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Abstract 

The Aegean extensional backarc domain is an ideal place to investigate the interrelations 

between syntectonic intrusions and large-scale detachments, understanding whether the 

intrusions have a triggering effect on the inception of metamorphic core complex formation or 

not. A new field study of Ikaria Island (NE Cyclades, Greece) in two Miocene granitoid 

plutons intruding a high-temperature metamorphic dome, namely the Raches and 

Karkinagrion granites, leads to the identification of a major structure that has been omitted in 

previous studies: the Gialiskari Detachment. This regional-scale detachment is correlated with 

the North Cycladic Detachment System. Structural fieldwork at the scale of the entire Raches 

and Karkinagrion intrusions allows us to propose a map of strain intensity in these granites. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 2 

This map, based on macrostructural criteria, highlights a strong strain gradient in both 

intrusions from base to top, when approaching the Gialiskari Detachment. Along the strain 

gradient, a continuum of top-to-the north shearing deformation is recognized, including i) 

syn-magmatic deformation, ii) high-temperature ductile deformation at submagmatic state, iii) 

mylonitic to ultramylonitic deformation, iiii) low-temperature brittle deformation. A scenario 

of the interactions between the detachment and the Raches and Karkinagrion intrusions during 

their emplacement is proposed. We show that these granites were emplaced while the 

exhumation of the Ikaria metamorphic dome was already underway. We conclude that these 

plutons do not initially localize detachments, and instead that detachments localize and 

control the ascent of plutons. Intrusions then interact with detachments, accommodating their 

upward migration in the crust. This scenario is described on other Cycladic islands such as on 

Tinos or Mykonos. At a larger scale, the final emplacement of plutons may result from the 

flow of molten crust toward metamorphic core complex during extension. 

 

Keywords 

Backarc extension, metamorphic core complexes, detachment, intrusions, Aegean, Ikaria 

Island 

 

Highlights 

1) New geological and structural map of Ikaria Island (Cyclades, Greece) 

2) Migmatites are closely associated with the Karkinagrion S-type granite 

3) The Gialiskari Detachment is a regional-scale top-to-the north shear zone 

4) Semi-quantitative characterization of a strain gradient in granitic plutons 

5) Detachments localize and control the ascent of intrusions 
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1) Introduction 

Metamorphic Core Complexes (MCCs) are crustal-scale structures exhumed by major 

shallow-dipping extensional shear zones, or detachments. They result from the intense 

thinning of a previously thickened continental crust in post-orogenic extensional context 

(Dewey, 1988). First described in the Basin and Range Province (Davis and Coney, 1979; 

Crittenden et al., 1980; Wernicke, 1981) these structures were later recognized throughout the 

world in young mountain belts (e.g. Papua New Guinea, Baldwin et al., 1993; Lister and 

Baldwin, 1993; Himalayas, Aoya et al., 2005) or more ancient belts (French variscanides, 

Burg et al., 1994; Turrillot et al., 2011; Norwegian Caledonides, Andersen et al., 1991; 

Labrousse et al., 2002). MCCs development is often spatially and temporally associated with 

intense magmatic activity (Crittenden et al., 1980; Hill et al., 1992; Baldwin et al., 1993; 

Jolivet and Brun, 2010) and the development of detachments often interacts with syntectonic 

intrusions. On the one hand, detachments may either be seen as conduits for ascending 

magmas or as barriers limiting their rise (D'Lemos et al., 1992; Hutton and Reavy, 1992; 

Brown, 1994; Brown and Solar, 1998a). On the other hand, field studies and 

thermomechanical modeling have shown that shear zones can nucleate within partly 

crystallized plutons that introduce a local, yet drastic rheological heterogeneity in the crust 

(Lister and Baldwin, 1993; Neves et al., 1996; Forster et al., 2001; Aoya et al., 2005). 

Therefore, the role of detachments in the emplacement of magmatic intrusions, or conversely, 

the role of intrusions to localize deformation remains not clearly understood. 

Series of MCCs have been described in the Mediterranean region, notably in the 

Aegean domain (Lister et al., 1984; Gautier et al., 1993; Jolivet et al., 2004), where some of 

the Cycladic islands (e.g. Mykonos, Naxos, Ios, Tinos, Serifos, Andros and Paros) expose the 

relations between MCCs and intrusions (Lister et al., 1984; Faure and Bonneau, 1988; Avigad 

and Garfunkel, 1989; Urai et al., 1991; Buick, 1991a; Gautier et al., 1993; Gautier and Brun, 
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1994; Lee and Lister, 1992; Vandenberg and Lister, 1996; Grasemann and Petrakakis, 2007; 

Denèle et al., 2011; Rabillard et al., submitted). Indeed, these MCCs, characterized by series 

of ductile-then-brittle detachment systems, are often intruded by syntectonic Miocene plutons 

(Lister and Baldwin, 1993; Jolivet et al., 1994; 2010; Lecomte et al., 2010; Rabillard et al., 

submitted). These detachment systems comprise the North Cycladic Detachment System 

(NCDS), the West Cycladic Detachment System (WCDS) and the Paros-Naxos Detachment 

and have accommodated the exhumation of these MCCs (Jolivet et al., 2010; Grasemann et 

al., 2012). 

The geometrical and kinematic relations between plutons and detachments have been 

described on Naxos and Mykonos with quite some details (Andriessen et al., 1979; Keay et 

al., 2001; Urai et al., 1991; Buick, 1991a; Gautier et al., 1993; Lecomte et al., 2010; Denèle et 

al., 2011) but the largest Cycladic pluton (Raches pluton on Ikaria Island) has so far not been 

studied in detail. In this paper, we study the geometrical kinematic setting of the emplacement 

of intrusions on Ikaria Island and their evolution through time. Combining these data with 

recent studies of the metamorphic part of the island, we discuss the large-scale interrelations 

between the extensional structures, the Ikaria MCC and the synkinematic intrusions, from the 

scale of the island up to the Aegean domain. 

 

2) Geological setting  

 

2.1) Tectonic evolution of the Cycladic Archipelago 

 

Located in the eastern part of the Mediterranean area, the Aegean domain (Fig. 1a) 

corresponds to a collapsed segment of the Hellenic belt above a north-plunging subduction 

(Le Pichon and Angelier, 1979; Le Pichon, 1982; Jolivet et al., 1994; Gautier et al., 1999; 
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Jolivet and Faccenna, 2000). The Aegean domain underwent a complex Alpine history that 

can be summarized in two main successive steps: 1) the late Cretaceous-Eocene formation of 

the Hellenides-Taurides belt resulted from the convergence between Africa and Eurasia 

plates. During this episode, a series of oceanic and continental nappes entered the subduction 

zone and were thrust on top of each other in a high-pressure and low-temperature (HP-LT) 

metamorphic context (Bonneau and Kienast, 1982), 2) The inception and acceleration of 

African slab retreat from 30-35 Ma led to the crustal collapse in the backarc domain, the 

dislocation of the nappe stack and the formation of MCCs (Le Pichon and Angelier, 1981; 

Lister et al., 1984; Jolivet et al., 2004a; 2013). North-south (N-S) extension in the backarc 

domain was characterized by a distributed deformation over a wide region covering the entire 

Aegean Sea, part of western Anatolia and the Rhodope massif in the north. The extensional 

tectonic regime was also characterized by more localized deformation with the development 

of MCCs where the exhumation of HP-LT units was completed in a low-pressure and high-

temperature (LP-HT) environment (Fig. 1a; Jolivet and Patriat, 1999).  
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Figure 1: Localization of the studied area and conflicting previous works. a) Tectonic map of the 

Aegean domain showing the distribution of metamorphic cores and granitoids and their link with 

major tectonic structures such as the North Cycladic Detachment System (NCDS), the West Cycladic 

Detachment System (WCDS), the Paros-Naxos Detachment (PND) and the North Anatolian Fault 

(NAF), modified after Jolivet et al. (submitted). b) Representation of the different author 

interpretations of the structures composing the island of Ikaria, especially on the ambiguous nature of 

the contact between the granite and the metamorphic dome and on the geometry of major tectonic 

contact such as the Fanari Detachment (FD) and the Agios Kirykos Detachment (AKD). 

 

The Cycladic archipelago is located in the center of the Aegean domain and 

corresponds to the deepest exhumed parts of the Hellenides-Taurides belt (Fig. 1a). Three 

tectonic units are traditionally recognized in the Cyclades (Bonneau, 1984; Jolivet et al., 

2004b), 1) The Upper Cycladic unit (UC) corresponds to the shallowest part of the nappe 

stack. It is composed of non-metamorphic Permian to Mesozoic sediments, some minor, 

mainly Cretaceous, orthogneisses, ophiolites and rocks metamorphosed under greenschist-

facies to amphibolite-facies conditions, 2) The Cycladic BlueSchist unit (CBS) is structurally 

positioned below the UC unit. It is composed of metapelites, quartzites, marbles and various 
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amounts of metabasites all equilibrated in blueschist- or eclogite-facies conditions (e.g. Blake 

et al., 1981; Bonneau, 1984; Avigad and Garfunkel, 1991). The CBS unit experienced a 

complex Alpine tectonometamorphic evolution, with an early burial in HP–LT conditions 

reaching ~18-20 kbar and 500-550°C (Dürr et al., 1978; Bröcker and Enders, 2001; Trotet et 

al., 2001; Parra et al., 2002; Tomaschek et al., 2003; Augier et al., 2015) during the Eocene, 

followed by a greenschist to amphibolite overprint of variable intensity during the Oligocene 

and the Miocene (Altherr et al., 1979, 1982; Wijbrans and McDougall, 1986; Buick, 1991; 

Keay et al., 2001; Duchêne et al., 2006), 3) The Cycladic Continental Basement (CCB) crops 

out on different islands from the center to the south of the Cyclades (e.g. Paros, Naxos, Ios or 

Sikinos) and is structurally positioned beneath the CBS (e.g. Andriessen et al., 1987; Huet et 

al., 2009). This unit is composed of Variscan orthogneisses mantled by metasediments that 

locally retain metamorphic relics of amphibolite-facies assemblages suggesting a complex 

pre-Alpine history (e.g. Bonneau and Kienast, 1982; Andriessen et al., 1987; Keay, 1998; 

Photiades and Keay, 2003). Late exhumation stages of both the CBS and the CCB were 

accompanied by the emplacement of syntectonic Miocene intrusions (Fig. 1a; e.g. Tinos, 

Mykonos, Ikaria, Naxos, Serifos or even Lavrion; Jansen, 1973; Altherr et al., 1982; Faure et 

al., 1991; Lee and Lister, 1992; Altherr and Siebel, 2002; Pe-Piper et al., 2002; Grasemann 

and Petrakakis, 2007; Iglseder et al., 2009; Bolhar et al., 2010; Lecomte et al., 2010; Stouraiti 

et al., 2010; Denèle et al., 2011). These intrusions are of two types: 1) S-type per-aluminous 

two-mica leucogranites and granites and 2) I-type granites resulting from lower crust and 

mantle partial melting (Altherr and Siebel, 2002; Pe-Piper et al., 2002). In the entire Aegean 

domain, magmatic intrusions were all dated between 15 and 10 Ma while volcanic rocks 

yielded ages between 11 and 6 Ma (Altherr et al., 1982; Fytikas et al., 1984; Weidmann et al., 

1984; Keay, 1998; 2001; Brichau et al., 2007; Liati et al., 2009; Baltatzis et al., 2009; Bolhar 

et al., 2010). The southward younging emplacement ages of both volcanic and magmatic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 8 

rocks highlight the southward migration of the magmatic arc in relation to the retreating 

African slab (Fig. 1a). 

 

2.2) Geology of Ikaria 

 

Ikaria Island is located in the northeastern part of the Cyclades, near the west coast of 

Turkey and close to the island of Samos. Three tectonic units are recognized (Fig. 1b; 

Papanikolaou, 1978; Altherr et al., 1982; Photiades, 2002; Kumerics et al., 2005; Beaudoin et 

al., submitted), from top to bottom: 

1) The non-metamorphic Fanari unit, correlated with the UC unit corresponds to series of 

Miocene to Pliocene sandstones, conglomerates and ophiolitic molasses (Photiades, 2002). 

2) The intermediate unit consists of alternating marble and metapelite layers, metamorphosed 

in greenschist-facies conditions (Altherr et al., 1982; Kumerics et al., 2005; Beaudoin et al., 

submitted). Recently, based on structural and metamorphic criteria, Beaudoin et al. 

(submitted) have reinterpreted the geometry of this unit, called Messaria unit by Kumerics et 

al. (2005), and renamed it as the Agios Kirykos unit. This term is then used hereafter in this 

study. 

3) The Ikaria unit is composed of an up to 1 km-thick association of metasediments including 

micaschist and marble layers and minor metabasite occurrences (Photiades, 2002). Rocks of 

this unit were equilibrated in amphibolite-facies conditions (i.e. Altherr et al., 1982; Kumerics 

et al., 2005; Martin et al., 2011) at ca. 6-8 kbar and 600-650°C. Peak-metamorphic conditions 

were retrieved from the basal parts of the succession (Martin, 2004; Kumerics et al., 2005; 

Martin et al., 2011; Beaudoin et al., submitted).  

 Recent studies in the metamorphic dome (Ring, 2007; Kumerics et al., 2005; Beaudoin 

et al., submitted) show the presence of two low-angle ductile shear zones on Ikaria: 1) the 

Fanari Detachment cropping out in the northeastern part of the island shows a continuum of 
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deformation from ductile to brittle conditions. This detachment is located at the contact 

between the Agios Kirykos and Fanari (UC) units, except for its northern part where it 

juxtaposes directly the Fanari and Ikaria units (Fig. 2), 2) The second low-angle ductile shear 

zone corresponds to the Agios Kirykos Detachment. This detachment is located between the 

Ikaria high-temperature metamorphic unit and the Agios Kirykos lower temperature 

metamorphic unit (Beaudoin et al., submitted). Conversely to the Fanari Detachment, this 

detachment became inactive in the ductile regime and does not show any brittle deformation 

imprint. 

 Three main granitic intrusions are recognized on Ikaria Island (Fig. 2; Ring, 2007; 

Bolhar et al., 2010; Kokkalas and Aydin, 2013): two small-scale S-type intrusions (Xylosyrtis 

and Karkinagrion) and the large I-type Raches intrusion that constitutes the largest magmatic 

intrusion of the whole Cycladic archipelago (Altherr et al., 1982; Photiades, 2002; Kumerics 

et al., 2005). 

The S-type Xylosyrtis granite intrudes the Ikaria unit on the southeastern coast of the 

island. The intrusion consists of a two-mica granite with an uniformly fine grain-size and 

characterized by a mineral assemblage of feldspar, plagioclase, quartz, biotite and muscovite. 

Minor and accessory phases are green hornblende, apatite, zircon, tourmaline, magnetite and 

cassiterite (Altherr et al., 1982; Photiades, 2002). Emplacement of this granitic pluton was 

dated by U/Pb method in zircon at 14.63 ± 0.67 Ma (Bolhar et al., 2010). 

The Raches granite composes the western part of the island. This I-type granite of 

calc-alkaline composition belongs to the Miocene magmatic arc of potassic plutons parallel to 

the Hellenic Trench (Altherr et al., 1982). Mineral assemblage consists of feldspar 

phenocrysts, zoned plagioclase, quartz, biotite and hornblende with accessory phases such as 

red allanite, apatite, sphene, titanomagnetite, zircon, tourmaline or garnet (Altherr et al., 
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1982). The emplacement of this granite was dated by U/Pb method in zircon at 13.33 ± 0.17 

Ma (Bolhar et al., 2010).  

Due to its recent discovery (Ring, 2007), the S-type Karkinagrion granite has been 

little studied. Two statistically distinct ages were retrieved by the U/Pb method in zircon at 

13.73 ± 0.29 Ma and 16.67 ± 0.64 Ma. Although the youngest age is slightly older than the 

one obtained for the emplacement of the Raches granite and without obvious evidence, Bolhar 

et al. (2010) concluded that the Karkinagrion granite intruded the I-type Raches granite. 

At variance with the Xylosyrtis intrusion that displays a clear intrusive character 

within metamorphic series, the nature of the Raches granite contact with the metamorphic 

dome remains highly controversial. This contact was mapped so far as intrusive 

(Papanikolaou, 1978), as a detachment (Kumerics et al., 2005) or as a thrust (Fig. 1b; 

Boronkay and Doutsos (1994); Photiades, 2002; Kokkalas & Aydin, 2013).  

Deformation in intrusions remains poorly studied. Faure et al. (1991) described for the 

first time a widespread mylonitic foliation, a N-S stretching lineation and a preferred top-to-

the north sense of shear in the Raches granite. These authors stated that magmatic 

deformation is seldom preserved on Ikaria and only mylonitic, subsolidus deformation is 

currently observable. Besides, Kokkalas and Aydin (2013) elaborated a deformation map of 

the Raches granite and concluded that the strain increases from west to east when approaching 

the contact between the granite and metamorphic units, described as a large thrust with an 

oblique dextral motion (Fig. 1b). 

It appears that the structure of the intrusive granitic bodies and their relation with the 

metamorphic host rock of Ikaria Island still remain poorly understood. However, this is 

crucial to address the feedback relationships between intrusions, detachments and the 

formation of MCC. In order to study these interrelations, we have reconsidered these 

discrepancies. An extensive field study on Ikaria Island was performed, including primarily 
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new geological mapping of the geometry of the Raches and Karkinagrion plutons combined 

with a detailed study of the strain intensity affecting these intrusions. The detailed structural 

study shows contrasting results with respect to previously published papers. Main changes 

and their implications are shown below. 

3) Methods 

 In order to start from a clear geometrical context the whole island has been remapped 

based on field observations and satellite images. The finite strain pattern has been studied and 

the result is given as maps of the foliation and stretching lineations in the metamorphic dome 

and in the intrusions. Kinematic indicators has been similarly systematically observed all over 

the island and reported on the map of stretching lineations. In order to obtain an image of the 

strain gradients within the intrusions a scale of strain intensity with seven grades, adapted to 

the Raches granite, was constructed and the deformation grade systematically reported on the 

map. Aiming at quantifying the strain intensity affecting the intrusions in more details, eight 

samples were selected all around the Raches granite in order to reconstruct the strain ellipsoid 

by image analysis, based on the shape fabric of biotite aggregates. Biotite was selected as 

strain indicator because it is easy to segment on images due to its strong color contrast with 

the felsic background. The protocol, similar to Launeau and Robin (2005), was first to cut 

rock samples along three orthogonal sections, one section in the XY plane of the finite strain 

ellipsoid parallel to foliation and lineation, one YZ section perpendicular to the lineation and 

one XZ section perpendicular to the foliation and parallel to the lineation. Then, 2D images of 

the three sections XY, XZ and YZ of each sample were treated. This step was performed 

using GIMP 2 software and consisted of image enhancement (filters) and segmentation of the 

biotite phase. Filters and segmentation were adapted for each sample. Segmented images were 

then analyzed with the 2003 Intercept software (Launeau and Robin, 2005; Launeau et al., 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 12 

2010). Analyses were conducted with the intercept method that allows finding the preferential 

direction of biotite. This direction corresponds to the minimum number of intercepts (contact 

between the analyzed phase and the matrix). Finally, the 3D fabric ellipsoid was calculated by 

using the 2D analyses performed on the three orthogonal faces of our sample (Launeau et al., 

2010). 

Moreover, in this work chemical analyses of hornblende crystals have been performed 

in order to determine the pressure emplacement of the Raches intrusion using the 

experimental calibration of Schmidt (1992): P (± 0.6 kb) = -3.01 + 4.76 Al Tot. A Cameca 

SX50 electron probe microanalyzer at the University ―Pierre et Marie Curie‖ (Paris VI) was 

used to acquire spot analyses of hornblendes. Analytical conditions for spot analyses were 

15kV accelerating voltage and 10nA beam current. Standards used were Fe2O3 (Fe), MnTiO3 

(Mn, Ti), diopside (Mg, Si), CaF2 (F), orthoclase (Al, K), anorthite (Ca), albite (Na), and 

vanadinite (Cl). The counting time was 10 s for all elements. 

4) Field observations 

4.1) Nature of contact zones with intrusions 

 

 A new field study of Ikaria Island was conducted and resulted in the proposition of a 

new geological map (Fig. 2, see also Beaudoin et al., submitted). Our survey shows that the 

Karkinagrion two-mica intrusion occupies a much larger volume than initially proposed by 

Bolhar et al. (2010) and we highlight for the first time the presence of migmatites closely 

associated to this S-type granite (Fig. 2). In this section, we explore and describe the different 

contact zones between the western set of intrusions and the wall rocks forming the Ikaria 

MCC.
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Figure 2: New geological map of Ikaria Island showing the tectonic units, the two Gialiskari and Agios Kirykos detachments, foliation trajectories, stretching 

lineation measurements and localities cited in the text.
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4.1.1) Contact between the Raches intrusion and the Ikaria MCC 

 

 The contact between the Raches intrusion and the Ikaria MCC is often hidden on land 

but is spectacularly exposed on the coast. The contact is described along strike from south to 

north. 

 The intrusive nature of the contact between the Raches granite and the metamorphic 

dome is well exposed along the southern coast of Ikaria near Seychelles Beach (Fig. 3a). 

Folded synplutonic dikes cutting the vertical foliation of the marble are observed. Two 

distinctive foliations, within the granite and the metamorphic dome, show a clear intrusive 

relation between these units. The marble unit appears strongly deformed with vertical 

foliation planes, while granitic dikes show only a weak folded foliation showing that the 

metamorphic rocks were already deformed when the intrusion emplaced. Thereby, the 

southern part of the contact is intrusive and rocks near this southern contact have been poorly 

deformed after the emplacement of the intrusion. 
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Figure 3: Photographs showing the intrusive nature of the contact between the Raches granite and 

metamorphic rocks. a) Southern part of the contact, where poorly deformed granitic dikes intruded 

highly deformed metamorphic units. b and c) Northern part of the contact, where granitic dikes 

intruded metamorphic host rocks. Rocks of both sides of this contact have been deformed as a single 

unit after the emplacement of the Raches granite. 

 

 In the northern part of the contact, near Aghia Sophia chapel (see location on Fig. 2), 

the intrusive nature of the contact is clearly observed at large scale in the landscape: near 

Frandato village, a several hundred meters-long branch of the granite intrudes the 

metamorphic unit (Fig. 2). Moreover, on the northern coast, granitic dikes intrude the host 

rocks (Fig. 3b). At the scale of the island, the contact is almost vertical and it undulates at 
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small scale due to folding, as observed near Frandato village (Fig. 2), where other granitic 

dikes penetrate the host metamorphic rocks (Fig. 3c). The contact between these dikes and the 

host rock appears folded with N-S axes, parallel to the regional stretching lineation, and with 

horizontal axial planes. Rocks on both sides of this contact appear strongly deformed, with 

both granitic and metamorphic foliation planes being transposed at the contact. The northern 

contact geometry thus shows a clear intrusive relation and not the tectonic contact described 

by Boronkay and Doutsos (1994), Photiades (2002), Kumerics et al. (2005), Ring (2007) or 

Kokkalas and Aydin (2013). Rocks on either side of the northern part of the contact have been 

afterward deformed as a single unit. In contrast to the southern part of the contact, it is not 

possible to determine whether the metamorphic unit was already deformed before the 

emplacement of the Raches granite. 

  

4.1.2) Contact between the Raches and Karkinagrion intrusions 

 

 Thanks to good outcrop conditions at the top of the reliefs (Fig. 4a), the contact 

between Raches and Karkinagrion intrusions can be studied near Raches village (see location 

on Fig. 2). There, the Karkinagrion granite occurs structurally above the Raches granite (Fig. 

4b). At the contact, mylonitic foliation planes in both granites are parallel. Our new mapping 

reveals a much larger volume of the Karkinagrion granite than previously described by Ring 

(2007) and Bolhar et al. (2010; Figs. 1 and 2). We also report the presence of large-scale 

migmatite massifs near Manganitis and Raches, found at the contact with the Karkinagrion 

granite (Figs. 2 and 4c). A gradual transition from migmatites to this two-mica granite is 

observed, implying that the granite is closely associated and then coeval with migmatites. 

Therefore, the emplacement scenario first proposed by Bolhar et al. (2010) must be redefined. 

It is here concluded that the Raches granite intruded the lower parts of the Ikaria MCC made 
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of migmatites and in-situ granites such as the Karkinagrion intrusion. These observations are 

furthermore in agreement with available radiometric ages (Bolhar et al., 2010). 

 

 
Figure 4: Photographs showing the contact between the Raches and Karkinagrion granites. a) Large-

scale field view of this contact. b) At the contact, these two granites have parallel foliation (Fo) and 

lineation (Li). c) Migmatites were found in close contact with the Karkinagrion granite, with a 

progressive transition from S-type granitic to migmatitic composition. 
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4.1.3) Contact between the Raches granite and a Mio-Pliocene sedimentary unit 

 

As observed in the NE part of the island, the Pliocene sedimentary unit, regionally 

correlated with the UC unit, occurs in the northern part of the Raches intrusion near the 

village of Gialiskari (Fig. 5a). Here, this unit is made of Miocene sandstones and 

conglomerates fed by the Pelagonian unit. As observed in the metamorphic dome near Fanari 

(Beaudoin et al., submitted), this unit is separated from the underlying Raches intrusion by a 

major tectonic contact (Fig. 2). Despite its importance, this contact has been omitted in recent 

studies (Kumerics et al., 2005; Ring, 2007; Bolhar et al, 2010; Kokkalas and Aydin, 2013) 

and remains currently not described in detail. The contact zone between the granite and the 

sedimentary unit is marked by a shallow-dipping (10-15°) mylonitic foliation carrying a 

N30°E stretching lineation (Figs. 2 and 5b). A widespread S-C fabric points to a clear top-to-

the north sense of shear (Fig. 2). In addition, the contact itself is marked by a thick cataclastic 

band reaching ca. 10 m in thickness that partially reworks the mylonites and ultramylonites 

(Fig. 5c). Conversely, the Mio-Pliocene sedimentary unit is affected only by two conjugate 

sets of north- and south-dipping brittle normal faults with N-S to NE-SW oriented 

displacements, consistent with the ductile stretching direction in the granite (Fig. 5d). 
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Figure 5: Photographs showing the contact between the Raches intrusion and a Mio-Pliocene 

sedimentary unit. This major tectonic contact superposed a non-metamorphic sedimentary unit above 

the Raches granite. At the contact, the Raches granite is strongly deformed: a) ten meters of 

cataclasites, b) mylonites associated to a stretching lineation oriented N10°E to N30°E, c) 

Microphotography illustrating the grain size reduction associated with ultramylonites. d) The non-

metamorphic sedimentary unit revealed only brittle deformation plotted on a stereogram. 

 

4.2) Recognition of four deformation styles (D1 to D4) 

 

In order to investigate the interrelations between intrusions and the Ikaria MCC, an 

extensive field survey including structural observations on 266 sites was performed over the 

Raches and Karkinagrion granites. These intrusions recorded, at least locally, a strong ductile 
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and then brittle deformation as attested by the presence of ultramylonites and cataclasites 

(Fig. 5). The most obvious feature of our field study is that the whole Raches and 

Karkinagrion intrusions are affected by a top-to-the north asymmetric deformation, consistent 

with our observations near Gialiskari (Fig. 2). Moreover, intrusions show evidence for four 

distinct deformation structures (D1 to D4) that probably occurred during a single continuum of 

top-to-the north shearing deformation, i.e. the same progressive tectonic event through strain 

localization. 

 The first deformation feature (D1), is recorded in the poorly deformed rocks of 

intrusions and is characterized by homogeneous sub-horizontal mineral lineation oriented N-S 

and a sub-vertical foliation (Fig. 6a). Feldspar phenocrysts are all aligned but not internally 

deformed (Fig. 6b). These crystals had to be free to rotate within the magma when they 

became oriented. D1 can thus be considered as a magmatic fabric. 
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Figure 6: Photographs showing field evidence of an unequal distribution of ductile deformation in the 

intrusive. a) and b) Poorly deformed Raches granite with preserved vertical foliation and north-south 

mineral lineation characterizing the D1 deformation structure. c) and d) All kinematic indicators in 

mylonites, such as S-C shear bands or sigmoidal biotite, show top-to-the north sense of shear. These 

mylonites, characteristic of the D3 deformation feature, are characterized by a low dipping foliation 

and a stretching lineation oriented N10°E to N30°E. 

 

 

 On incipiently deformed rocks, microfractures are observed in potassium feldspar, 

reflecting the D2 set of structures (Fig. 7). Bouchez et al. (1992) describe three conditions to 

consider microfractures in feldspar as indicating submagmatic state deformation: 1) 

microfractures should not intersect more than one grain to ensure that each crystal has been in 

contact with the magma, 2) Mineral phases filling microfractures should have the same 

magmatic composition and should be in crystallographic continuity with mineral phases 

outside the fracture. In these samples, the two conditions were met (Fig. 7) and D2 can thus be 

considered as a submagmatic state deformation. 
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Figure 7: Photographs showing the D2 deformation style characterized by submagmatic microfractures 

in potassic feldspar (FK). a) Back scattered Scanning Electron Microscope (SEM) micrograph 

showing several microfractures in a single FK crystal. b) and c) Mineral phases filling the 

microfractures are in crystallographic continuity with mineral phases outside the fracture and not 

deformed. d) Microfracture with a coherent magmatic composition of FK + biotite (Bt) + Quartz (Qz). 

 

 

 The third set of structures (D3) is characterized by a less steep foliation (15-30°) and a 

stretching lineation oriented N10°E to N30°E. All kinematic indicators show a top-to-the 

northeast ductile shear sense (Figs. 2 and 6c, d). D3 is characterized by unevenly distributed 

proto-mylonitic, mylonitic and ultramylonitic facies. The grain size of crystals, and especially 

feldspar phenocrysts, is reduced with the increase of strain (Figs. 5c and 6c). 

 While deformation styles D1, D2 and D3 qualified a magmatic, submagmatic or ductile 

deformation, the D4 deformation features are characterized by pure brittle deformation 

recorded throughout the granite. North-dipping low-angle normal fault planes are observed 

with striations parallel to the stretching lineation in mylonites (Fig 8a). Moreover, normal 
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steeply dipping brittle faults oriented E-W are observed consistently with a N-S extension 

(Fig. 8b). 

 

 
Figure 8: Photographs showing the brittle D4 style of deformation in the Raches granite. This 

deformation was characterized by both low-angle (a) and steeply dipping (b) normal faults. In addition 

to normal faults, the brittle deformation was marked by large strike-slip fault planes with ambiguously 

sense motion not taken in consideration (c). 

 

 

Near the village of Nanouras, some striated planes have been observed. These planes 

have a consistent NE-SW orientation with sub-horizontal striations (Fig. 8c). The lack of 

kinematic indicators on fault planes does not allow firmly concluding on the motion sense. 

Thus, relationships between these structures and the regional top-to-the north ductile shearing 

remain unclear. 

Structurally just below the northern contact between the Raches granite and the 

Gialiskari sedimentary unit, about 10 m-thick cataclasites are observed. Cataclasites are also 

found on the southwest coast, near the village of Kalamos. These cataclasites represent the 

last brittle increment of the deformation. 
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4.3) Distribution of the magmatic and ductile deformation (D1, D2 and D3) 

 

4.3.1) Field mapping of deformation intensity 

 

 Our study of the deformation has shown that in the whole Raches and Karkinagrion 

intrusions, the ductile deformation is geometrically unevenly distributed. Indeed, these 

intrusions show a distinct shallow-dipping foliation carrying a N10°E to N30°E trending 

stretching lineation above a core of less deformed granite characterized by a subvertical 

foliation and a N-S lineation (Figs. 2 and 6). Moreover, all kinematic indicators in tectonically 

deformed rocks such as S-C fabric, rotated porphyroclasts and sigmoidal foliation, show top-

to-the north sense of shear, suggesting the presence of a thick north-dipping mylonitic shear 

zone deforming the upper part of granites, especially the Raches granite near the northern 

contact with the upper sedimentary unit at Gialiskari. Open folds furthermore deform the 

foliation with axes parallel to the stretching lineation. Because of shallow dip toward the 

north of these late fold axes, a south to north transect crosses the strain gradient upward, i.e. 

toward the most deformed structural part of the granite. In order to characterize the 

distribution of this ductile deformation, the intensity of finite deformation was mapped at high 

resolution. The strain gradient that affected the orthogneisses, resulting from the deformation 

of the same granitic protoliths, was characterized by defining seven strain facies of ductilely 

deformed granites as proposed by Huet et al. (2009) or Charles et al. (2010; Fig. 9). Each 

grade of deformation was defined on macro-structural criteria adapted to fieldwork, such as 

the shape and size of the main minerals but also the succession of microstructures developing 

during progressive deformation. The seven strain facies were defined as follows: 

Grade 0 corresponds to an isotropic magmatic fabric. The term ―magmatic fabric‖ is used in 

the mechanical sense, so when there is no direct interaction (contact) in the magma between 
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phenocrysts (Vernon, 2000) and no magmatic preferred orientation develops. The granite 

shows neither foliation nor lineation and minerals are not deformed (Fig. 9a). 

Grade 1 corresponds to an anisotropic magmatic fabric. Minerals are not deformed but an 

incipient foliation and/or lineation can be observed (Fig. 9b). 

Grade 2 can no longer be considered as a pure magmatic fabric. Feldspar megacrysts start to 

be deformed, which suggests interactions between phenocrysts in the magma. Some FK are 

not deformed while others are stretched, boudinaged and sheared (Fig. 9c). Elongated clusters 

of biotite mark the stretching lineation. 

Grade 3 is marked by the appearance of a weak foliation, a clear stretching lineation, a few 

penetrative shear bands that affect large volume of rocks, grain-size reduction and clear quartz 

ribbons (Fig. 9d). This fabric can be qualified as protomylonitic. 

Grade 4 is characterized by a strong foliation and lineation with increasing number of shear 

bands associated with stretched biotite and quartz ribbons (Fig. 9e). This fabric can be 

qualified as mylonitic. 

Grade 5 shows the presence of ultramylonite bands in addition to the mylonitic shear bands of 

grade 4 (Fig. 9f). The average thickness of these bands varies from a few centimeters to ten 

centimeters. 

Grade 6 is characterized by a few meters of massive ultramylonites (Fig. 9g). 
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Figure 9: Structural field scale of strain facies. The seven grades of deformation are described in the 

text. 

 

 

Field observations across the entire intrusive bodies allow us to propose a qualitative 

map depicting the distribution of the magmatic and ductile deformation in granites (Fig. 10a). 

This map shows a gradual increase in the intensity of deformation from south to north, or 

from base to top. The least deformed rocks (grades 0, 1 and 2) are found in the southern part 
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of the two granites (Fig. 10a). In contrast, in the northern part, approaching the contact with 

the Gialiskari sedimentary unit, the two granites are strongly deformed (grades 3, 4, 5 and 6). 

A strong increase in strain intensity is also locally observed in the southwestern part of the 

island, near the village of Kalamos (Fig. 10a). A N-S cross-section crossing the strain gradient 

upward, i.e. toward the most deformed granite (Fig. 10b), shows the attitude of the north-

dipping shear zone revealed by these observations. All kinematic indicators show a consistent 

top-to-the north shear sense compatible with the regional variation of the foliation dip that 

draws a sigmoid at the scale of ca. 10 km (Fig. 10b). 
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Figure 10: Characterization of a strain gradient in Raches and Karkinagrion intrusions. a) Semi-

quantitative map of deformation showing the heterogeneous distribution of the ductile deformation in 

both intrusions. Location of analyzed samples and position of the geological section AB are also 

represented. b) Geological section AB through the Raches and Karkinagrion intrusions indicating their 

relative structure (Raches granite intruding the Karkinagrion granite and the migmatites) and their 

relations with the Gialiskari Detachment (the structurally uppermost parts of intrusions are the most 

deformed ones). c) Diagram representing the shape parameter (T) vs. the anisotropic degree (P’) for 

samples localized on figure a). 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 30 

4.3.2) Quantification of ductile deformation 

 

 This section documents quantitatively the strain gradient across the deformed granitic 

bodies by a detailed study of selected outcrops given on Fig. 10a. The Raches granite was 

targeted because it shows all strain grades. The reconstruction of the strain ellipsoid 

(following the protocol described in the section 2) allows calculating the degree of anisotropy 

(P') and the shape parameter (T) of biotite fabric for each sample (Borradaile and Werner, 

1994; Launeau and Robin, 2005). P’ refers to the eccentricity of the 3D fabric ellipsoid and 

can be correlated with the intensity of biotite preferred orientation. T refers to the symmetry 

of the 3D fabric ellipsoid. Three cases can be considered: i) if T is lower than -0,2, the 

lineation is dominant (L>S) and the ellipsoid is prolate, ii) if T is comprised between -0,2 and 

0,2, the lineation and foliation parameters are close to each other (L=S) and iii) if T is 

comprised between 0,2 and 1, foliation is dominant (S>L) and the ellipsoid is oblate. 

The results of the quantitative analysis are shown in the deformation map and the P’-T 

graph (Fig. 10a and 10c). The P’ = f(T) diagram presents the relationship between the shape 

parameter and the degree of anisotropy (Fig. 10c). A good correlation is observed between the 

degree of anisotropy (P') and the qualitative strain map elaborated in the field. Indeed, grade 0 

corresponds to a very low degree of anisotropy (P'=1.10), whereas grade 5 has the highest 

degree of anisotropy (P'=1.62). The foliation is dominant in the least deformed zones and a 

gradual evolution is observed toward plano-linear, or even a pure linear fabric, in the most 

deformed zones. Therefore, the degree of anisotropy and the shape parameter correlates well 

with strain intensity observed in the field. 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 31 

5) The Gialiskari Detachment 

 

 The strain gradient observed when approaching the base of the Gialiskari sedimentary 

unit (Fig.10a) points to the existence of a shallow north-dipping top-to-the north shear zone. 

Associated to this shear zone, a clear reorientation from subvertical magmatic foliations to 

subhorizontal mylonitic foliations has been observed in the field. Furthermore, this shear zone 

evolves from ductile to brittle through time, the thick cataclasites being the brittle expression 

of the shear zone continuing motion in the brittle regime. The shear zone brings into close 

contact the ductilely deformed granites and the non-metamorphosed basin and its normal 

faults. All these features are characteristic of an exhuming shallow-dipping normal shear 

zone, hereafter named the Gialiskari Detachment (Fig. 11). The study of this structure 

together with the map of deformation grades in the granites shows an undulated ductile and 

then brittle plane, undulation particularly well illustrated by the strain gradient between 

Armenistis and Gialiskari and the orientation of foliation in this area (Fig. 11). 
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Figure 11: The Gialiskari Detachment structure. a) View of the Gialiskari Detachment near the 

Gialiskari peninsula, where a non-metamorphic Mio-Pliocene sedimentary unit is superposed on the 

Raches granite. b) 3D block diagram highlighting the undulated geometry of the Gialiskari 

Detachment near the Gialiskari peninsula. 

 

 

In the southwest of the island, near the village of Kalamos, a strong increase in strain 

intensity is also locally observed with a mylonitic foliation oriented N41°E-33°NW and a 

very well marked stretching lineation oriented N12°E (Fig. 12). Ultramylonites are also 

present, as well as cataclasites. A schematic 3D representation in Fig. 12 shows the relative 

disposition of structures. The ultramylonites are located at the interface between the Raches 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 33 

granite and the lower boundary of a metamorphic rock septa. These ultramylonites form in the 

landscape a very well defined and continuous surface (Fig. 12a). Approaching the 

ultramylonites, the granite becomes more deformed with increasingly stretched mineral grains 

and aggregates (Fig. 12b). There, the seven grades of strain intensity are condensed within a 

few hundreds of meters (Fig. 10a). S-C shear bands and mica fishes indicate top-to-the north 

sense of shear (Fig. 12b). The septa consists of highly deformed metasediments including 

metapelites and marble traversed by granitic dikes carrying also top-to-the north shear sense 

criteria (Fig. 12 c). A ca. 20 m-thick cataclasites are observed above the septa (Fig. 12a). The 

general structure of this zone is similar to the one described at Gialiskari, except for the 

absence of the Mio-Pliocene sedimentary unit that may occur further offshore (Fig. 12d). 
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Figure 12: Photographs showing the Gialiskari Detachment structure near the village of Kalamos. a) 

Base to top view of the mylonitic and ultramylonitic Raches granite, a septa composed by highly 

deformed metamorphic micaschists and marbles, and on top, a ca. 20 m-thick cataclasite. b) Highly 

deformed mylonites and ultramylonites in the Raches granite. Mica fish indicates top-to-the north 

sense of shear. c) Top-to-the north shearing in the metamorphic septa. d) 3D block summarizing the 

relative position of the structures and their link with the Gialiskari Detachment. 

 

 

6) Emplacement depth of the Raches granite 

 

The emplacement depth of an intrusion, i.e. the depth at which the magma crystallizes, 

is generally not easy to retrieve accurately. Two approaches are generally used. The first 

approach is based on the petrologic study of metamorphic assemblages that result from the 
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metamorphic transformation of adjacent country rocks, and the second one on the intrinsic 

mineralogy of the intrusion (Nedelec and Bouchez, 2011). The polyphase character of the 

metamorphic rocks hosting the intrusion hindered the use of the first method (Altherr et al., 

1982; Kumerics et al., 2005; Martin et al., 2011). Conversely, the general framework of I-type 

granitoids enables us to use hornblende chemical composition as a geobarometer. 

Hammarstrom and Zen (1986) describe the existence of linear relationship between the total 

number of aluminium atoms (Al Tot) in hornblende and crystallization depth of a pluton. This 

barometer was defined for conditions similar to those found in the Raches granite. Indeed, it 

is valid for a classical assemblage of I-type granitoids, including FK, quartz, plagioclase, 

biotite, hornblende, sphene and Fe-Ti oxides (ilmenite and / or Ti-magnetite).  

To test the criticism of Anderson (1996) about the temperature sensibility of this 

barometer, both cores and rims of amphiboles have been analyzed. No chemical variations 

were observed between these analyses (Fig. 13a). Our results revealed the presence of two 

different types of amphibole: ferro-hornblende and magnesio-hornblende (Fig. 13b). 

Ferrohornblendes crystallize at higher pressure than magnesiohornblende with a 

crystallization depth of ferro-hornblendes comprised in the range 9-15 km and 5-10 km for 

magnesio-hornblendes (Fig. 13c). We interpret the crystallization depth of ferro-hornblendes 

as representing a good estimate of the crystallization depth of the Raches granite. Moreover, 

the crystallization history of the Raches granite was probably further complicated by the 

injection of several magmatic pulses as suggested by Altherr et al. (1982), which may explain 

why magnesio-hornblendes crystallized at shallower depth. The geodynamic consequences of 

these results are discussed in the following. 
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Figure 13: Estimation of emplacement depth of the Raches granite. a) Diagram showing the pressure 

emplacement of amphibole vs the aluminium atoms number for both core and rim analyses 

(calibration of Schmidt, 1992). Note that the average of core and rim analyses is similar. b) Chemistry 

of amphiboles showing the presence of both magnesio- and ferro-hornblende in samples. c) Diagram 

showing the two different pressure emplacements between the ferro-hornblende (ca. 4 kbar) and 

magnesio-hornblende (ca. 3 kbar). 

 

 

7) Interpretation and discussion 

7.1) Continuity of deformation in the Raches granite from magmatic to 

solid state 

 

 The Raches and Karkinagrion granites can be considered asymmetrical laccolithic 

intrusions (Fig. 10b). The presence of the Karkinagrion granite in the southern part of the 

island, the top-to-the north sense of shear affecting both granites, as well as the Xylosyrtis 

granite intruding the southern part of the metamorphic dome, suggest that the magma 

injection zone was situated in the southern part of the island (Fig. 14). 
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 The Raches and Karkinagrion granites show evidence for four deformation styles (D1 

to D4, Figs. 6, 7 and 8). D1 reflects a magmatic deformation related to the early emplacement 

stage of the intrusion. The first style of deformation is recorded in the least deformed rocks 

(grades 1 and 2) and is characterized by a planar fabric disposed subvertical stretching 

lineation oriented N-S (Fig. 14). The map of stretching lineations (Fig. 2) shows a progressive 

rotation from this N-S oriented lineation to the N30°E trending one in the northern part of the 

granite. 

 The second set of structures (D2) is characterized by the presence of microfractures in 

stretched potassic feldspars. According to Bouchez et al (1992), these microfractures are 

characteristic of the submagmatic state deformation. To form these microfractures, a 

sufficiently high shear stress has been imposed on the crystal framework of the Raches pluton 

that remained partially molten. Once formed, these microfractures were instantaneously filled 

by the magma (Fig. 7). Thereby, the observation of this submagmatic deformation shows that 

Raches and Karkinagrion plutons are therefore syntectonic intrusions. These microfractures 

were not observable in the most deformed samples, because the later solid-state deformation 

overprinted and erased the submagmatic deformation. 

 D3 deformation features formed once the Raches and Karkinagrion granites had 

totally crystallized. It is marked by top-to-the northeast ductile shearing deformation, as also 

observed within the metamorphic dome (Figs. 2 and 14; Beaudoin et al., submitted), 

suggesting that D3 was related to the same regional extension. Strain intensity increases with 

the approach of the northern contact between the Raches granite and the Gialiskari 

sedimentary unit and a gradual transition from protomylonitic to mylonitic and also 

ultramylonitic facies is observed when approaching the Gialiskari Detachment at Gialiskari or 

at Kalamos (Fig. 14). 
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The last event of deformation (D4) characterizing the Raches and Karkinagrion 

granites is brittle, as shown by cataclasites just below the Gialiskari Detachment and normal 

faults in various places in both granites (Figs. 5, 11 and 12). 

The four deformation styles (D1 to D4) observed in the Raches and Karkinagrion 

granites show an evolution in deformation regime from magmatic to submagmatic, ductile 

and then brittle deformation. This evolution demonstrates that these granites emplaced during 

top-to-the north shearing. Although we have described this evolution as a succession of four 

different sets of small-scale structures, from D1 to D4, these structures simply express a 

continuum of deformation with progressive strain localization along the main detachment 

from ductile to brittle conditions. 

 

 
Figure 14: 3D bloc showing the geological architecture of Ikaria Island, integrating and summarizing 

all the structural information. 

 

7.2) Localization of deformation during cooling and late-exhumation of the 

Raches granite  

 

 The Gialiskari Detachment is located along the contact between the Upper 

Cycladic unit and the Raches granite (Fig. 14). Emplacement, mylonitization and cooling of 

the Raches and Karkinagrion granites were contemporaneous with top-to-the northeast ductile 

shear observed along the Gialiskari Detachment. This structure passed over time through the 
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ductile-brittle transition during exhumation (Fig. 15). The intrusive contact with the 

metamorphic dome is parallel to the shearing direction and is strongly folded with fold axes 

parallel to the same direction. The contact of the pluton with the host rocks has been totally 

transposed to end parallel to the regional shearing direction in most deformed parts. In 

agreement with our geobarometry results, this folding is an argument for a deep emplacement 

of granites in a ductile host rock (Fig. 15: step 1). Indeed, geobarometry results have shown 

that ferro-hornblende crystallized at high pressure (ca. 3-5 kbar). It thus seems that the 

geometry of intrusions as a whole, the shape of the intrusive contact and the deformation 

during the entire cooling period were controlled by the activity of the Gialiskari Detachment.  

From the depth of final emplacement, the Raches and Karkinagrion intrusions and the 

host metamorphic dome were sheared during cooling and a thick ductile shear zone developed 

below the UC unit. The whole system was then gradually exhumed while deformation 

progressively localized when approaching the ductile-brittle transition (Fig. 15: step 2). The 

strain was then accommodated by ultramylonitic and finally cataclastic deformation, still 

under an extensional regime oriented N30°E (Fig. 15: Step 3). 
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Figure 15: Scenario at intrusions scale showing the evolution of the Gialiskari Detachment system. a) 

Inception of localization of the ductile deformation within the Gialiskari Detachment located between 

the Karkinagrion granite related to migmatites and the Upper Cycladic unit (UC). b) Evolution of the 

deformation through the brittle-ductile transition. Cataclasis is becomes the dominant deformation 

process when strain localizes in the Gialiskari Detachment. c) Intensive localization of cataclastic 

deformation in the Gialiskari Detachment overprints previous ductile fabrics. 
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7.3) Granite intrusions and development of metamorphic core complexes in 

the Cyclades 

 

The Fanari and Gialiskari detachments have similar kinematics except that the Fanari 

detachment has been later back-tilted during doming (Beaudoin et al., submitted). These two 

structures, together with the ductile Agios Kyrikos Detachment, make the eastern extension of 

the North Cycladic Detachment System (NCDS; Fig. 1a; Jolivet et al., 2010) running across 

Andros, Tinos, Mykonos and then Ikaria. The foliation that formed during top-to-the north 

shearing deformation below the Agios Kyrikos Detachment was then intruded by the Raches 

granite, which shows that in the metamorphic units of Ikaria, the activity of the NCDS had 

started in the metamorphic units of Ikaria before the emplacement of intrusions. The 

geological evolution of the dome is summarized on a set of reconstructions (Fig. 16). On 

these reconstructions, the spacing between the main extensional structures is taken from 

Jolivet et al. (2010). As suggested by Jolivet et al. (2004a) extensional deformation in the 

Aegean involves a component of boudinaged at all scales, from the outcrop to the crust. 

Spacing of faults is mainly a consequence of the wavelength of such boudinaged, which itself 

depends upon crustal thickness. 

At 30-35 Ma, acceleration of slab retreat initiated extensional tectonics in the Aegean 

back-arc domain (Fig. 16; Jolivet and Faccenna, 2000). Crustal thickness before the period of 

extension (ca. 50 km) is taken from Jolivet and Brun (2010) for their geodynamic 

reconstructions of the Aegean domain. Being a major inherited structure, the base of the UC 

unit was then reactivated as a large detachment zone, the NCDS (Jolivet et al., 2010). Slab 

retreat was accompanied by a southward displacement of the volcanic arc, influx of hot 

asthenosphere and relaxation of HP-LT thermal regime established during subduction (Jolivet 

et al., 1994; 2013; Jolivet and Brun, 2010). This thermal relaxation involved a temperature 
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increase in the lower crust that locally began to melt, forming migmatites (Fig. 16). These 

migmatites have been described on several Cycladic islands such as Mykonos, Delos, Rhenia, 

Naxos, Paros (Jansen, 1973; Keay et al., 2001; Vanderhaeghe, 2004; Seward et al., 2009; 

Denèle et al., 2011) and now Ikaria Island. The upper crust was then heavily fractured and 

faulted, leading to the formation of crustal-scale high-temperature metamorphic domes in-

between, like the Ikaria MCC. These MCCs are delimited by crustal-scale structures, ductile 

in the lower crust, brittle in the upper crust (Fig. 16).  

The age of the high-temperature event on Ikaria is currently not precisely known. 

Following up on the comparison with the northern part of the Menderes Massif, a late 

Oligocene-Early Miocene age can be proposed. Dating of the Simav Detachment, an eastern 

extension of the NCDS exhuming the northern Menderes Massif, suggests that the activity 

occurred between 30 and 8 Ma reaching high-temperature conditions before 18 Ma (Bozkurt 

et al., 2011). This timing would make the Ikaria metamorphic dome coeval in age with the 

migmatitic dome of Naxos (Altherr et al., 1982; Keay et al., 2001; Duchène et al., 2006). The 

close association of migmatites with the two-micas Karkinagrion granite with a diffuse 

contact, and the presence of the S-type Xylosyrtis granite, both dated around 14-13 Ma 

(Bolhar et al., 2010), reinforces the conclusion that the high-temperature event and crustal 

partial melting in Ikaria dates back to the Miocene. Moreover, the Raches granite, dated at 

13.33 ± 0.17 Ma by U/Pb method on zircon (Bolhar et al., 2010), results from a partial mixing 

of melted continental felsic crust and mantellic or mafic magma as described by Altherr and 

Siebel (2002), Pe-Piper et al. (2002). It intrudes the earlier migmatites and the related 

Karkinagrion granite and also the Ikaria unit at a depth estimated between 10 and 15 km (Fig. 

15: step 1). This emplacement may coincide with the period during which deformation 

migrated from the Agios Kyrikos Detachment to the Gialiskari Detachment (Fig. 16). 
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Figure 16: Probable crustal scale scenario of the evolution of structures in Ikaria Island. See text for 

explanations. 
 

 This study provides new data on the debated triggering effect of magmatic intrusions 

in the development of MCCs. On Ikaria, emplacement of the Raches and Karkinagrion 

granites postdate the initiation of the MCC exhumation below the Agios Kirykos Detachment. 

We assume that the pluton had pierced the lower ductile Agios Kirykos Detachment. 

Contemporaneously, the northeast extensional deformation migrated upward in the crust, 

along the upper Gialiskari Detachment, where the pluton roof was subsequently sheared by a 
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NNE- directed non-coaxial flow from magmatic to solid-state conditions. A similar sequence 

of events is described on Mykonos, Tinos and Serifos for the NCDS and the WCDS (Denèle 

et al., 2011; Brichau et al., 2007; Rabillard et al., submitted) as well as on Naxos (Urai et al., 

1991; Gautier et al., 1993). On Mykonos, the intrusion postdates the initiation of the Rhenia 

migmatitic dome (Denèle et al., 2011). On Naxos Island, intrusion of the granodioritic pluton 

into the roof of the migmatitic dome is dated around 12 Ma (Andriessen et al., 1979; Keay et 

al., 2001; Wijbrans and McDougall, 1986), while the development of this dome is estimated 

around 20-21 Ma by U/Pb dating on zircon from migmatitic samples (Keay et al., 2001; 

Martin et al., 2006). Initiation of top-to-the northeast ductile shear within the greenschist 

facies dome of Tinos was estimated at 30 Ma (Parra et al., 2002), while this dome and the 

Tinos Detachment are intruded by the pluton around 14-15 Ma (Avigad and Garfunkel, 1989; 

Brichau et al., 2007).  

These observations show that intrusions emplaced while the MCC was already in an 

advanced stage of development and thus that the Cycladic plutons did not play a dominant 

role in the initiation of MCCs, as already proposed by Denèle et al. (2011). It appears that 

detachments instead controlled the emplacement of granites as described by D'Lemos et al. 

(1992), Hutton and Reavy (1992), Brown (1994) and Brown and Solar (1998a). It thus seems 

that major inherited structures allow localizing extensional deformation in the crust during 

exhumation. The close association of plutons and detachments in the Cyclades then indicates 

that MCCs are preferential sites for plutons emplacement. Flow of partially molten crust 

toward the core of the dome induced by crustal-scale boudinage may explain this association 

(Gautier et al., 1993; Tirel et al., 2004; Huet et al., 2011a, 2011b; Augier et al., 2015). 

On the other hand, plutons may help localizing shear zones. When the Raches and 

Karkinagrion granites intruded the Agios Kirykos Detachment, the motion jumped on a 

structurally higher position along the Gialiskari Detachment. The same scenario has been 
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observed on others Cycladic islands. For examples, when the Tinos granite intruded the Tinos 

Detachment, the deformation migrated upward along the Livada Detachment (Jolivet and 

Patriat, 1999; Brichau et al., 2007). Or even, when the Mykonos granite intruded the Livada 

Detachment the deformation localized on a structurally higher position along the Mykonos 

Detachment (Lecomte et al., 2010; Denèle et al., 2011). The Meghalo Livadhi detachment 

cropping out on Serifos Island was also intruded by an I-type granodiorite, itself sheared by 

the upper Kavos Kiklopas and Aghios Sostis detachments (Rabillard et al., 2015). Upward 

migration of the actively deformed zone is therefore a consequence of the intrusion that lifts 

up the ductile-brittle transition (Jolivet and Patriat, 1999; Caggianelli et al., 2014). This is 

consistent with several models suggesting that crystallizing plutons are capable of producing, 

at least locally, weak rheological heterogeneities where shear zones can nucleate along the 

contact with more resistant host rocks (Lister and Baldwin, 1993; Neves et al., 1996; Foster et 

al., 2001; Aoya et al., 2005; Caggianelli et al., 2014). 

 

8) Conclusion 

 

 This contribution analyses the interrelations between syntectonic intrusions and the 

development of metamorphic core complexes. An extensive field study of the structure of the 

Raches and Karkinagrion granites in Ikaria was conducted, resulting in a new geological map 

that changes drastically from previous works in the area particularly in three key points: i) the 

Raches granite is an intrusive body within the Ikaria metamorphic dome although the contact 

appears intensely deformed and locally folded, ii) the Karkinagrion granite can now be 

considered as an in-situ two-mica granite closely associated with migmatites of the core of 

Ikaria MCC, iii) the Gialiskari Detachment is a major, regional scale top-to-the north shear 
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zone, part of the North Cycladic Detachment System, responsible for exhumation of the Ikaria 

MCC and the ascent of intrusions in its hanging-wall. 

 The emplacement of the Karkinagrion and Raches intrusions postdates the initiation of 

the Ikaria MCC. The exhumation of the metamorphic dome involved the Agios Kirykos 

Detachment during the first stages, before plutons intruded the detachment and deformation 

migrated upward. It is concluded that plutons do not nucleate the detachments, but instead 

detachments localize and control the ascent of plutons. 
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