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Context

A. Tools

This work aims to study the clouds’ role on regional
climate variability. At first order, European climate is
driven by large scale circulations. However, clouds are
known to have two major radiative effects impacting the
surface temperature: the greenhouse effect and the
albedo effect. These effects are strongly dependent on
macrophysical and microphysical properties of clouds. It is
then necessary to consider the vertical distribution of
clouds to better understand their impact on regional
climate.

Since June 2006, A-train observations are available and
allow the description of this vertical distribution and of
other microphysical properties. However, the sampling is
limited when considering small scale variability. To
complete these observations, we use a regional climate
model which may allow to extend the period of study and
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WRF simulations underestimate low clouds: the result is amplified with |

Observed seasonality reproduced by the simulations with different cloud fraction and SR values: the difference between

observation and simulations is reduced in summer
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C.2. Model evaluation: inter annual variability

D.1 Discussion #1
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D.2 Discussion #2

Conclusion and Perspectives
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Fig. 11:Random draw of the amplitude (standard deviation) of low and high clouds as function of the number of
years for observations and simulations over Europe (only continent) and Mediterranean sea (only sea) in winter
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