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Abstract. This paper presents a summary of the work

done within the European Union’s Seventh Framework Pro-

gramme project ECLIPSE (Evaluating the Climate and Air

Quality Impacts of Short-Lived Pollutants). ECLIPSE had a

unique systematic concept for designing a realistic and ef-

fective mitigation scenario for short-lived climate pollutants

(SLCPs; methane, aerosols and ozone, and their precursor

species) and quantifying its climate and air quality impacts,

and this paper presents the results in the context of this over-

arching strategy. The first step in ECLIPSE was to create a

new emission inventory based on current legislation (CLE)

for the recent past and until 2050. Substantial progress com-

pared to previous work was made by including previously

unaccounted types of sources such as flaring of gas associ-

ated with oil production, and wick lamps. These emission

data were used for present-day reference simulations with

four advanced Earth system models (ESMs) and six chem-

istry transport models (CTMs). The model simulations were

compared with a variety of ground-based and satellite obser-

vational data sets from Asia, Europe and the Arctic. It was

found that the models still underestimate the measured sea-

sonality of aerosols in the Arctic but to a lesser extent than

in previous studies. Problems likely related to the emissions

were identified for northern Russia and India, in particular.

To estimate the climate impacts of SLCPs, ECLIPSE fol-

lowed two paths of research: the first path calculated radiative
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forcing (RF) values for a large matrix of SLCP species emis-

sions, for different seasons and regions independently. Based

on these RF calculations, the Global Temperature change Po-

tential metric for a time horizon of 20 years (GTP20) was

calculated for each SLCP emission type. This climate metric

was then used in an integrated assessment model to iden-

tify all emission mitigation measures with a beneficial air

quality and short-term (20-year) climate impact. These mea-

sures together defined a SLCP mitigation (MIT) scenario.

Compared to CLE, the MIT scenario would reduce global

methane (CH4) and black carbon (BC) emissions by about

50 and 80 %, respectively. For CH4, measures on shale gas

production, waste management and coal mines were most

important. For non-CH4 SLCPs, elimination of high-emitting

vehicles and wick lamps, as well as reducing emissions from

gas flaring, coal and biomass stoves, agricultural waste, sol-

vents and diesel engines were most important. These mea-

sures lead to large reductions in calculated surface concen-

trations of ozone and particulate matter. We estimate that

in the EU, the loss of statistical life expectancy due to air

pollution was 7.5 months in 2010, which will be reduced to

5.2 months by 2030 in the CLE scenario. The MIT scenario

would reduce this value by another 0.9 to 4.3 months. Sub-

stantially larger reductions due to the mitigation are found for

China (1.8 months) and India (11–12 months). The climate

metrics cannot fully quantify the climate response. There-

fore, a second research path was taken. Transient climate

ensemble simulations with the four ESMs were run for the

CLE and MIT scenarios, to determine the climate impacts

of the mitigation. In these simulations, the CLE scenario re-

sulted in a surface temperature increase of 0.70± 0.14 K be-

tween the years 2006 and 2050. For the decade 2041–2050,

the warming was reduced by 0.22± 0.07 K in the MIT sce-

nario, and this result was in almost exact agreement with the

response calculated based on the emission metrics (reduced

warming of 0.22± 0.09 K). The metrics calculations suggest

that non-CH4 SLCPs contribute ∼ 22 % to this response and

CH4 78 %. This could not be fully confirmed by the tran-

sient simulations, which attributed about 90 % of the temper-

ature response to CH4 reductions. Attribution of the observed

temperature response to non-CH4 SLCP emission reductions

and BC specifically is hampered in the transient simulations

by small forcing and co-emitted species of the emission bas-

ket chosen. Nevertheless, an important conclusion is that our

mitigation basket as a whole would lead to clear benefits for

both air quality and climate. The climate response from BC

reductions in our study is smaller than reported previously,

possibly because our study is one of the first to use fully

coupled climate models, where unforced variability and sea

ice responses cause relatively strong temperature fluctuations

that may counteract (and, thus, mask) the impacts of small

emission reductions. The temperature responses to the miti-

gation were generally stronger over the continents than over

the oceans, and with a warming reduction of 0.44 K (0.39–

0.49) K the largest over the Arctic. Our calculations suggest

particularly beneficial climate responses in southern Europe,

where surface warming was reduced by about 0.3 K and pre-

cipitation rates were increased by about 15 (6–21) mm yr−1

(more than 4 % of total precipitation) from spring to autumn.

Thus, the mitigation could help to alleviate expected future

drought and water shortages in the Mediterranean area. We

also report other important results of the ECLIPSE project.

1 Introduction

The United Nations Framework Convention on Climate

Change (UNFCCC) requires climate policies to “be cost-

effective so as to ensure global benefits at the lowest possi-

ble cost” and that “policies and measures should . . . be com-

prehensive . . . [and] . . . cover all relevant sources, sinks and

reservoirs”. This was made operational by the Kyoto Pro-

tocol, which sets limits on emissions of six different green-

house gases (GHGs), or groups of GHGs – carbon dioxide

(CO2), CH4, nitrous oxide (N2O), perfluorocarbons (PFCs),

hydrofluorocarbons (HFCs) and sulfur hexafluoride (SF6).

Collectively these are often known as “the Kyoto gases”

or the “Kyoto basket”1. CO2 is the most important anthro-

pogenic driver of global warming, with additional signifi-

cant contributions from CH4 and N2O. However, other an-

thropogenic emissions capable of causing climate change

are not covered by the Kyoto Protocol. Some are covered

by other protocols, e.g. emissions of chlorofluorocarbons

(CFCs) and hydrochlorofluorocarbons (HCFCs) are regu-

lated by the Montreal Protocol, because of their role in strato-

spheric ozone (O3) depletion. But there are others, notably

several short-lived components that give strong contributions

to climate change that are excluded from existing climate

agreements.

In the present study we investigate climate and air qual-

ity impacts of the emissions of CH4, which has a lifetime

of about 9± 1 years (Prather et al., 2012) and a number

of much shorter-lived components (atmospheric lifetimes of

months or less) which directly or indirectly (via formation of

other short-lived species) influence the climate (Myhre et al.,

2013a):

– Methane is a greenhouse gas with a radiative efficiency

(in W m−2 ppbv−1) roughly 26 times greater than that

of CO2 at current concentrations. It is relatively well-

mixed in the atmosphere and has both natural and an-

thropogenic sources. It is also a precursor of O3 and

stratospheric water vapour.

1Note that, formally, only species given values of Global Warm-

ing Potentials (GWP) in IPCC’s Second Assessment Report were

controlled during the first commitment period (2008–2012) of the

Kyoto Protocol. The second commitment period (2013–2020), via

the Doha Amendment, also includes NF3 in the list of greenhouse

gases, and uses GWP values from the IPCC’s Fourth Assessment

Report. The Doha Amendment is currently not in force, as it awaits

ratification by a sufficient number of parties.
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– Black carbon (BC, also commonly known as soot), a

product of incomplete combustion of fossil fuels and

biomass, affects climate via several mechanisms (Bond

et al., 2013). It causes warming through absorption of

sunlight and by reducing surface albedo when deposited

on snow. BC also affects clouds, with a consequent (but

highly uncertain) impact on their distribution and radia-

tive properties (Boucher et al., 2013).

– Tropospheric O3 is a greenhouse gas produced by chem-

ical reactions from the emissions of the precursors CH4,

carbon monoxide (CO), non-CH4 volatile organic com-

pounds (NMVOCs) and nitrogen oxides (NOx). Emis-

sions of these same precursors also impact on hydroxyl

radical (OH) concentrations with further impacts espe-

cially on CH4.

– Several components have cooling effects on climate,

mainly sulfate aerosol formed from sulfur dioxide

(SO2) and ammonia (NH3), nitrate aerosol formed from

NOx and NH3, and organic aerosol (OA) which can be

directly emitted or formed from gas-to-particle conver-

sion of NMVOCs. They cause a direct cooling by scat-

tering solar radiation and alter the radiative properties

of clouds, very likely leading to further cooling.

We refer to these substances as short-lived climate pollutants

(SLCPs) as they also have detrimental impacts on air quality,

directly or via formation of secondary pollutants (Kirtman et

al., 2013). Notice that we include the precursors of O3 and

secondary aerosols in our definition of SLCPs. We also in-

clude CH4 in our study even though it is included in the Ky-

oto Protocol, because of its relatively short lifetime compared

to that of CO2 and its importance for air quality via the for-

mation of O3. We do not include HFCs in our definition of

SLCPs, as they have no significant impact on air quality and

can be regulated from a climate policy perspective alone. For

SLCPs, on the other hand, cost-effective environmental pol-

icy measures should be designed such that they optimise both

the climate and air quality responses (Schmale et al., 2014).

In some instances, control of the emissions of a species is

expected to reduce future warming and improve air quality

at the same time – a “win–win” situation (Anenberg et al.,

2012); in others, the control of emissions may be conflicting,

in the sense that it could increase warming while improving

air quality (or vice versa) – in this case, emission control in-

volves a “trade-off” between the impacts.

The net climate impact since pre-industrial times of all

short-lived components other than CH4 together is very

likely to be cooling due primarily to sulfate aerosols (Myhre

et al., 2013a). Whilst SLCP reductions are clearly benefi-

cial for air quality, elimination of all current non-CH4 SLCP

emissions would thus very likely lead to extra warming. Nev-

ertheless, targeted emission reductions of selected SLCPs

which cause warming (either directly or via formation of sec-

ondary species) have the potential to reduce global warming

on a short timescale, as well as improving air quality. They

may also reduce the rate of warming (Myhre et al., 2011;

Shindell et al., 2012) that is important, for example, for the

adaptation of ecosystems to climate change (as recognised

by UNFCCC Art. 2) and is expected to accelerate in the near

future (Smith et al., 2015). Reducing these selected SLCP

emissions might be effective to help avoid (or at least delay)

certain undesired impacts of climate change (e.g. rapid sea

ice loss in the Arctic; Quinn et al., 2008). At least, optimised

SLCP emission reductions could help to reduce the undesired

extra climate warming caused by air quality policy measures

that often do not consider climate impacts.

There are many studies that explore possibilities and ef-

fects of reductions of short-lived components (e.g. Brasseur

and Roeckner, 2005; Rypdal et al., 2009a; Kopp and Mauzer-

all, 2010; Penner et al., 2010; Unger et al., 2010; Shindell

et al., 2012; Bond et al., 2013; Bowerman et al., 2013; Ro-

gelj et al., 2014). Given the interest from policymakers in the

abatement of SLCPs, an urgent challenge is to determine the

exact climate impacts of the different species involved (e.g.

Penner et al., 2010). BC has received particular attention as

a component for which a specific emission reduction might

have an immediate climate benefit (e.g. Bond and Sun, 2005;

Boucher and Reddy, 2008; Grieshop et al., 2009; Rypdal et

al., 2009b; Berntsen et al., 2010; Bond et al., 2013).

For designing a successful SLCP emission abatement

strategy, the key CH4 sources are relatively straightforward

to deal with because their emission profile is dominated by

CH4 (e.g. venting of natural gas, rice paddies). Combustion

sources, however, emit a mix of many different SLCPs (e.g.

BC, OA, NOx , SO2) as well as CO2. This makes it difficult

to reduce the emissions of warming agents (e.g. BC) alone,

as their control often also leads to removal of co-emitted

cooling agents (e.g. OA, SO2). To achieve a climate bene-

fit, abatement strategies will be most effective if they target

sources with a high fraction of warming species in their emis-

sions (e.g. diesel vehicles) (Unger et al., 2010).

1.1 Climate effects of SLCPs

There are several distinct issues that have to be addressed

in considering the impact of any proposed SLCP abatement

strategy. First, there are large uncertainties in estimates of the

climate effects of SLCPs (see e.g. Myhre et al., 2013a) and

thus also in the effects of emission reductions. These apply

particularly to the impact of aerosols on cloud properties (e.g.

Quaas et al., 2009; Boucher et al., 2013), but there are also

difficulties in evaluating direct radiative effects of aerosols.

Second, the climate impact of short-lived components,

even when averaged globally, can depend strongly on lo-

cation and time (e.g. summer vs. winter) of emissions (Fu-

glestvedt et al., 1999; Wild et al., 2001; Berntsen et al.,

2005, 2006; Koch et al., 2007; Naik et al., 2005; Reddy

and Boucher, 2007; Shindell and Faluvegi, 2009). For well-

mixed gases (e.g. Kyoto gases), a single globally valid value
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of Global Warming Potentials (GWP; see Sect. 1.2 for more

details) can be calculated for a chosen time horizon, and

then used to give the so-called “CO2-equivalent” emissions

of a gas. By contrast, for the non-CH4 SLCPs, the GWP de-

pends significantly on when and where the emission occurs.

Not only does this complicate the calculation of GWPs, but

also it introduces an additional dimension into the framing

of climate policy. For instance, the importance of location

for BC emissions has received much attention in this context

(Ramanathan and Carmichael, 2008; Shindell and Faluvegi,

2009).

Third, inhomogeneity in the climate response to radiative

forcing (RF) is important for SLCPs. The geographical pat-

tern of RF due to the non-CH4 SLCPs is generally concen-

trated close to the source of emission, and hence is quite dis-

tinct from the global-scale forcing due to the Kyoto gases.

The extent to which these heterogeneous forcing patterns will

trigger different climate responses compared to well-mixed

gases is an unresolved scientific issue, even though the cli-

mate response generally occurs on larger spatial scales (but

mainly in the hemisphere where the forcing takes place; Joshi

et al., 2003; Shindell et al., 2010) than the forcing itself. One

example of the issue of inhomogeneity of response concerns

the effects of absorption of solar radiation by BC in the Arctic

atmosphere. Flanner (2013) has shown that in the Arctic BC

located at low altitudes causes a strong local surface warm-

ing, but BC located at higher altitudes causes a surface cool-

ing, which is due to the reduced solar radiation reaching the

surface. Another important example is emissions of NOx as

these lead to a shorter-lived (and hence more localised) posi-

tive RF due to increases in O3 and a longer-lived (and hence

more global) negative RF due to the increased rate of destruc-

tion of CH4. This means that metrics based on global-mean

quantities may be poorly representative of the local impacts

of an emission as the response depends on both region and

timescale (Shine et al., 2005; Lund et al., 2012).

Fourth, SLCPs may have other effects on climate that

go beyond global-mean temperature (Andrews et al., 2010;

Kvalevåg et al., 2013) such as through changes in the hydro-

logical cycle (Gedney et al., 2014) and in the atmospheric

circulation. For example, in south-east Europe there are in-

dications that changes in the radiation budget through direct

and indirect effects of aerosols have caused circulation, pre-

cipitation and evaporation changes (Lelieveld et al., 2002;

Tragou and Lascaratos, 2003). Thus, even a cooling compo-

nent may cause unwanted climate impacts (Shindell, 2015).

Finally, there are important interdependencies between

SLCPs and long-term climate change. The climate (and air

quality) impacts of SLCPs depend on the atmosphere into

which they are emitted – future changes in temperature, hu-

midity, cloud amount, surface albedo, circulation and atmo-

spheric composition are likely to change these impacts (Isak-

sen et al., 2009). Acting in the other direction, changes in

SLCP emissions can impact vegetation via changes in air

quality (Sitch et al., 2007; Collins et al., 2010), nutrient depo-

sition (Mahowald, 2011; Wang et al., 2015) or photosynthetic

active radiation (Mercado et al., 2009), thereby altering the

terrestrial carbon budget and hence future CO2 concentra-

tions and thus giving the SLCPs a much longer term impact.

Taking the above points into account, the short lifetimes

and regional dependence of the climate impact of SLCP

emissions make these species fundamentally different to the

long-lived GHGs regulated under the Kyoto Protocol and

these impacts and metric values are much more uncertain

(Myhre et al., 2013a). Furthermore, cooling aerosols may

have partly compensated the warming due to well-mixed

greenhouse gases in the past, and this masking effect must

be considered when determining the sensitivity of the cli-

mate system directly from observations (Knutti and Hegerl,

2008; Skeie et al., 2014). This also reduces our ability to

calculate future global warming (e.g. Andreae et al., 2005;

Meinshausen et al., 2009; Penner et al., 2010). Thus, there is

an urgent need to understand and quantify the role that these

components may play in international efforts to reduce global

warming (Jackson, 2009; Berntsen et al., 2010; Arneth et al.,

2009; Rypdal et al., 2009b; Molina et al., 2009; Unger et al.,

2010).

1.2 Climate metrics to characterise the effect of SLCPs

The Kyoto Protocol to the UNFCCC is a multi-gas climate

treaty that required a method to place emissions of different

gases on a common scale. It adopted the GWP with a 100-

year time horizon, GWP100, from the IPCC (Intergovern-

mental Panel on Climate Change) Second Assessment Re-

port as a metric in order to derive so-called CO2-equivalents

for non-CO2 gas emissions. The GWP has since then been

widely used in implementing the Kyoto Protocol, and for

other purposes. However, it was not designed with a partic-

ular climate policy in mind, and as a result, GWP may not

be the best choice for all particular policy objectives (e.g.

Tanaka et al., 2009; Fuglestvedt et al., 2010; Myhre et al.,

2013a; Pierrehumbert, 2014).

The GWP gives the RF due to a pulse emission of a

gas or aerosol, integrated over some time horizon, relative

to that of CO2. The choice of time horizon has a signifi-

cant impact on the metric value of an emission (e.g. Skod-

vin and Fuglestvedt, 1997; Shine, 2009; Fuglestvedt et al.,

2010; Aamaas et al., 2013) and is a value-laden choice. The

time-integrated nature of the GWP means that it retains the

memory of short-lived emissions even at long-time horizons,

when their forcing and most of the response have subsided.

Several alternatives to the GWP have been proposed and of

these, the Global Temperature change Potential (GTP) (Shine

et al., 2005, 2007; Fuglestvedt et al., 2010) has attracted most

attention (e.g. Reisinger et al., 2010; Boucher and Reddy,

2008; Gillett and Matthews, 2010; Collins et al., 2013). The

GTP gives the global-mean surface temperature change some

time after a pulse emission, relative to that of CO2. In con-

trast to the GWP, it uses temperature as the indicator and is

Atmos. Chem. Phys., 15, 10529–10566, 2015 www.atmos-chem-phys.net/15/10529/2015/
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an “end point”, rather than an “integrative”, metric. There-

fore, it does not retain the memory of short-lived emissions in

the same way as the GWP. Difficulties with the GTP include

its dependence on the climate sensitivity and on the method

of incorporating the ocean’s thermal response (Shine et al.,

2007; Fuglestvedt et al., 2010; Olivié and Peters, 2013).

The GTP may be more appropriate to target-based climate

policies (UNEP/WMO, 2011) where the aim is to keep tem-

perature change below some given limit, such as the 2 ◦C

limit in the UNFCCC’s Copenhagen Accord. The choice of

time horizon is then no longer so arbitrary, but is linked to

the time at which, for example, 2 ◦C is likely to be reached.

This use of the GTP (Shine et al., 2007; Berntsen et al., 2010;

Tanaka et al., 2013) mimics the behaviour of more complex

(but less transparent) metrics based on integrated assessment

models (Manne and Richels, 2001).

In its 5th Assessment Report, the IPCC assessed scientific

aspects of climate metrics and their applicability in policy

making. It was emphasised that the most appropriate metric

and time horizon will depend on which aspects of climate

change are considered most important to a particular appli-

cation. The assessment also pointed out that there are limita-

tions and inconsistencies related to the treatment of indirect

effects and feedbacks (e.g. climate–carbon cycle feedbacks)

in climate metrics. In this study, we have adopted GTP20, the

GTP over a 20-year time horizon, as our key metric, after

careful consideration of alternatives (see Sect. 3.4).

1.3 Air quality impacts of SLCPs

The impact of SLCPs on air quality occurs at both the lo-

cal and regional scale. While local emissions contribute to

episodes of high pollution levels which can cause acute

health effects, the long-range transport of air pollutants or

their precursors even over intercontinental distances (e.g.

Stohl and Trickl, 1999; Dentener et al., 2010) can in-

crease the background concentrations upon which pollution

episodes are superimposed. This is also important because

there is increasing evidence of harmful effects of long-term

exposure to particulate matter (PM), O3, deposited acidify-

ing compounds and nitrogen to human health and vegeta-

tion (Anenberg et al., 2012). Thus, the impact of SLCPs on

air quality is complex and requires quantification on local to

global scales. At an international level, these aspects, includ-

ing emission regulation, are covered by the UNECE Conven-

tion on Long-Range Transboundary Air Pollution (CLRTAP)

and its protocols including the Gothenburg Protocol and its

amendments.

The International Agency for Research on Cancer classi-

fied outdoor air pollution as carcinogenic to humans with

sufficient evidence that it causes lung cancer. A positive as-

sociation with an increased risk of bladder cancer was also

demonstrated. It has been estimated that air pollution caused

223 000 deaths from lung cancer worldwide in 2010 (Anen-

berg et al., 2012; Lim et al., 2012). Air quality guidelines for

various substances published by different agencies are listed

in Table 1.

Ozone and PM are the most problematic air pollutants

with regard to effects on human health (EEA, 2013). Ozone

can, through impairment of lung function, lead to prema-

ture deaths and increased hospitalisation (West et al., 2006).

PM was classified as carcinogenic to humans (IARC, 2015;

Grosse, 2013). It is estimated, for instance, that an increase

of 10 µg m−3 in the concentrations of PM10 (PM with diam-

eter smaller than 10 µm) will increase cardiopulmonary mor-

tality by 9 % (Pope III et al., 1995). Different aerosol types

are considered when assessing climate impacts, whereas air

quality legislation is based on the concept of total mass con-

centrations of particulate matter – either as PM2.5 or PM10. It

is, however, likely that human health impacts also depend on

PM composition. For instance, according to the World Health

Organization (WHO), epidemiological evidence indicates an

association of daily variation in BC concentrations with short

and long-term adverse health effects such as cardiovascular

mortality, and cardiopulmonary hospital admissions. Addi-

tionally, BC was classified as possibly carcinogenic to hu-

mans (Group 2B) (WHO, 2012). However, concentration-

response functions for individual PM components still need

to be established. Thus, neither BC nor ultrafine particles

are currently covered specifically by EU guidelines (WHO,

2013).

2 Scope and overall concept

The purpose of this paper is to present a summary of the

work done within the European Union’s Seventh Framework

Programme project ECLIPSE (Evaluating the Climate and

Air Quality Impacts of Short-Lived Pollutants). ECLIPSE

had a unique systematic concept for designing a realistic and

effective SLCP mitigation scenario and quantifying its cli-

mate and air quality impacts, which is schematically shown

in Fig. 1. Other papers describe particular aspects of the

ECLIPSE work in more detail, while we here present key

ECLIPSE results in the context of this overarching strategy

and overall conclusions of the project.

The first step in ECLIPSE was to create a new set of

global baseline emissions for the recent past and future (see

Sect. 3.1, top of Fig. 1). These emission data were used for

present-day reference simulations with Earth system mod-

els (ESMs) and chemistry transport models (CTMs). The

model simulations were compared extensively with a vari-

ety of global ground-based and satellite observational data

sets, in particular in three target areas (China, Europe and the

Arctic; see Sect. 3.2) to evaluate their capabilities to simulate

SLCP concentrations.

To study the climate impacts of SLCPs, ECLIPSE fol-

lowed two paths of research. The first path (the outer part of

the spiral in Fig. 1) calculated RF values for a large matrix of

SLCP species emissions, for different seasons and regions in-

www.atmos-chem-phys.net/15/10529/2015/ Atmos. Chem. Phys., 15, 10529–10566, 2015
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Table 1. Air quality standards for Europe (European Union reference values), WHO air quality guidelines (AQG), US-EPA National Ambient

Air Quality Standards (NAAQS) and the Environmental Quality Standards (EQS) and guideline values for air pollutants in Japan. Values in

brackets give time period for which the guideline is defined.

Pollutants EU reference levelsa WHO AQGb USEPA NAAQSc Japan EQSd

PM2.5 20 µg m−3 (year) 10 µg m−3 (year) 12 µg m−3 (year) 15 µg m−3 (year)

PM10 40 µg m−3 (day) 20 µg m−3 (year) 150 µg m−3 (day) 100 µg m−3 (day, SPMe)

O3 120 µg m−3 (8 h) 100 µg m−3 (8 h) 0.075 ppm (8 h) 118 µg m−3 (1 hf)

NO2 40 µg m−3 (year) 40 µg m−3 (year) 53 ppb (year) 75–113 µg m−3 (1 h)

SO2 125 µg m−3 (day) 20 µg m−3 (day) 75 ppb (1 h) 105 µg m−3 (1 day)

CO 10 mg m−3 (8 h) 10 mg m−3 (8 h) 9 ppm (8 h) 10 ppm (1 h)

a EEA (2013), Indicator CSI 004; b WHO Air Quality Guidelines (WHO, 2006); c US-EPA National Ambient Air Quality Standards

(http://www.epa.gov/air/criteria.html#3, last access: 16 April 2014). d Environmental Quality Standards (EQS) and guideline values for

air pollutants in Japan (Kawamoto et al., 2011). e 100 % efficiency cut-off at 10 µm while PM10 is defined as 50 % efficiency cut-off at

10 µm aerodynamic diameter (Kawamoto et al., 2011). f Photochemical oxidants (Ox ) (Kawamoto et al., 2011).

Climate
metrics

(3.4)

Model
evaluation

(3.2)

Radiative forcing (3.3)

Climate
impacts

(3.6)

Current legislation emissions (3.1)

Mitigation scenario (3.5)

(3.7)

Closing

Figure 1. Schematic of the ECLIPSE overall methodology. Num-

bers in brackets correspond to section numbers in this paper.

dependently by changing the emissions of one species from

one region and one season at a time (see Sect. 3.3). Based

on these RF calculations, suitable metrics were chosen to al-

low the estimation of the climate impact of particular SLCP

emissions over different time horizons (see Sect. 3.4).

These metrics were then used to generate an SLCP mit-

igation scenario to minimise climate impacts that could be

contrasted with the current legislation scenario (see the top

of Fig. 1). For this, the region-, season- and species-specific

matrix of climate impact (as defined by the chosen metric)

was used as an input to an integrated assessment model. All

region-, season- and sector-specific emission mitigation mea-

sures with a beneficial air quality impact were then evalu-

ated according to their expected climate benefit. Notice here

that emission measures typically affect several SLCP species.

For every mitigation measure, the emission reduction of ev-

ery SLCP species was therefore weighted with the chosen

climate metric and summed over all emitted SLCP species.

Finally, all measures with beneficial air quality and climate

impacts were collected in a basket defining the SLCP mitiga-

tion scenario (see Sect. 3.5).

The metrics, however, cannot fully quantify the climate

response, due to the underlying simplifying assumptions, in-

cluding linearity, the need to specify particular time horizons

and, most importantly, the focus on one single aspect of cli-

mate change (global-mean temperature for the chosen GTP

metric). Therefore, a second research path (the inner part of

the spiral in Fig. 1) was taken to determine the climate re-

sponse for a set of emission reductions for individual SLCP

species, using a small ensemble of four advanced ESMs. Fur-

thermore, transient climate ensemble simulations with these

ESMs were run for the baseline and emission mitigation sce-

narios, to calculate the transient climate and air quality im-

pacts of the mitigation scenario (see Sect. 3.6). A comparison

between the climate impacts expected from the metrics and

those calculated with the transient simulations (left part of

the spiral in Fig. 1) closed the loop between the first and the

second research path and allowed for the evaluation of the

consistency of both approaches (see Sect. 3.7).

In ECLIPSE, we used multi-model ensemble results wher-

ever possible, as these are more robust than results from an

individual model. However, certain calculations could only

be performed by a single model and are, thus, presented as

such.

3 Results

3.1 The ECLIPSE emissions

The ECLIPSE emission data set was created with

the GAINS (Greenhouse gas–Air pollution Interactions

and Synergies; http://www.iiasa.ac.at/web/home/research/

researchPrograms/GAINS.en.html) model (Amann et al.,

2011), which provides emissions of long-lived greenhouse

Atmos. Chem. Phys., 15, 10529–10566, 2015 www.atmos-chem-phys.net/15/10529/2015/
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gases and shorter-lived species in a consistent framework.

The GAINS model holds essential information about key

sources of emissions, environmental policies and mitigation

opportunities for about 160 country regions. The model relies

on exogenous projections of energy use, industrial produc-

tion, and agricultural activity (ECLIPSE scenarios draw on

IEA, 2012, for energy and Alexandros and Bruinsma, 2012,

for agriculture) for which it distinguishes all key emission

sources and control measures. More than 2000 technologies

to control air pollutant emissions and at least 500 options to

control GHG emissions are included.

Improvements in the emission model were made espe-

cially for China (Zhao et al., 2013; Wang et al., 2014), where

large changes have occurred recently, as well as for Europe

where results of the consultation process during the develop-

ment of scenarios for the review of the EU National Emis-

sion Ceilings Directive (Amann and Wagner, 2014) were

used. Furthermore, several sources like brick making, oil and

gas production, non-ferrous metals and international ship-

ping were reviewed and updated. Finally, a number of pre-

viously unaccounted sources were added or specifically dis-

tinguished in the model, e.g. wick lamps, diesel generators

and high-emitting vehicles. The global SO2 inventory used

for IPCC’s 5th Assessment Report (Klimont et al., 2013) was

also developed during ECLIPSE.

All emission data were gridded consistently to a resolution

of 0.5◦× 0.5◦ longitude–latitude. The spatial proxies used in

GAINS for gridding are consistent with those applied within

the IPCC’s Representative Concentration Pathways (RCPs)

projections as described in Lamarque et al. (2010) and as fur-

ther developed within the Global Energy Assessment project

(GEA, 2012). They were, however, modified to accommo-

date more recent year-specific information where available,

e.g. on population distribution, open biomass burning, lo-

cation of oil and gas production, and livestock-specific spa-

tial production patterns (Klimont et al., 2013, 2015b). Emis-

sions were also temporally allocated: monthly distribution

was provided for all sources and for the residential heating

emissions were based on ambient air temperature (see Stohl

et al., 2013).

For the first time in a global emission inventory, emissions

from flaring of associated gas in oil production were con-

sidered directly, including spatial distribution. For BC, these

emissions constitute only about 3 % of the global total. How-

ever, owing to emissions in Russia, they constitute about one

third of all BC emissions north of 60◦ N and two thirds of

all emissions north of 66◦ N. Stohl et al. (2013) found that

the gas flaring emissions contribute 42 % of all BC found in

the Arctic near the surface, and this has improved the perfor-

mance of the ECLIPSE models in the Arctic.

Figure 2 shows global anthropogenic ECLIPSE emissions

for three developed scenarios (Klimont et al., 2015a, b):

– Current legislation (CLE) includes current and planned

environmental laws, considering known delays and fail-

ures up to now but assuming full enforcement in the fu-

ture.

– No further control (NFC) uses the same assumptions as

CLE until 2015 but no further legislation is introduced

subsequently, even if currently committed. This leads to

higher emissions than in CLE for most pollutants.

– The ECLIPSE SLCP mitigation (MIT) scenario in-

cludes all measures with beneficial air quality and

climate impact (according to the climate metric; see

Sect. 3.4 and 3.5).

Different versions of the ECLIPSE inventory (avail-

able on request from http://eclipse.nilu.no; also avail-

able from http://www.iiasa.ac.at/web/home/research/

researchPrograms/Global_emissions.html) have been devel-

oped and were available at different times for different tasks

(Klimont et al., 2015a, b). We describe here the version 5,

which was used for the transient climate model simulations

(Sect. 3.6). For model evaluation (Sect. 3.2) and climate

perturbation simulations in Sect. 3.6, versions 4 and 4a were

used that, for the CLE scenario, were very similar to version

5 (Klimont et al., 2015a, b).

During the past few decades, there was strong growth in

CO2 emissions, but the SLCP emissions have followed a dif-

ferent trajectory, at least at the global level. For example,

the SO2 emissions have been decreasing since 1990, with a

temporary increase between 2000 and 2005 (Klimont et al.,

2013), owing to strong policies and drastic reductions in Eu-

rope and North America. The strong development in Asia

was offset at the global level by these reductions but in the

future, emissions of SO2 grow again in the CLE scenario,

primarily due to a strong increase in India (Klimont et al.,

2013). In fact, also some other SLCPs (e.g. NOx) show signs

of a rebound around the years 2020–2025, when most of the

existing policies will have been fully introduced (Klimont

et al., 2015a, b). This is driven by increasing fossil fuel use

and thus coupled to increasing CO2 emissions. In the case

of BC, GAINS does not predict further growth in emissions,

mostly because current policies to reduce coal use in China

for cooking and heating seem to be effective and because of

the introduced diesel legislation.

The NFC scenario has higher SLCP emissions than the

CLE scenario, showing the importance of actual introduction

of already planned policies. However, the NFC scenario still

might be optimistic as it actually does not assume any failure

or further delays in enforcement of pre-2015 laws. The MIT

scenario, which shows deep cuts in the emissions of some

species, is the result of a climate-optimised SLCP reduction

scenario and is described in Sect. 3.5.

Figure 2 indicates a large spread in possible future emis-

sion pathways, which for the air pollutants is larger than an-

ticipated in the RCP scenarios, shown by the grey shading.

RCP scenarios focused on building future emission scenarios
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Figure 2. Global annual anthropogenic emissions of CO2, CH4 and key air pollutants (SO2, NOx and BC) for the current legislation (CLE),

no further controls (NFC) and ECLIPSE SLCP mitigation scenario. Units are Gt for CO2 and Mt for the SLCPs. Also shown for comparison

is the range of the RCP emission scenarios (grey shading).

with different RF from long-lived GHGs while for air pollu-

tants all assumed a very similar path, strongly linked with the

economic growth (Amann et al., 2013). Consequently all air

pollutant emissions decline strongly towards 2050 in all RCP

scenarios. This is not the case for the ECLIPSE emissions,

and the spread is larger than the RCP spread despite the fact

that all scenarios follow the same energy use projection.

Emissions from international shipping differ between the

ECLIPSE emission versions 4 and 5. Version 4a still drew

on the work done for the RCP scenarios, while for the ver-

sion 5 data set, the historical emissions rely on the results

of Endresen et al. (2007), with activity data projected with

growth rates from IEA (2012). This allowed us to model

region-specific regulation, i.e. specifically in the emission

control areas, and long-term targets to reduce the sulfur con-

tent of fuels. For aviation, the emissions originate from Lee

at al. (2009) and are consistent with the RCP scenarios.

Non-agricultural, open biomass burning emissions are not

calculated in the GAINS model and, for the model simu-

lations, were therefore taken from the Global Fire Emis-

sion Database (GFED), version 3.1 (van der Werf et al.,

2010) for the years 2008 and 2009, and held constant in

simulations of future scenarios. Biogenic emissions orig-

inate from the MEGAN database (Guenther et al., 2012;

http://lar.wsu.edu/megan/).

3.2 Model evaluation

Using the ECLIPSE version 4a CLE emissions, simulations

were carried out with a range of models. In addition to

the four ESMs used in ECLIPSE (HadGEM3, ECHAM6-

HAM2, NorESM1-M and CESM1/CAM5.2; see Baker et al.,

2015a for descriptions of these models), three CTMs and

a Lagrangian particle dispersion model were used (see Ta-

ble 2). All models were run for core periods in 2008 and

2009, when several aircraft campaigns took place in China

and the Arctic, but most models simulated the full 2008–

2009 period. Some models were also run for longer periods

and were evaluated together with other models. For instance,

in a comparison against aircraft measurements, Samset et

al. (2014) found that the models systematically overpredict

BC concentrations in the remote troposphere, especially at

higher altitudes. They concluded that the BC lifetime in the

Atmos. Chem. Phys., 15, 10529–10566, 2015 www.atmos-chem-phys.net/15/10529/2015/
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Table 2. Overview of the ECLIPSE models and how they were set up for the years 2008–2009.

Model name Model type∗ Horizontal/vertical resolution Meteorological fields Periods simulated/ out-

put temporal resolution

References

FLEXPART LPDM Meteorological input 1◦× 1◦, 92 L ECMWF operational

analyses

2008–2009

3 h

Stohl et al. (1998, 2005)

OsloCTM2 CTM 2.8◦× 2.8◦, 60 L ECMWF IFS forecasts 2008–2009

3 h

Myhre et al. (2009), Skeie et al. (2011)

EMEP CTM 1◦× 1◦, 20 L ECMWF operational 2008–2009, 24 h Simpson et al. (2012)

TM4-ECPL CTM 2◦× 3◦, 34 L ECMWF ERA-interim 2008–2009

24 h

Kanakidou et al. (2012), Daskalakis et

al. (2015)

WRF-CMAQ CTM 50 km× 50 km, 23 L NCEP 2008, 24 h Im et al. (2013)

WRF-Chem CTM 50 km× 50 km, 49 L Nudged to FNL March–August 2008

3 h

Grell et al. (2005), Zaveri et al. (2008)

NorESM ESM 1.9◦× 2.5◦, 26 L Internal, observed

SST prescribed

2008–2009

3 h

Kirkevåg et al. (2013), Bentsen et

al. (2013)

ECHAM6-HAM2 ESM 1.8◦× 1.8◦, 31 L ECMWF

re-analysis

March–August,

2008, 1 h

Stevens et al. (2013), Zhang et

al. (2012)

HadGEM3 ESM 1.9◦× 1.3◦, 63 L ECMWF ERA-interim March–June, Novem-

ber 2008, January, May

and November 2009

2 h

Hewitt et al. (2011), Mann et al. (2010)

CESM–CAM4 ESM 1.9◦× 2.5◦, 26 L Internal Was not evaluated for

2008–2009; only used

for 2000–2050 simula-

tions

Gent et al. (2011)

∗ Chemistry transport model (CTM), Lagrangian particle dispersion model (LPDM), Earth system model (ESM).

models is too long. A follow-up study suggested that the

best match to aircraft observations could be achieved with

strongly increased BC emissions and decreased lifetimes

(Hodnebrog et al., 2014). Daskalakis et al. (2015) derived

changes in the local lifetime of BC up to 150 % associated

with the use of different amounts and spatial distribution of

fire emissions in the same chemistry transport model, demon-

strating the dependence of BC lifetime on its emissions. Tsi-

garidis et al. (2014) found systematic underprediction of OA

near the surface as well as a large model divergence in the

middle and high troposphere. They attributed these discrep-

ancies to missing or underestimated OA sources, the removal

parameterisations as well as uncertainties in the temperature-

dependent partitioning of secondary OA in the models. As

a consequence of these studies, ECLIPSE models were im-

proved in terms of emissions (Klimont et al., 2015a, b), sec-

ondary OA formation (Tsigaridis et al., 2014) and removal

parameterisations (Samset et al., 2014; Hodnebrog et al.,

2014).

The improved ECLIPSE models were evaluated against

global data sets such as aerosol optical depth (AOD), fine-

mode AOD and absorption AOD derived from data of the

Aeronet sun photometer network, as well as against vari-

ous measurements of aerosol and gas-phase species (Schulz

et al., 2015). Here, we focus on a more detailed regional

model evaluation for eastern Asia, Europe and the Arctic

using satellite, airborne and ground-based measurements of

pollutant gases (CO, NO2, O3 and SO2) and aerosols (Eck-

hardt et al., 2015; Quennehen et al., 2015). For eastern Asia

in August–September 2008 (Fig. 3, left two columns), data

were averaged over three urban and five rural sites. The mod-

els have difficulties reproducing the urban concentrations,

due to their coarse resolution. However, surprisingly most

models overestimated the urban SO2 mixing ratios. This

could be related to power plant emissions that are actually

occurring outside urban boundaries, being placed into the

coarse urban model grid cells. For urban NO2, models devi-

ate less systematically from observations, with both overesti-

mates and underestimates, and the model mean captures the

observations. For rural NO2, also the individual models de-

viate less from the measured concentrations, indicating that

the individual model biases for urban NO2 are very likely

mainly due to the limited model resolution and not to bi-

ases in emissions and/or chemical processes. The measured

concentrations of O3 at the rural sites are matched relatively

well (agreement within the range of the temporal distribu-

tion at individual sites) but SO2 is generally overestimated

there as well. The most severe problem at rural sites, how-

ever, is a systematic underestimation of CO mixing ratios,

which was attributed to underestimated CO lifetimes in the

models (Quennehen et al., 2015).

A similar comparison was made for Europe with back-

ground measurements taken from stations of the European

Monitoring and Evaluation Programme (EMEP) (Fig. 3,
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Figure 3. Box and whiskers plots showing the frequency distribution of measured and modelled CO, NO2, O3 and SO2 mixing ratios or

concentrations representative for background stations in urban and rural areas in East Asia during August and September 2008 (two left

panel columns) and for rural background stations in Europe for winter (December–February, DJF) and summer (June–August, JJA) 2008

(two right panel columns). Circles and central lines show the means and the medians, respectively; box edges represent the 25th and the

75th percentiles. For East Asia, results are averaged over several sites: Beijing, Inchon and Seoul for the urban areas, and Gosan, Kunsan,

Kangwha, Mokpo and Taean for rural areas. Results for individual sites can be found in Quennehen et al. (2015). For Europe, daily mean

observed values are averaged over all stations of the European Monitoring and Evaluation Programme (EMEP) network with available data.

Model data are treated like the observations and only the days with available observations are taken into account.

right two columns for winter and summer; see also Schulz et

al., 2015). Overall, over Europe the ECLIPSE model mean

captures the mean observations with the exception during

summer for CO that is underestimated (as in Asia). Summer-

time O3 is overestimated by many models at rural locations

over Europe and Asia suggesting too much photochemical

production downwind of emission regions.

Satellite-derived AOD measurements were reproduced

quite well by the models over China and Europe (Fig. 4).

Evaluation of individual aerosol components over Asia

(Quennehen et al., 2015) shows an overestimation of the

ECLIPSE model-mean surface BC in urban China in sum-

mer 2008, which is probably due to the short-term mitigation

measures taken during the Olympic Games. Over Europe,

ECLIPSE models satisfactorily simulate surface BC obser-

vations both in winter and summer (Fig. 4). However, prob-

lems were identified over India: Gadhavi et al. (2015) found

that BC concentrations are strongly underestimated in south-

ern India even when aerosol removal processes in one model

were completely switched off in the region. Furthermore, ob-

served AOD values in northern India are larger than those

simulated by all but two of the ECLIPSE models (Fig. 4).

This suggests that the emissions of BC and precursors of

other aerosols are underestimated for India in the ECLIPSE

emission data set. This could be related to the rapid recent

growth of emissions in India (Klimont et al., 2013), which

Atmos. Chem. Phys., 15, 10529–10566, 2015 www.atmos-chem-phys.net/15/10529/2015/
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Figure 4. Comparison of satellite-derived (MODIS) and modelled aerosol optical depth (AOD) at wavelengths of 550 nm over eastern China

and northern India (for area definition; see Quennehen et al., 2015) in August–September 2008, and Europe (14.5◦W–34.5◦ E, 35.5–74.5◦ N)

in winter (December–February, DJF) and summer (June–August, JJA) of 2008. Mean values (circles), medians (central lines), 25th and 75th

percentiles (boxes) and range of other data excluding outliers (whiskers) are shown.

may be underestimated in the inventories, as well as with

problems capturing the true spatial distribution of emissions

in India.

The Arctic was shown previously to be a particularly chal-

lenging region for aerosol model simulations (e.g. Shindell et

al., 2008). Aerosol loadings in the Arctic are generally much

lower than in populated regions and the Arctic encompasses

only a small fraction of the Earth. Therefore, impacts of even

large relative errors in the modelled aerosol concentrations

in the Arctic on global radiative forcing and global climate

response are relatively small. Nevertheless, identification of

model biases in this remote region is important as it can lead

to improved process understanding, especially of the aerosol

removal mechanisms. An evaluation of the ECLIPSE models

over the Arctic was coordinated with the Arctic Monitoring

and Assessment Programme (AMAP, 2015). Comparisons

were made for BC and sulfate for six ground stations and dur-

ing six aircraft campaigns (Eckhardt et al., 2015). As an ex-

ample, a comparison of the BC concentrations simulated by

the ECLIPSE models with measured equivalent BC is shown

in Fig. 5 for the stations Zeppelin on Svalbard, Pallas in Fin-

land and Tiksi in Siberia. For Zeppelin, most models clearly

underestimate the observed concentrations during winter and

spring, whereas for Pallas which is closer to source regions,

the models tend to overestimate. In general, the model perfor-

mance (also at other Arctic sites, not shown) is better than in

previous comparisons (e.g. Shindell et al., 2008). However,

very large model underestimates were found for Tiksi, from

where measurement data have only recently become avail-

able. Another ECLIPSE study showed that also the snow

BC concentrations are generally underestimated by models

in northern Russia but overestimated elsewhere in the Arctic

(Jiao et al., 2014). It is therefore likely that the model under-

estimates are caused by too low BC emissions in Russia in

the ECLIPSE CLE data set. Yttri et al. (2014) attribute this

at least partly to an underestimation of residential wood burn-

ing, based on levoglucosan measurements made at Zeppelin.

Eckhardt et al. (2015) suggested that also SO2 emissions in

northern Russia are underestimated. ECLIPSE models par-

ticipating in the AMAP (2015) assessment also showed a

systematic underestimation in CO concentrations in the Arc-

tic and a lack of model skill in simulating reactive nitrogen

species important for O3 production.

An important finding of the model-measurement compar-

isons is that overall the ESMs show a similar performance

as the CTMs. This is encouraging for the further use of

the ESMs for determining the climate impacts (Sect. 3.6).

The comparisons led to some further improvements of the

ECLIPSE emissions for version 5, prior to their use for tran-

sient climate model simulations. For instance, wick lamps

were identified as an important emission source in India, the

inclusion of which improved the agreement with the obser-

vations in a model sensitivity study (Gadhavi et al., 2015).

Other enhancements (e.g. re-gridding of non-ferrous smelter

emissions to improve SO2 emissions in Russia as suggested

by Eckhardt et al., 2015) came too late for the climate impact

studies and were only made in version 5a.
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Figure 5. Monthly (month is displayed on the abscissa) median observed and modelled BC concentrations for the stations Zeppelin on

Svalbard (11.9◦ E, 78.9◦ N; top), Pallas in Finland (24.12◦ E, 67.97◦ N; middle) and Tiksi in Siberia (128.9◦ E, 71.6◦ N; bottom), for late

winter–spring (left column) and summer–autumn (right column) for the years 2008–2009 (for Tiksi, measured values were available only

from July 2009 to June 2010). The red dashed lines connect the observed median values, the light red shaded areas span from the 25th to

the 75th percentile of the observations. Modelled median values are shown with lines of different colour according to the legend. Notice that

different concentration scales are used for individual panels and also for January–May (axis on left hand side) and June–December (axis on

right hand side) periods. Modified from Eckhardt et al. (2015).

Another aspect of model evaluation is to determine the

capability of models to reproduce past trends, and this was

tested over Europe. Strong reductions of aerosol emissions

occurred over Europe since the 1980s due to air quality leg-

islation in western Europe, and since the early 1990s due

to economic restructuring in eastern Europe. This emission

reduction is manifest, for example, in strongly increasing

trends in surface solar radiation (“solar brightening”) and vis-

ibility (Stjern et al., 2011), but also in a stronger warming

trend compared to the earlier period in which aerosol emis-

sions increased (Cherian et al., 2014). The “historical” sim-

ulations contributed to the 5th Coupled Model Intercompari-

son Project (CMIP5; Taylor et al., 2012) using previous ver-

sions of the ECLIPSE ESMs were assessed for continental

Europe, and compared to observations from the Global En-

ergy Balance Archive (Gilgen et al., 1998) and the Climatic

Research Unit (CRU) of the University of East Anglia (CRU-

TS-3.10, Mitchell and Jones, 2005). The 1960–1980 period

shows a strong “solar dimming” (reduction in surface so-

lar radiation) and small warming, since the greenhouse-gas-

induced warming is offset by the aerosol forcing. The period

1990–2005, in turn, shows the solar brightening, and a much

stronger warming. All three tested models are able to repro-

duce this strong increase in warming trend to within their

uncertainties (Fig. 6), suggesting that the climate response to

aerosol changes is captured despite the masking influence of

natural climate variability on these trends. However, the ab-

solute amplitude of the trends is not equally well captured

by all models, indicating that the skill of the ECLIPSE (and

other) ESMs to simulate temperature trends responding to

changing aerosol emissions is limited. This is due to both

limitations in the models themselves, the emission input, as

well as the influence of natural climate variability.
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Figure 6. Linear trends in (left) surface solar radiation and (right) near-surface temperature increase per decade over continental Europe

from the “historical” simulations in the CMIP5 archive contributed by previous versions of three ECLIPSE ESMs. The period 1960–1980 is

shown in red, the period 1990–2005 in blue.

3.3 Radiative forcing

To provide input to the metrics needed for designing a

mitigation scenario, dedicated model simulations by three

ESMs (ECHAM6-HAM2, HadGEM3, NorESM) and a CTM

(OsloCTM2) were used to establish a matrix of specific RF

(Bellouin et al., 2015) by season and region of emission.

Specific RF (SRF) is defined as the RF per unit change in

emission rate once the constituents have reached equilibrium

and is given in mW m−2 (Tg yr−1)−1. To estimate SRF, the

emissions of eight short-lived species (BC, OA, SO2, NH3,

NOx , CO, CH4 and NMVOCs) were reduced by 20 % com-

pared to their ECLIPSE baseline. These species cause RF

themselves and/or lead to the perturbation of radiative forcers

(e.g. O3). The regional reductions were made for Europe and

China, as well as for the global shipping sector and for a

rest-of-the-world region. To account for seasonal differences

in SRF, separate reductions were applied for May–October

and November–April. Henceforth, we will refer to these as

Northern Hemisphere (NH) “summer” and “winter”. Notice

that in our case the sign of SRF is opposite to that of RF,

because the imposed emission changes are negative. A re-

duction of a warming species gives negative RF values but

positive SRF values. It is important to note that SRF excludes

rapid adjustments in the atmosphere, with the exception that

BC semi-direct effects were calculated explicitly, and strato-

spheric temperature adjustments were included for O3 and

CH4.

Models generally agreed on the sign of RF and the rank-

ing of the efficiency of the different emitted species, but dis-

agreed quantitatively (see Bellouin et al., 2015 for details).

The best estimate of a species’ RF was considered to be the

average of all models, with the model spread indicating its

uncertainty. However, not all models have calculated RF for

all species or have accounted for all processes. For instance,

all models were able to quantify the aerosol direct effect but

only three quantified the first indirect effect. For BC aerosols

only one model quantified the snow albedo effect and the

semi-direct effect explicitly. Therefore, mean RF values were

determined by averaging across all available models for each

process separately. In most cases, all four models were avail-

able for this, but for some processes fewer models had to be

used.

Figure 7 shows the resulting SRF for reductions in the

emissions of SO2, NOx , CH4 and BC and the processes con-

tributing to the total forcing, for Europe, China and on global

average. The globally averaged SRF was obtained by adding

RF for Europe, China and rest of the world, then normalising

to global emission change. The SRF values are the largest

for BC, but note that global emissions of BC are smaller

than for the other species. In addition, the semi-direct ef-

fect of BC potentially offsets a considerable fraction of the

aerosol direct RF and RF due to deposition on snow. How-

ever, quantifying the semi-direct effect has large uncertain-

ties because internal variability of the climate system masks

tropospheric adjustments to BC perturbations. This means

that the sign of total SRF exerted by decreases in BC emis-

sions may be negative, if a weak BC direct effect is more than

compensated by a strong semi-direct effect. Nevertheless,

the ECLIPSE BC SRF best estimate of about 50 mW m−2

(Tg[C] yr−1)−1 when semi-direct effects are included is not

an outlier compared to previous estimates, which range from
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Figure 7. The ECLIPSE estimates of specific radiative forcing (SRF; mWm−2 per Tg yr−1 of emission rate change) for reductions in the

emissions of SO2, NOx , CH4, and BC aerosols in Europe, China and the global average, separately for NH summer (Sum., May–October)

and NH winter (Win., November–April). Shown are values averaged over all five models, with the error bars indicating the full range of the

model estimates. Colours indicate the contribution of different forcing mechanisms. Notice that for CH4 regionality was not accounted for

because, due to its longer lifetime, forcing does not depend on the emission region.

24 to 108 mW m−2 (Tg[C] yr−1)−1 according to Table 23 of

Bond et al. (2013). Moreover, ECLIPSE simulations indicate

that the magnitude of the semi-direct effect is smaller than

the direct aerosol effect (Hodnebrog et al., 2014; Samset and

Myhre, 2015), in agreement with most, but not all, previous

studies (see Table 23 of Bond et al., 2013). Reductions in the

emissions of light scattering aerosols such as sulfate stem-

ming from its precursor SO2 induce a negative SRF. The RF

values of aerosols are generally larger for summer emissions

than for winter emissions because of the stronger insolation.

However, there are exceptions to this. For instance, the BC

deposition on snow is more effective for winter emissions be-

cause of the larger snow extent in winter and spring and par-

tial preservation of deposited BC into spring. Aerosol SRF

is also larger in magnitude for Europe than for China, most

likely because of different cloud regimes which are differ-

ently affected by semi-direct and indirect aerosol effects.

For NOx , SRF is uncertain because decreases in NOx

emissions perturb tropospheric chemistry in two opposite

ways, working on different timescales: first, they reduce tro-

pospheric O3 concentrations, thus exerting a positive SRF.

Second, they increase CH4 concentrations, thus exerting a

negative SRF, with an additional CH4-induced change in O3.

ECLIPSE accounts for those two pathways, and quantifies a

third, whereby reductions in NOx emissions suppress nitrate

aerosol formation and its associated RF. ECLIPSE is there-

fore able to confirm with confidence the earlier quantifica-

tion (Myhre et al., 2013a) that NOx exerts a negative SRF,

because the O3 response is not sufficient to offset the com-

bined CH4 and nitrate response. For CH4, ECLIPSE finds

a relatively large range of SRF estimates from the models,

reflecting the differences in methane lifetime and methane’s

effects on ozone and aerosols.

The BC radiative forcing is very uncertain and needs

some discussion. When scaled to 100 % BC reductions and

reported annually, ECLIPSE BC total RF and its range

are 0.28 (0.02–0.46) W m−2. Neglecting semi-direct effects,

those numbers become 0.41 (0.11–0.48) W m−2. These val-

ues are at the stronger end of the multi-model ACCMIP

(Atmospheric Chemistry and Climate Model Intercompari-
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Figure 8. GTP20 values for SLCPs, relative to an equal mass emission of CO2, for all regions and seasons, decomposed by processes

and based on the RF values shown in Fig. 7. The regions included are Europe (EUR), China (CHN), global (GLB), and the shipping sector

considered separately (SHP), all for both NH summer (s, May–October) and NH winter (w, November–April). Uncertainty bars reflect model

spread. Only two models calculated effects of emissions from shipping and there no uncertainty range is given.

son Project) estimate of 0.24± 0.1 W m−2 (Shindell et al.,

2013) and the AeroCom estimate of 0.18± 0.07 W m−2

(Myhre et al., 2013b). In contrast, ECLIPSE estimates are

at the middle or weak end of the relatively large esti-

mates that were reported in several recent assessments:

0.45 (0.30–0.60) W m−2 in UNEP/WMO (2011), 0.71 (0.08–

1.27) W m−2 in Bond et al. (2013), and 0.40 (0.08–

0.8) W m−2 in Boucher et al. (2013). The estimates in

UNEP/WMO (2011) are skewed towards higher values by

accounting for semi-empirical estimates, which include a

brown-carbon contribution, the possibility that BC semi-

direct forcing is the same sign as direct forcing (even though

semi-direct forcing opposes the sign of direct forcing in most

models) and assuming a high efficacy of BC deposition forc-

ing. The large observationally constrained estimates of BC

forcing by Bond et al. (2013), which influenced the IPCC

estimate (Boucher et al., 2013) are due to strong scaling us-

ing Aeronet absorbing AOD measurements. However, these

measurements are highly uncertain and probably biased and

the resulting high BC RF values have recently been called

into question by several studies (Wang et al., 2014; Samset

et al., 2014; Wang et al., 2015). There are several reasons for

this. First, the scaled models have substantially higher BC

abundances globally than supported by BC measurements.

Wang et al. (2014) and Samset et al. (2014) argue that BC res-

idence time has to be relatively short to fit observed remote

BC concentrations. Furthermore, Wang et al. (2015) showed

that the fairly low resolution of global models induces an ar-

tificial negative bias when comparing to AERONET stations

in Asia. Consequently, in ECLIPSE we have not scaled sim-

ulated RF values for BC but have used native model results.

3.4 Climate metrics

ECLIPSE explored various options for climate metrics. In

addition to selecting the most useful metric for designing the

mitigation scenario, the project also made conceptual devel-

opments. Collins et al. (2013) developed further the appli-

cation of Regional Temperature change Potential (RTP) pre-

sented by Shindell et al. (2012) by accounting for the location

of emissions, thereby opening for regionality for both drivers
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and responses. Collins et al. (2013) also expanded the GTP

concept by tentatively including the climate-carbon feedback

for the non-CO2 gases. So far, this feedback has only been

included for the reference gas CO2 which means that GTPs

(and GWPs) tend to underestimate the relative effect of non-

CO2 components (Myhre et al., 2013a). Furthermore, Shine

et al. (2015) present a new metric named the Global Precip-

itation change Potential (GPP), which is designed to gauge

the effect of emissions on the global water cycle. Of partic-

ular relevance for SLCPs is their demonstration of a strong

near-term effect of CH4 on precipitation change and the role

of sustained emissions of BC and sulfate in suppressing pre-

cipitation.

Aamaas et al. (2013) investigated several different met-

rics and showed that emissions of CO2 are important regard-

less of what metric and time horizon is used, but that the

importance of SLCP varies greatly depending on the metric

choices made. MacIntosh et al. (2015) considered the errors

made when calculating RF and climate metrics from multi-

model ensembles in different ways. They showed that the

mean metric values are relatively robust but the estimation of

uncertainties is very dependent on the methodology adopted.

Finally, Lund et al. (2014a) applied climate metrics to quan-

tify the climate impacts of BC and co-emitted SLCPs from

on-road diesel vehicles, and Lund et al. (2014b) considered

the special case of a fuel switch from diesel to biodiesel.

As explained in Sect. 3.5, climate metrics were used in

ECLIPSE to identify specific sets of air pollution reduction

measures that result in net positive climate effects (i.e. re-

duced warming), considering the impacts on all co-controlled

substances. Based on the RF results shown in Sect. 3.3, Aa-

maas et al. (2015) calculated regional and seasonal GTP

and GWP metrics for the SLCP emissions, for various time

horizons, and explored their properties. Of all the explored

metrics, the pollution control analysis was carried out for

GWP100 and GTP20, as these two metrics showed large dif-

ferences in their quantifications. It was found, however, that

the emerging basket of emission control measures was very

similar for both, although the ranking of the potential cli-

mate impacts of individual measures was sometimes differ-

ent, with a larger effect of CH4-related measures for the

GWP100 metric (due to the higher value assigned to CH4 by

this metric with a longer time horizon).

In the following, we concentrate our analysis on the GTP20

metric, which is shown in Fig. 8 for a pulse emission rela-

tive to an equal mass emission of CO2 for a selected number

of species. The metric builds on and reflects important as-

pects of the RF forcing values shown in Fig. 7. For example,

for most species GTP20 values for summer are larger than

values for winter (see, e.g. results for SO2), and values for

Europe are larger than values for Asia. While SO2 only has

negative values (i.e. reduction of SO2 always leads to warm-

ing), the opposite is true for CH4. Figure 8 also shows the

contribution from different processes to the total GTP20 met-

ric, and for BC and NOx they often have a different sign and

their magnitude strongly depends on the emission region and

season. While all of this was accounted for in GAINS (see

Sect. 3.5), it is clear that this makes the choice of mitigation

options more uncertain, and this is further complicated by the

fact that BC and NOx emissions are always associated with

co-emissions of other SLCPs (e.g. OA). The GTP20 metric

was also determined for all other SLCPs (not shown).

For the implementation of mitigation measures, a pulse

emission metric is not very realistic, as measures are nor-

mally introduced gradually, become more effective with

time, and are usually maintained indefinitely. Therefore, we

also considered versions of the GTP and GWP metrics for

sustained emission measures and a linear ramp-up of emis-

sion measures over a 15-year time period (Aamaas et al.,

2015; see also Boucher and Reddy, 2008). We chose the

ramp-up version of the GTP20 metric for designing our mit-

igation scenario with the GAINS model (see Sect. 3.5), as

it most realistically reflects the implementation of mitigation

measures. Notice that the ramp-up version of the GTP20 met-

ric can be derived directly from its pulse emission version,

by linear combination of emission pulses (see Aamaas et al.,

2015, for details). Figure 8 shows the pulse emission version

because pulse emissions are building blocks for various ver-

sions of the metrics, including the ramp-up version.

To go beyond global-mean temperature, it is also pos-

sible to calculate regional surface temperature changes us-

ing the RTP concept of Shindell and Faluvegi (2009). This

concept maps RF in one given latitude band to the tem-

perature response in several other latitude bands and was

adopted by Aamaas et al. (2015). For the mapping, we used

the pre-calculated RTP coefficients of Shindell and Faluvegi

(2009). Even though the coefficients are likely model de-

pendent, we had to use these values because they are not

available from any other model (and specifically not from

the ECLIPSE models). The coefficients also seem fairly ro-

bust in comparison with the response to historical aerosol

forcing in several other models (Shindell, 2012). We made

two additions, however, for BC in the Arctic and BC on

snow using the method of Lund et al. (2014a) with results

from Samset et al. (2013) and Flanner (2013). Using the

RTP concept and RF calculations from Sect. 3.3 (Bellouin

et al., 2015), we calculated absolute regional temperature

change potentials (ARTPs) for the set of components, regions

and seasons for which ECLIPSE has determined RF values

(Fig. 7). Following Collins et al. (2013), the ARTPs were

used to estimate transient surface warming using an impulse

response function for temperature response from Boucher

and Reddy (2008) (as was also used for the GTP calcula-

tions). Details of the method and ARTP values will be given

in Aamaas et al. (2015) and results of the ARTP calculations

will be used in Sect. 3.7 for comparisons with transient ESM

runs.
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3.5 Emission mitigation and air quality impacts

For designing a climate-optimised SLCP emission mitiga-

tion scenario, the CO2-equivalent SLCP emissions were

minimised using the GAINS model. For this, the numer-

ical values of the GTP20 metric for the final year 2035

for each species, region and season were implemented into

GAINS. The ramp-up version of this metric assumes a lin-

ear implementation of mitigation measures between the years

2015 and 2030 and thereafter a full implementation. Miti-

gation measures typically affect several species at the same

time. For instance, controlling BC emissions leads to a “co-

control” of OA and other species. The GTP20 metric val-

ues are different for all of these species and can be of dif-

ferent sign, and it is important to determine the net impact

of a mitigation measure across all affected species. In prac-

tice, the species-specific metric values were weighted with

the emission factors to obtain the net metric value for each of

the ∼ 2000 mitigation measures in every one of the 168 re-

gions considered in GAINS, and for summer and winter pe-

riods separately. These measures were subsequently ranked

according to their CO2-equivalent total net climate impact as

measured by the GTP20 metric, and all measures with a bene-

ficial climate and air quality impact were included in the MIT

scenario basket (Klimont et al., 2015b); this approach is con-

sistent with that taken by UNEP/WMO (2011) and Shindell

et al. (2012).

The mitigation basket contains three groups of measures:

(1) measures that affect emissions of CH4 that can typi-

cally be centrally implemented (e.g. by large energy com-

panies, municipalities) and which also impact background

O3; (2) technical measures that reduce the emissions of BC,

mainly for small stationary and mobile sources; and (3) non-

technical measures to eliminate BC emissions, e.g. through

economic and technical assistance to the poorest population.

While about 220 GAINS model measures were collected in

the mitigation basket, they were merged into representative

measure groups. For example, high emitters are calculated

for each of the GAINS transport subsectors and fuels, while

here removing high emitters is represented by one “mea-

sure”. Similarly for cooking stoves, GAINS estimates mitiga-

tion potential for various types of fuels, but all of these are in-

cluded further into one category “clean cooking stoves”. Also

for CH4, losses from gas distribution are calculated for sev-

eral GAINS end use sectors while here the mitigation poten-

tial is reported under one measure where leaks from low pres-

sure pipelines are reduced. Finally, for NMVOCs all of the

solvent-related options in GAINS (over 50) are categorised

as one measure reducing losses from solvent use activities.

Considering the above, about 50 “measures” represent the

about 220 GAINS options that were included in the mitiga-

tion basket. The 17 most effective measures contribute 80 %

of the total climate benefit, according to the GTP20 metric,

with CH4 measures contributing about 47 % and BC-focused

measures contributing 33 %. These measures are listed in Ta-

ble 3. It is interesting to notice that the top CH4 and BC-

focused measures both concern the oil and gas industry and

specifically the venting or flaring of associated gas.
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Table 3. Top-17 mitigation measures contributing together more than 80 % of the climate benefit. Measures are ranked by importance starting

from the top. Methane measures contribute about 47 % of the benefits according to the GTP20 metric, while 33 % are attributed to BC-focused

measures; 20 % are contributed by measures not listed here.

Methane measures Measures targeting BC reduction

Oil and gas industry:

recovery and use (rather than venting or flaring) of associated

gas

Oil and gas industry:

improving efficiency and reducing gas flaring

Oil and gas industry (unconventional):

reducing emissions from unintended leaks during production

(extraction) of shale gas

Transport:

eliminating high-emitting vehicles (super-emitters)

Coal mining:

reducing (oxidising) emissions released during hard coal min-

ing (ventilation air CH4)

Residential–commercial:

clean biomass cooking stoves

Waste:

municipal waste – waste paper separation, collection, and recy-

cling

Residential–commercial:

replacement of kerosene wick lamps with LED lamps

Waste:

municipal food waste separation, collection and treatment in

anaerobic digestion (biogasification) plants

Transport:

widespread Euro VI emission standards (incl. particle filters) on

diesel vehicles

Coal mining:

hard and brown coal – pre-mining emissions – degasification

Industrial processes:

modernised (mechanised) coke ovens

Gas distribution:

replacement of grey cast iron gas distribution network

Agriculture:

effective ban of open-field burning of agricultural residues

Waste:

industrial solid waste (food, wood, pulp and paper, textile) –

recovery and incineration

Waste:

wastewater treatment from paper and pulp, chemical, and food

industries – anaerobic treatment in digester, reactor or deep

lagoon with gas recovery, upgrading and use. For residen-

tial wastewater centralised collection with anaerobic secondary

and/or tertiary treatment (incl. treatment with bacteria and/or

flaring of residual CH4)

Oil and gas industry (conventional):

reducing emissions from unintended leaks during production

(extraction)

As can be seen in Fig. 2, the mitigation has only minor

effects on CO2 emissions, but reduces most SLCPs strongly

compared to the CLE scenario. By 2030, CH4 emissions are

reduced by about 50 % and BC emissions by nearly 80 %.

OA is co-controlled with BC, causing a nearly 70 % (not

shown) reduction of its emissions, as for some sectors BC

outweighs the cooling effects of OA. While NOx emission

reductions are in most cases also not preferred by the GTP20

metric (see Fig. 8), reductions stem from the co-control when

higher Euro standards are introduced; they reduce signifi-

cantly several pollutants such as BC, CO, NMVOC and also

NOx (Klimont et al., 2015a, b). By contrast, SO2 emissions

are nearly the same in both the CLE and MIT scenarios, as

for the key sectors emitting SO2, the warming by SO2 re-

ductions (see Fig. 8) cannot be outweighed by co-control of

species whose reduction would lead to cooling. Thus, SO2

reductions are largely avoided.

The global CO2-equivalent emissions (calculated using the

GTP20 metric values) are shown as a function of time in

Fig. 9. Values are shown for CLE and MIT and are split

into contributions from CH4 and other SLCP emissions. For

comparison, CO2 emissions are also shown. On the short

timescale of the GTP20 metric, CH4 and CO2 emissions are

nearly equally important in the CLE scenario. The CO2-

equivalent emissions of CH4 are, however, reduced by 50 %

in MIT. The CO2-equivalent emissions for the other SLCPs
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Figure 10. Relative difference maps (in %) for the surface concentrations of O3 and PM2.5, as obtained from simulations based on the emis-

sion mitigation (MIT) scenario and the current legislation (CLE) scenario, i.e. (100× (MIT − CLE)/CLE). Shown are mean concentration

differences for the period 2041–2050 and averaged over model results from OsloCTM2, NorESM and HadGEM. The black boxes define the

regions used in Table 4.

are negative in both scenarios, indicating that in total they

have a cooling impact. As the mitigation reduces prefer-

entially warming components, this cooling becomes even

stronger in the MIT case. The total CO2-equivalent emis-

sions (including CO2 emissions) are reduced substantially in

the MIT scenario (blue shaded area in Fig. 9 shows the re-

duction), for example by about 70 % in the year 2030. About

56 % of this reduction is due to CH4 measures and ∼ 44 % is

due to other measures. It is important to notice that the effect

of the SLCP mitigation is relatively large for the rather short

time horizon of the GTP20 metric; it would be smaller for

a longer time horizon. Similarly, the relative importance of

CH4 compared to other SLCP emissions would be increased

for a longer time horizon.

Surface concentrations of SLCPs resulting from the CLE

and MIT scenarios were determined from the various model

simulations. Figure 10 shows maps of the model-mean rela-

tive differences for O3 and PM2.5 for the last decade (2041–

2050) of the transient simulations and Table 4 reports differ-

ences for several regions shown with boxes in Fig. 10. Con-

centrations of O3 (Fig. 10, upper panel) are reduced globally,

with reductions of more than 12 % in most of the Northern

Hemisphere and the strongest reductions of up to about 20 %

occurring in East Asia. For instance, in eastern China (see

Table 4), O3 is reduced by 19.3 % (16.0–24.4 %). BC and

OA concentrations (not shown) were also globally reduced,

with BC reductions reaching more than 80 %. For sulfate (not

shown), the relative changes are much smaller than for BC

www.atmos-chem-phys.net/15/10529/2015/ Atmos. Chem. Phys., 15, 10529–10566, 2015



10548 A. Stohl et al.: Evaluating the climate and air quality impacts of short-lived pollutants

Table 4. Relative differences (%) in O3 and PM2.5 surface concentrations between simulations using the mitigation (MIT) and current

legislation (CLE) scenarios (given as 100× (MIT− CLE)/CLE) for several regions and for the final decade of the simulations (2041–2050).

The regions correspond to the boxes shown in Fig. 10. Except for the Mediterranean, only the land-based grid cells inside the boxes were

used. Mean values and full model ranges for the three models NorESM, HadGEM and OsloCTM2 are reported. To exclude effects of changes

in sea salt and dust emissions caused by natural variability and emission responses to forced changes in meteorological conditions, sea salt

and dust concentrations were kept at CLE levels for the purpose of these calculations.

Region O3 O3 PM2.5 PM2.5

mean (%) range (%) mean (%) range (%)

Northern Europe −13.7 [−15.9, −11.1] −12.5 [−17.6, −7.3]

Southern Europe −14.9 [−17.0, −12.3] −2.3 [−3.1, −1.5]

Mediterranean −15.1 [−17.8, −12.6] −1.6 [−2.3, −1.0]

Eastern China −19.3 [−24.4, −16.0] −16.3 [−23.2, −11.8]

Western China −15.8 [−17.9, −12.8] −2.2 [−4.3, −1.0]

India −17.1 [−22.8, −12.7] −19.8 [−22.5, −17.9]

Eastern United States −13.6 [−15.7, −10.3] −8.8 [−11.7, −3.6]

Western United States −14.3 [−16.1, −11.5] −4.5 [−8.7, −1.4]

and OA and both increases and decreases occur – a conse-

quence of the relatively small global SO2 emission reduc-

tions (see Fig. 2). Changes in PM2.5 concentrations (Fig. 10,

lower panel) are smaller because of large contributions from

natural sources (e.g. sea salt, dust, wildfire emissions). PM2.5

concentrations in the SLCP source regions were reduced by

typically 10–20 % and up to nearly 50 % in smaller regions.

Reductions are strongest in Asia, for instance 19.8 % (17.9–

22.5 %) in India (Table 4).

In summary, air pollutant concentrations in the MIT sce-

nario are dramatically reduced compared to the CLE sce-

nario, especially in the polluted (and heavily populated)

source regions. This indicates the beneficial effect of the

SLCP mitigation on air quality. Nevertheless, a word of

caution is needed for O3. The O3 concentrations increase

strongly (typically between 5 and 20 %, depending on re-

gion and season) between now and 2050 in the CLE scenario,

because of increasing CH4 and NOx emissions. Therefore,

global-mean O3 concentrations even in the MIT scenario do

not decrease substantially with time. However, strong relative

O3 reductions by the mitigation are simulated in the SLCP

source regions (Table 4), which more than outweigh the over-

all concentration increase in the CLE scenario. Therefore,

population exposure to O3 decreases with time in the MIT

scenario.

For Europe and Asia, the GAINS model also contains

source–receptor relationships which allow for the estimation

of the impacts of emissions on human health. GAINS quan-

tifies the impacts of changes in SLCP emissions on the long-

term population exposure to PM2.5 in Europe, China and In-

dia and estimates the resulting premature mortality, in terms

of reduced statistical life expectancy and cases of premature

deaths (Amann et al., 2011). Calculations follow the recom-

mendations of the findings of the WHO review on health im-

pacts of air pollution and recent analyses conducted for the

Global Burden of Disease project (Lim et al., 2012), rely-

ing on the results of the American Cancer Society cohort

study (Pope III et al., 2002) and its re-analysis (Pope III et

al., 2009). It uses cohort- and country-specific mortality data

extracted from life table statistics to calculate for each co-

hort the baseline survival function over time. Notice, how-

ever, that, in contrast to the changes of pollutant concentra-

tions presented in Fig. 10, the quantification of human health

impacts is based on results from a single model.

Using GAINS, we estimate that in the EU the loss of

statistical life expectancy will be reduced from 7.5 months

in 2010 to 5.2 months in 2030 in the CLE scenario. The

ECLIPSE mitigation measures (MIT) would reduce statis-

tical life shortening by another 0.9 months (Fig. 11, up-

per panel), resulting in 4.3 months of reduction in life ex-

pectancy. This value is only slightly above the target of 4.1

months that has been set by the European Commission in

its 2013 Clean Air Policy proposal (EC, 2013). Population in

non-EU countries would gain approximately 1 month life ex-

pectancy from the implementation of the ECLIPSE measures

in 2030 (Fig. 11, upper panel).

In China and India, the potential health gains from the

implementation of the ECLIPSE measures are significantly

larger, however, starting from a substantially higher level

of life shortening due to PM2.5 (Fig. 11, lower panel). In

China, the ECLIPSE measures would in the year 2030 ex-

tend the life expectancy of the population by approximately

1.8 months and reduce the premature deaths attributable to

PM2.5 by 150 000–200 000 cases per year.

In India, rapid increase in energy consumption, together

with lacking regulations on emission controls for important

sources (e.g. power generation) and poor enforcement of ex-

isting laws (e.g. for vehicle pollution controls) will lead to

a steep increase in PM2.5 levels. If no saturation of health

impacts is assumed for such high levels (there are no cohort

studies available for such high concentrations), with conser-

vative assumptions GAINS estimates approximately 850 000
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Figure 11. Loss of statistical life expectancy (months) due to the

exposure to PM2.5 in Europe, for EU-28 and non-EU countries (up-

per panel) and for China and India (lower panel). The black bars

give the values for the mitigation (MIT) scenario, whereas the blue

increments show the difference to the current legislation (CLE) sce-

nario. For India and China, green bars indicate the gains from the

implementation of the CLE scenario.

cases annually of premature deaths from air pollution in

2010. For 2030, PM2.5 exposure would increase by more

than 50 %, and at the same time the population would in-

crease and age. Combined, these factors would let the prema-

ture deaths from air pollution grow by approximately 125 %

to 1.9 million cases in 2030, with another doubling to 3.7 mil-

lion cases in 2050. Against this background, the ECLIPSE

measures would avoid more than 400 000 cases of prema-

ture deaths in 2030 and almost 700 000 in 2050. Using the

loss in statistical life expectancy as an alternative metric,

the ECLIPSE measures would gain 11–12 months in life ex-

pectancy for the Indian population (Fig. 11, lower panel).

3.6 Climate impacts

The climate impacts of SLCPs were determined with four

ESMs (HadGEM3, NorESM, ECHAM6-HAM2/MPIOM,

and CESM–CAM4) in two different experiments. In the first

experiment, still part of the outer loop of the spiral in Fig. 1,

all land-based anthropogenic emissions of each of SO2, OA

and BC were removed one at a time and the models were

run to equilibrium; in the other experiment, the mitigation

scenario described in Sect. 3.5 was followed in a series of

transient ensemble model runs, constituting the inner spiral

loop in Fig. 1. Note that all ESMs implicitly include the semi-

direct effect, while for the radiative forcing calculations this

was calculated explicitly by only one model.

For the first experiment, the four ESMs, with full ocean

coupling were run for a control simulation and a perturba-

tion run for 50 years, after a spin-up period to equilibrium.

The control simulation used ECLIPSE V4a emissions for

the year 2008 (except for CESM–CAM4, which used year

2000 emissions). For the perturbation, 100 % of the land-

based emissions of the three individual species were removed

in turn to achieve discernible climate responses. While only

three ESMs ran the experiments for SO2 and OA, all four

ESMs ran the BC experiment and three of these used two or

three ensemble members each. Only NorESM included the

effect of albedo reduction by BC deposited on snow and ice.

This experiment is described in detail in Baker et al. (2015a),

where more detailed descriptions of the models used can also

be found. Here, we provide a synthesis of the results.

When removing SO2 emissions, all three models show an

increase of global-mean surface temperature (Fig. 12a) by

0.69 K (0.40–0.84 K) on average. Here, the first value is the

multi-model mean, whereas the values in brackets give the

full range of results obtained with the individual models. We

will keep this notation throughout the rest of the paper, unless

otherwise noted. The zonal-mean temperature change is pos-

itive at all latitudes and increases with latitude in the North-

ern Hemisphere, reaching 2.46 K (1.38–3.31 K) at the North

Pole (Fig. 13a). It is also positive for most regions of the

Earth and is more positive over the continents than over the

oceans (Baker et al., 2015a). The models also agree that re-

moving SO2 emissions results in an increase in global-mean

precipitation (Fig. 12b), which is in line with the expected

impact from a global temperature increase. The precipitation

increases are particularly strong over India and China be-

cause of a northward shift of the Intertropical Convergence

Zone (ITCZ; see Fig. 13b), which is in accordance with pre-

vious studies (e.g. Broccoli et al., 2006).

The response to removing anthropogenic BC emissions,

−0.05 K (−0.15 to +0.08 K), is much smaller than the SO2

response and the models do not all agree on the sign of the

global-mean response. The multi-model mean is slightly neg-

ative (Fig. 12a) but within ±0.5 K everywhere on the globe

(not shown) and the zonal-mean temperature response dif-

fers from model to model (Fig. 13c). The NorESM model

shows the strongest cooling in the Arctic, likely because it is

the only model accounting for snow albedo changes. Precip-

itation changes from removing BC emissions are also small,

but consistently positive in all models (Fig. 12b) despite the

cooling in most models. This is consistent with calculations
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Figure 12. Global-mean annual average changes in (a) surface temperature and (b) precipitation averaged over all land areas excluding ice

sheets, from the four ESMs (one was run only for BC), for a complete removal of all land-based emissions of a particular species, compared

to the ECLIPSE version 4 baseline emissions for the year 2008 (CESM–CAM4 used the year 2000). The plot shows results averaged over

50-year model simulations; for HadGEM and NorESM (CESM–CAM4), two (three) ensemble members each were run for BC (named e1,

e2, e3 in the labels). Error bars are 95 % confidence intervals in the mean, based on 50 annual means from each model and thus only reflect

the uncertainty of the mean caused by natural variability within each model.

of the relationship between atmospheric RF and precipitation

change in Andrews et al. (2010) and Kvalevåg et al. (2013)

(see also Shine et al., 2015). The multi-model temperature

response to removing OA emissions is similar to that for re-

moving SO2, but much weaker overall (Figs. 12a and 13e).

In summary, the emission perturbation studies show that

elimination of anthropogenic SO2 emissions leads to robust

warming, elimination of OA also leads to – albeit much

weaker – warming, whereas elimination of BC leads to a

small temperature response with substantial differences be-

tween the models but slight cooling in the multi-model mean.

This could be due to the different sizes of the indirect and

semi-direct effects of BC in different models, shown in

ECLIPSE (Hodnebrog et al., 2014), and possibly to unforced

responses of climate system components, especially sea ice,

that happen to counteract the small temperature response.

The second ESM experiment simulated the transient

responses to the climate-optimised SLCP mitigation of

Sect. 3.5 (Baker et al., 2015b). For this, the four ESMs ran

three ensemble members each for both the CLE and MIT sce-

nario until the year 2050. The CLE scenario resulted in an in-

crease of global-mean surface temperature of 0.70± 0.14 K

(the value following the “±” sign gives the standard devia-

tion obtained from all ensemble members) between the years

2006 and 2050 in the multi-model ensemble mean. A large

part of this increase is a response to increasing CO2 concen-

trations, and consequently the MIT scenario also showed a

(albeit smaller) temperature increase. As we here are mainly

interested in the response to the SLCP mitigation, we only

consider the difference between the MIT and the CLE sce-

nario in the following. Time series of the global-mean tem-

perature difference between the two scenarios are shown in

Fig. 14. There is a considerable spread between individual

ensemble members even from the same model. This reflects

simulated natural climate variability superimposed on the re-

sponse to the SLCP mitigation, which makes diagnosis of the

latter difficult. Systematically negative global-mean temper-

ature responses emerge only when the mitigation measures

are fully implemented. The multi-model mean global temper-

ature (MIT–CLE) difference is −0.22± 0.07 K for the final
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Figure 13. Annual mean changes in zonal-mean surface temperature (left panels a, c, e) and precipitation (right panels b, d, f) for a complete

removal of all land-based emissions of (a–b) SO2, (c–d) BC, and (e–f) OA. For BC, some models ran two or three ensemble members (e1,

e2, e3). Notice the differences in scales between different panels.

10 years, confirming that the mitigation could be successful

in reducing the warming of the CLE scenario.

The relative cooling is particularly strong over the conti-

nents and the weakest over the northern North Atlantic (not

shown), similar to the response patterns seen in the pertur-

bation simulations. Figure 15 shows mean temperature re-

sponses for the last decade of the simulation, for various re-

gions. The strongest relative cooling between MIT and CLE

of about 0.44 K (0.39–0.49 K) are found for the Arctic, with

peak values of about 0.62 K (0.37–0.84 K) occurring in au-

tumn (winter values are similar). Over Europe, differences

are more consistent between models and more strongly neg-

ative in the southern parts than in the northern parts (see also

Fig. 16). This can be explained by the larger natural climate

variability in northern Europe. Mainly small and inconsistent

results are found over India, due to model differences in the

shift of the ITCZ, whereas changes over China and North

America are consistently negative from (almost) all models

and for all seasons.

The precipitation responses are less robust which, in the

tropics, is due to model differences in the migration of the

ITCZ. Nevertheless, there are regions with consistent re-

sponses of all models. Of particular interest is the precipita-

tion increase over southern Europe (Fig. 16). Seen against the

background of expected warming and drying in the Mediter-

ranean area due to CO2-driven climate change, the precipi-
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Figure 14. Time evolution of differences in global-mean surface

temperature between transient simulations following the mitigation

(MIT) and the current legislation (CLE) scenario, i.e. (MIT–CLE),

for the four ECLIPSE models. Negative values mean that tempera-

tures are lower in the MIT than in the CLE scenario. The ensemble

means for each model are shown as thick lines, whereas the individ-

ual ensemble members are shown with thin lines.

tation increase due to the SLCP mitigation would be benefi-

cial, especially given the fact that it is strongest from spring

to autumn (Fig. 17), with 15 (6–21) mm yr−1 increase (cor-

responding to more than 4 % (2–6 %) of total precipitation)

and combined with a temperature reduction that is also the

largest during that period (Fig. 15). Thus, our mitigation ap-

proach would help to alleviate drought and water shortages

in the Mediterranean area in summer, as they are expected

for the future (Orlowsky and Seneviratne, 2012).

In the aerosol perturbation experiments, we have seen that

SO2 emission reductions lead to strong warming and OA

reductions to weaker warming, whereas BC emission re-

ductions lead to much weaker and model-dependent cool-

ing. While the GTP20 metric attributes ∼ 44 % of the re-

duction in CO2-equivalent emissions to BC-related mea-

sures, it was interesting to clarify whether this is reflected

in the transient climate model simulations, and how this

fraction changes with time. For this, two additional exper-

iments with four ensemble members each were run with

one ESM (CESM–CAM4) with a slab-ocean representa-

tion (for greater computational efficiency): one with all

emission reductions (MIT), and one with only CH4 emis-

sion reductions (MIT–CH4-only). Ozone reductions result-

ing from CH4 emission measures are included in the MIT–

CH4-only simulations, whereas O3 changes from non-CH4

measures are omitted. The two experiments yielded a rela-

tively similar temporal characteristic of global-mean temper-

ature difference (see Fig. 18), where the MIT scenario led

to 0.45± 0.04 K less warming than CLE, and the MIT–CH4-

only scenario led to 0.41± 0.04 K less warming than CLE

for the final decade of the simulation (2041–2050). The dif-

ference between the two scenarios is not significant, owing

to the small number of ensemble members. Thus, the simu-

lations indicate a dominant (∼ 90 %) role of CH4 emission

reductions and a small (∼ 10 %) but perhaps non-negligible

role of non-CH4 mitigation measures for reducing the warm-

ing by 2041–2050.

Notice that the warming reduction for the MIT scenario

with the slab-ocean version of the CESM–CAM4 model is

twice as strong as with the more realistic full-ocean version

shown in Fig. 14. However, given the results with the slab-

ocean version, a dominant role of CH4 in the mitigation is

likely also for the full-ocean simulations. In fact, this adds to

the explanation of why the temperature response in Fig. 14

emerges from natural variability only about 10 years (i.e. ap-

proximately the lifetime of CH4) after the start of the mitiga-

tion measures.

We have seen in Sect. 3.5 that the chosen set of mitigation

measures also leads to considerable reductions in PM and O3

and thus improves air quality. If implemented as such, the

mitigation package as a whole would therefore have bene-

ficial impacts on both air quality and climate. However, the

experiments conducted here also suggest that the co-benefits

for climate and air quality result mainly from CH4 mitiga-

tion, which improves air quality (via clear reductions of the

background surface O3 concentrations) and reduces warming

considerably. The co-benefits of the non-CH4 SLCP mitiga-

tion measures, on the other hand, are quite limited. These

measures improve air quality strongly (via reductions of PM

concentrations and O3) but reduce warming only slightly.

This does not of course mean that all of the individual mea-

sures have small co-benefits. For instance, it is likely that

mitigating sources with the highest BC/OA ratio would lead

to larger co-benefits. Partly, the small co-benefits for the non-

CH4 SLCP measures are a result of the design of our MIT

scenario, which was based on the GTP20 metric and this

seems to suggest a stronger warming reduction due to non-

CH4 SLCP measures than seen in the transient ESM simu-

lation results. The consistency between the two approaches

will be discussed in the next section, but it is clear that if the

metric was too “optimistic” with respect to the achievable

warming reductions by non-CH4 SLCP mitigation measures,

some individual measures will have been included in the MIT

basket, which in the transient simulations might have actually

led to warming enhancement instead of warming reduction.

3.7 Closing the loop: Climate impacts from metric

calculations and transient model simulations, and

applications of the metrics

The purpose of this section is to compare the climate impacts

of the SLCP mitigation as estimated with the metrics and as

obtained from the transient simulations, as well as to show

applications of the metrics. A perfect agreement between the
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Figure 15. Seasonal and annual mean differences in surface temperatures (in K) in various regions (a–f) and for the whole globe (g) between

transient simulations of the mitigation (MIT) and the current legislation (CLE) scenario, i.e. (MIT–CLE), averaged over the last 10 years of the

simulations (2041–2050). Regions are defined as (a) 45–65◦ N, 10◦W–65◦ E, (b) 30–45◦ N, 10◦W–65◦ E, (c) 7–35◦ N, 68◦ E–90◦ E, (d) 24–

48◦ N, 80–132◦ E, (e) 60–90◦ N, 180◦W–180◦ E, (f) 30–60◦ N, 120–50◦W. Results are shown for the four ECLIPSE models individually

and for the multi-model mean. Negative values mean that temperatures are lower in the MIT than in the CLE scenario. Error bars on the

model-mean values show the standard deviations of the individual model results.

two methods cannot be expected, as the metrics assume lin-

earity of the climate response to all individual forcing con-

tributions and are also valid for a specific time horizon. Fur-

thermore, after using the RF values calculated in ECLIPSE,

the methodology adopted to calculate the GTP values uses a

representation of both the size and time dependence of the

response derived from one particular (pre-ECLIPSE) ESM

calculation. Since the different ESMs used in ECLIPSE have

a diverse range of climate sensitivities and different represen-

tations of uptake of heat by the oceans, this is a further im-

portant reason why exact agreement should not be expected.

The metrics are also calculated for a specific climate and are

less accurate for periods with a changed climate. One exam-

ple is the BC snow albedo effect, which is gradually reduced

over time because the snow and ice extent decreases as the

climate warms. On the other hand, diagnosis of temperature
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Figure 16. Annual average differences in (top) surface tempera-

ture and (bottom) precipitation over Europe between the transient

simulations based on the mitigation (MIT) and the current legisla-

tion (CLE) scenario, averaged over the last 10 years of the simula-

tions (2041–2050). Stippling shows where all four models agree on

the sign of the response. The thick horizontal line distinguishes the

southern and northern Europe boxes. In the top panel, negative val-

ues mean that temperature in the MIT scenario is lower than in the

CLE scenario; in the bottom panel, positive values mean that there

is more precipitation in the MIT than in the CLE scenario.

responses from the transient climate simulations is also asso-

ciated with large error bars because of natural climate vari-

ability. Nevertheless, a comparison of the two methods is an

important consistency check but, to our knowledge, has never

been done before for a SLCP mitigation scenario and using

an ensemble of ESMs.

The ARTP metric described in Sect. 3.5, applied over a

series of timescales, allows for calculation of the regional

(in broad latitude bands) temperature response from the re-

duction of individual species in the mitigation basket as a

function of time. Based on these regional responses a total

global-mean response is derived which can be compared di-

rectly with the global-mean temperature difference between

the MIT and CLE transient simulations in the ESMs.
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Figure 17. Seasonal and annual mean differences in precipitation

(in mm yr−1) over northern (a) and southern (b) Europe between

transient simulations of the mitigation (MIT) scenario and the cur-

rent legislation (CLE) scenario, averaged over the last 10 years of

the simulations (2041–2050). Regions are defined as in Fig. 15a, b.

Results are shown for the four ECLIPSE models individually and

for the multi-model mean. Positive values mean that MIT simula-

tions have more precipitation than CLE simulations. Error bars on

the model-mean values show the standard deviations of the individ-

ual model results.

The ARTPs depend on the global climate sensitivity as-

sumed for the impulse response function used (Shindell et

al., 2012). To provide a consistent comparison with the ESM

transient simulations, the ARTPs have been scaled by the

individual climate sensitivities for each ESM. Furthermore,

not all the ESMs include all components and forcing mecha-

nisms in their transient simulations, e.g. only NorESM in-

cludes the forcing due to BC deposited on snow and ice.

To make a consistent comparison, ARTP contributions were

summed only over the components and processes included

in each ESM. Figure 19 shows the global-mean temperature

responses using the ARTP method, which can be compared

directly with the temperature changes obtained by the tran-

sient ESM simulations shown in Fig. 14. The solid lines in

Fig. 19 show the total global temperature response of the mit-

igation, while the dashed lines show the contribution from

CH4 reductions only. For the last decade of the simulation

(2041–2050) both the ESMs and ARTPs give a mean global

response of −0.22 K. The ranges of the estimates based on

the four models are also very similar (−0.15 to −0.29 K for

the ESMs, and−0.13 to−0.33 K for the ARTPs). Note, how-
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Figure 18. Time evolution of differences in global-mean surface

temperature between transient simulations following the mitigation

(MIT) and the current legislation (CLE) scenario (i.e. MIT–CLE),

as simulated by the CESM–CAM4 model with a slab-ocean repre-

sentation. One experiment (red lines) included all emission reduc-

tions of the MIT scenario, whereas another experiment (blue lines)

included only the CH4 emission reductions of the MIT scenario.

Ensemble mean results are shown with thick lines, individual en-

semble members with thin lines.
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Figure 19. Time evolution of difference in global-mean surface

temperature for the MIT and CLE scenario calculated with the

ARTP-based method. Solid lines are the total difference (MIT–

CLE), while the dashed lines give the responses to CH4 mitigation

only. The solid lines can be compared directly with the results from

the transient model simulations shown in Fig. 14.

ever, that the factors contributing to these ranges are not the

same in these two estimates. For the ESMs, the differences

in radiative forcing, the models’ climate sensitivities and in-

ternal variability determine the range, while for the ARTP-

based estimate the differences in which processes causing RF

are included in each model and the model’s climate sensitiv-

ities are accounted for. The ranking of the responses between

the individual models are, however, not identical. Neverthe-

less, based on these results we conclude that for the global-

mean response to SLCP mitigation the ARTP-based method

simulates well the full ESM simulations to estimate the im-

pact of SLCP mitigation.

The ARTP-based method suggests a larger contribution of

non-CH4 SLCPs to the temperature response for the 2041–

2050 decade (∼ 22 %; see dashed lines in Fig. 19) than

the transient simulations using the slab-ocean version of

the CESM–CAM4 model discussed in the previous section

(∼ 10 %). One reason for this disagreement is that many of

the BC-related measures included in the mitigation basket

were relatively OA rich and this makes their net temperature

response extremely uncertain, especially when aerosol indi-

rect effects and the semi-direct effect are considered. An even

larger contribution (44 %) of non-CH4 SLCPs to the CO2-

equivalent emission reductions of the MIT scenario was ob-

tained with the GTP20 metric directly (see Sect. 3.5). How-

ever, this value is valid only for the temperature response

in the year 2035, for which the relative contribution of the

non-CH4 SLCPs (which are shorter-lived than CH4) is larger

than for later years. As the diagnostic uncertainties for a sin-

gle year are very large for the transient ESM simulations, we

abstain from comparisons. Direct comparisons are anyway

not meaningful, since the metrics include all recognised RF

mechanisms, whereas most ESMs lack some of these (e.g.

snow albedo changes by BC).

To further investigate the ability of a simplified metrics

method to represent the regional response simulated by the

ESMs, we use the ARTPs to estimate the response in four

broad latitude bands and these results can be compared to

the corresponding results from the ESMs. Figure 20 shows

the 20-year mean results (2031–2050) for both methods. The

general pattern of the responses with largest impact for the

main source region at Northern Hemisphere mid-latitudes

(NHML) and in the Arctic is well captured by the ARTP

method. However, as expected the agreement between the

estimates is not as good as for the global mean (correlation

coefficient of 0.68 for the 16 data points). The ARTP-based

estimates are close to the ESM means for the NHML and the

tropics, while for the Arctic and for the Southern Hemisphere

(SH) the ARTP method underestimates the response simu-

lated by the ESMs. The reason for the more pronounced Arc-

tic amplification in our ESMs than for the ARTPs is probably

a less pronounced Arctic amplification in the model of Shin-

dell and Faluvegi (2009), from where the RTP-coefficients

were taken. For future development and use of the ARTP

method, RTP-coefficients are needed also from other ESMs.

The motivation for establishing these ARTPs is that af-

ter quality control they provide policy makers with a rela-

tively simple tool to quantify how sectorial emissions (i.e.

by region, sector and component) contribute to temperature

change over time in broad latitude bands. Figure 21 illus-
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Figure 20. Temperature changes (MIT–CLE) in four latitude bands (Arctic, Northern Hemisphere Mid-Latitudes (NHML), tropics and South-

ern Hemisphere) calculated with the ESMs and ARTP-based method. Mean changes over the 2031–2050 period are shown for individual

models and the mean over the models. Notice the different temperature scales.

trates this potential for the MIT scenario. It shows the re-

sponses (mean of the ARTP-based estimates for the four

ESMs) for mitigation taking place in Europe, China and

globally. The larger relative impact on the Arctic by mitiga-

tion of European emissions compared to mitigation in China

is clearly seen, while the impact for NHML is about three

times larger in absolute terms for mitigation of SLCPs in

China. These results can then easily be further analysed by

separating the impact by emitted species (Fig. 21, panel d),

or by separating the impact of a single emission sector. Fig-

ure 22, for instance, shows the estimated impact on Arctic

temperatures by global mitigation of SLCPs from the resi-

dential heating and cooking sector, broken down to contri-

butions from individual SLCP species. Notice that it would

be prohibitively expensive to run an ensemble of ESM sim-

ulations that is large enough to detect the small temperature

response resulting from such minute emission changes.

4 Conclusions

ECLIPSE has come to a number of important scientific con-

clusions, which are also of high relevance for climate and air

quality policy:

– ECLIPSE has created a new inventory for anthro-

pogenic SLCP emissions, including scenarios for the fu-

ture. An important finding is the large range of possible

future developments of anthropogenic SLCP emissions,

which even for a single future energy pathway substan-

tially exceeds the range of SLCP emissions given in

IPCC’s RCPs. The large range results from the uncer-

tainties of future air quality policies, as well as from the

expected level of implementation and enforcement of

existing policies (Klimont et al., 2015a, b).

– Detailed comparisons between measured and modelled

distributions of aerosol, O3 and other SLCP gases have

shown that for many substances the models are in good

agreement with available background observations. The

model performance of the ESMs is similar to that of

CTMs. For BC, in particular, the agreement between

models and measurements has improved for the Arc-

tic (Eckhardt et al., 2015), which is partly the result of

accounting for emissions from gas flaring and emission

seasonality (Stohl et al., 2013). Outside the Arctic, a re-

duction of the BC lifetime led to improvements (Sam-

set et al., 2014). Nevertheless, our comparisons sug-

gest underestimates of BC and aerosol precursor emis-

sions in high latitude Russia and in India. Furthermore,
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Figure 21. Annual mean surface temperature changes estimated by the ARTP method. Panels (a–c): changes in four latitude bands due to

ECLIPSE mitigation scenario (MIT–CLE) for mitigation in Europe (a), China (b) and globally (c). Panel (d): Arctic temperature changes

due to mitigation of individual components from Europe. CE-Aero: co-emitted aerosol (precursor) species (OA, SO2 and NH3), OP: Ozone

precursors (NOx , CO and NMVOCs). Note the different scales on the vertical axes.

it was found that SO2 concentrations are overestimated

and CO concentrations are underestimated by the mod-

els (Quennehen et al., 2015) at the surface in Asia and

Europe during summer and autumn. The CO underesti-

mate is likely associated with a too short CO lifetime in

the models. Ozone, on the other hand, is generally over-

estimated at rural locations. Such discrepancies may af-

fect model responses to emission perturbations and thus

radiative forcing.

– Earth system models can reproduce the accelerated up-

ward trend of surface temperature over Europe that was

observed when aerosol precursor emissions were re-

duced in the 1990s (leading to solar brightening), after a

period of emission growth in the 1960s–1980s (leading

to solar dimming) (Cherian et al., 2014).

– ECLIPSE performed detailed multi-model calculations

of RF for all considered SLCP species, as a function of

emission region and season. It is found that the absolute

values of specific RF for aerosols are generally larger in

summer than in winter (Bellouin et al., 2015). It is found

that the semi-direct effect on clouds, although highly

uncertain, can potentially offset a considerable fraction

of the direct positive RF of BC. This, together with re-

duced BC lifetimes, causes the net RF for BC calculated

in ECLIPSE to be only weakly positive, which is differ-

ent from most previous studies.

– NOx emissions affect the concentrations of O3, CH4

and nitrate aerosols. The first effect leads to positive RF,

while the latter two cause negative RF. We have quanti-

fied all these effects and can state with confidence that

the current net RF of global historical NOx emissions is

negative. The forward looking metrics GWP and GTP

for NOx are negative as well, except for short time hori-

zons.

– ECLIPSE had a focus on calculation and testing of

emission metrics, which led to a better understanding of

www.atmos-chem-phys.net/15/10529/2015/ Atmos. Chem. Phys., 15, 10529–10566, 2015
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Figure 22. Total Arctic surface temperature change (K) by global

mitigation of residential burning (heating and cooking) in the

ECLIPSE emission scenario (MIT–CLE), as obtained with the

ARTP method.

existing metrics (Aamaas et al., 2013), further develop-

ment of the applications of the RTP concept (Collins et

al., 2013) and introduction of new metric concepts such

as the Global Precipitation change Potential (GPP) by

Shine et al. (2015). After careful consideration of the

alternatives, we chose a 15-year ramp-up version (i.e.

assuming a linear implementation of measures) of the

GTP20 metric for designing a SLCP mitigation scenario.

– The GTP20 metric was implemented into the GAINS

model to identify mitigation measures (MIT) that have

beneficial impacts on both air quality and climate. We

find that the 17 most important mitigation measures

would contribute more than 80 % of the climate benefits

according to the GTP20 metric. The top measures both

for CH4 and BC mitigation are to prevent the venting

(for CH4) and flaring (for BC) of gas associated with

the oil production. For CH4, measures on shale gas pro-

duction, waste management and coal mines were also

important. For non-CH4 SLCPs, elimination of high-

emitting vehicles and wick lamps, as well as reducing

emissions from coal and biomass stoves, agricultural

waste, solvents and diesel engines were also important.

– Full implementation of these measures (the MIT sce-

nario) would reduce global anthropogenic emissions of

CH4 and BC by 50 and 80 %, respectively. As a result

of co-control with BC, emissions of organic aerosols

would also be reduced by 70 %, whereas emissions of

CO2 and SO2 would hardly be changed. Based on the

GTP20 metric, the CO2-equivalent emissions (including

CO2 emissions) would be decreased by about 70 % in

the year 2030, with about 56 % of the decrease caused

by CH4 measures and 44 % caused by non-CH4 SLCP

measures.

– The mitigation scenario would reduce surface concen-

trations of O3 and PM2.5 globally compared to the CLE

scenario, with BC reductions of more than 80 % in some

areas. We estimate that in the EU the loss of statistical

life expectancy due to air pollution will be reduced from

7.5 months in 2010 to 5.2 months in 2030 in the CLE

scenario. The MIT measures would gain another 0.9

months. Substantially, larger health improvements from

SLCP measures are estimated for China (1.8 months)

and India (11–12 months).

– Climate impacts of SLCP emissions were simulated

with four ESMs with full ocean coupling. Equilibrium

simulations that removed all land-based anthropogenic

emissions of SO2, BC and OA in turn showed robust

global-mean increase in surface temperatures of 0.69 K

(0.40–0.84 K) for SO2 removal and smaller warming

for OA removal (Baker et al., 2015a). The global-mean

temperature response to BC removal was slightly nega-

tive: −0.05 K (−0.15 to 0.08 K). The relatively small

global response to BC emission reductions was at-

tributed to strong (while uncertain) indirect and semi-

direct effects, which partly offset the direct aerosol ra-

diative effect.

– Climate impacts of the MIT scenario were investigated

with ESM ensemble transient simulations of both the

CLE and MIT scenario (Baker et al., 2015b). Multi-

model ensemble mean global-mean surface temperature

in the CLE scenario increased by 0.70± 0.14 K between

the years 2006 and 2050. The ensemble mean global-

mean surface warming for the last decade of the simula-

tion (2041–2050) was, however, 0.22± 0.07 K weaker

for the MIT scenario, demonstrating the effect of the

SLCP mitigation. The response was strongest in the

Arctic, with warming reduced by about 0.44 K (0.39–

0.49 K).

– In addition to global annual mean temperature change,

there are other climate parameters that are of relevance

for policy decisions (e.g. changes in precipitation, re-

gional temperatures). The SLCP reductions in the MIT

scenario led to particularly beneficial climate responses

in southern Europe, where the surface warming was re-

duced by about 0.3 K from spring to autumn and precip-

itation rates were increased by about 15 (6–21) mm yr−1

(15 mm yr−1 corresponding to more than 4 % of total

precipitation), compared to the CLE scenario. Thus,

the mitigation could help to alleviate expected future

drought and water shortages in the Mediterranean re-

gion.
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– Additional ESM transient simulations, which only in-

cluded the CH4 emission reductions, led to a global

warming reduction that amounted to about 90 % of the

reduction produced by the simulations using the full

set of measures for the final decade of the simulations

(2041–2050). This suggests that, for longer time hori-

zons, the net climate benefits from our chosen non-CH4

SLCP mitigation measures in terms of global annual

mean temperature change are limited, probably due to

small forcing and co-emitted cooling species. Neverthe-

less, if implemented as such, the mitigation package as a

whole would have beneficial impacts on both air quality

and climate, and for the latter, also in other climate vari-

ables than global annual mean temperature change such

as regional changes in temperature and precipitation.

– For the first time, ECLIPSE compared the temperature

response to an SLCP mitigation scenario as it is given

by climate metrics (using the ARTP method) and as

it is simulated with transient ESM simulations. This

is crucial for the application of metrics, which – be-

cause of their simplicity and flexibility – are very rel-

evant in a policy context where they can substitute full

ESM simulations which are expensive and impractical

for small perturbations. Both approaches give a global

mean reduced warming of the surface temperatures by

0.22 K (and similar uncertainty ranges) for the period

2041–2050. Also the large-scale pattern of the response

(with strongest warming reductions in the Arctic) is re-

produced similarly by both methods, even though the

agreement is not as good as the global mean.

– The metrics-based approach and the transient model

simulations agree less on the relative contribution of

CH4 and non-CH4 SLCP mitigation measures to the re-

duced warming. While the metrics-based approach sug-

gests that the non-CH4 measures account for 22 % of

the global-mean temperature response for 2041–2050,

the transient simulations result in a contribution from

non-CH4 measures of only about 10 %. One reason for

this disagreement is that many of the BC-related mea-

sures included in the mitigation basket were relatively

OA rich and this makes their net temperature response

more uncertain, especially when aerosol indirect effects

are considered. Furthermore, small cooling influences

are easily masked by unforced variability in fully cou-

pled climate simulations.

– The major share of the cooling effect in our SLCP

mitigation scenario is contributed by CH4 reductions,

with 20–30 % of the difference in near-term global-

mean climate warming from the reduction of non-CH4

SLCPs (multi-model range 0.01–0.06 K for time peri-

ods from 2021–2040, according to metrics-based esti-

mates). Thus, to maximise climate co-benefits of non-

CH4 SLCPs, sources with the highest BC / OA emission

ratios should be addressed with priority. At the same

time, air pollution policies should consider mitigation

of CH4, with clear co-benefits for climate warming and

air quality via reduced surface O3 concentrations.

– The ECLIPSE mitigation scenario has been devel-

oped to be representative of a mitigation strategy that

considers both climate and air quality, assuring re-

duced climate forcing without detrimental impact on

air quality; as a matter of fact, strong air quality co-

benefits were identified. Real-world scenarios are likely

to favour particular policy objectives and will also con-

sider the costs for the mitigation measures. More work

is therefore needed to explore a larger range of sce-

narios. By demonstrating the efficiency and capacity

of the metrics-based approach to quantify tempera-

ture changes and its consistency with transient climate

model simulations, ECLIPSE has opened the way to ex-

plore a large number of such scenarios. This would be

an impossible task if transient climate ensemble model

simulations were needed for each.

– The number of models contributing to the ECLIPSE

project was relatively small. While the models were

shown to be largely representative of results obtained

from larger model ensembles, this makes quantification

of mean values and especially uncertainties (e.g. of RF

or temperature response) dependent on the particular

properties of the ECLIPSE models. For a more com-

prehensive quantification of uncertainties, it is therefore

recommended to repeat the modelling exercises pre-

sented in this paper with a larger international model

ensemble.
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