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Abstract 23 

The combination of structural, geochemical and paleotopographic data proves to be an 24 

efficient tool to understand fluid transfers in the crust. This study discriminates shallow and deep 25 

fluid reservoirs on both sides of the brittle-ductile transition under an extensional regime, and points 26 

out the role of major transcurrent fault activity in this paleo-hydrogeological setting. 27 
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Paleo-fluids trapped in quartz and siderite-barite veins record the transfer of fluids and metal 28 

solute species during the Neogene exhumation of the Sierra Almagrera metamorphic belt. Ductile 29 

then brittle-ductile extensional quartz veins formed from a deep fluid reservoir, trapping 30 

metamorphic secondary brines containing low-density volatile phases derived from the dissolution 31 

of Triassic evaporites. During exhumation, low-salinity fluids percolated within the brittle domain, 32 

as shown by transgranular fluid inclusion planes affecting previous veins. These observations 33 

indicate the opening of the system during Serravalian to early Tortonian times, and provide 34 

evidence for the penetration of surficial fluids of meteoric or basinal origin into the upper part of the 35 

brittle-ductile transition. 36 

During exhumation, synsedimentary transcurrent tectonic processes occurred from Late 37 

Tortonian times onwards, while marine conditions prevailed at the Earth’s surface. At depth in the 38 

brittle domain, quartz veins associated with hematite record a return to high-salinity fluid 39 

circulation suggesting an upward transfer fed from the lower reservoir. During the Messinian, 40 

ongoing activity of the Trans-Alboran tectono-volcanic trend led to the formation of ore deposits. 41 

Reducing fluids led to the formation of siderite and pyrite ores. The subsequent formation of 42 

galena and barite may be related to an increase of temperature. The high salinity and Cl/Br ratio of 43 

the fluids suggest another source of secondary brine derived from dissolved Messinian evaporites, 44 

as corroborated by the δ34S signature of barite. This constrains the age of the mineralizing event at 45 

around 5.65 Ma, prior to the main Messinian salinity crisis. 46 

1. Introduction 47 

Fluids are vectors of heat and solute species. Migration of fluids is linked to local and 48 

regional geology, and permeability is a key factor in controlling fluid flow (Manning & Ingebritsen, 49 

1999, Ingebritsen & Manning, 2002). Permeability is a function of time, heterogeneity-anisotropy 50 

and scale (Manning & Ingebritsen, 1999). The Sierra Almagrera (southern Spain) is a favourable 51 

terrain to evaluate the conditions of fluids migration within the Earth’s lithosphere. Because this 52 
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area is located in a context of exhumation disturbed by the trans-Alboran transcurrent fault system, 53 

fluid flows can be studied through time across the brittle-ductile transition. 54 

Fluid analysis can focus on the exhumation of metamorphic rocks occurring in wedges 55 

undergoing active thickening, owing to the intense erosion of the hanging-wall overlying thrust 56 

systems (Menzies et al., 2014). Within Basin and Range type provinces, studies of fluids can also  57 

elucidate the exhumation of rocks from the footwall during thinning processes as revealed by the 58 

presence of crustal detachments associated with low-angle and high-angle normal faults (Wernicke 59 

& Burchfiel, 1982, Lister & Davis, 1989, Vanderhaeghe & Teyssier, 2001). In both geological 60 

settings, the location of the brittle-ductile transition plays a major role. In extensional settings, this 61 

rheological transition may localize detachment and decollement layers where normal faults are 62 

generally rooted. There is currently much debate about the hydrogeological role of the brittle-63 

ductile transition. The rheological change occurring at this transition may separate a deep reservoir, 64 

which is accessible to metamorphic and/or magmatic and mantle fluids confined under lithostatic 65 

conditions, from a shallower reservoir accessible to surficial fluids (meteoric, marine or basinal) 66 

circulating under lithostatic to hydrostatic conditions (Morrison & Anderson, 1998, Famin & 67 

Nakashima, 2004). These two reservoirs may interact through tectonic and magmatic processes. 68 

Surficial fluids may reach the upper part of the deeper reservoir under contractional regimes 69 

(Menzies et al., 2014) as well as under extensional regimes (Mulch et al., 2004, Famin et al., 2005, 70 

Siebenaller et al., 2013). Alternatively, deeper fluids may access the upper brittle crust and mix 71 

with fluids closer to the Earth’s surface (Boiron et al., 2003), a process which may also be triggered 72 

by magma ascent. Such fluid circulation events are commonly associated with hydrothermal 73 

processes (metasomatism and mineralization) (Beaudoin, 1994), and it is then necessary to decipher 74 

the role played by the different reservoirs and fluids during the tectonic and magmatic events. 75 

The convergence between Africa and Europe resulted in a complex geotectonic history with 76 

subduction of upper continental crust (Eocene to Middle Miocene), followed by extensional 77 

tectonics. This early extension triggered the exhumation of metamorphic cores in the internal zones 78 
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of the Betic cordillera during the Miocene (between 18 to 14 Ma: Gomez-Pugnaire et al. (2004), 79 

Platt et al. (2006) and Gomez-Pugnaire (2012), and possibly even earlier (Augier et al., 2005b). 80 

Further exhumation has occurred under compressional regimes since the late Miocene due to 81 

erosional processes affecting the uplifting metamorphic cores. The different mountain ranges have 82 

been also partly dissected by a major transcurrent fault system, which has led to the formation of 83 

synsedimentary continental to marine basins (Weijermars, 1985, Booth-Rea et al., 2003). 84 

Volcanism occurred later in the evolution of the Betics, reflecting mantle and crust processes as 85 

well as mantle-crust interactions at depth (e.g. Benito et al. (1999); Turner et al. (1999); Duggen et 86 

al. (2004)). A major erosional event allowed the uplift of ranges during the Messinian salinity crisis. 87 

Deposition of evaporites in the central Mediterranean Sea and incision features affected the 88 

bordering slopes. Prior to the main sea-level drop (5.60-5.46 Ma), a first stage of deposition of 89 

evaporites with controversial ages (7.20 Ma / 5.96-5.67 Ma) has been recorded in some basins of 90 

the Betics (Fortuna, Lorca, Guadix-Baza, Granada and Sorbas) (Clauzon, 1980, Gautier et al., 1994, 91 

Garcés et al., 1998, Rouchy et al., 1998, Krijgsman et al., 1999, Seidenkrantz et al., 2000, 92 

Krijgsman et al., 2000, Gargani et al., 2008, Bourillot et al., 2009, Omodeo Salé et al., 2012).  93 

The Sierra Almagrera metamorphic core exhibits a sequence of quartz vein formation. A 94 

series of siderite and barite base metal-bearing ore veins, as well as quartz and carbonate barren 95 

veins in the brittle domain, are associated with the transcurrent tectonics. Study of the different 96 

fluids trapped as inclusions in this vein sequence allows the characterization of the deep reservoir 97 

fluids in equilibrium with the rocks during the ductile stage and the evolution of the fluids within 98 

the same reservoir during its exhumation towards exposure at the present day. This reservoir was 99 

subject to different deformation styles, from ductile to brittle, and records the Neogene evolution of 100 

this part of the Betic orogenic wedge. 101 

In this study, we combine structural, paleogeographical and geochemical data to propose a 102 

scenario of hydrogeological evolution during exhumation across the brittle-ductile transition in the 103 

Sierra Almagrera. In addition, we discuss the hydrogeological influence of the brittle ductile 104 
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transition on the lower and upper crustal reservoirs during the Miocene extensional tectonics, the 105 

effect of transcurrent deformation on the hydrogeological configuration, the possible fluid sources 106 

at the various stages of this evolution and the timing of mineralizations in the region. 107 

2. Geological context 108 

2.1. The Betic Cordillera (SE Spain) 109 

The Betic Cordillera results from the convergence between the Africa and Eurasia plates  110 

since the Eocene, and forms an alpine tectonic wedge reaching a thickness of about 60 km (Platt & 111 

Vissers, 1989, Lonergan & White, 1997, Platt, 2007, Jolivet et al., 2008). The internal Alboran 112 

domain can be divided into three main tectono-metamorphic nappes, from bottom to top (Figure 1): 113 

(i) the Nevado-Filábride nappe,  itself divided into three sub-units from bottom to top: Ragua (not 114 

represented on Figure 1, to the W), Calar-Alto and Bedar-Macael (De Jong, 1991, Martínez-115 

Martínez et al., 2002), (ii) the Alpujarride nappe, and (iii) the Malaguide nappes (Egeler & Simon, 116 

1969). In addition to isostatic uplift, these units were also exhumed due to tectonic unroofing 117 

(Lonergan & Mange-Rajetzky, 1994). The associated WSW-ENE-striking tectonic extension 118 

related to exhumation of the metamorphic continental crust is supposed to have resulted from partial 119 

or complete removal of the lithospheric mantle (Platt & Vissers, 1989). Arguments have also been 120 

put forward for other mechanisms, such as subduction zone rollback (Lonergan & White, 1997, 121 

Bezada et al., 2013).  The contacts observed between structural units exhibiting different degrees of 122 

metamorphism are attributed to major detachment faults (Figure 1-a): (1) The Malaguide-123 

Alpujarride contact: unmetamorphosed Malaguide lithologies overlie the medium-pressure 124 

medium-temperature metamorphic rocks of the Alpujarride nappe (Sierra Estancias, Figure 1-a), (2) 125 

The Filabres major detachment: higher grade Nevado-Filábride metamorphic rocks, which were 126 

exhumed during the Miocene, lie beneath the Alpujarride nappes. Ductile shearing related to this 127 

exhumation affected the footwall and currently shows a transport direction top towards WSW to 128 

SW (Crespo-Blanc et al., 1994, Martínez-Martínez & Azañón, 2002, Platt, 2007). According to the 129 

extensional tectonics expressed in the ductile fabrics, the metamorphic nappes reached the brittle 130 
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domain during the ongoing exhumation. From the late Miocene, exhumation was mainly the result 131 

of erosion since both the metamorphic cores and the sedimentary cover were affected by regional 132 

compressional and local transcurrent tectonics. The Trans-Alboran transcurrent fault system 133 

generated domains with both releasing and restraining deformation, which created juxtaposed zones 134 

with opposite vertical motions (subsidence and uplift). The ranges (sierras) were separated by 135 

basins either filled by continental or marine sediments according to time and location. This major 136 

tectono-volcanic trend can be followed off-shore to the other side of the Mediterranean in Morocco 137 

(Hernandez et al., 1987).  138 

The volcanism linked to lithospheric thinning shows a gradual transition and great 139 

geochemical diversity. The age of this volcanism varies from 34 Ma (tholeiitic dykes in Malaga 140 

province) to 2 Ma (alkali basalts in Murcia province). There is a gap between the oldest volcanic 141 

events in Malaga and the main magmatic activity in SE Spain and the Alboran Basin, which took 142 

place between 12.6 and 7.5 Ma with tholeiitic and calc-alkaline affinities (Bellon et al., 1983). Very 143 

locally in the Sierra Cabrera, Miocene plutonism is recorded related to the retrograde 144 

metamorphism and associated ductile deformation (Westra, 1969, Bolze et al., 1986). Since the 145 

reappearance of volcanism during the Serravalian, other episodes of magmatic activity occurred 146 

inland in SE Spain mainly between 10 and 6.2 Ma, showing high-K calc-alkaline, shoshonitic and 147 

ultrapotassic affinities (Bellon et al., 1983, Turner et al., 1999, Zeck et al., 2000, Duggen et al., 148 

2004, Duggen et al., 2005, Cesare et al., 2009). Heterogeneous sources and various processes are 149 

implied in the magma genesis, including: (i) various degrees of partial melting, (ii) metasomatism 150 

(i.e. oceanic and continental crust, sediments), (iii) anatexis of crustal metasedimentary basement 151 

(Benito et al., 1999, Duggen et al., 2004, Duggen et al., 2005, Prelevic et al., 2008, Álvarez-Valero 152 

& Kriegsman, 2008, Conticelli et al., 2009). 153 

The Neogene evolution of the Betics is associated with a series of base and precious metal-154 

bearing hydrothermal ore systems developed mainly in the calc-alkaline volcanic rocks of the Cabo 155 

de Gata range, but also in sedimentary and metamorphic basement lithologies (Figure 1). 156 
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Epithermal ore deposits are hosted by intermediate to acid volcanics ranging in age from 12 to 10 157 

Ma; these deposits are found in  a number of different mining districts, for example, Zn-Pb-Cu(-Ag-158 

Au) at San José (Demoustier et al., 1998, Esteban-Arispe et al., 2009), Au(-Cu-Te-Sn) at 159 

Rodalquilar (Arribas et al., 1995) and Cu-Au-Ag at Carboneras (Morales Ruano et al., 2000, 160 

Carrillo-Rosúa et al., 2009). Ba-Ag mineralizations are found in sedimentary rocks, close to high-K 161 

calc-alkaline and shoshonitic volcanics within the Vera Basin (Alvado, 1986, Martínez-Frías, 162 

1998). Certain ore deposits are hosted by metamorphic rocks, including the occurences of Pb-Zn-163 

Fe-Cu (Al) at Cartagena (Graeser & Friedrich, 1970, Oen et al., 1975, Arribas et al., 1983) and Pb-164 

Zn-Ag-Fe at Sierra Almagrera and Sierra Aguilon (Martinez Frias et al., 1989, Morales Ruano et 165 

al., 1993). Samples from the Sierra Almagrera mining distict allow us to reconstruct the fluid 166 

history described below. 167 

2.2. Geology of the Sierra Almagrera (Figure 1-b) 168 

The metamorphic range of the Sierra Almagrera exposes a Nevado Filabres unit largely 169 

composed of graphitic quartz-rich chloritoid-schists (Booth-Rea et al., 2004) and quartzites. 170 

Locally, carbonates and gypsum are found north of the Sierra Almagrera within an Alpujarride unit 171 

(Álvarez & Aldaya, 1985). The present-day geomorphology of the Sierra Almagrera mainly results 172 

from sinistral strike-slip faulting in the area that generated several fault segments at various scales. 173 

The Palomares Fault Zone results in an approximately 16 km North-South trending left-lateral 174 

relative displacement (Booth-Rea et al., 2004). This transcurrent faulting may have started during 175 

the late Tortonian (around 7.2 Ma), but was mainly active during the Messinian. The evolution of 176 

this faulting associated with a vertical component (oblique faulting) caused the recent uplift, thus 177 

leading to erosion and exhumation of the Sierra Almagrera during the Plio-Quaternary. The 178 

southern segments of the Palomares Fault Zone dip towards the West. Their transtensional activity 179 

favoured the subsidence of the western block. By contrast, the northern segments, which are 180 

dipping towards the ESE, are related to a sinistral restraining bend that favoured the uplift of the 181 

Sierra Almagrera mountain ranges located to the East of the zone (Booth-Rea et al., 2004). In the 182 
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studied area, small bodies of high-K calc-alkaline to shoshonitic rhyodacites (Lopez Ruiz & 183 

Rodriguez Badiola, 1980, Benito et al., 1999) are encountered along the transcurrent fault system. 184 

Regional ages determined on this volcanic suite are between 11.9 and 6.2 Ma (Duggen et al., 2004). 185 

Less abundant lamproites from the ultrapotassic series (Lopez Ruiz & Rodriguez Badiola, 1980), 186 

dated at between 8.4 and 6.4 Ma (Prelevic et al., 2008), crop out within the Vera basin to the south 187 

of Sierra Almagrera (Figure 1-b).  188 

Mineralizations in the Sierra Almagrera are found in veins within the metamorphic rocks of 189 

the currently uplifted metamorphic range (Figure 1-b). In the present study, this formerly exploited 190 

area is referred to as the Sierra Almagrera mining district. While some mineralised veins are 191 

exposed at outcrop in the Sierra, the sulphides are frequently oxidized. Non-altered veins can still 192 

be sampled along the E-W striking horizontal gallery at El Arteal. Subvertical fractures filled by 193 

siderite, barite, hematite and ore minerals crosscut the metamorphic fabric of graphitic schists and 194 

quartz veins transposed or partly transposed within the main rock foliation. Our study shows that 195 

the mineralised fractures are arranged in two main clusters striking N160°-N180° and N120°-N130° 196 

(Figure 1-c). 197 

The area located within the Palomares Fault Zone (hanging-wall) is referred to here as “the 198 

subsident area”. Locally, mineralizations can be found within the Messinian sediments (Las 199 

Herrerias). The ore consists of barite veins, with native Ag and base-metal sulphides in very small 200 

amounts (Alvado, 1986, Martínez-Frías, 1998, Carrillo-Rosúa et al., 2002, 2003). 201 

3. Methods 202 

3.1. Fluid inclusion investigations 203 

3.1.1 Fluid inclusion petrography 204 

Double-polished 150-200-µm-thick sections were prepared for microscopic and 205 

microthermometric observations of mineralized veins of quartz, siderite, barite and calcite. The 206 

sections were oriented (using azimuth convention) to determine present-day strike and dip of fluid 207 
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inclusion planes. Isolated fluid inclusions or clusters are interpreted as primary. Intragranular fluid 208 

inclusion planes are found within single grains in microcracks that do not cross-cut grain boundaries 209 

(Van Den Kerkhof & Hein, 2001). Transgranular fluid inclusion planes result from healing of 210 

former open cracks (Krantz, 1983, Boullier, 1999, Lespinasse, 1999, Lespinasse et al., 2005) as 211 

rocks undergo brittle deformation. Systematic measurements of the fluid inclusion planes were 212 

carried out on each section using an ANIMA interactive videographic image analyzer (Lespinasse 213 

et al., 2005). The plunge and dip directions of the fluid inclusion planes are represented on equal-214 

area lower-hemisphere stereograms using Stereonet® software.  215 

3.1.2 Microthermometry 216 

The phase transitions of the fluid inclusions were characterised between –170 °C and +600 °C 217 

using a LINKAM MDS 600 heating-freezing stage mounted on an Olympus microscope, calibrated 218 

using CO2 and H2O synthetic and natural alpine fluid inclusions. The accuracy of measurements 219 

varies from ±0.2 °C at low temperature (experiments at 0.5-1 °C/min) to ±2 °C at high temperature 220 

(experiments at 1-5 °C/min). Table 1 reports the abbreviations of terms and the phase transition 221 

temperatures observed during microthermometric experiments. For barite and calcite, the high- 222 

temperature transitions were studied first to prevent leakage of fluid inclusions during ice formation 223 

on cooling. Photographs of fluid inclusions after each measurement were compared with the 224 

original picture to evaluate any leakage. 225 

3.1.3 Raman microspectroscopy 226 

Raman analysis of fluid inclusions was performed with a LabRAM microspectrometer 227 

(Horiba Jobin Yvon, at GeoRessources, Vandœuvre-lès-Nancy, France) equipped with a 1800 228 

gr.mm-1 grating and a ×80 Olympus objective. The exciting radiation was provided by the 514.5 nm 229 

line of an Ar+ laser (Stabilite 2017, Newport Corp., Spectra Physics) at a power of 400 mW. The 230 

signal-to-noise ratio was optimized by adjusting acquisition time and accumulation number. The 231 

quantitative analysis of the gas phase was performed using a specific calibration of the laboratory. 232 

Results are given as mol% relative to the volatile phase. 233 
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3.1.4 P-V-T-X calculation of fluid inclusions 234 

In this study, we use microthermometric data associated with mole fractions of the different 235 

gas species obtained by Raman spectroscopy to reconstruct the P-V-T-X evolution of fluid 236 

inclusions. The salinities of aqueous fluid are calculated using the final melting temperature of ice 237 

when gases are not present in sufficient amounts to form gas hydrates (Bodnar, 2003). In this case, 238 

the isochore is a function of the homogenization temperature at a given salinity, and the empirical 239 

equation of state of Zhang and Frantz (1987) is used within a P-T domain of validity of T: 180-700 240 

°C and P: 0.1-300 MPa. 241 

The salinities of aqueous carbonic fluids and molar volumes (Vm) of the volatile phase are 242 

calculated using the program ICE and the dissociation temperature of clathrate (Bakker, 1997, 243 

2003) when gases are present in significant amounts to allow the formation of gas hydrates. The 244 

isochores are calculated using the program ISOC (Bakker, 1997, 2003) and the equation of state 245 

(Bowers & Helgeson, 1983) revised by Bakker (1999) for the system H2O-CO2-CH4-N2-NaCl, with 246 

a  P-T domain of validity of T: 350-600 °C and P: 50-200 MPa.  247 

3.1.5 Crush-leach analysis for halogen chemistry 248 

Because the halogens display a conservative behaviour in solution, and remain relatively 249 

unaffected by fluid-rock interactions (Banks et al., 1991), the signature of the elements Cl and Br in  250 

a fluid can be used to characterize its source (Böhlke & Irwin, 1992). 251 

Bulk crush-leach analyses were performed to extract and analyse fluids hosted in quartz, 252 

barite and siderite. Samples were prepared according to the methodology of Bottrell et al. (1988). 253 

The amount of sample crushed was between 0.5 and 1.0 g. Analysis of the anions F, Cl, Br, I and 254 

SO4 was performed by ion chromatography using a ICS 3000 Dionex system with a AS20 column 255 

at the LIEC laboratory (Nancy, France). Br was also analysed by LA-ICPMS in a series of 256 

representative fluid inclusions using the procedure described by Leisen et al. (2012a). 257 

3.1.6 Laser Ablation ICP-MS  258 
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This technique allows direct ablation of individual fluid inclusions within the host mineral, 259 

represented in the present study by quartz, siderite and barite. The LA-ICP-MS instrument 260 

(GeoRessources laboratory, Vandœuvre-lès-Nancy, France) comprises a GeoLas excimer laser 261 

(ArF, 193 nm, Microlas, Göttingen Germany) and an Agilent 7500c quadrupole ICP-MS equipped 262 

with an octopole reaction-cell using H2 gas, and a collision-cell using He gas. The laser beam is 263 

focused onto the sample within an ablation cell with a Schwarzschild objective (magnification x25) 264 

linked with a CCD camera. Synthetic glass provided by the National Institute of Standards and 265 

Technology (NIST) is used for calibration of the different analysed elements and respective masses 266 

(200 pulses at 5 Hz). The design as an optical imaging system allows the use of different crater 267 

diameters (24, 32 or 60 µm) at constant energy density on the sample, by adjusting an aperture in 268 

the laser beam path. Na, K, Mg, Ba, Sr, Mn, Li, Fe, Cu and Zn are analysed here. Concentrations 269 

are calculated according to Leisen et al. (2012b).  270 

3.2. Raman spectroscopy of carbonaceous materials 271 

The Raman Spectrum of Carbonaceous Material (RSCM) has been calibrated as a 272 

geothermometer in the range 330-640 °C (Beyssac et al., (2002, 2004)). The RSCM displays one 273 

graphite band (G band) and several defect-activated bands (D1 and D2 bands) between 1100 and 274 

1800 cm-1 (Beyssac & Lazzeri, 2012), whose intensities decrease with increasing metamorphic 275 

grade. Raman analysis of graphite-bearing schists was performed on thin sections oriented 276 

perpendicular to the foliation and parallel to the lineation by focusing the laser beam beneath a 277 

transparent crystal to avoid the effect of amorphization due to polishing. The Raman spectrometer 278 

used in this study is a LabRAM HR instrument (Horiba Jobin Yvon) (GeoRessources, Vandœuvre-279 

lès-Nancy, France) equipped with a 600 gr.mm-1 grating and a ×100 objective (Olympus). The 280 

excitation beam is provided by an Ar+ laser (Stabilite 2017, Newport Corp., Spectra Physics) at 281 

457.9 nm. Laser power is reduced to avoid heating the samples, using optical filters of various 282 

optical densities, and was always lower than 5 mW.  The acquisition time is 15 seconds, with each 283 

measurement repeated 6 times. 10 to 15 spectra are recorded for each sample for statistical 284 
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purposes. Peak fitting is performed using the Peak Analyser of the OriginPro 8.5.1 software. The 285 

following expression (Beyssac et al., 2002) is used to derive peak temperature conditions: T(°C)= –286 

445R2 + 641, with R2 (peak area ratio) = (D1/(G+D1+D2)).  287 

3.3. Stable isotopes 288 

3.3.1 δ
18

O and δ
13

C of siderite 289 

15 to 20 mg of siderite were reacted at 70 °C with H3PO4 for 15 days (Scheppard & 290 

Schwarcz, 1970). Isotopic ratios were measured using a modified VG 602D mass spectrometer at 291 

the CRPG laboratory (Vandœuvre-lès-Nancy, France), and the results are reported using 292 

conventional δ18O (V-SMOW) and δ13C (V-PDB) notations. The analytical reproducibility is ±0.1 293 

‰ for δ18O and δ13C.  294 

3.3.2 δ
18

O of quartz 295 

6.5 to 7.5 mg of quartz (same grains as those used for fluid inclusion analyses) were analysed 296 

using the conventional fluorination method (Clayton & Mayeda, (1963). The measurements were 297 

carried out with a VG SIRA 10 triple-collector instrument at the University of Rennes 1 (France). 298 

The analytical reproducibility (estimated from duplicates performed on different Ni fluorination 299 

tubes) is ±0.2‰. 300 

3.3.3 δ
34

S of sulphides and sulphates 301 

Sulphur isotope compositions were measured following the method of Giesemann et al. 302 

(1994) at the CRPG laboratory (Vandœuvre-lès-Nancy, France) by EA-IRMS (Elemental Analyser-303 

Isotopic Ratio Mass Spectrometer). δ34S was measured with a GV Instruments Isoprime mass 304 

spectrometer coupled in continuous-flow mode to a EuroVector elemental analyser. Results are 305 

reported using conventional δ34S (CDT). No inter-sample memory effect was observed. Linearity of 306 

the mass spectrometer and reproducibility of the analysis were checked using CRPG internal 307 

reference materials. The analytical reproducibility obtained on the barium sulphate reference 308 

material used at CRPG is lower than 0.3 ‰. 309 
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3.3.4 δD of white micas 310 

2 to 3 mg of powdered host-rock were analysed for the isotopic composition of hydrogen-311 

bearing minerals, mainly phengite. δD was measured with a GV Instruments Isoprime mass 312 

spectrometer coupled in continuous-flow mode to a EuroVector elemental analyser. No inter-313 

sample memory effect can be observed. Linearity of the mass spectrometer and reproducibility of 314 

the analysis were checked using CRPG internal reference materials with an analytical 315 

reproducibility lower than 0.3‰. 316 

3.3.5 δD of fluid inclusions 317 

Fluids trapped in quartz, barite and siderite crystals were extracted for isotopic analyses by 318 

crushing under vacuum. Aliquots of 1.0 to 5.1 g of mn-sized grains were loaded into steel tubes and 319 

degassed overnight at 120 °C under vacuum to release any water adsorbed at the mineral surface 320 

(Dublyansky & Spötl, 2009). Preliminary tests conducted under the microthermometric heating 321 

stage showed no decrepitation or stretching of the studied fluid inclusions at temperatures below 322 

200 °C. H2O was separated cryogenically from other gases and reduced to H2 in a uranium reactor 323 

at 800 °C. D/H ratio of H2 was determined using a dual–inlet VG Micromass 602D mass 324 

spectrometer at the CRPG laboratory (Vandœuvre-lès-Nancy, France). External reproducibility of 325 

D/H measurements was estimated to be lower than 3 ‰ by normalizing raw data to the V-SMOW-326 

SLAP scale. Two CRPG water standards were analysed along with each weekly batch of water 327 

samples obtained from the fluid inclusions.  328 

To avoid any memory effect on D/H ratios within the uranium reactor, samples were 329 

systematically duplicated. For each duplicate, δD values from the first extraction are discarded since 330 

they could be affected by this memory effect.  331 

For quartz containing primary inclusions, δ18Ofluid was calculated from δ18Oquartz using the 332 

quartz-water fractionation equation of Zheng (1993) at a given temperature. 333 

 334 
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4. Results 335 

4.1. Characteristics of the host-rock 336 

All sampled veins are hosted in schists composed of phengite, quartz, graphite and rutile. 337 

Although not observed in this study, biotite and garnet have also been described in these rocks 338 

(Álvarez & Aldaya, 1985) as well as chloritoid (Booth-Rea et al., 2004). The strike of the foliation 339 

on the western flank of Sierra Almagrera (the studied area) oscillates between N045E and N100E, 340 

with an average dip of around 25-30ºSE-S that can reach up to 45ºSE-S at El Arteal mine (Figure 1-341 

b). Although stretching lineation is not always observed, deformed quartz veins (V-Qtz1) indicate a 342 

top to the West shearing (Figure 2-a).  343 

The Raman study of graphitic carbon yields R2 ratios from 0.12 to 0.21 (mode: 0.18; n=8, in 344 

3 samples), corresponding to temperatures ranging between 545 and 590 °C. These results are in 345 

agreement with the temperatures of 535-550 °C determined using the same method in the Calar 346 

Alto unit from the Sierra de Los Filabres (Augier et al., 2005b). Phengite shows Si contents ranging 347 

from 3.31 to 3.05 a.p.f.u (n=4, in 2 samples), corresponding to an estimated pressure ranging from 348 

2.2 kbar at 545 °C to 9.7 kbar at 590 °C (Massonne & Schreyer, 1987). These pressures are similar 349 

to those obtained in the Calar-Alto unit in the Sierra de Los Filabres (10±0.7 kbar to 3.1±0.3 kbar) 350 

(Augier et al., 2005b).  351 

4.2. Vein and fluid inclusion petrography 352 

According to their geometry, petrography and position relative to the host rock foliation, five 353 

types of veins can be defined (Table 2). Table 3 summarizes the characteristics of the fluid 354 

inclusions observed within each vein. 355 

4.2.1 V-Qtz1, quartz veins parallel to host-rock foliation  356 

V-Qtz1 veins (thickness less than 30 cm) may be found in both structural blocks (Figure 2-a). 357 

These quartz veins are characterised by high-temperature recrystallization mechanisms with 358 

granoblastic euhedral texture, with grains of about 200 µm showing triple points with an angle of 359 
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120° (Figure 2-b) or lobate grain boundaries interpreted as due to grain boundary migration (Jessell, 360 

1987, Passchier & Trouw, 2005, Stipp & Kunze, 2008) (Figure 2-c). No primary inclusions are 361 

observed in Qtz1 grains, and transgranular fluid inclusion planes are only observed in the Sierra 362 

Almagrera mining district. Relative chronology criteria indicate that Qtz1-tg1 predates Qtz1-tg2. 363 

Each set of plane displays a distinct orientation (Figure 2-d-e-f; Table 3).  364 

4.2.2 V-Qtz2, quartz veins parallel to or oblique to host-rock foliation  365 

V-Qtz2 (thickness of about 10 cm) are oblique to the rock foliation along certain sections of 366 

the vein, while other parts are parallel (Figure 3-a). Since V-Qtz2 partly crosscuts the rock foliation, 367 

they are considered as postdating V-Qtz1, which is parallel to the foliation. V-Qtz2 are 368 

characterized by anhedral quartz grains of about 3-5 mm, showing undulose extinction. These 369 

grains are characterized by wave-shaped grain-boundaries and subgrain boundaries. Subgrain 370 

rotation and bulging recrystallization processes can be distinguished (Figure 3-b). Microstructures 371 

indicate dynamic recrystallization processes at slightly lower temperatures than V-Qtz1 (Figure 3-b; 372 

Passchier & Trouw, (2005)). Fluid inclusions in V-Qtz2 are found within intragranular (Qtz2-ig) 373 

(Figure 3-b-c) or transgranular planes (Qtz2-tg) (Figure 4-a-b-e). The direction and dip of Qtz2-ig 374 

fluid inclusion planes are randomly distributed (Figure 3-e) throughout the vein, but are parallel to 375 

each other within a single grain. This suggests that these veins are related to crystallographic 376 

directions reactivated during crystal plastic deformation rather than tectonic fracturing. Qtz2-tg 377 

veins are parallel to each other and to the walls of V-Qtz2 (Figure 4-b-e). They were likely 378 

produced by crack-and-seal deformation. 379 

4.2.3 V-Qtz3, oblique veins from the mining district 380 

V-Qtz3 are composed of euhedral quartz associated with hematite, developed in veins 381 

(thickness < 5 cm) oblique to the host-rock foliation or in voids. Although euhedral Qtz3 overgrows 382 

Qtz2 (Figure 4-b), it is never intersected by Qtz2-tg. Isolated primary fluid inclusions are 383 

interpreted as contemporaneous to crystal growth (Qtz3-p; Figure 4-f). Hematite is found within 384 

microfissures extending from the wall rock to Qtz2 (Figure 4-b-d) and in voids between euhedral 385 
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Qtz3 (Figure 4-a-b). The lack of microfractures affecting Qtz3 and the almost systematic 386 

association of Qtz3 with hematite minerals suggest that both minerals grew during the same 387 

mineralization event. 388 

4.2.4 V-ore, oblique mineralised veins from the mining district 389 

An extensive study of ore mineralogy in the mining district (Morales Ruano, 1994) shows the 390 

occurrence of abundant siderite, barite, pyrite, marcasite, galena, chalcopyrite, sphalerite, 391 

tetrahedrite-tennantite, veenite, gersdorffite and bournonite and trace amounts of pyrrothite, 392 

bismuthinite, arsenopyrite and bravoite. Our sampled veins (V-ore) show only part of this 393 

paragenesis. 394 

V-ore veins crosscut V-Qtz1 (Figure 5-a), V-Qtz2 and V-Qtz3 (Figure 4-a). The thickness of 395 

the sampled V-ore veins can reach several dm. They are distributed in two main clusters striking 396 

N000-160E and N120-130E. Micro-euhedral quartz (0.5-1.0 mm) is observed on the walls of V-ore 397 

(Figure 5-a) predating siderite formation. Pyrite is included in siderite (Figure 5-c). Galena occurs at 398 

the contact between siderite and barite (Figure 5-b). The mineral sequence can be summarized as 399 

follows: micro-euhedral quartz-siderite-pyrite-galena-barite (Figure 5-c).  400 

Qtz-ore-tg inclusions are parallel to the wall rock and crosscut several micro-euhedral quartz 401 

grains. Fluid inclusions in siderite and barite are observed along cleavage planes and interpreted as 402 

primary (Figure 5-d-e).  403 

4.2.5 V-Cal, oblique calcite veins from the subsident area 404 

These lenticular tension gashes crosscut V-Qtz2 and attain a length of several cm with an 405 

opening of a few mm (Figure 6-a). Fluid inclusions are found as clusters and are interpreted as 406 

primary (Figure 6-b-c).  407 

4.3. Microthermometry and Raman results  408 

Table 3 presents data concerning the size, shape and filling of the fluid inclusions. The 409 

characteristic phase-transition temperatures and calculated compositions of fluid inclusions are 410 
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reported in Table 4 and Figure 7.  Aqueous carbonic fluid inclusions are recorded in quartz veins 411 

(Qtz1-tg1, tg2, Qtz2-ig, Qtz2-tg and Qtz3-tg), whereas aqueous fluid inclusions are recorded in ore 412 

veins.  413 

4.3.1 Fluid inclusions in Qtz1  414 

The salinity of Qtz1-tg1 ranges between 9.7 and 22.6 mass% NaCl eq., with Th (L) between 415 

319 and 350 °C. The volatile phase is predominantly CO2 (70-85 vol%), with minor amounts of 416 

CH4 (10-17 vol %) and N2 (0-18 vol%). 417 

The salinity of Qtz1-tg2 ranges between 21.6 and 23.8 mass% NaCleq, with Th (L) between 418 

305 and 344 °C. The volatile phase is predominantly CO2 (89-97 vol %), with minor amounts of 419 

CH4 (0-8 vol%) and N2 (0-7 vol%). 420 

4.3.2 Fluid inclusions in Qtz2 421 

The salinity of Qtz2-ig ranges between 11.9 and 20.6 mass% NaCleq., with Th (L) between 220 422 

and 400 °C. This broad scatter of homogenization temperatures is attributed to volume modification 423 

of fluid inclusions during high-temperature deformation (Vityk et al., 1995, Bodnar, 2003, 424 

Diamond et al., 2010). Therefore, we only consider Th of intact inclusions with the smallest gas 425 

bubbles (flw > 65 vol %), resulting in a range from 220 to 355 °C. The volatile phase is dominated 426 

by CO2 (87-98 vol %), with minor amounts of CH4 (1-8 vol %) and N2 (1-7 vol %). 427 

The salinity of Qtz2-tg ranges between 0.1 and 2.4 mass% NaCl eq., with  Th (L) between 290 428 

and 330 °C. Raman spectroscopy shows that the volatile phase is predominantly CO2 (57-85 vol %), 429 

with presence of CH4 (5-30 vol %), N2 (7-12 vol %) and H2S (1-5 vol %). 430 

4.3.3 Fluid inclusions in Qtz3  431 

The salinity of Qtz3-p ranges between 12.7 and 20.9 mass% NaCleq., with Th (L) between 235 432 

and 310 °C. The volatile phase is predominantly CO2 (91-99 vol %), with minor amounts of CH4 (1-433 

7 vol %) and N2 (0-5 vol %). 434 

 435 
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4.3.4 Fluid inclusions in Qtz, Sd and Brt from V-ore veins 436 

The salinity of Qtz-ore-tg ranges between 18.4 and 25.0 mass% NaCleq.. Methane (traces) is 437 

the only volatile present. Th(L) ranges between 150 and 248 °C. 438 

The salinity of Sd-p ranges between 15.4 and 24.6 mass% NaCleq.. Because no hydrohalite 439 

melting or clathrate dissociation temperature could be observed, our calculation is based on the final 440 

ice melting only and does not take into account the complexity of the fluid system. Therefore, some 441 

data yield salinity higher than halite saturation in the H2O-NaCl system. Th (L) is observed between 442 

110 and 222 °C. Such a large variation is likely related to leakage within this highly cleavable 443 

mineral (Bodnar, 2003). Raman spectroscopy shows that CH4 is the only volatile in the gas phase. 444 

The salinity of Brt-p ranges between 20.7 and 25.8 mass% NaCleq.. Again, because 445 

hydrohalite is never observed, our calculations only take account of Tm(ice) and the complexity of 446 

the system is not fully expressed. Therefore, some of our data show salinities higher than NaCl 447 

saturation in the H2O-NaCl system. Th (L) is observed between 237 and 335 °C. Although the 448 

inclusions were carefully checked before and after measurements, leakage before 449 

microthermometric experiments cannot be excluded (Ulrich & Bodnar, 1988, Bodnar, 2003), so 450 

these values in barite should be considered very carefully. Raman spectroscopy shows that the 451 

volatile phase is predominantly composed of CO2 (45-93 vol %) (although present in small amount) 452 

and N2 (5-52 vol %) with minor CH4 (0-5 vol %). 453 

4.3.5 Fluid inclusions in calcite from V-Cal 454 

The salinity of Cal-p ranges between 11.8 and 18.4 mass% NaCleq., with Th (L) between 67 455 

and 87 °C (Figure 7). Raman spectroscopy does not allow us to identify the nature of the gas phase. 456 

4.4. Halogen chemistry 457 

For V-Qtz1, a Cl/Br molar ratio of 1000 is obtained by crush-leach analysis and LA-ICPMS 458 

for a chlorinity of 4200 mmol/kg solution (Figure 8). The crushing experiments release fluids 459 

derived from Qtz1-tg1 and  Qtz1-tg2 as well as the fluid contained at grain boundaries. 460 
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Sd-p and Brt-p yield a Cl/Br ratio of between 3 500 and 10 000 for a chlorinity between 4 200 461 

and 5 400 mmol/kg solution, respectively. The Cl/Br ratio of Brt-p obtained with LA-ICP-MS is 462 

between 1 200 and 4 500 (Figure 8). The other populations of fluid did not give an interpretable 463 

signal. 464 

4.5. Major and trace element chemistry 465 

In both types of fluids (Qtz1-tg1 (n=8), Qtz2-tg (n=2), Qtz3-p (n=4) and Brt-p (n=9)) 466 

inclusions major (Na, K, Mg) and trace elements (Li, Mn, Fe, Cu, Zn, Sr and Ba) have been 467 

measured (Table 5, Figure 9). The other generations of fluids do not give any interpretable signals. 468 

In Qtz1-tg1 high salinity fluid, Na content ranges from 27000 to 122 000 ppm, K from 2000 469 

to 7600 ppm, yielding Na/K ratio ranging from 10 to 30. Mg content is relatively variable (100-470 

1600ppm). Li content is relatively high (200 to 1000 ppm). Mn, Fe, Ba and Sr display noticeable 471 

concentration (Table 5, Figure 9). 472 

On the contrary, Qtz2-tg having very low salinity show lower cation content and Na/K ratio is 473 

ranging from 1 to 6. Due to the low salinity fluid, few data could be obtained.  474 

Qtz3-p fluids displayed similar values as for Qtz1-tg1 (Na around 70 000 ppm). However K 475 

content is lower (1500 ppm) and consequently Na/K ratio is higher (around 50). Mg, Sr, and Mn 476 

content are the highest (Table 5, Figure 9).  477 

In Brt-p fluids, Ba and Sr content could not be measured due to matrix contamination. Na 478 

content is slightly lower than those of Qtz1-tg1 (20000 and 65000 ppm) wheras K content is 479 

ranging from 2600 and 9500 ppm (Na/K: 4 to 10). It can be notice that Zn content could reach 4700 480 

ppm. However, we cannot exclude a contribution of the barite crystal (Table 5, Figure 9). 481 

4.6. Stable isotopes 482 

δ13C in siderite ranges between –9.5 and –10.9 ‰ V-PDB (n=4), while  δ18O ranges between 483 

20.6 and 22.5 ‰ V-SMOW (Table 6). δ18O in barite ranges from 13.0 to 13.2 ‰ V-SMOW (n=2), and 484 

δ34S (n=4) from 19.4 to 23.1‰ V-CDT. Pyrite (n=3) yields δ34S between 5.4 and 6.4 ‰ V-CDT and 485 

galena (n=3) yields δ34S between –2.4 and 8.3 ‰ V-CDT.  486 
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Table 6 reports the δ18O values of minerals containing fluid inclusions. White micas from the 487 

host-rock yield δD values of –52 ± 1 ‰ V-SMOW. δDfluid values from Qtz1 sampled in the subsident 488 

area (recrystallised quartz devoid of visible inclusions) range between –33 and –36 ‰ V-SMOW. 489 

Former trapped fluid inclusions appear to have been transported to the grain boundaries during 490 

hydrolytic weakening (e.g. (Kerrich, 1976, Wilkins & Barkas, 1978, Johnson & Hollister, 1995, 491 

Hollister, 1990, Bakker & Jansen, 1990, 1994), so it is likely that remnants of this fluid were 492 

measured. In the mining district, V-Qtz1 veins host Qtz1-tg1 and Qtz1-tg2 type inclusions. The 493 

transgranular fluid inclusion planes show δD values between –28 and –32 ‰ V-SMOW, possibly 494 

reflecting the influence of δD inherited from earlier fluids displaced to grain boundaries during 495 

quartz recrystallization. 496 

δDfluid from Qtz2-ig and Qtz3-p inclusions cover a  similar range between –23 and –36 ‰ V-497 

SMOW (Table 6, Figure 10). δDfluid from Qtz2-tg (selected section with dominant Qtz2-tg inclusions 498 

in the quartz grains) display a larger range of values between –17 and –48 ‰ V-SMOW (Table 6, 499 

Figure 10). 500 

V-ore veins are significantly more D-depleted. δDfluid of Sd-p range between –65 and –80 ‰ 501 

V-SMOW. δDfluid of Brt-p ranges between –53 and –69 ‰ V-SMOW (Table 6, Figure 10). 502 

5. Discussion 503 

5.1. Key criteria to reconstruct the fluid sequence 504 

Early fluid stage: Ductile deformation affecting V-Qtz1 and V-Qtz2 in the Sierra Almagrera 505 

is compatible with top-to-the-W / top-to-the-SW extensional shearing similar to that observed in the 506 

Sierra de los Filabres (Augier et al., 2005c) (Figure 1). This deformation is not dated in the Sierra 507 

Almagrera. The only known age constraint is given by the youngest ductile extensional stages 508 

recognized within the Betics metamorphic pile, which are dated around the Langhian-Serravalian 509 

boundary at 14 Ma (Gomez-Pugnaire et al., 2004, Platt et al., 2006, Gomez-Pugnaire et al., 2012). 510 

Although no fluid inclusions are observed in V-Qtz1 veins sampled from the subsident area, 511 

crushing techniques allowed us to extract a fluid, which could then be analysed for its δD. This 512 
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suggests that fluid inclusions trapped prior to plastic deformation are displaced towards grain 513 

boundaries during recrystallization processes (Kerrich, 1976, Wilkins & Barkas, 1978, Johnson & 514 

Hollister, 1995) and are then partly preserved. The calculated equilibrium temperature between this 515 

fluid and host-rock, based on hydrogen isotope fractionation, is comprised between 488 and 520 °C 516 

(Table 6), which is in agreement with ductile conditions. Plastically deformed or dismembered 517 

inclusions are found within intragranular planes of V-Qtz2 (Qtz2-ig), while non-deformed 518 

inclusions are found within transgranular planes affecting V-Qtz1 in the mining district where V-519 

ore barite veins are also frequently present. Transgranular planes result from the healing of former 520 

open cracks (Lespinasse, 1999, Lespinasse et al., 2005),  and thus more brittle conditions are 521 

required than for intragranular planes. As a consequence, Qtz2-ig likely formed at conditions more 522 

ductile than Qtz1-tg1, 2. 523 

Similar microthermometric phase transitions are observed for Qtz2-ig and Qtz1-tg1, 2 524 

(average Th around 340 °C and with comparable maximum salinity). Relative chronology criteria 525 

indicate that Qtz1-tg1 predates Qtz1-tg2, but no other direct data allow us to constrain the 526 

chronological position of Qtz1-tg (1, 2) in the general fluid history. Two interpretations can be 527 

proposed. The dominant NW-SE strike of Qtz1-tg1 may be consistent with late Tortonian 528 

shortening directions associated with strike-slip tectonics (Montenat & Ott D'estevou, 1990). This 529 

deformation occurred prior to the Messinian N-S to NNE-SSW shortening that could correspond to 530 

the subsequent Qtz1-tg2 fluid inclusion planes. In such a scenario, the transgranular fluid inclusions 531 

could be coeval with V-ore mineralizing events displaying similar tectonic directions, and thus 532 

would not correspond to an early fluid trapped during the brittle-ductile transition.  533 

An alternative explanation would be that both kinds of microcracks are related to brittle 534 

extensional fracturing, implying that the tectonic regime previously expressed by ductile 535 

deformation belongs to an earlier stage of exhumation. In such a case, the brittle deformation would 536 

predate the onset of a Late Miocene transcurrent regime related to the mineralizing events. 537 

Therefore, σ3 measured normal to the microcracks would be similar for both the extensional and 538 
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transcurrent regimes, with the result that this question cannot be resolved solely on the basis of 539 

structural criteria. If fluids were trapped soon after the ductile-brittle transition for quartz, this 540 

would explain certain similarities of the microthermometry and salinity data with Qtz2-ig fluid 541 

inclusions trapped during this transition. 542 

Intermediate fluid stage: Qtz2-tg fluids are characterised by a much lower salinity than 543 

observed in the other types of fluid inclusions. Since Qtz2-tg never affects V-Qtz3 nor V-Cal, this 544 

suggests an episodic arrival of low-salinity fluid after the formation of V-Qtz2 but prior to V-Qtz3 545 

and V-Cal. Considering the youngest ages inferred for ductile deformation in the eastern Betics 546 

(around the Langhian-Serravalian boundary), the exhumation of this part of the Sierra Almagrera 547 

within the brittle domain probably occurred during Langhian to Serravalian times. Only marine 548 

sediments of Serravalian age are preserved further north in the Aguilas block (Griveaud et al., 549 

1990). Younger sediments of Late Serravalian – Early Tortonian age recognized further west in the 550 

Huercal Overa Basin (Pedrera et al., 2010) are represented by alluvial fan deposits reflecting the 551 

uplift of mountain ranges prior to the return of marine conditions in the Vera Basin from Late 552 

Tortonian times onwards (Figure 1). The uplift of the Sierra de los Filabres bordering the Huercal 553 

Overa Basin has been linked to a local N-S extension (Augier et al., 2005a) or the onset of 554 

transcurrent tectonics (Montenat & Ott D'estevou, 1990). Regardless of the associated tectonic 555 

regime at this time, the paleogeography suggests that hydrogeological conditions within the brittle 556 

crust favoured the input of meteoric water from the uplifted ranges into the upper reservoir, but 557 

prior to the Late Tortonian return to marine conditions. 558 

Pre-ore fluid stage: The obliquity with respect to the host-rock foliation and the lack of 559 

undulose extinction in the euhedral quartz shows that V-Qtz3 formed within the brittle domain. 560 

Euhedral Qtz3 formed during the same event that led to the formation of hematite. The input of Fe 561 

in the fluid is related here to an increase of salinity. Although oxidizing conditions prevailed at a 562 

certain stage of the fluid evolution, it is possible that early siderite was subsequently oxidized.  563 
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Ore fluid stage: V-ore veins crosscut V-Qtz3 (Figure 4-a). The maximum salinities are 564 

observed either in fluid inclusions from transgranular planes within early micro-euhedral quartz on 565 

the wall-rock (Qtz-ore-tg), or in primary fluid inclusions from siderite and barite (Sd-p and Brt-p). 566 

The formation of siderite postdating V-Qtz3-hematite veins not only indicates the ongoing input of 567 

Fe in the fluid, but also a shift towards reducing conditions. Quartz and siderite trapped fluids at 568 

lower temperatures (Th of Sd-p around 190 °C) compared with the pre-ore fluid stage (Th of Qtz3-p 569 

around 265 °C). V-ore vein sets have two main strike directions: N000E-N340E and N120E-570 

N130E. The N-S trend is coherent with the Messinian direction of horizontal shortening and E-W 571 

extension, being related to the major transcurrent activity of the Palomares Fault Zone. The 572 

interpretation of fluid inclusions in barite is more problematic. The data appears to indicate an 573 

increase of Th  compared to the estimated conditions of siderite formation (Figure 7), but Th 574 

obtained from this kind of mineral are usually considered to be overestimated (Ulrich & Bodnar, 575 

1988). This raises the question of the chronological position of N-S to NNE-SSW-striking fluid 576 

inclusion planes belonging to Qtz1-tg2, since both Brt-p and Qtz1-tg2 show closely similar Th 577 

values and high salinities (Figure 7). It is possible that this similarity is just a coincidence or maybe 578 

Qtz1-tg2 inclusions in quartz reflect a thermal pulse that leads to values typical of Brt-p.  579 

Late fluid stage: Inclusions in calcite record lower Th around 80 ºC, suggesting formation at a 580 

more superficial position. The relative chronology of this late stage in the fluid sequence could be 581 

debated since the calcite veins were not sampled in the same structural block as V-ore veins. The 582 

only chronological criterion is the crosscutting geometry with V-Qtz2. 583 

5.2. P-V-T-X evolution 584 

The Raman spectrometry study of graphitic schists constrains the maximum temperature 585 

attained by the host-rock to 545-587 °C. These results are in agreement with metamorphic peak 586 

temperatures of the Nevado-Filábride complex obtained in other parts of the orogen (De Jong, 2003, 587 

Augier et al., 2005b). 588 
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The P-T ranges of fluid inclusion entrapment are constrained by the isochores and geothermal 589 

gradients (Figure 11). For the Sierra Almagrera, geothermal gradient data are poorly documented. 590 

The only available data comes from the Sierra Nevada located to the West of Sierra Almagrera, 591 

where a gradient of 60 °C/km under lithostatic conditions is indicated for the final stages during 592 

ductile deformation (Gomez-Pugnaire & Fernandez-Soler, 1987, Bakker et al., 1989, Jabaloy et al., 593 

1993, Augier et al., 2005b). A gradient of 30 °C/km is arbitrarily taken as an upper limit, 594 

corresponding to the European average anorogenic gradient. 595 

In the absence of other metamorphic constraints, hydrogen isotopes can be used  to assess the 596 

temperature of equilibrium between fluid inclusions and mica-rich host-rock (Tarantola et al., 597 

2007). In the case of isotopic equilibrium, P- T boxes are also constrained by the minimum and 598 

maximum values of hydrogen equilibrium temperatures (Table 6 and Figure 11). 599 

Early fluid stage: Qtz2-ig inclusion shapes range from euhedral to dismembered (Tarantola et 600 

al., 2010 and 2012), with large variations of the gas filling ratio. This is indicative of plastic 601 

deformation and would thus be related to lithostatic pressure conditions. The box shown in Figure 602 

11 is also constrained by minimum and maximum hydrogen equilibrium temperatures since the 603 

calculated temperatures are of the order of 400-520 °C (Table 6). 604 

Transgranular fluid inclusion planes Qtz1-tg1 and Qtz1-tg2 indicate brittle behaviour within 605 

the quartz vein, but the mica-rich host-rock may still have been affected by ductile deformation. 606 

Fluids may have been trapped during the brittle-ductile transition of mica-rich lithologies within a 607 

temperature and pressure range already corresponding to brittle rheology for the quartz. In such a 608 

case, both Qtz1-tg1 and Qtz1-tg2 possibly formed under a lithostatic regime. As an alternative 609 

hypothesis, these microcracks may be indicative of a hydrostatic regime due to late Miocene 610 

transcurrent tectonics that formed V-ore veins in the brittle domain. In fact, Qtz1-tg1/Qtz1-tg2 611 

fluids seem to be in equilibrium with the host-rock (Table 6), but in strong disequilibrium with 612 

respect to V-ore veins. In addition, the gas contents of Qtz1-tg1 and Qtz1-tg2 are more closely 613 

similar than those of Sd-p and Brt-p fluid inclusions (Table 4). All these data suggest a resident 614 
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fluid derived from the lower reservoir rather than the presence of fluids of external origin in the 615 

upper reservoir. Finally, this explains why Qtz1-tg1 and Qtz1-tg2 could be related to the early fluid 616 

stage in the selected scenario (Figure 11). Thus, the rather large T and P range reflects the trapping 617 

conditions of inclusions related to this stage between Qtz2-ig (400-520 °C and 270-380 MPa) and 618 

Qtz1-tg1, 2 (440-480 °C and 110-230 MPa) (Figure 11). 619 

Intermediate fluid stage: There is no evidence of whether transgranular Qtz2-tg planes formed 620 

under a lithostatic or a hydrostatic fluid regime. From this intermediate stage of fluid evolution until 621 

the final stages of fluid trapping, the hydrogen isotope fractionation seems to be no longer in 622 

equilibrium between the fluid inclusions and the mica-rich host-rock (Table 6). Hydrogen 623 

equilibrium temperature constraints do not allow us to define the P-V-T-X boxes. The decrease of 624 

salinity related to an input of surficial fluids rather suggests an opening of the system under 625 

hydrostatic conditions. The trapping conditions for these fluid inclusions are in the range 300-450 626 

°C and 40-140 MPa (Figure 11). 627 

Pre-ore fluid stage: Since the euhedral quartz Qtz3 veins were no longer affected by ductile 628 

deformation and recrystallization processes, it is considered that they crystallized in the brittle 629 

domain under hydrostatic pressure, within the P-T range: 250-380 °C and 40-120 MPa (Figure 11). 630 

Ore fluid stage: Crystallization of quartz, siderite and barite occurred in an open system. 631 

Hydrostatic conditions allow us to constrain the P-T range of entrapment for fluid inclusions at 160-632 

300 °C and 30-90 MPa in Qtz-ore-tg and at 120-260 °C and 20-80 MPa in Sd-p (Figure 11). 633 

Unfortunately, the confidence on microthermometric data obtained on barite is low (Ulrich & 634 

Bodnar, 1988). The observed homogenization temperatures would imply a significant increase of 635 

the trapping temperature to 280-440 °C at 40-130 MPa. This could be explained by a magmatic 636 

input from contemporaneous active volcanism, but it could also be related to an overestimation due 637 

to stretched inclusions in barite. Th and salinity of Brt-p are similar to Qtz1-tg2 inclusions, while 638 

strike directions of barite V-ore veins are more or less parallel to Qtz1-tg2 fluid inclusion planes. 639 

These inclusions in quartz support the hypothesis of a thermal pulse defined by inclusions in barite. 640 
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In fact, P-V-T-X data from Qtz1-tg2 (Figure 11) seem to indicate a significant increase of pressure 641 

compared to Sd-p fluid trapping conditions, which is apparently incompatible with an ongoing 642 

exhumation of the Sierra Almagrera. Hydrogen isotopic fractionation indicates a strong 643 

disequilibrium between primary fluid inclusions from V-ore veins and the host-rock. On the 644 

contrary, hydrogen isotope data for Qtz1-tg2 indicate a fluid in equilibrium, rather suggesting its 645 

formation during an early fluid stage. This interpretation does not support the existence of a thermal 646 

pulse. 647 

Late fluid stage: The calcite stage is characterized by lower homogenization temperatures, 648 

suggesting a cooling of the system down to 70-110 °C at 10-30 MPa hydrostatic pressure (Figure 649 

11). 650 

5.3. Source of fluids 651 

Early fluid stage: Hydrogen isotope fractionation data showing equilibrium between fluid 652 

inclusions and mica-rich host-rock suggest a resident fluid in the lower reservoir. The δDfluid values 653 

obtained from Qtz1 (early fluids displaced towards grain boundaries during recrystallization 654 

processes) and Qtz2-ig ranging between –23 and –36 ‰ V-SMOW (Table 6, Figure 10) are compatible 655 

with a fluid of metamorphic origin. 656 

 V-Qtz1 quartz grains also containing Qtz1-tg1 and Qtz1-tg2 fluids yield similar δD values (–657 

28 to –30 ‰ V-SMOW). Their halogen signatures plot along the seawater evaporation trend in 658 

agreement with halite evaporation (Figure 8). At first sight, this would indicate a primary brine. 659 

Two brine sources can be considered according to the geological history: Triassic and Messinian. It 660 

is very unlikely that primary brines could have been preserved since Triassic times, considering the 661 

metamorphic processes affecting the rocks in the lower reservoir. The other hypothesis would be to 662 

explain Qtz1-tg1 and Qtz1-tg2 signatures as representing surficial brines coming from Messinian 663 

pre-crisis evaporitic basins. This interpretation revives the hypothesis linking Qtz1-tg2 and Brt-p 664 

inclusions during mineralization events. However, stable isotope results and P-V-T-X data rather 665 

identify fluids trapped in Qtz1-tg1 and Qtz1-tg2 microcracks as resident fluids that have undergone 666 
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long-time fluid-rock exchange with the mica-rich host-rock. The interaction of fluids with black 667 

graphite schists may have led to a Br enrichment (Yardley, 2005) of secondary brines derived from 668 

the dissolution of Triassic evaporites, which could explain the position of the data points on the 669 

seawater evaporation curve (Figure 8).  670 

The variability observed  in the salinity of both Qtz2-ig and Qtz1-tg1/Qtz1-tg2 fluids might 671 

either reflect i) an original heterogeneity related to discontinuous interaction with Permo-Triassic 672 

evaporites, ii) the effect of plastic deformation for Qtz2-ig (Diamond et al., 2010), or iii) a mixing 673 

between deep high-salinity and a low-salinity fluid end-members. 674 

Intermediate fluid stage: Fluid isotope values obtained on Qtz2 grains containing Qtz2-tg also 675 

incorporate the signature of fluids from the early stage displaced to grain boundaries during 676 

recrystallization processes. δDfluid values ranging from –17 to –48 ‰ V-SMOW are generally lower 677 

than values obtained for the early fluid stage. δD values of the dilute fluid are thus D-depleted 678 

compared to those of the early stage, with values that are unlikely to be buffered by the host-rock 679 

(Table 6). This suggests the input of an external low-salinity fluid from the upper reservoir, which 680 

did not interact with evaporites/metaevaporites (i.e. Permo-Triassic). 681 

It is possible that the volume of low-salinity fluids was sufficient to dilute high-salinity fluids 682 

from the early stage, or more likely, the lower ductile and the upper brittle reservoirs were not 683 

connected during exhumation and thus behaved independently. The penetration of low-salinity 684 

fluids is likely associated with the uplift of mountain ranges during the Serravalian and Early 685 

Tortonian (Martínez-Martínez & Azañón, 2002, Platt, 2007) (Figure 12). However, in the absence 686 

of δ18O values and interpretable LA-ICP-MS data, it cannot be concluded whether this fluid is of 687 

meteoric or basinal origin. 688 

Pre-ore fluid stage: Hydrogen isotopic composition is not buffered by the host-rock (Table 6). 689 

The enrichment of iron in the fluid led also to the formation of hematite in the voids between Qtz3 690 

crystals (Figure 4-b and Figure 12). This stage corresponds to tectonic conditions in the brittle 691 

domain.  692 

Page 27 of 60

Geofluids

Geofluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft Copy

The salinity is comparable to that in the early fluid stage. δ18Oquartz is lower than for the early 693 

fluid stage, and trapping temperatures define a δD/δ18Ofluid signature shifted towards 694 

basinal/meteoric water compositions. The major and trace elements (Na/K ratio around 50, Sr/Ba 695 

ratio around 20 and Sr, Mg content, Table 5) of this fluid reflect a basinal origin (Yardley, 2005). 696 

These data are coherent with mixing between low-salinity basinal/meteoric fluids and with an 697 

upward migration of high-salinity fluids coming from the lower reservoir. This may reflect the 698 

onset of transcurrent tectonics during this period, and a structural connection between the two 699 

reservoirs through the brittle ductile transition zone (Figure 12). 700 

Ore fluid stage: Although siderite from El Arteal in the mining district yields slightly lower 701 

δ13C (about 2 ‰, with values of –9.5 and –10.9 ‰ V-PDB) and slightly higher δ18O (about 1 ‰ V-702 

SMOW), it can be compared with the siderite from Jaroso Ravine (Figure 1-b). The results from this 703 

latter locality have been interpreted as indicative of meteoric water and low-temperature 704 

hydrothermal conditions (Martinez-Frias et al., 2007). However, δ13C may also be buffered by the 705 

metasedimentary sequence during fluid interaction, whatever the origin of the fluids.  706 

The combination of δD and δ18O values suggests a fluid with a magmatic or metamorphic 707 

signature (Field & Fifarek, 1985). As well as having a high salinity, the  fluids do not fit the 708 

meteoric water line (Figure 10),  thus contradicting the conclusions of Martinez-Frias et al. (2007). 709 

Since δDfluid is strongly in disequilibrium with the host-rock, this implies an external source for the 710 

ore fluid, so it cannot be of meteoric origin. 711 

Fluids in siderite were trapped at lower temperatures than the previous fluid stages, and thus 712 

at shallower depths (Figure 12). The fluid inclusions in siderite show higher values of salinity than 713 

obtained for the earlier stages, reaching up to 25 mass% NaCleq. (Figure 7, Table 4). Cl/Br data 714 

show that the fluid is Br-depleted and far from the seawater evaporation trend. As Br is not easily 715 

incorporated in halite, dissolution of halite would yield this type of fluid. Cl/Br ratios thus indicate 716 

signatures that could be compared to secondary brines (Banks et al., 2000) resulting from 717 

dissolution of evaporites (Figure 8).  718 
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The strong salinity increase might result from a combination of volcanism in the Palomares 719 

Fault Zone, as suggested by δD and δ18O values (Figure 10), and dissolution of evaporites as 720 

suggested by their halogen signatures (Figure 8). The strike direction of the veins is coherent with 721 

the Messinian strike-slip regime related to major activity of the Palomares Fault Zone (Montenat et 722 

al., 1987, Booth-Rea et al., 2004). Of major interest here is the δ34S composition of barite, which is 723 

more closely comparable to Miocene sea water (Claypool et al., 1980, Morales Ruano et al., 1995) 724 

than Triassic values. Therefore, the increase of salinity in the ore fluid stage compared to previous 725 

stages could also be related to secondary brines linked to the dissolution of Messinian evaporites 726 

rather than exclusively of Triassic evaporites. Dissolution of Messinian marginal evaporites 727 

(deposited from 5.96 to 5.67 Ma ago in the Sorbas basin) (Clauzon et al., 1996, Bourillot et al., 728 

2009) is a possible scenario (Figure 12). These Messinian evaporites preceded the main sea-level 729 

drop related to the peak of the salinity crisis (5.60-5.46 Ma). Pre-incision Messinian evaporitic 730 

deposits were available, as revealed by the “Formation à blocs” in the Vera basin, which reworked 731 

Messinian early gypsum during the main incision event (Figure 12) (Clauzon, 1980, Clauzon et al., 732 

1996). Messinian sediments from Las Herrerias (Figure 1) were mineralised prior to the main 733 

Messinian incision (Alvado, 1986, Fortuin et al., 1995, Booth-Rea et al., 2004), and such a scenario 734 

would provide a relatively accurate dating of the mineralizing event around 5.65 Ma (Figure 12).  735 

A thermal pulse at constant salinity is suspected because the fluid trapping conditions in barite 736 

exceed 400 ºC,  but this result should rather be considered as an artefact arising from this particular 737 

mineral (Figure 12). If the high-K calc-alkaline, shoshonitic and ultrapotassic magmatism were 738 

related to mineralization during the ore-fluid stage, this could represent a possible metal source. The 739 

high contents of K or metals such Zn or Cu in fluid inclusions (Table 5, Figure 9) tend to support 740 

this hypothesis, but a leaching of basement rocks could also be an alternative explanation. 741 

Late fluid stage: Homogenization temperatures of fluid inclusions within calcite around 80 ºC 742 

suggest deep burial or a shallow expression of hot fluids. The salinity of these fluids may be 743 

compared to the salinity of early and pre-ore stages. Calcite veins may correspond to a shallow 744 
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expression of deeper fluid flows, recorded as veins currently cropping out in the uplifted block 745 

represented by the mining district (Figure 12). In such a case, the superficial equivalent of rocks in 746 

the central block may have been eroded during the subsequent uplift, but preserved in the subsident 747 

block to the West. A second hypothesis is that these calcite veins only developed during a later 748 

stage at lower temperature. 749 

Fluids trapped as fluid inclusion planes during the early stage are characterized by a rather 750 

low density of the CO2-rich volatile phase. The significant presence of CH4 (around 20% of the 751 

volatile molar composition) is not strictly expected in the case of water-graphite equilibrium 752 

(Dubessy, 1984, Huizenga, 2001, 2011). Such a distribution of volatiles is fairly common in 753 

metamorphic environments at around 350-450 °C, where local equilibrium is reached between 754 

water and graphite.  Through mixing with other fluids, this contributes to the common metamorphic 755 

signature found in most retrograde fluids during exhumation (Cathelineau et al., 1993, Boiron et al., 756 

2003). At lower temperatures, in the presence of graphite, CH4 is expected to be the dominant 757 

species if redox conditions are moderately reducing. This applies in the case of a predominance of 758 

CH4 in fluid inclusions during the precipitation of siderite at the beginning of the Ore stage, which 759 

occurred with a Th around 190 °C. The precipitation of siderite from Fe2+-rich solutions requires a 760 

significantly low fO2 and an increase in fCO2. 761 

6. Conclusions 762 

Fluid circulation events are recorded within the studied veins at different positions of the  763 

Sierra Almagrera metamorphic belt during its exhumation. The general P-T path is characterized by 764 

an evolution from lithostatic to hydrostatic conditions.  Despite the rather exceptional constant fluid 765 

composition throughout exhumation, different geological contexts associated with fluid circulation 766 

can be considered: i) a first stage during which the host-rock passed through the brittle-ductile 767 

transition and the quartz trapped metamorphic fluids, ii) a second stage when the host-rock 768 

definitively entered the brittle domain and predominantly collected shallower fluids from the upper 769 

reservoir and, iii) a final stage, related to ore formation and possibly magmatism as well, resulting 770 
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in a marked tectonic change that modified the relative hydrogeologic independence between the 771 

deeper and upper reservoirs. 772 

More generally, the tectonic and paleotopographic evolution of the Sierra Almagrera leads us 773 

to consider two stages in the fluid circulation history. Prior to the transcurrent tectonic regime, the 774 

metamorphic rocks of the Sierra Almagrera were exhumed as a whole, and V-Qtz1 and V-Qtz2 775 

veins were developed throughout the studied area. The onset of transcurrent tectonics had two 776 

consequences: i) it localized the deformation and associated fluid pathways within the brittle crust 777 

and, ii) it generated local transtension and transpression leading to final exhumation of the central 778 

area corresponding to the mining district where V-Qtz3 and V-ore veins are found.  779 

The first record of exhumation is characterized by ductile-brittle deformation related to 780 

extensional tectonics. We propose that, during this early stage, metamorphic brines resulted from 781 

the dissolution of Triassic evaporites. Low-salinity fluids were then recorded as the structural unit 782 

progressively entered the brittle domain. These low-salinity fluids are likely related to the 783 

penetration of basinal or meteoric waters from the surface, favoured by a hydraulic gradient related 784 

to the uplift of mountain ranges during late Serravalian to early Tortonian times. 785 

The upper fluids could have retained their specific characteristics until the present-day, but 786 

the geodynamic changes related to the onset of Trans-Alboran tectono-volcanism modified the 787 

hydrogeological decoupling between the lower and upper reservoirs. The pre-ore stage is 788 

characterized by the occurrence of brittle quartz veins related to intermediate salinity and 789 

homogenization temperatures indicative of mixing between meteoric or basinal fluids and the 790 

upward migration of high-salinity fluids coming from the lower reservoir. These fluids are similar 791 

to those from the early fluid stage. They have a volatile phase dominated by CO2 but devoid of CH4, 792 

being associated with Fe which is expressed by the formation of hematite under oxidizing 793 

conditions, but possibly after the crystallization of primary siderite. This pre-ore stage can be 794 

interpreted as the first evidence of the influence of volcanism.  795 
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Reducing conditions prevailed at a later stage of Fe-rich fluid migration. This is reflected by 796 

the formation of siderite and Fe sulphides in the mining district, and is related to the activity of the 797 

Palomares sinistral fault zone during the Messinian. An evolution towards more oxidizing 798 

conditions led to the formation of galena and barite, whose δ34S signatures indicate the involvement 799 

of Miocene sulphate. This suggests the involvement of a second type of secondary brines (Ore 800 

stage) which may have dissolved Messinian evaporites from the Vera Basin. Since the marginal 801 

evaporitic basins in the Betics are dated at around 5.96 to 5.67 Ma (Sorbas basin; Bourillot et al. 802 

(2009)), and since the Las Herrerias stratabound ore-deposits were incised during the main 803 

Messinian salinity crisis and sea-level fall in the Mediterranean domain (5.6-5.46 Ma), this scenario 804 

would provide an accurate constraint on the age of the mineralization stage around 5.65 Ma  805 

The overall evolution of fluid migration in this part of the Betic Cordillera points out the role 806 

of three main driving forces: i) an exhumation path related to an overall cooling, ii) a drastic change 807 

to transcurrent tectonics associated with hydrogeological connections at depth favouring the ascent 808 

of hot hydrothermal fluids and, iii) the involvement of two types of secondary brines, an input from 809 

the deep reservoir involving Triassic evaporites and a more recent input from the Messinian at the 810 

surface, which might have caused the migration and concentration of elements of economic interest. 811 

The interference between these factors influenced the redox conditions within the upper brittle 812 

reservoir, leading to an alternation of oxidizing and reducing conditions that controlled the 813 

formation of Fe-rich minerals ((siderite?) hematite, then siderite-pyrite). The deep penetration of 814 

late-stage oxidizing Messinian secondary brines is related to the crystallization of barite. This 815 

process reflects the existence of large convection cells extending from the surface to deep aquifers, 816 

associated with transtensional tectonics and local heat flow, which are presumed to be related to 817 

Miocene magmatism at depth. 818 
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 1206 
 1207 

Figure 1:a) Geological context of the Eastern Betics and location of the Sierra Almagrera (modified after Augier 1208 
(2004)). b) Geological map of the Sierra Almagrera, Vera basin and Palomares fault zone (modified after Booth-Rea 1209 
(2004) and Montenat & Ott D’estevou (1990), and location of sampling areas. c) Poles of mineralized V-ore veins 1210 
(barite and siderite) in El Arteal tunnel represented on lower-hemisphere stereogram. 1211 

 1212 

Figure 2: a) V-Qtz1 quartz vein parallel to the rock foliation. b) Optical microphotograph under cross-polarized light 1213 
(XPL) showing petrography of Qtz1: static recrystallization (120° angles) and grain boundary migration 1214 
recrystallization. c) Qtz1: recrystallised quartz with transgranular FIP. d) Qtz1-tg1 FIP. e) Qtz1-tg2 FIP. f) Pole 1215 
projections of Qtz1-tg1 and Qtz1-tg2 fluid inclusion planes represented on lower hemisphere stereogram. Arrows 1216 
indicate the directions of opening. L for liquid, V for vapour and S for solid. 1217 

 1218 

Figure 3: a) V-Qtz2 quartz vein locally parallel to the foliation (upper part), while the main section is discordant to the 1219 
foliation (central part). b) Relationship between petrography of recrystallised quartz (subgrain rotation and bulging) and 1220 
fluid inclusions. c) Optical microphotographs under plane-polarized light showing intragranular Qtz2-ig. d) Deformed 1221 
fluid inclusion Qtz2-ig. e) Pole projections of Qtz2-ig fluid inclusion planes represented on lower-hemisphere 1222 
stereogram. 1223 

 1224 

Figure 4: a) N10E V-Qtz2 discordant to the foliation reopened as V-Qtz3, intersected by V-ore discordant vein. Optical 1225 
microphotographs under natural light: b) Contact between Qtz2 and Qtz3. Qtz2 grains still showing undulose extinction 1226 
and affected by Qtz2-tg. Qtz3 euhedral quartz containing only Qtz3-p primary fluid inclusions. Hematite microfissures 1227 
affecting Qtz2. Hematite also filling open spaces between Qtz3 crystals. c) Zoom of zone localized in b). d) Hematite in 1228 
reflected light. e) Qtz2-tg. f) Qtz3-p. 1229 

 1230 

Figure 5: Optical microphotographs of V-ore and related minerals, in plane-polarized light (PPL), cross-polarized light 1231 
(XPL) and reflected light (RL). a) Vein of siderite and micro-euhedral quartz (XPL). b) Sequence of siderite, galena and 1232 
barite (PPL+ RL). c) Schematic representation of chloritoid-schist breccia cemented by various minerals (V-ore). d) Sd-1233 
p primary fluid inclusion in siderite. e) Brt-p in barite. 1234 

 1235 

Figure 6: a) V-Qtz2 oblique quartz vein intersected by V-Cal oblique calcite vein. b) Relationships between V-Qtz2 1236 
grains, Qtz2-tg and calcite vein containing Cal-p. c) Detail of Cal-p. 1237 
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Figure 7: Microthermometry and salinity data for all types of fluid inclusions from the Sierra Almagrera. 1238 

 1239 

Figure 8: Cl/Br molar ratio vs. Cl concentration for fluid inclusions analysed both by LA-ICP-MS (empty symbols) and 1240 
crush-leach methods (CL, full symbols) (samples from the mining district). The seawater evaporation trend is indicated 1241 
(Fontes & Matray, 1993) as SW: Seawater, G: Gypsum, H: Halite, E: Epsomite, S: Sylvite, C: Carnallite, B: Bischofite. 1242 
Comparison data (crush-leach analysis) in boxes  1 to 4: 1—Variscan fluids equilibrated with host rocks (granite and 1243 
metamorphic rocks), (Boiron et al., 2003), 2—Primary brines derived from Triassic evaporites in the Pyrenees (Mccaig 1244 
et al., 2000), 3—Primary brines from Ag deposits in Morocco (Essarraj et al., 2005), 4—Secondary brines associated 1245 
with emerald mineralization in Columbia (Banks et al., 2000). 1246 

 1247 

Figure 9 : Box-and-whisker plots showing the concentrations of various elements concentrations (in ppm) in fluid 1248 
inclusions Qtz1-tg1, Qtz2-tg, Qtz3-p and Brt-p obtained by LA-ICP-MS method (other FI did provide significant 1249 
signal). Sr and Ba concentrations are not significant for Brt-p because of the presence of the element in the ablated 1250 
mineral matrix. Lower whiskers, bottoms of boxes, red central lines, tops of boxes and upper whiskers represent 10th, 1251 
25th, 50th, 75th and 90th percentiles respectively. n, number of fluid inclusions analysed, it is identical for all the 1252 
elements. 1253 

 1254 

Figure 10: δ18Ofluid ‰ V-SMOW vs. δDfluid ‰ V-SMOW for Qtz2-ig, Qtz3-p and Sd-p fluids. Fields of some representative 1255 
fluids from the literature: basinal fluids (Sheppard (1986): GC = Gulf Coast; C = California; M= Michigan). 1256 
Metamorphic and magmatic fluids boxes are plotted from Field and Fifarek (1985). 1257 

 1258 

Figure 11: P (MPa) vs. T (°C) of fluid inclusion stages in the Sierra Almagrera. l.p.: geothermal gradient at lithostatic 1259 
pressure; h.p.: geothermal gradient at hydrostatic pressure. 1260 

 1261 

Figure 12: Exhumation of the Sierra Almagrera with associated tectonic regime, paleo-orographic evolution and 1262 
paleofluid sequence 1263 

 1264 

Table 1: Abbreviations referring to microthermometric experiments. . 1265 

 1266 

Table 2: Nomenclature, location and description of sampled veins 1267 

 1268 

Table 3: Nomenclature, chronology and characteristics of fluid inclusions. Abbreviations: -tg stands for transgranular, -1269 
ig for intragranular and -p for primary, L: liquid, V: vapour, acc.: accidentally trapped mineral, Sd: siderite, Brt: barite, 1270 
Cal: calcite. 1271 

 1272 

Table 4: Microthermometric and compositional data for all generations of fluid inclusions from the Sierra Almagrera 1273 
(values of mode in italics). - : not determined 1274 

 1275 

Table 5: LA-ICP-MS data for four generations of fluid inclusions from the Sierra Almagrera. Concentrations are given 1276 
in ppm and Na/K are mass ratios. - : not determined  1277 

Table 6: Isotopic data for various stages of fluid inclusions from the Sierra Almagrera, - : not determined. 1278 

 1279 
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a) Geological context of the Eastern Betics and location of the Sierra Almagrera (modified after Augier 
(2004)). b) Geological map of the Sierra Almagrera, Vera basin and Palomares fault zone (modified after 

Booth-Rea (2004) and Montenat & Ott D’estevou (1990), and location of sampling areas. c) Poles of 

mineralized V-ore veins (barite and siderite) in El Arteal tunnel represented on lower-hemisphere 
stereogram.  
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a) V-Qtz1 quartz vein parallel to the rock foliation. b) Optical microphotograph under cross-polarized light 
(XPL) showing petrography of Qtz1: static recrystallization (120° angles) and grain boundary migration 
recrystallization. c) Qtz1: recrystallised quartz with transgranular FIP. d) Qtz1-tg1 FIP. e) Qtz1-tg2 FIP. f) 

Pole projections of Qtz1-tg1 and Qtz1-tg2 fluid inclusion planes represented on lower hemisphere 
stereogram. Arrows indicate the directions of opening. L for liquid, V for vapour and S for solid.  

126x100mm (300 x 300 DPI)  
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a) V-Qtz2 quartz vein locally parallel to the foliation (upper part), while the main section is discordant to the 
foliation (central part). b) Relationship between petrography of recrystallised quartz (subgrain rotation and 
bulging) and fluid inclusions. c) Optical microphotographs under plane-polarized light showing intragranular 

Qtz2-ig. d) Deformed fluid inclusion Qtz2-ig. e) Pole projections of Qtz2-ig fluid inclusion planes represented 
on lower-hemisphere stereogram.  

133x88mm (300 x 300 DPI)  
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a) N10E V-Qtz2 discordant to the foliation reopened as V-Qtz3, intersected by V-ore discordant vein. Optical 
microphotographs under natural light: b) Contact between Qtz2 and Qtz3. Qtz2 grains still showing undulose 
extinction and affected by Qtz2-tg. Qtz3 euhedral quartz containing only Qtz3-p primary fluid inclusions. 
Hematite microfissures affecting Qtz2. Hematite also filling open spaces between Qtz3 crystals. c) Zoom of 

zone localized in b). d) Hematite in reflected light. e) Qtz2-tg. f) Qtz3-p.  
239x113mm (300 x 300 DPI)  
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Optical microphotographs of V-ore and related minerals, in plane-polarized light (PPL), cross-polarized light 
(XPL) and reflected light (RL). a) Vein of siderite and micro-euhedral quartz (XPL). b) Sequence of siderite, 
galena and barite (PPL+ RL). c) Schematic representation of chloritoid-schist breccia cemented by various 

minerals (V-ore). d) Sd-p primary fluid inclusion in siderite. e) Brt-p in barite.  
110x103mm (300 x 300 DPI)  
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a) V-Qtz2 oblique quartz vein intersected by V-Cal oblique calcite vein. b) Relationships between V-Qtz2 
grains, Qtz2-tg and calcite vein containing Cal-p. c) Detail of Cal-p.  

161x44mm (300 x 300 DPI)  
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Microthermometry and salinity data for all types of fluid inclusions from the Sierra Almagrera.  
124x63mm (300 x 300 DPI)  
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Cl/Br molar ratio vs. Cl concentration for fluid inclusions analysed both by LA-ICP-MS (empty symbols) and 
crush-leach methods (CL, full symbols) (samples from the mining district). The seawater evaporation trend 
is indicated (Fontes & Matray, 1993) as SW: Seawater, G: Gypsum, H: Halite, E: Epsomite, S: Sylvite, C: 

Carnallite, B: Bischofite. Comparison data (crush-leach analysis) in boxes  1 to 4: 1—Variscan fluids 
equilibrated with host rocks (granite and metamorphic rocks), (Boiron et al., 2003), 2—Primary brines 

derived from Triassic evaporites in the Pyrenees (Mccaig et al., 2000), 3—Primary brines from Ag deposits in 
Morocco (Essarraj et al., 2005), 4—Secondary brines associated with emerald mineralization in Columbia 

(Banks et al., 2000).  
116x82mm (300 x 300 DPI)  
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Box-and-whisker plots showing the concentrations of various elements concentrations (in ppm) in fluid 
inclusions Qtz1-tg1, Qtz2-tg, Qtz3-p and Brt-p obtained by LA-ICP-MS method (other FI did provide 

significant signal). Sr and Ba concentrations are not significant for Brt-p because of the presence of the 

element in the ablated mineral matrix. Lower whiskers, bottoms of boxes, red central lines, tops of boxes 
and upper whiskers represent 10th, 25th, 50th, 75th and 90th percentiles respectively. n, number of fluid 

inclusions analysed, it is identical for all the elements.  
194x231mm (300 x 300 DPI)  
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δ18Ofluid ‰ V-SMOW vs. δDfluid ‰ V-SMOW for Qtz2-ig, Qtz3-p and Sd-p fluids. Fields of some 
representative fluids from the literature: basinal fluids (Sheppard (1986): GC = Gulf Coast; C = California; 

M= Michigan). Metamorphic and magmatic fluids boxes are plotted from Field and Fifarek (1985).  
146x113mm (300 x 300 DPI)  
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P (MPa) vs. T (°C) of fluid inclusion stages in the Sierra Almagrera. l.p.: geothermal gradient at lithostatic 
pressure; h.p.: geothermal gradient at hydrostatic pressure.  

196x248mm (300 x 300 DPI)  

 

 

Page 53 of 60

Geofluids

Geofluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft Copy

  

 

 

Exhumation of the Sierra Almagrera with associated tectonic regime, paleo-orographic evolution and 
paleofluid sequence  

77x208mm (300 x 300 DPI)  
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Abbreviation Observation 

-p Primary fluid inclusion 

-ig Intragranular fluid inclusion plane  

-tg Transgranular fluid inclusion plane 

L Liquid 

V Vapour  

S Solid 

flw Volume fraction of aqueous liquid 

Te Eutectic or apparent eutectic temperature. First formation of visible liquid of solid 

aqueous phase on heating 

Tm(ice) Final melting temperature of solid aqueous phase 

Tm(cla) Dissociation temperature of clathrate 

Th(L) Bulk homogenization temperature via bubble-point transition (L+V=L) 

Th(V) Bulk homogenization temperature via dew-point transition (L+V=V) 

Table: Abbreviations referring to microthermometric experiments. . 1 
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Vein type and 

chronology 

Location  Vein / rock foliation relationships Vein mineralogy (this study) 

V-Qtz1 Subsident area  Parallel to the rock foliation Quartz (Qtz1) 

 Mining district Parallel  Quartz (Qtz1) 

V-Qtz2 Subsident area 

Mining district 

Parallel to oblique  

Parallel to oblique 

Quartz (Qtz2) 

Quartz (Qtz2) 

V-Qtz3 Mining district Oblique Quartz (Qtz3), Hematite 

V-ore Mining district Oblique Quartz, Siderite, Pyrite, Galena, 

Barite  

V-Cal Subsident area Oblique Calcite 

Table: Nomenclature, location and description of sampled veins 1 
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Vein type and 

chronology 

Fluid 

inclusion 

petrography 

Strike direction Size 

(µm) 

Shape Filling Flw         

(vol %)  

V-Qtz1 - 

Qtz1-tg1 

 

Qtz1-tg2 

Grain boundary 

N130° 

 

N000° - N030° 

? 

~20 

 

15-25 

 ? 

L, V, acc. 

calcite 

L, V 

? 

65-75  

65-75 

Equant, rounded 

Euhedral 

V-Qtz2 Qtz2-ig Random 15-25 Euhedral to 

dismembered 

L, V 50-80 

 Qtz2-tg N000° - N010° 10-15 Equant, rounded L, V 70-80 

V-Qtz3 Qtz3-p Primary inclusions >50 Elongated L, V 70-75 

V-ore Qtz-ore-tg 

Sd-p 

 

 

Brt-p 

N000° - N010° 

Primary (cleavage 

planes) 

Primary (cleavage 

planes) 

5-10 

5-20 

 

 

30-50 

Euhedral 

Euhedral, flat 

 

 

Euhedral, irregular 

L, V 

L, V 

 

 

L or L, V 

70-90 

70-90 

 

 

65-80 

V-Cal Cal-p Isolated clusters 20-70 Irregular, flat ? 80-95 

Table: Nomenclature, chronology and characteristics of fluid inclusions. Abbreviations: -tg stands for transgranular, -ig 1 
for intragranular and -p for primary, L: liquid, V: vapour, acc.: accidentally trapped mineral, Sd: siderite, Brt: barite, 2 
Cal: calcite. 3 

 4 
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Table: Microthermometric and compositional data for all generations of fluid inclusions from the Sierra Almagrera (values of mode in italics). - : not determined 1 

 2 

  Microthermometry  Calculated composition 

Fluid 

inclusion 

petrography 

Fluid 

inclusion 

type 

Te 

(°C) 

Tm(Ice) 

(°C) 

Tm(Cla) 

(°C) 

Th 

(°C) 

Salinity 

(mass% 

eq. NaCl) 

 Vm 

(cm3/mol) 

H2O     

(mol %) 

CO2 

(mol %) 

CH4 

(mol %) 

N2  

(mol %) 

H2S 

(mol %) 

NaCl 

(mol %) 

Qtz1-tg1 Aqueous 

carbonic 

-48.6/-39.8 

-45.2 

-22.7/-7.7 

-14.5 

-3.8/6.5 

6.0 

319/350 

330 

9.7/22.6 

15.0 

 23.1/29.2 

27.2 

85.2/88.1 

87.0 

1.9/3.6 

2.8 

0.01/0.1 

0.08 

0.01/0.05 

0.03 

- 

 

9.5/11.3 

10.1 

Qtz1-tg2 Aqueous 

carbonic 

-64.6/-39.8 

-55.1 

-23.1 /-

17.6 

-22.5 

-5.7/-2.3 

-3.2 

305/344 

320 

21.6/23.8 

23.0 

 22.8/25.6 

23.4 

80.7/84.2 

81.0 

2.8/5.2 

3.3 

0.01/0.3 

0.1 

0.01/0.06 

0.04 

- 

 

12.3/16.4 

15.6 

Qtz2-ig Aqueous 

carbonic 

-45.7/-30.9 

-35.0 

-20.0/-8.4 

-16.0 

-2.5/-1.1 

-2.1 

220/355 

340 

11.9/20.6 

17.0 

 25.3/30.0 

27.1 

82.3/89.1 

85.0 

2.4/5.6 

3.0 

0.01/0.3 

0.2 

0.01/0.07 

0.02 

- 

 

10.1/12.8 

11.8 

Qtz2-tg Aqueous 

carbonic 

- 

 

-3.0/-0.7 

-1.5 

7.3 /12.3 

9.8 

290/330 

300 

0.1/2.4 

1.2 

 20.5/27.0 

25.3 

92.3/96.2 

95.0 

2.5/4.1 

3.0 

0.01/0.2 

0.1 

0.05/0.3 

0.1 

0.03/0.07 

0.05 

0.1/2.5 

1.8 

Qtz3-p Aqueous 

carbonic 

- 

 

-21.7/-9.0 

-17.3 

-2.7/-1.2 

-1.8 

189/308 

265 

12.7/20.9 

18.3 

 20.7/23.0 

22.6 

89.2/94.1 

91.0 

1.2/3.2 

2.5 

0.01/0.1 

0.05 

0.01/0.06 

0.04 

- 

- 

5.2/8.8 

6.4 

Qtz-ore-tg Aqueous  -49.6/-39.6 

-45.0 

-24.3/-14.7 

-21.2 

- 

 

150/248 

210 

18.4/25 

23 

 19.6/21.5 

20.5 

83.0/87.0 

85.0 

- 

 

Trace - 

 

- 

 

13.0/17.0 

15.0 

Sd-p Aqueous -49.0/-40.1 

-44.3 

-23.5/-11.4 

-23.2 

- 

 

110/222 

190 

15.4/24.6 

24.1 

 18.8/20.9 

19.4 

80.3/85.6 

83.0 

- 

 

Trace - 

 

- 

 

15.2/18.3 

17.0 

Brt-p Aqueous -59.1/-41.6 

-56.2 

-25.3/-17.7 

-22.4 

- 237/335 

305 

20.7/25.8 

23.0 

 21.0/24.0 

23.0 

80.1/84.6 

82.0 

Trace Trace Trace - 12.3/19.2 

18.0 

Cal-p Aqueous - 

 

-15.0/-8.0 

-14.0 

- 

 

67/87 

80 

11.8/18.4 

17.0 

 18.6/18.9 

18.7 

87.2/89.1 

88.0 

- 

 

- 

 

- 

 

- 

 

10.4/13.1 

12.0 
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Fluid inclusion name Li Na Mg  K Mn Fe Cu Zn Sr Ba Na/K 

Qtz1-tg1 1060 91098 1418 4407 1605 8376 - 523 1028 461 21 

 328 69786 - 2936 400 2919 - 193 378 122 24 

 543 90418 108 4994 748 5074 - 177 603 217 18 

 325 70319 1444 7660 1021 6339 17 479 790 414 9 

 202 27260 844 2043 285 7412 20 169 734 222 13 

 750 122326 199 3847 730 7102 - 276 1217 215 32 

 782 98756 2660 7222 1010 10758 - 360 1240 414 14 

 569 73880 2274 3999 489 3161 - 286 641 136 18 

            

Qtz2-tg 0 8198 1719 6347 18 - - - 268 13 1 

 115 9551 2592 1734 122 - 80 135 104 35 6 

            

Qtz3-p 118 69072 5173 1462 1442 953 31 21 3068 87 47 

 126 68540 5236 1326 1563 1028 35 35 2958 80 52 

 120 70210 4852 1652 1402 1032 19 15 2500 70 43 

 145 67500 4956 1420 1453 856 29 42 2201 68 48 

            

Brt-p 280 47306 1044 7522 310 2093 621 2075 - - 6 

 - 31792 5162 4613 10530 25082 - 4758 - - 7 

 483 63865 1379 6187 329 4438 - 1328 - - 10 

 121 64455 675 9458 842 1660 - 702 - - 7 

 176 45509 1005 4805 - - 74 1858 - - 9 

 134 34292 511 3698 7 - 32 2124 - - 9 

 169 50607 704 5396 71 - 37 1341 - - 9 

 72 32586 444 7389 - - 232 2688 - - 4 

 125 21303 121 2629 36 - 94 2577 - - 8 

             

Table: LA-ICP-MS data for four generations of fluid inclusions from the Sierra Almagrera. Concentrations are given in ppm and Na/K are mass ratios. - : not determined  1 

Page 59 of 60

Geofluids

Geofluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft Copy

Vein type 

Fluid inclusion 

petrography 

δ
18

O host 

(V-SMOW ‰) 

min - max (n) 

median 

T trapping
(1) 

(°C) 

δ
18

O fluid
(2) 

(V-SMOW ‰) 

min - max 

median 

δD fluid 

(V-SMOW ‰) 

min to max (n) 

median 

T equilibrium
(3) 

min to max 

(°C) 

V-Qtz1 Grain boundary 16.5 - 16.7 (2) 

16.6 

- - –33 to –36 (2) 

–34.5 

488 - 520 

V-Qtz1 Qtz1-tg1+tg2 15.9 - 17.2 (2) 

16.6 

440 - 480 - –28 to –30 (2)  

–29.0 
442 - 478 

V-Qtz2 Qtz2-ig 16.2 - 17.0 (4) 

16.5 

400 - 520 11.7 - 14.2 

12.8 

–23 to –36 (4)  

–30.0 
404 - 520 

V-Qtz2 Qtz2-tg 15.9 - 17.6 (7) 

16.6 

300 - 560 - –17 to –48 (7) 

–34.0 
365 - 704 

V-Qtz3 Qtz3-p 14.0 - 14.5 (2) 

14.3 

250 - 380 5.0 - 9.6 

7.4 

–30 (1) 

–30 
459 

V-ore Sd-p 20.6 - 22.5 (4) 

21.5 

120 - 260 3.2 - 14.5 

8.8 

–65 to –80 (4) 

–71.5 
> 1630 

V-ore Brt-p 13.0 - 13.2 (2) 

13.1 

280 - 440 8.2 - 11.3 

9.7 

–53 to –69 (7) 

–58.0 
831 - 1025 

(1) Obtained from isochore intersection with PT-path 1 
(2)

 Equation of Zheng (1993) for quartz-H2O fractionation; equation of Zheng (1999) for siderite-H2O and barite-H2O fractionation 2 
(3)

 Equation of Suzuoki and Epstein (1976) for muscovite-H2O fractionation between δ Dfluid and δ Dhost-rock = –52‰ 3 

Table: Isotopic data for various stages of fluid inclusions from the Sierra Almagrera, - : not determined. 4 

 5 
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