronounced decrease towards higher lat-
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Figure 2. BC (a, c) and sulfate (b, d) column mass loadings for the

year 2008 averaged over all longitudes as a function of latitude (for

the range 50◦ S to 90◦ N) for March (a–b) and July (c–d).

itudes and two models even simulate increasing sulfate bur-

dens with latitude. The relatively good agreement between

the models in the BC and sulfate source region latitudes is

not surprising, given that they all use the same emission data

set. In contrast, the differences between the atmospheric col-

umn loadings in the Arctic must mainly be due to differences

in the aerosol processing and removal and hence aerosol

lifetimes, and probably differences in atmospheric transport.

Most models with relatively low BC column loadings in

the Arctic also have low sulfate loadings there, indicating

similarities in the simulated removal of these two types of

aerosols. A notable exception, however, is HadGEM3, which

has moderately low BC but the highest sulfate loadings in the

Arctic.

In July, the BC column loadings show a double peak in

the southern tropics and northern subtropics. The southern

tropical peak is due to the migration of the inter-tropical con-

vergence zone (ITCZ) into the Northern Hemisphere, which

leads to less efficient wet removal and dry conditions favor-

ing biomass burning in the southern tropics. On the other

hand, BC concentrations near 10◦ N show a deep minimum,

due to the efficient wet removal near the ITCZ. Most mod-

els show a third peak in BC loading near 60◦ N, which re-

sults from open vegetation fires in the boreal region. North

of 60◦ N, the BC loadings decline rapidly towards the North

Pole. The sulfate column loading distribution in July lacks

the peaks in the southern tropics and the boreal region be-
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Figure 3. BC (a–b, e–f) and sulfate (c–d, g–h) mass mixing ratios

for the year 2008 at the surface averaged over all longitudes as a

function of latitude (for the range 50◦ S to 90◦ N) for March (a–

d) and July (e–h). The right panels show the same data as the left

panels, but only for 70–90◦ N and with an adjusted ordinate scale.

cause biomass burning is not a strong source of sulfate.

HadGEM3 stands out against the other models even more

than in spring, as its polar sulfate loadings are more than a

factor of 5 higher than those of all other models, which show

a smooth decrease with latitude north of 40◦ N.

In the simulated surface BC and sulfate mass mixing ra-

tios the same basic patterns are found as in the column

loadings, but with enhanced gradients between source ar-

eas and remote regions (Fig. 3). When looking at indi-

vidual models, there are, however, notable differences for

sulfate. ECHAM6-HAM2 has the highest sulfate surface

mass mixing ratios of all models, especially in the Northern

Hemisphere subtropics and mid-latitudes. Combined with

the rather “normal” column sulfate loadings of this model,

this indicates that ECHAM6-HAM2 does not transport sul-

fate away from the surface as quickly as the other models.

On the other hand, HadGEM3, which has by far the largest

sulfate column loadings, has the smallest surface concentra-

tions. This deficiency was due to the implementation of the

Global Model of Aerosol Processes (GLOMAP; Mann et al.,

2010), which in this HadGEM3 version resulted in too little

removal of the sulfate precursor SO2 during the venting from

the boundary layer to the free troposphere. The longer sulfate

lifetime there explains the high column loadings.

www.atmos-chem-phys.net/15/9413/2015/ Atmos. Chem. Phys., 15, 9413–9433, 2015



9420 S. Eckhardt et al.: Current model capabilities for simulating BC and sulfate concentrations

In summary, we find that the Arctic is a region with par-

ticularly large relative differences between the models, both

for the surface mass mixing ratios (with differences of more

than an order of magnitude) as well as for the column load-

ings, and both for BC and sulfate. This result must be related

to differences in aerosol removal and lifetimes in the differ-

ent models. We also found that, especially for sulfate, there

can be an anticorrelation between simulated surface concen-

trations and column loadings. Hence there is a strong motiva-

tion to evaluate the models’ performance in the Arctic, based

on measurements taken both at the surface and aloft.

4 Observed and simulated BC and sulfate seasonality

at Arctic surface measurement stations

We start our discussion of the annual cycles of aerosol con-

centrations with the example of BC at the Zeppelin station

in Spitsbergen (Fig. 4). Monthly medians as well as the 25th

and 75th percentiles are calculated for every month based

on hourly data for the two years 2008 and 2009. Maximum

median eBC concentrations of 46 and 53 ng m−3 occur in

March and April, while summer median values are only 2

to 3 ng m−3. Some of the models reproduce this seasonal-

ity with high winter/spring values and much lower sum-

mer values quite well, although in most of these models

BC reaches its highest values already in January. Only the

CanAM4.2 model seems to capture the observed spring max-

imum. All models except WRF-Chem capture the fact that

summer has the lowest values of the year. OsloCTM2, TM4-

ECPL and NorESM have smaller annual variation than ob-

served. HadGEM3, which we have seen to produce lower

BC surface concentrations than the other models in Fig. 3,

strongly underestimates the measured eBC concentrations

throughout the year. The variability of the modeled values

within a month (described by the height of the bars) shows

clear differences between the models. For instance, CESM1-

CAM5.2 simulates far fewer variable BC concentrations than

CanAM4.2 and DEHM or the measurements.

The eBC mass concentrations at the three other sites in the

western Arctic (Alert, Barrow, Pallas) are quite comparable

to those at Zeppelin station, with monthly median values of

about 20–80 ng m−3 in late winter/early spring and of less

than 10 ng m−3 in summer/early fall (see Fig. 5). One excep-

tion is EC measured at Station Nord, which in summer is

higher than eBC measured at the other sites. At Alert, where

both eBC and EC data are available, EC values in summer

are also somewhat higher than eBC values (although lower

than the Station Nord EC values), probably due to system-

atic differences in measurement techniques.

At the Tiksi station, which is closer to the main source

regions of Arctic BC in high-latitude Eurasia (Hirdman et

al., 2010), higher monthly median eBC values were mea-

sured (more than 100 ng m−3 in winter/spring, about 20–

40 ng m−3 in summer) and the annual mean (81 ng m−3)

Figure 4. Observed and simulated mean annual cycle of (equiv-

alent) BC mass concentrations (ng m−3) at the Zeppelin station.

Shown are the monthly frequency distributions using data from

the years 2008 and 2009. The uppermost panel (red boxes) shows

monthly frequency distributions of the observed eBC concentra-

tions. The other panels below (grey boxes) show monthly frequency

distributions of the modeled BC concentrations. Black dots depict

the monthly median value, the grey boxes span the range between

the 25th and 75th percentiles, and red and grey dots represent values

that are outside the 1.5 fold of this interquartile range (grey lines).

The red line connects the monthly medians of the observed eBC

concentrations in the uppermost panel and is repeated in all other

panels for the convenience of comparing modeled and measured

values. Missing model data are denoted with “X”. Notice that some

models have very low BC mass concentrations, which are difficult

to see on the scale used.

is 2.5 times higher than the average for the other stations

(31 ng m−3). The seasonality of measured eBC is strongest

at Alert where the summer concentrations are very low, but

the winter/spring concentrations are similar to the other sites

in the western Arctic. This result points to a deepening of the

seasonal minimum with latitude. While the aerosol concen-

trations in the Arctic during late winter/early spring are com-

parable to remote regions further south, the concentrations in

summer/early fall are lower because of the effective cleans-

ing of the atmosphere (Garrett et al., 2010, 2011; Browse

et al., 2012; Tunved et al., 2013) and less efficient transport

from source regions (Stohl, 2006). The highest eBC con-

centrations were observed in January (Alert), February (Bar-

row), March (Pallas, Tiksi) or April (Zeppelin), with no clear

dependence of the time of the maximum on latitude; how-

Atmos. Chem. Phys., 15, 9413–9433, 2015 www.atmos-chem-phys.net/15/9413/2015/



S. Eckhardt et al.: Current model capabilities for simulating BC and sulfate concentrations 9421

0

20

40
Alert

B
C

 [n
g/

m
3 ]

0

50

100

B
C

 [n
g/

m
3 ]

0

20

40
Nord

B
C

 [n
g/

m
3 ]

0

50

100

B
C

 [n
g/

m
3 ]

0

20

40
Zeppelin

B
C

 [n
g/

m
3 ]

0

50

100

B
C

 [n
g/

m
3 ]

0

20

40
Barrow

B
C

 [n
g/

m
3 ]

0

50

100

B
C

 [n
g/

m
3 ]

6 7 8 9 10 11 12
0

20

40
Pallas

Month

B
C

 [n
g/

m
3 ]

1 2 3 4 5
0

50

100

Month

B
C

 [n
g/

m
3 ]

 

 

measured

FLEXPART

OsloCTM2

NorESM

TM4−ECPL

ECHAM6−HAM2

SMHI−MATCH

CanAM4.2

DEHM

CESM1−CAM5

WRF−Chem

HadGEM3

0

100

200

B
C

 [n
g/

m
3 ]

0

50

B
C

 [n
g/

m
3 ]

Tiksi

Figure 5. Surface concentrations of monthly (month is displayed on the abscissa) median observed eBC or EC and modeled BC. Each row

represents one station: (from top) Alert, Nord, Zeppelin, Tiksi, Barrow and Pallas, for late winter/spring (left column) and summer/fall (right

column). The red dashed lines connect the observed median eBC values, and the light red shaded areas span from the 25th to 75th percentiles

of the observations. The black dots are the EC concentrations, which are available for Alert and Station Nord. Modeled median values are

shown with different lines according to the legend. Notice the difference in concentration scales used for the left and right panels and also

for the Tiksi station.

ever, the maximum occurred earlier at the two North Ameri-

can sites than at the other sites.

The models capture the Arctic BC concentrations with

variable success (Fig. 5). Most models capture the much

higher concentrations in winter/spring than summer/fall, and

some models can approximately reproduce the concentra-

tions reached during the Arctic Haze season (see also Breider

et al., 2014). However, as already seen for the Zeppelin sta-

tion (Fig. 4) and the annual mean surface mass mixing ratios

(Fig. 3), there is a large variability between individual mod-

els, with seasonal median values varying by about an order

of magnitude both in spring and summer even when exclud-

ing the most extreme models (see also Table 2). Seasonal

mean concentrations during January to March are underesti-

mated by up to a factor of 27 for individual models and by

more than a factor of 2 for the mean over all models, and

only one model slightly overestimates the measured concen-

trations (Table 2). Nevertheless, this indicates clear progress

since earlier studies (e.g., Shindell et al., 2008; Koch et al.,

2009; AMAP, 2011), where it was reported that most models

had a completely wrong seasonality and systematically un-

derpredicted the Arctic Haze concentrations. For instance, in

Shindell et al. (2008), none of their models came close to the

measured concentrations at Barrow and Alert during winter

and spring, with a model-mean underestimate of about 1 or-

der of magnitude (their Fig. 7). It is also important to keep in

mind that the eBC measurements are uncertain and could be

biased high. However, EC and eBC values at Alert are very

similar and we find a similar model underestimate of mea-

sured EC at Station Nord as well.

Our finding that Arctic BC concentrations in the spring

tend to be underestimated by our models implies that these

models would also underestimate radiative forcing by BC in

the Arctic. This is particularly important because spring is

the season when both aerosol concentrations are large and

solar radiation is abundant. Furthermore, it is the season

when feedback processes, e.g., via ice and snow melting, are

most important (Quinn et al., 2008). The concentrations of

BC in summer are much lower than in spring, so even with

more abundant solar radiation, modeling problems in sum-

mer would have a relatively small effect on radiative forcing.

In contrast, five models overpredict the low concentrations

in summer, the most extreme model by an order of magni-

tude (Table 2). Some models (e.g., HadGEM3) underpredict

strongly throughout the year. For the sites in the western Arc-

tic, the model deficiencies become worse with increasing lat-

itude. For instance, at the northernmost site, Alert (82.5◦ N),

all models underpredict for the full duration of the Arctic

Haze season from January until April.

For Tiksi, the data comparison is less direct as measure-

ment data from July 2009 to June 2010 were used. Neverthe-

less, it is clear that except for CanAM4.2 (which produces the

highest modeled values at most sites) the models strongly un-

derpredict for this site, especially in winter/spring. The most

likely explanation for this is that the BC emissions in high-

latitude Russia are underestimated in the ECLIPSE inven-

tory. It is difficult to know where exactly the missing sources
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Figure 6. Monthly (month is displayed on the abscissa) median ob-

served and modeled sulfate surface concentrations for the stations

(from top) Alert, Nord, Zeppelin, Barrow and Pallas. The red dashed

lines connect the observed median values. The light red shaded ar-

eas span from the 25th to 75th percentiles of the observations. Mod-

eled median values are shown with different lines according to the

legend.

are located. However, we find that in the ECLIPSE inventory

the BC emissions in Norilsk (88.2◦ E, 69.3◦ N; population

170 000) are zero. We do not suggest that Norilsk emissions

are responsible for the strong underestimation of BC concen-

trations at Tiksi, but these discrepancies (and others for sulfur

emissions discussed later) suggest that the high-latitude Rus-

sian pollutant emissions are underestimated and/or wrongly

placed in the ECLIPSE inventory. Similar problems likely

occur with most other global emission inventories. For in-

stance, AMAP (2015) compared the ECLIPSE emission data

set with 10 other inventories and found that the differences

between the different inventories grow with latitude and are

largest north of 70◦ N (i.e., high-latitude Eurasian emissions).

The seasonal cycle of sulfate at the monitoring stations is

similar to that of eBC, with a clear maximum during the Arc-

tic Haze season and a minimum in summer/early fall (Fig. 6).

However, the seasonal cycle at the northernmost stations is

less strong than for eBC, with about a factor of 5 differ-

ence between spring and summer, compared to a factor of

15 for eBC (Table 2). This is probably due to the influence

of biogenic sources of sulfate in summer (Quinn et al., 2002)

and/or a weaker seasonality in the emissions (e.g., smelter

emissions of SO2 are probably relatively constant through-

out the year).

Table 2. Median observed eBC and modeled BC mass surface con-

centrations in ng m−3 as well as measured and modeled sulfate

(SO4) concentrations in the Arctic during winter/spring (January

to March) and summer (July to September). The data used are from

the years 2008 and 2009 and were averaged for the three stations

Alert, Barrow and Zeppelin. Notice that some models do not cover

the whole periods completely (see Table 1).

Model/obs Winter/ Summer Winter/ Summer

spring BC spring SO4

BC (ng m−3) SO4 (ng m−3)

(ng m−3) (ng m−3)

Measured 49.4 3.3 561.0 103.2

Model mean 20.1 6.2 353.6 148.6

FLEXPART 40.2 7.7

OsloCTM2 8.4 1.3 90.2 109.7

NorESM 13.0 4.4 394.2 70.8

TM4-ECPL 5.4 1.3 71.3 149.7

ECHAM6-HAM2 1.9 2.1 488.7 388.9

SMHI-MATCH 38.6 1.1 603.3 151.1

CanAM4.2 38.8 1.6 791.3 270.9

DEHM 57.1 11.6 434.6 61.1

CESM1-CAM5 21.3 5.1 210.5 21.9

WRF-Chem 14.9 32.3 408.8 246.6

HadGEM3 1.8 0.7 43.2 15.9

The models have similar difficulties capturing the sulfate

seasonality as they have for BC. Again, there is up to more

than an order of magnitude difference between simulated

seasonal median concentrations from different models, both

in summer and in winter (Table 2). The model differences in

summer are in fact even larger than for BC, probably related

to different treatment of natural sources, especially dimethyl

sulfide emissions from the Arctic Ocean. There is a tendency

for models that strongly underestimate BC concentrations to

also underestimate sulfate (e.g., the HadGEM3 model), but

the correlation between the two simulated species from the

different models is quite low, especially in summer. For in-

stance, ECHAM6-HAM2 underestimates BC by factors of

26 and 1.6 in winter and summer, but underestimates sul-

fate only by about 13 % in winter and even overestimates

sulfate by a factor of 3.8 in summer (see Table 2). As seen

in Figs. 2 and 3, ECHAM6-HAM2 simulates relatively high

surface concentrations of sulfate but low total column load-

ings, both at source and Arctic latitudes.

The models generally underpredict sulfate most strongly at

the northernmost station (Alert), which is consistent with the

BC results (compare Figs. 5 and 6). The CanAM4.2 model,

which had some of the highest BC concentrations, also gives

the highest sulfate values (Table 2). It is the only model that

matches the high measured sulfate values at Alert and Sta-

tion Nord in spring. The reason why CanAM4.2 captures the

spring peak better might be that this model has a less efficient

removal through wet deposition under stratiform conditions

compared to the other models (Mahmood et al., 2015).
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row represents median (r)BC concentrations for altitudes above 3 km a.s.l. The third (bottom) row shows median (r)BC concentrations for

latitudes north of (south of) 70◦ N as a function of altitude by binning the data into 1 km height intervals.

At Pallas, the lowest-latitude station in this comparison,

most models severely underestimate sulfate throughout the

year (Fig. 6), although they tend to overestimate BC in spring

there. One likely reason for the sulfate underestimation is

the proximity of the Pallas station to the Kola peninsula,

where metal smelters are a strong source of sulfur. Accord-

ing to AMAP (2006), SO2 emissions in Nikel, Zapolyarnyy

and Monchegorsk together were about 170 kt year−1 in the

year 2002. In the ECLIPSE version 4a inventory used for

this study the SO2 emissions in these areas are only about

33 kt year−1 in total for the year 2005. Similar deficiencies

were in fact reported also for other emission inventories for

this region (Prank et al., 2010). Strong underestimation of the

SO2 emissions from metal smelting in the Kola peninsula is

therefore a likely explanation for why almost all models un-

derestimate sulfate at Pallas so strongly. Similar discrepan-

cies were in fact found for SO2 emissions in Norilsk, prompt-

ing a regridding of the ECLIPSE emissions (now available

version 5a) using better location information for the metal

smelting industry.

5 Vertical profiles

Figure 7 summarizes all rBC data from the ARCTAS and

ARCPAC campaigns in spring 2008. Median concentrations

are shown as a function of latitude (binned into 10◦ intervals)

both for lower (< 3 km) and higher (> 3 km) altitudes, and

as a function of altitude both for the high Arctic (> 70◦ N)

and lower latitudes. As the campaigns focused on the Arctic,

data south of 60◦ N are scarce and limited to North Amer-

ica. The models were sampled in their grid box containing a

measurement location and at the time of a measurement and

were subsequently binned in the same way as the measure-

ment data to allow a direct comparison. For the free-running

climate models, the same procedure was used, albeit with the

caveat that the simulated meteorological situation at the mea-

surement time does not correspond to the real conditions.

For the low-altitude (< 3 km) bin, the highest median rBC

values were measured (see the second from top row of pan-

els in Fig. 7) at 35 and 55◦ N, with a substantial concentration

drop towards higher latitudes. The mid-latitude maximum re-

flects the location of the BC sources in North America, where

ARCTAS and ARCPAC were conducted. Above 3 km (top

row of panels in Fig. 7), the highest median rBC concen-
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trations were measured further north, at 60◦ N, and the con-

centrations drop less strongly towards the North Pole than

at lower altitudes. This is due to quasi-isentropic lifting oc-

curring together with northward transport (Stohl, 2006). All

models, except CanAM4.2, systematically underestimate the

measured values for both altitude bins and for all latitudes,

and they also underestimate the measured rBC variability.

However, most of the models simulate a decrease of the con-

centrations with latitude that is consistent with the measured

latitude dependence.

When plotted as a function of altitude (two bottom panel

rows in Fig. 7), the measured values peak in the 4–5 km alti-

tude bin, both for sub-Arctic and Arctic latitudes. The mod-

els, except for CanAM4.2, underestimate the measured me-

dian values throughout the entire depth of the profile. Some

of the models, mainly those driven by observed meteorol-

ogy, capture the rBC maximum in the mid-troposphere in

the Arctic. However, the lower-latitude 4–5 km maximum

is hardly reproduced by any of the models. One likely rea-

son for the modeling problems is the strong biomass burn-

ing activity during spring 2008, which influenced a substan-

tial fraction of the measurement data (Warneke et al., 2010;

Brock et al., 2011). Even though this should be reflected in

the GFED emission data for 2008, it seems possible that the

GFED emissions are underestimated. Furthermore, as some

of the flights targeted biomass burning plumes specifically,

the influence of the biomass burning may be enhanced in

the measurement data compared to the models, especially if

the models did not capture the plume transport well enough

and thus potentially simulated the biomass burning plumes

at other locations than observed. This sampling bias is par-

ticularly strong for the CCMs that are not driven by observed

meteorological fields.

Comparisons like those shown in Fig. 7 were also per-

formed for the other aircraft campaigns. For the sake of

brevity, we further aggregate the data and only show re-

sults for latitudes north of 70◦ N and for median values be-

low and above 3 km altitude (Fig. 8). For spring 2008, the

aggregate plots for BC (Fig. 8e–f) show even more clearly

than Fig. 7 that all models except CanAM4.2 underestimate

the measured rBC concentrations both at low and high alti-

tudes. The spring 2009 PAMARCMiP campaign, however,

shows a different picture (Fig. 8c–d). This campaign was in-

fluenced very little by biomass burning. The measured me-

dian rBC mass concentrations at low (high) altitudes were

about a factor 2 (3) lower than for the spring 2008 campaigns.

Most models also simulated lower median BC concentrations

than a year earlier, but the modeled reductions were less pro-

nounced than the measured ones and, thus, about half of the

models underestimated and the other half overestimated the

measured median values. The vertical gradient of measured

BC was also different in 2008 and in 2009. While in spring

2008, the concentrations above 3 km were higher than those

below, the opposite was true in spring 2009, likely because

of the weaker biomass burning influence in 2009. This fea-
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Figure 8. Median observed rBC and modeled BC mass concen-

trations for the winter 2009 HIPPO (a–b), spring 2009 PAMAR-

CMiP (c-d), spring 2008 ARCTAS/ARCPAC (e–f), summer 2008

ARCTAS (g–h) and fall 2009 HIPPO (i–j) aircraft campaigns. The

red bar and the red horizontal line show the observations, the other

colored bars the various models, and the grey line shows the mean

value of all model medians. Results are shown separately for mea-

surements below 3 km (left panels) and above 3 km (right panels).

Notice that the concentration scales on the ordinates are different

for the individual panels.

ture can be seen very clearly in the vertical profiles shown

in Fig. 9 and it is not well captured by the models, most of

which showed a relatively flat vertical BC distribution.

The concentrations measured by the ARCTAS summer

campaign in 2008 are much lower than those measured

in spring 2008 and 2009, both at low and high altitudes

(Fig. 8g–h), which is in agreement with the seasonality seen

at the surface stations. Some of the models underestimate

and others overestimate the measured concentrations, with

the majority of the models overestimating, especially below

3 km. The mean values, averaged over all models, are about

2 (3) times as high as the measurements for altitudes above

(below) 3 km. Some of the models reproduce the measured

rBC maximum at 6 km (Fig. 9).

The HIPPO campaign in fall 2009 (Fig. 8i–j) was con-

ducted about 1 month after the seasonal minimum at most

surface sites and measured very low rBC mass concen-

trations, which is consistent with the surface observations.

Most of the models overestimate the measured concentra-

tions throughout the entire vertical profile (Fig. 9).

The HIPPO campaign in January 2009 (Fig. 8a–b) mea-

sured strong altitude differences: moderately high rBC mass

concentrations up to 3 km, but the lowest concentrations of

all campaigns above. This feature is well captured by some

of the models (Fig. 9). The lack of high concentrations aloft

is likely related to the minimal influence of biomass burning

at this time of the year.
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Figure 9. Comparison of modeled BC with observed rBC mass concentrations as a function of altitude for all data taken north of 70◦ N

for the different campaigns (same as in Fig. 8). The leftmost column shows box and whisker plots of observed rBC concentrations in

ng m−3. The black dots as well as the red lines represent the median values. The other columns show the modeled BC concentrations for

FLEXPART, OsloCTM2, NorESM, TM4-ECPL, ECHAM6-HAM2, SMHI-MATCH, CanAM4.2, DEHM, CESM1-CAM5.2, WRF-Chem

and HadGEM3.

Overall, the aircraft measurements confirm the BC season-

ality measured at the surface stations. They also confirm that

most models underestimate the concentrations in spring (at

least for the year 2008) but many models overestimate the

concentrations in summer and fall. It thus seems that models

produce a too weak BC seasonality throughout the depth of

the troposphere. However, for the year as a whole there is a

tendency towards model overestimates, in contrast to the sur-

face sites. Even stronger model overestimates downwind of

Asia over the Pacific, especially in the upper troposphere,

were recently reported by Samset et al. (2014), who sug-

gested that the BC lifetime in the models is too long. How-

ever, a uniform reduction of BC lifetime in our models would

lead to strong underestimates of the BC concentrations at the

Arctic measurement stations. Even our Arctic aircraft com-

parisons only support at most a very moderate BC lifetime

reduction. Of course, regional and/or vertical differences in

the model lifetime biases or excessive convective uplift could

explain the contrasting findings of our study and Samset et

al. (2014).

For sulfate, measured median concentrations in the Arctic

during spring 2008 were lower above 3 km than below 3 km

(Fig. 10a–b). All models, except CanAM4.2, strongly under-

estimate the measured sulfate concentrations, some models

by more than an order of magnitude. This is consistent with

the findings from the surface station comparisons (Fig. 6, Ta-

ble 2). The models also do not give a consistent picture of the

vertical distribution of sulfate, with some models correctly

simulating lower concentrations above 3 km than below but

others giving the opposite result. The model underestimates

for sulfate are likely not related to a sampling bias towards

frequent encounters of biomass burning plumes, as biomass

burning plumes are relatively poor in sulfate (e.g., Brock et

al., 2011). Instead, the underestimation suggests other miss-

ing sulfur sources or a too quick removal of sulfate from the

atmosphere. Indeed, the latter would be consistent with the

suggestion of Kristiansen et al. (2012) that sulfate lifetimes

in models are too short in spring.

During summer 2008 (Fig. 10c–d), the measured median

sulfate concentrations were about a factor of 4–6 lower than

in spring 2008, consistent with the seasonality measured at

surface sites. Median concentrations above and below 3 km

are very similar. The models have very large differences

in their simulated sulfate concentrations, with some mod-

els overestimating and others underestimating the measured

concentrations in summer. This is again consistent with the

findings from the surface site comparison (Fig. 6, Table 2).
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Figure 10. Median SO4 concentrations for the ARCTAS/ARCPAC

spring 2008 (a–b) and ARCTAS summer 2008 (c–d) campaigns.

The red bar and the red horizontal line show the observations, the

other colored bars the various models. The analysis is performed

for measurements below 3 km (left panels) and above 3 km (right

panels). Note: each row has a different y axis.

6 Station vs. low-altitude aircraft measurements

Contrary to the year-round station measurement programs,

the aircraft campaigns sample the atmosphere only during

limited time periods and their representativeness with re-

gard to climatological means may be questioned. Further-

more, from the aircraft measurements we have seen that

spring 2008 and 2009 had very different measured rBC con-

centrations, and modeling problems were larger for spring

2008, when there was intensive biomass burning influence in

the Arctic. A valid question is therefore whether the surface

measurements show the same differences between 2008 and

2009.

To investigate how consistent a picture the aircraft cam-

paigns give vis-a-vis the station measurements, we compare

all aircraft data from the lowest 3 km and lowest 1 km to the

values obtained from the surface stations for the same months

(Fig. 11). Selecting data only for even lower altitudes is prob-

lematic as the data coverage becomes very poor. In Fig. 11,

we also show the station measurements obtained for the years

2008 and 2009 separately. For eBC, the measurements ob-

tained for the same month at the different stations and during

different years are (with a few exceptions such as Barrow in

January 2008) quite comparable with each other. In particu-

lar, April 2008 did not show higher eBC values than April

2009. This is consistent with the finding that the biomass

burning layers in 2008 did not extend to the surface (Brock et

al., 2011). At Alert, the EC values are similar to the eBC val-

ues, whereas the Station Nord EC values in summer and fall

are higher than eBC values at other stations. The aircraft rBC

measurements for all campaigns show consistently lower val-

ues than the eBC or EC measurements at the ground, except

for the HIPPO campaign in January 2009 where, however,

the data coverage particularly below 1 km is poor. It is possi-
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Figure 11. Comparison of eBC (ng m−3) measured at the stations

Zeppelin (Zep), Alert (Alt), and Barrow (Brw) (grey bars), EC

measured at Alert and Station Nord (Nord) (green dots and bars)

and rBC (ng m−3) measured by aircraft (Air) in the lowest 3 km

and 1 km, north of 70◦ N (blue bars) for the years 2008 and 2009

for (a) January, (b) April, (c) June and July and (d) October and

November. The black dots represent the median, and the boxes the

interquartile range. For the aircraft measurements, the blue boxes

show the results for the lowest 3 km; the black box outlines show

the results for the lowest 1 km.

ble that the BC concentrations show a strong gradient in the

lowest 1 km and that surface concentrations are indeed sys-

tematically higher than concentrations just aloft. However, an

alternative explanation could be that the rBC measurements

are biased low against the eBC or EC measurements, given

the different measurement techniques used. A direct compar-

ison of all three measurement techniques at the Alert station

also suggests a low bias of rBC against eBC and EC con-

centrations (S. Sharma, personal communication, 2014). For

sulfate (Fig. 12) the measurements show a much larger vari-

ability than for BC, both between stations and between the

two different years. For instance, the 25th percentile of the

sulfate concentrations at Alert in January 2009 is higher than

the 75th percentile of the other stations and also of Alert in

January 2008. On the other hand, the sulfate concentrations

measured during the two available flight campaigns in spring

and summer 2008 are not systematically different from those

measured at the stations, although the median concentration

in summer 2008 is somewhat lower than at the stations. This

is consistent with the eBC or rBC differences.
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Figure 12. Same as Fig. 9 but for sulfate.

7 Sulfate/BC correlations

In this section, we perform a correlation analysis of BC and

sulfate. Such an analysis allows some insights into the mix-

ing state of the Arctic aerosol. BC and sulfate largely orig-

inate from different sources (although some sulfate is co-

emitted with BC by combustion processes). A poor corre-

lation between BC and sulfate means that BC and sulfate ei-

ther arrive at the measurement stations in distinct air masses

or that at least the different aerosol types (even if the air

masses mix) remain externally mixed and thus are affected

to a different and varying extent by removal processes. On

the other hand, a strong correlation implies that BC and sul-

fate arrive in air masses where contributions from their dif-

ferent emission sources are mixed and that, furthermore, the

aerosol must also be internally mixed, as otherwise different

removal efficiencies for BC and sulfate would lead to decor-

relation between the two species. Such a correlation analysis

has in fact recently also been performed with measurement

data from Station Nord (Massling et al., 2015). In our case,

we can furthermore compare measured and modeled correla-

tions, allowing some insights into how models treat the mix-

ing of different aerosol types compared to reality.

Figure 13 shows correlation plots between monthly mean

sulfate and eBC for the measurements and the models sam-

pled at the different stations. In the observations, sulfate and

eBC correlations for Alert, Pallas and Zeppelin are statisti-

cally significant at the 99.9 % level (Table 3). The slopes of

the regression lines shown in Fig. 13 are reported in Table 3.

For the observations, they are very similar: 10.1, 8.4 and

8.9 ng[SO4] m−3 (ng[eBC] m−3)−1 for Alert, Pallas and Zep-

pelin, respectively. For Barrow, where the correlation is not

significant because of two eBC-rich outlier data points, the

slope is smaller (6.4 ng[SO4] m−3 (ng[eBC] m−3)−1). The

strong correlation between sulfate and eBC and the similar-

Table 3. Slopes of regression lines between monthly mean concen-

trations of sulfate and (e)BC for the different stations. Slopes are

calculated both for the observations and the model values. Values

that are statistically significant at the 99.9 % level are written in

bold font. For the mean over all sites/models, only the statistically

significant values were averaged.

Alert Barrow Pallas Zeppelin Mean

Observations 10.1 6.4 8.4 8.9 9.1

Model mean 17.3 16.6 6.7 9.7 12.6

OsloCTM2 −8.6 2.4 −2.0 −5.5 –

NorESM 35.3 27.8 0.4 12.1 35.3

TM4-ECPL 9.5 33.2 5.8 8.1 19.5

ECHAM6-HAM2 30.0 90.4 1.0 −746.4 –

SMHI-MATCH 25.6 25.9 0.4 10.9 25.7

CanAM4.2 18.2 2.5 7.1 12.4 15.3

DEHM 7.5 5.7 1.6 6.7 5.4

CESM1-CAM5.2 11.1 8.9 9.6 9.9 9.9

WRF-Chem 6.4 9.3 9.8 2.4 8.5

HadGEM3 10.7 −8.7 −0.81 3.2 –

ity of the slopes suggests that the sources contributing to the

measurements at the different stations are similar and that the

removal of sulfate and eBC is highly correlated, which would

be expected for internally mixed aged aerosol as is typical for

the Arctic.

Most of the models, on the other hand, show much weaker

correlation between sulfate and BC, and some of the models

have no significant correlation at all. Exceptions are DEHM,

CESM1-CAM5.2 and WRF-Chem, which show mainly sig-

nificant correlations and slopes that are comparable at the

different stations and that are also quite similar to the ob-

served slopes. This suggests that, with the given emissions, it

is possible to reproduce the observed correlations. The lack

of correlation between sulfate and BC in the other models –

in disagreement with the observations – therefore suggests
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Figure 13. Correlation plots of monthly mean sulfate and (e)BC concentrations for the observations (top left) and the different models

sampled at the observation sites. Thick lines denote significant correlations.

that they treat the two species differently, probably having

a too large fraction of the aerosol as externally mixed. Cor-

relations could also be degraded by a too strong influence of

biogenic (dimethyl sulfide) emissions from the oceans or fac-

tors influencing SO2 to sulfate conversion such as the level of

oxidants in the models. This could lead to varying fractions

of sulfur present as SO2, and maybe these fractions are more

variable in the models than in reality.

Based on the ECLIPSE inventory that is available for BC

and for SO2, we estimated ratios between those two sub-

stances under the assumption that all SO2 is converted to

sulfate. The SO2 to BC emission ratio of anthropogenic

emissions in the ECLIPSE inventory is 25 globally and

40 north of 50◦ N. For the GFED biomass burning emis-

sions the emission ratio is only 1.7 globally and 2.5 north

of 50◦ N, and for the sum of anthropogenic and biomass

burning emissions, we obtain ratios of 19 globally and 25

north of 50◦ N. The mean observed slopes of the obser-

vations (9.1 ng[SO4] m−3 (ng[eBC] m−3)−1) and the slopes

modeled by DEHM (5.4 ng[SO4] m−3 (ng[BC] m−3)−1),

CESM1-CAM5.2 (9.9 ng[SO4] m−3 (ng[BC] m−3)−1) and

WRF-Chem (8.5 ng[SO4] m−3 (ng[BC] m−3)−1) are much

lower than the emission ratio of anthropogenic emissions

in the ECLIPSE inventory and they are also lower than the

emission ratio for mixed anthropogenic and biomass burn-

ing emissions. This suggests that biomass burning emissions

are relatively more important in the Arctic than elsewhere,

that there are missing BC sources, that sulfur emissions are

overestimated (although this is not so likely, given the too

low SO2 emissions in high-latitude Russia in the ECLIPSE

version 4a inventory used here), and/or that there exists a

mechanism that enriches aerosols in BC relative to sulfate

in the Arctic atmosphere. The latter could be related to the

hydrophobic nature of freshly emitted BC.

8 Conclusions

Based on our comprehensive study of measured and mod-

eled BC and sulfate in the Arctic, we can draw the following

conclusions.

– The simulation of BC concentrations in the Arctic has

improved compared to earlier studies (e.g., Shindell et

al., 2008; Koch et al., 2009; AMAP, 2011). For instance,

our model-mean underestimate of Arctic eBC at Barrow

and Alert is about a factor of 2, compared to 1 order

of magnitude reported in Shindell et al. (2008). Nev-

ertheless, the aerosol seasonality at the surface is still

too weak in most models. Concentrations of eBC and

sulfate averaged over three surface sites in the west-

ern Arctic are underestimated in winter/spring in all but

one model (model means for January–March underesti-

mated by 59 and 37 % for BC and sulfate), whereas con-

centrations in summer are overestimated in the model

mean (by 88 and 44 % for July–September), but with

overestimates as well as underestimates present in indi-

vidual models.
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– For the aircraft campaigns, the models overestimated

measured rBC during all seasons except for spring and

throughout the depth of the troposphere. In spring 2009,

no overestimate was found, and in spring 2008 the mod-

els underestimated both rBC and sulfate strongly. For

rBC, this could have been due to underestimation of the

strong influence of biomass burning emissions observed

during that campaign. The largest eBC underestimates

are found for the station Tiksi, which is closest to poten-

tial Russian source regions and where the annual mean

eBC concentration is 3 times higher than the average

annual mean for all other stations. This suggests an un-

derestimate of BC sources in Russia in the emission in-

ventory used, even though this inventory contains gas

flaring as an important BC source there.

– We found a strong correlation between observed sulfate

and eBC, with consistent sulfate/eBC slopes for all Arc-

tic stations. This confirms earlier studies that the source

regions contributing to sulfate and BC throughout the

Arctic are similar (e.g., Hirdman et al., 2010) and that

the aerosols are internally mixed and undergo similar

removal (e.g., Quinn et al., 2007). However, only three

models reproduced this finding, whereas sulfate and BC

are weakly correlated in the other models.

– We found that, overall, no class of models (e.g., CTMs,

CCMs) performed substantially better than the others

and model performance did also not depend on resolu-

tion. Therefore, differences are largely due to the treat-

ment of aerosol removal in the models.
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