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Extension of radiative transfer code MOMO and Validation

1-D radiative transfer code MOMO (Matrix-Operator Model, [R1]), has been extended from [0.2 — 3.65 ym] band to the whole [0.2 — 100 ym] spectrum [R2]. MOMO can now be used for computation of full range radiation budgets (shortwave and longwave).
This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self-continuum absorption at 12 ym and the emission of
radiation by gases, aerosol, clouds and surface. MOMO'’s spectroscopy module, CGASA (Coefficient of Gas Absorption), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorption. The extension of
the code allows the utilization of MOMO as forward model for remote sensing algorithms in the full range spectrum. Another application is full range radiation budget computations (heating rates or forcings).

a) LBLRTM and CGASA H20 transmission within MODIS31 band
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80 nm wide band for the water vapor spectrum.

Application to IAOOS project combining ground-based and space observations
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Cloud and aerosols in the arctic atmosphere are key parameters in the surface energy budget but their properties

and their modifications are poorly known. The Artic region is experiencing a strong warming and few measurements

are currently performed in this region to develop a proper knowledge of the couplings between ocean and atmosphere.
Jointky led by LOCEAN and LATMQOS, the aim of the IAOOS project (Ice — Atmosphere - Arctic Ocean Observing System)
Is to bridge this gap by implementing multi-disciplinary autonomous systems on a network of buoys in central arctic.

The atmospheric measurements within IAOOS are aiming at bringing new information on cloud and aerosol properties
in the low atmosphere setting a network of small automated profiling lidar systems embarked on buoys.

& It is complemented by in situ and radiometric observations which contribute to satellite ground truth.
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Example of analyses started in this frame to link satellite and surface observations are discussed below.
Two main approaches are considered :
- retrieval of cloud properties from RTManalysis using ground-based radiometric meadurements (lidar and ODS)
N and comparison with satellite retrievals ;
- retrieval of surface temperature fromsatellite and comparison to in situ measurements ;
for validation and identification of possible biases.

Fig. 5 Exemple of a IAOOS deployed in the Artic.
More information on http://www.iaoo0s-equipex.upmc.fr/

Fig. 4 Drift example of a IAOOS buoy
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Fig. 6 Vertical cross section of range corrected IAOOS lidar profiles (range corrected signal Fig. 7 Modelled Amplification Factor (MAF) of spectral Fig. 8 Probability density function of cloud optical depth (COD)
PR2, arbitrary units) in the Artic over almost seven months. Deep blues areas stand for luminance at the bottom of the atmosphere computed with derived from the comparison of Observed and MOMO-modelled
background level (no backscattered signal). Range detection is usually low, due to low-level clouds. MOMO against cloud optical depth (COD) for several solar amplification Factor (see Fig. 7). The COD values found for these
Observed Amplification Factor (OAF) of spectral luminance at the bottom of the zenith angles. low-level clouds are rather high. Sensitivity studies are under way
atmosphere due to low-level clouds is estimated through the ratio of background in order to better constrain the microphysical parameters used in
measurements with clouds to background measurements in clear sky conditions. MOMO simulations.
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different methods using IASI data with IMB temperature
measurements (courtesy of N. Sennechael, LOCEAN/UPMC),
on 22 and 29 April 2014 identified as clear Days by IAOOS lidar

Fig 9 IASI data : example of skin temperature
measured by IASI on 25 April2014
(ETHER archive at IPSL)

Conclusions and Perspectives

The MOMO code was developed to allow analysis in both visible and IR spectral domains. It is used here as an illustration to study Arctic radiation budget at the ice/snow-atmosphere interface.
We showed that MOMO could be a valuable integration tool combining IAOOS in situ measurements, satellite measurements (IASI, AVHRR, ...) and radiative transfer simulations to:

- compare satellite skin surface temperature products or infrared images with in situ measurements using operational and research satellite products for validation ;

- check values of critical parameters such as snow/ice emissivity using temperature retrievals ;

- infer cloud properties from IAOOS lidar and radiometric measurements.

This will further allow to analyse surface radiation fluxes (SW and LW) contributing to the energy budget at the ice/snow atmosphere interface.

Combination of ground-based, airborne and satellite observations will be applied to better constrain or validate MOMO radiative transfer simulations to estimate radiative forcing and heating rates in the atmosphere,
especially for highly variable conditions (clouds and aerosol layers).
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