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Abstract. An increasing number of field examples in moun-

tain belts show that the formation of passive margins during

extreme continent thinning may occur under conditions of

high to very high thermal gradient beneath a thin cover of

syn-rift sediments. Orogenic belts resulting from the tectonic

inversion of distal margins and regions of exhumed continen-

tal mantle may exhibit high-temperature, low-pressure (HT-

LP) metamorphism and coeval syn-extensional, ductile de-

formation. Recent studies have shown that the northern flank

of the Pyrenean belt, especially the North Pyrenean Zone, is

one of the best examples of such inverted hot, passive mar-

gin. In this study, we provide a map of HT-LP metamorphism

based on a data set of more than 100 peak-temperature esti-

mates obtained using Raman spectroscopy of the carbona-

ceous material (RSCM). This data set is completed by previ-

ous PT (pressure and temperature) estimates based on min-

eral assemblages, and new 40Ar–39Ar (amphibole, micas)

and U–Pb (titanite) ages from metamorphic and magmatic

rocks of the North Pyrenean Zone. The implications on the

geological evolution of the Cretaceous Pyrenean paleomar-

gins are discussed. Ages range mainly from 110 to 90 Ma,

and no westward or eastward propagation of the metamor-

phism and magmatism can be clearly identified. In contrast,

the new data reveal a progressive propagation of the ther-

mal anomaly from the base to the surface of the continental

crust. Focusing on the key localities of the Mauléon basin,

Arguenos–Moncaup, Lherz, Boucheville and the Bas-Agly,

we analyze the thermal conditions prevailing during the Cre-

taceous crustal thinning. The results are synthetized into a

series of three regional thematic maps and into two detailed

maps of the Arguenos–Moncaup and Lherz areas. The results

indicate a first-order control of the thermal gradient by the

intensity of crustal thinning. The highest grades of metamor-

phism are intimately associated with the areas where subcon-

tinental mantle rocks have been unroofed or exhumed.

1 Introduction

Distal domains of present-day passive margins are inacces-

sible environments from where very little in situ observa-

tions have been obtained so far (Sibuet et al., 1979; Ship-
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Figure 1. Simplified structural map of the northern flank of the

Pyrenean belt. The area between the North Pyrenean Fault (NPF)

and the North Pyrenean Frontal Thrust (NPFT) is known as the

North Pyrenean Zone (NPZ).

board Scientific Party 1987; Boillot et al., 1987; Sawyer

et al., 1994; Whitmarsh et al., 1996, 1998). The under-

standing of the processes controlling their structural and

thermal evolution hence requires the comparison with ex-

humed analogs of fossil passive margins. The first and most-

studied analogs have been the paleomargins exposed along

the Alpine arc (Lemoine et al., 1987; Froitzheim and Eberli

1990; Manatschal and Nievergelt 1997; Manatschal 2004).

Other fossil margins have recently been identified within

the Zagros (Wrobel-Daveau et al., 2010) and Appalachian–

Caledonian orogenic belts (Andersen et al., 2012; Chew et

Van Staal, 2014). At present, the Pyrenean domain is also

considered as hosting relevant analogs of distal passive mar-

gins, and its pre-orogenic evolution is being intensely revis-

ited (Lagabrielle and Bodinier, 2008; Jammes et al., 2009;

Lagabrielle et al., 2010; Masini 2011; Clerc et al., 2012;

Clerc et al., 2013; Masini et al., 2014; Tugend et al., 2014).

Unlike the Alpine analog, the North Pyrenean domain did

not undergo subduction, and the thermal pattern recorded in

the pre- and syn-rift material has not been overprinted by

major crustal overthrusts or subductions. The pre-Pyrenean

inverted margins hence offer suitable direct access to the

thermal imprint of crustal thinning and subsequent continen-

tal breakup. Regional high-temperature, low-pressure (HT–

LP) metamorphism is known along the northern rim of

the Pyrenean belt where it developed coevally with a ma-

jor Cretaceous crustal thinning event leading (Ravier, 1959;

Bernus-Maury, 1984; Azambre and Rossy, 1976; Golberg

and Leyreloup, 1990; Dauteuil and Ricou, 1989; Clerc and

Lagabrielle, 2014). The HT metamorphic rocks, deriving

mainly from pre-rift to syn-rift sediments, are distributed

in a narrow WNW–ESE belt defined as the North Pyre-

nean Zone (NPZ), bounded by two major post-metamorphic

thrusts, the North Pyrenean Fault (NPF) to the south and the

North Pyrenean Frontal Thrust (NPFT) to the north (Fig. 1).

The NPZ hosts about 40 outcrops of sub-continental peri-

dotite – among which the Lherz body, lithotype of the lherzo-

lite – whose exhumation is directly attributed to the extreme

thinning of the lithosphere (Kornprobst and Vielzeuf, 1984;

Lagabrielle and Bodinier, 2008).

At a regional scale, the NPZ is thought to represent the

portion of the lithosphere that accommodated most of the de-

formation during the counterclockwise rotation of the Iberian

plate with respect to the Europa plate in the mid-Cretaceous

(Choukroune and Mattauer, 1978). The zone affected by the

HT-LP metamorphism is characterized by an intense ductile

deformation – S1 of Choukroune (1972); Choukroune (1976)

– first attributed to compression and later reinterpreted as re-

sulting from syn-extensional or transtensional deformation

(Golberg 1987; Golberg and Leyreloup, 1990; Lagabrielle et

al., 2010; Clerc and Lagabrielle, 2014).

Several estimates of peak temperatures have been pub-

lished (Golberg and Leyreloup 1990, 1990; Vauchez et al.,

2013), but no comprehensive metamorphic map is available

so far at the scale of the whole NPZ.

In this study, we provide a map of the HT Pyrenean

metamorphism based on a data set of more than 100 peak-

temperature estimates obtained using Raman spectroscopy

of the carbonaceous material (RSCM) on samples collected

during the past 5 years along the whole NPZ (Fig. 2).

From east to west the sampled regions are the Bas-Agly

basin, the Tarascon and Aulus basins (eastern NPZ), the Bal-

longue basin (central NPZ) and the Mauléon basin (west-

ern NPZ). This data set is completed by previous PT esti-

mates based on analysis of mineral assemblages from the

Bas-Agly, Boucheville and Pays de Sault areas by Golberg

and Leyreloup (1990). We provide 18 new 40Ar–39Ar (am-

phibole, micas) ages and 1 U–Pb (titanite) age from meta-

morphic and magmatic rocks of the North Pyrenean Zone.

We further report some characteristics of the deformation

associated with the HT metamorphic imprint, and we dis-

cuss the significance of the thermal event in the frame of

the extension of the continental crust and local mantle ex-

humation. Triassic and Jurassic aborted rifting events pre-

dated the development of a major Cretaceous crustal thin-

ning event, which culminated in the crustal separation be-

tween the Iberia and European plates (Puigdefabregas and

Souquet, 1986; Vergés and Garcia-Senz, 2001). Continental

rifting in the Pyrenean domain occurred in response to the

counterclockwise rotation of Iberia relative to Europe, co-

eval with the onset of oceanic spreading in the Bay of Biscay

between Chron M0 and A33o (approximately 125–83 Ma)

(Le Pichon et al., 1970; Choukroune and Mattauer, 1978;

Olivet, 1996; Gong et al., 2008; Jammes et al., 2009). Af-

ter an early rifting episode during the late Aptian, narrow,

non-connected Albian basins opened north of the basement

of the Pyrenean Axial Zone, along a wide domain opened be-

tween Iberia and Europe (Choukroune and Mattauer, 1978;

Olivet, 1996; Jammes et al., 2009). They connected together

during the Cenomanian when the rift zone became wider

and deeper. The main infills of the basins are dark-colored

pelites, sandstone, and breccias deposits, referred to as “Fly-

sch noir” or “Flysch ardoisier” in the literature (Debroas,

Solid Earth, 6, 643–668, 2015 www.solid-earth.net/6/643/2015/
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Figure 2. (a) Simplified geological map of the North Pyrenean Zone, compiled from Choukroune and Séguret (1973), Golberg and Leyreloup

(1990), Debroas (2003) and Jammes et al. (2009), and from the 1 / 50 000 geological map of the BRGM. (b) Map of peak metamorphic

temperatures estimated using RSCM geothermometry (black dots). Only some values are reported on the map. See Table 1 for an exhaustive

list and location of all the RSCM data. Temperatures of Golberg and Leyreloup (1990) are also reported for the eastern NPZ (white dots). (c)

Map of isometamorphic zones; data compiled are from this study and the literature (Choukroune and Séguret, 1973; Bernus-Maury, 1984;

Golberg, 1987; Golberg and Leyreloup, 1990).

1976, 1978, 1990; Souquet et al., 1985). The black flysch

is organized into three megasequences (I, II, and III), which

are the records of three successive steps in the opening of the

basins. Megasequence I corresponds to the opening of nar-

row half grabens, megasequence II registers the opening of

en echelon 10 km wide basins, and megasequence III records

the coalescence of the basins into a large trough with inter-

nal and external parts separated by central highs (Debroas,

1990).

The kinematics of the Iberian plate during Aptian–Albian

and younger Cretaceous times is still strongly debated

(Olivet 1996; Sibuet, Srivastava, et Spakman 2004; Jammes

et al., 2009; Vissers et Meijer 2012a, b). Three main types

are generally opposed: (i) the transtensional rift model

(Choukroune et Mattauer 1978; Olivet 1996), which involves

a dominant left-lateral strike-slip along the NPF; (ii) a model

implying most of the left-lateral movement during the Juras-

sic to Aptian times followed by orthogonal extension dur-

ing Albian to Cenomanian times (Schettino et Turco 2010;

Jammes et al., 2009); (iii) and a scissor-opening model,

which implies the existence of an important subduction be-

neath the Pyrenean belt (Srivastava et al., 1990; Sibuet et

al., 2004; Vissers and Meijer 2012a, b). For these authors,

the extension observed in the pre-Pyrenean domain at that

time (Dinarès-Turell and Garcia-Senz, 2000, 2002) would

result from back-arc extension or gravitational instability of

the lithosphere above the subducted oceanic lithosphere. This

scenario implies the northward subduction of a large portion

of the Neotethyan oceanic domain, which is hardly compat-

ible with current reconstructions of the Alpine Tethys (Man-

atschal and Bernouilli, 1999; Handy et al., 2010; Schettino

and Turco, 2010). Furthermore, recent seismic tomography

(Souriau et al., 2008; Chevrot et al., 2014a, b) precluded

the existence of a subducted hundredth-of-a-kilometer-long

oceanic lithosphere. Instead, they report evidence for the sub-

duction of a thinned Iberian crust to ca. ∼ 70 km depth.

2 The HT-LP metamorphism: ages and coeval

magmatism

2.1 The age of HT-LP metamorphism: a review

The metasediments of the NPZ are affected by a HT-LP

metamorphism with temperatures commonly higher than

600◦C and pressures lower than 4 kbar (Fig. 2; Bernus-

Maury, 1984; Golberg and Leyreloup, 1990; Vauchez et al.,

2013). The NPZ is characterized by strong temperature gra-

dients affecting mostly the pre- and syn-rift Mesozoic sedi-

ments, ranging in age from the Trias to the base of the Upper

Cretaceous (although the extension of the thermal anomaly

to Paleozoic material has rarely been tested). The youngest

www.solid-earth.net/6/643/2015/ Solid Earth, 6, 643–668, 2015



646 C. Clerc et al.: HT metamorphism at passive margins: the Pyrenean case

Figure 3. Compilation of the age and localization of the Cretaceous metamorphism and magmatism, modified and updated from Debroas

and Azambre (2012). (1): Montigny et al., 1986; 40K–40Ar on amphiboles from magmatic and metamorphic rocks. (1’): Montigny et al.,

1986; 40K–40Ar on micas. (1”): Montigny et al., 1986; 40K–40Ar on feldspath(oids). (1”’): Montigny et al., 1986; 40K–40Ar on bulk rocks.

(2): Golberg and Maluski, 1988. (3): Albarède and Michard-Vitrac, 1978; 40Ar–39Ar on phlogopite from metasediments. (4): Albarède and

Michard-Vitrac, 1978; 40Ar–39Ar on orthoclase from metasediments. (4’): Albarède and Michard-Vitrac, 1978; 87Rb–87Sr on phlogopite

from metasediments. (5): Thiébaut et al., 1988; 40K–40Ar (on bulk rock?) from Triassic meta-evaporites. (6): Hervouët et al., 1987; 40K–
40Ar on bulk rock (ophite) from the vallée du Job. (7): Golberg et al., 1986; 40Ar–39Ar. (8): Nicolas, 1998, unpublished master thesis;
40Ar–39Ar on muscovite and biotite from the charnockite and various schists of the Agly Paleozoic massif. (9): Schärer et al., 1999; U–Pb

on xenotime and monazite from talc deposit. (10): Boulvais et al., 2007; 40Ar–39Ar on muscovite from albitite. (11): Poujol et al., 2010;

U–Th–Pb on titanite and monazite from albitite. (12): Fallourd et al., 2014; U–Pb on titanite in albitite (faded orange field). (13) Henry et al.,

1998; 40Ar–39Ar on amphibole from amphiclasite. (14): Castanares et al., 1997; 2001; chronostratigraphy of submarine volcanic episodes.

(15): Lopez-Horgue et al., 1999; chronostratigraphy of submarine volcanic episodes. (16): Lopez-Horgue et al., 2009; chronostratigraphy

of submarine volcanic episodes. (17) Monié, unpublished; 40Ar–39Ar on Ms from marble. (A): This study; 40Ar–39Ar on muscovite from

marble. (B): This study; 40Ar–39Ar on amphibole from marble. (C): This study; 40Ar–39Ar on amphibole from gabbro and teschenite. (D):

This study; 40Ar–39Ar on amphibole from meta-ophite. (E): This study; 40Ar–39Ar on phlogopite from talc deposit. (F): This study; 40Ar–
39Ar on amphibole in gypsum. (G): This study; U–Pb on titanite in albitite dyke. Spots in transparency must be considered with caution

since they were obtained with 40K–40Ar on bulk rock.

metamorphosed terrains in the NPZ are Santonian in age and

were only affected by an epizonal metamorphism (Mattauer,

1964; Choukroune, 1972; Debroas, 1987).

The HT-LP metamorphism has alternatively been re-

lated to late-Cretaceous compressive events (Mattauer, 1968;

Choukroune, 1976) or to a “pre-Cenomanian crustal fractura-

tion” (Ravier, 1959; Souquet et al., 1977). Choukroune and

Mattauer (1978) re-interpreted this thermal event as the con-

sequence of an important thinning of the continental crust for

which, due to slow migration of the isotherms, the maximum

of the thermal anomaly would only be reached during the

initiation of the convergent tectonics.

Since the 1980s, the thermal anomaly responsible for

the development of the metamorphic event is attributed to

very high geothermal gradients related to an intense crustal

and lithospheric thinning episode during the Cretaceous

(Vielzeuf and Kornprobst, 1984; Golberg, 1987; Golberg

and Maluski, 1988; Dauteuil and Ricou, 1989; Golberg and

Leyreloup, 1990). This assumption is based on four main

geological features: (i) HT-LP assemblages are recorded

along the extensive/transtensive domain represented by the

NPZ; (ii) HT-LP metamorphism is contemporaneous with an

episode of alkaline magmatism; (iii) HT-LP metasediments

are spatially related to tectonically exhumed deep-seated ma-

terial (granulites and peridotites); and (iv) the metamorphic

Solid Earth, 6, 643–668, 2015 www.solid-earth.net/6/643/2015/
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Figure 4. General map of the ductile lineation measured in the NPZ, in the Mesozoic material (blue) and in the Paleozoic basement (red).

event affected Albian–Cenomanian flyschs during and just

after their deposition.

Previous geochronological studies (Fig. 3) of the Creta-

ceous metamorphism of the Pyrenees revealed ages rang-

ing from the Albian to the Santonian, e.g., mainly in the

range 105–85 Ma (Albarède and Michard-Vitrac, 1978a; Al-

barède and Michard-Vitrac, 1978b; Montigny et al., 1986;

Golberg and Maluski, 1988; Golberg et al., 1986; Bandet Y.

and Gourinard Y. in Thiébaut et al., 1988).

In addition to the HT-LP metamorphism well developed in

Mesozoic material, one must also consider the hydrothermal

alteration responsible for albitization and dequartzification of

the North Pyrenean massifs and the formation of massive talc

deposits during the late Aptian to early Cenomanian (Moine

et al., 1989; Demange et al., 1999; Schärer et al., 1999; Boul-

vais et al., 2007; Poujol et al., 2010) at temperatures rang-

ing from 250◦C (Moine et al., 1989; Boulvais et al., 2006)

to more than 500◦C (sodic-calcic metasomatism; Fallourd et

al., 2014). Radiogenic chronometers in the Paleozoic base-

ment of the North Pyrenean massifs have been reset during

Cretaceous times (e.g., Costa and Maluski 1988; St Blanquat

et al., 1990; Boutin et al., 2015, in the St Barthelemy massif),

which is indicative of general heating of the NPZ. Cretaceous

ages have also been reported in mylonitized granitoids from

the Axial Zone in the eastern Pyrenees (Monié et al., 1994),

suggesting that reheating and related deformation propagated

further south of the NPF.

According to previous studies of the eastern NPZ, the in-

tensity of the HT-LP metamorphism is thought to be di-

rectly related to the magnitude of crustal attenuation, with

high-grade metasediments systematically associated with

peridotites or granulites, and lower-grade metasediments

associated with mid- to upper-crustal units (Golberg and

Leyreloup, 1990). Our new data set, extended to the whole

NPZ, confirms this trend. To push forward the characteri-

zation and significance of the HT-LP Cretaceous metamor-

phism, we will discuss our results at the scale of the whole

Pyrenean realm, then zooming at the scale of the basin and

at the scale of the sedimentary pile.

3 Metamorphism and deformation: the S1 deformation

(Choukroune, 1976) is syn-extensional

All along the inner NPZ, Triassic to Albian–Cenomanian

rocks bear evidence of intense ductile deformation gener-

ally transposed on the original stratification of the Mesozoic

metasediments. Stretching lineations are marked by the elon-

gated aspect of some marbles and by preferred orientations

of the HT-LP minerals (scapolite). A map of the HT ductile

lineation of the eastern NPZ is presented in Fig. 4. Despite

a relative dispersion probably due to the later compressional

movements, the lineation is generally trending along a NW–

SE direction. Although it may be difficult, the distinction of

Mesozoic marbles from Paleozoic (mainly Devonian) ones

can be done by comparison with less metamorphosed fa-

cies (e.g., Debroas in Ternet et al., 1997); some fossils allow

for unambiguous attribution to the Mesozoic series (Fig. 5).

Boudinage and folds are frequent and are observed at differ-

ent scales. Sheath folds and isoclinal folds are commonly ob-

served in both pre-Albian marbles and Albian–Cenomanian

metapelites. In the high-grade marbles of the Internal Meta-

morphic Zone (IMZ; e.g., Aulus and Arguenos–Moncaup ar-

eas), isoclinal folds are commonly refolded and show com-

plex 3-D geometries. Such characteristics are evocative of

flow folds (viscous folds without visible axial-plane cleav-

age or foliation; Wynne-Edwards, 1963).

The analysis of metamorphic parageneses indicates that

the metamorphism can be both static (Ravier, 1959) and syn-

kinematic (Bernus-Maury, 1984). According to Choukroune

(1976), the long-lasting Cretaceous metamorphism is con-

temporaneous with a first phase of deformation (S1) and con-

tinues during a part of a second phase (S2 of Choukroune,

1976).

www.solid-earth.net/6/643/2015/ Solid Earth, 6, 643–668, 2015
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Figure 5. Examples of deformed Mesozoic fossils from the NPZ. Boudinaged (a) and elongated (b) belemnites and pecten in the Bas-Agly.

Ductiley deformed bivalves and belemnites at Port de Saleix (c) and Col Dret (d). Deformed Urgonian rudists in the Bas-Agly (e and f).

Boudinage of dolomitic and silicic layers is commonly ob-

served within the marbles due to their rheological contrast

with the calcitic host. The boudins and the boudin necks

form symmetric lenses displaying a “chocolate tablet” aspect

(Vauchez et al., 2013). The synchronicity between deforma-

tion and metamorphism has also been demonstrated by the

HT fabrics of calcite in the marble of the IMZ (Vauchez et

al., 2013; Lagabrielle et al., 2015).

Considering that the onset of the convergence in the

Pyrenean realm is estimated to occur during the Santonian

(Garrido-Megias and Rios, 1972; McClay et al., 2004), the

pre-Santonian radiometric ages obtained for the HT meta-

morphism are in agreement with a pre-convergence event

(Fig. 3).

4 Magmatism

The North Pyrenean realm is affected by moderate but well-

distributed magmatic activity during the Mesozoic, respon-

sible for the emplacement of two main groups of rocks:

(i) tholeitic dolerites of Triassic age, generally referred to as

“ophites” (Montigny et al., 1982; Azambre et al., 1987), and

(ii) a wide variety of small intrusive and effusive Cretaceous

alkaline magmatic rocks (Montigny et al., 1986; Azambre

et al., 1992; Rossy et al., 1992). The age of the Cretaceous

magmatism is often constrained by stratigraphic correlations

with the sedimentary formations in which volcanic or intru-

sive rocks are observed (Fig. 3; San Miguel de la Camara

1952; Rossy 1988; Castanares et al., 1997; López-Horgue

et al., 1999; Castanares et al., 2001; López-Horgue et al.,

2009). In Buzy (Pyrénées-Atlantiques), teschenites outcrop

as sills intrusive in the Turonian flysch where they developed

Solid Earth, 6, 643–668, 2015 www.solid-earth.net/6/643/2015/
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a hornblende-hornfels contact metamorphism aureole (Cast-

eras et al., 1970). In the Cantabrian basin, thick formations

of lava flows with pillows are interbedded within the upper

Albian to Santonian sedimentary formations (Castanares et

al., 1997, 2001; Carracedo et al., 1999). In addition, abso-

lute ages are available on Cretaceous magmatic rocks, with

a spread from 113 to 85 Ma (Fig. 3; Golberg et al., 1986;

Montigny et al., 1986; Henry et al.,1998). Some authors dis-

tinguish an early phase of intrusive magmatism followed by

a paroxysm from the Cenomanian to the end of the Turonian

(Debroas and Azambre, 2012). Some manifestations of the

Cretaceous alkaline magmatism have also been recognized

within the peridotite bodies of the NPZ, where they appear

as dykes of amphibole-bearing pyroxenites and hornblendes

(“ariégites à amphiboles” and “lherzites” of Lacroix 1917)

considered to represent trans-mantellic melt conduits for the

Cretaceous alkaline magmatism (Bodinier et al., 1987; Con-

quéré 1971; Vétil et al., 1988). Radiometric dating of these

rocks gave ages around 100 Ma (Vershure et al., 1967; Gol-

berg et al., 1986; Henry et al., 1998). The peridotite bodies of

Tuc de Desse, Arguenos–Moncaup, Montaut and Turon de la

Técouère also contain gabbroic intrusions that present chilled

margins along their contacts, indicating that some of the

mantle rocks were already cooled during the emplacement

of the magmatic rocks (Azambre and Monchoux, 1998).

5 Raman spectroscopy of carbonaceous materials:

analytical method and thermometry

Raman spectroscopy has been used successfully to character-

ize the structural evolution of carbonaceous material (CM),

reflecting a transformation from disordered to well-ordered

CM during metamorphism (Wopenka and Pasteris, 1993).

The irreversible polymerization and reorganization of these

materials is reflected in their Raman spectrum by the decreas-

ing width of the graphite G band and gradual disappearance

of the defect bands, first D3 and D4, then D1 and D2. The

Raman spectrum of well-ordered CM (perfect graphite) con-

tains only the G band. This spectral evolution with increas-

ing graphitization was related to temperature and quantified,

providing a means to determine peak temperatures attained

by metamorphic rocks (Beyssac et al., 2002). This is the ba-

sis of the RSCM geothermometer, which was calibrated in

the range 330–650◦C by Beyssac et al. (2002) and extended

to the range 200–320◦C by Lahfid et al. (2010). In this study,

we have applied these two calibrations to estimate paleotem-

peratures in marbles and pelitic–psammitic metasedimentary

rocks from the Paleozoic to Upper Cretaceous series of the

NPZ.

Raman analyses were performed using a Renishaw

(Wotton-under-Edge, UK) InVIA Reflex microspectrometer

at ENS Paris. Before each session, the spectrometer was cal-

ibrated with silicon standard. The light source was a 514 nm

Spectra Physics argon laser. The output laser power is around

a°

b°

b° >> a°

West: moderate obliquity

East: strong obliquity

Figure 6. Example of variable mode of extension along a single

linear plate boundary. In this example, the eastern domain of the fu-

ture NPZ undergoes transtension with a strong left-lateral obliquity,

while the western domain opens with a moderate obliquity.

20 mW, but only around 1 mW reached the surface sample

through the DMLM Leica (Wetzlar, Germany) microscope

with a 100× objective (NA= 0.90). Edge filters eliminated

the Rayleigh diffusion, and the Raman light was dispersed

using a 1800 g mm−1 grating before being analyzed by a

Peltier-cooled RENCAM CCD detector. Measurements were

done on polished thin sections cut normal to the foliation and

parallel to the lineation (xz structural plane). To avoid the ef-

fect of polishing on the CM structural state, the CM particles

analyzed were below a transparent adjacent mineral, usually

calcite or quartz. The results are presented in Table 1 and

Figs. 2, 7 and 8.

6 Geochronology

In order to corroborate previous results and to extend the data

set of the ages of the North Pyrenean magmatism and meta-

morphism, we selected 19 samples from the NPZ. We fo-

cused on the marbles and gabbros of the key localities of

Lherz (LHZ samples) and Arguenos–Moncaup (MP sam-

ples). Eighteen metamorphic and magmatic samples were

dated using 40Ar–39Ar step heating of muscovite, phlogopite

and amphibole, and a sample of albitite vein cross-cutting

Paleozoic material has been dated by U–Pb on titanite.

6.1 40Ar–39Ar dating of metamorphic and magmatic

samples from the NPZ

Fresh samples were selected in the field for step-heating

laser probe 40Ar–39Ar dating. The samples were crushed and

sieved, and single grains of micas (biotite and muscovite) and

amphibole were handpicked under binocular microscope and

cleaned in an ultrasonic bath using acetone and distilled wa-

ter. Micas and amphiboles were packaged in aluminium foils

and irradiated in the core of the TRIGA Mark II nuclear reac-

tor of Pavia (Italia) with several aliquots of the Fish Canyon
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Table 1. RSCM peak temperatures from the NPZ. The parameters RA1Lahfid (Lahfid et al., 2010) and R2Beyssac (Beyssac et al., 2002) are

used to estimate temperatures < 320 and > 330 ◦C, respectively. RA1Lahfid, R2Beyssac and T are expressed in terms of mean value and SD

of all the data obtained within each of the 106 samples from the NPZ sample. Standard errors ε are given for temperatures (= 1σ SD divided

by the square root of the number of measurements).

Sample Location Lithology Position Nb Method Raman SD T SE

Sprectra parameter (◦C) (◦C)

FO2a Oust Upper Albian 42◦53′41.17′′ N 1◦12′55.27′′ E 11 B 0.66 0.01 349 2

FO2b Oust Upper Albian 42◦53′41.17′′ N 1◦12′55.27′′ E 18 B 0.65 0.01 353 1

ERC1 Ercée Turonian–Senonian 42◦49′56.67′′ N 1◦17′49.02′′ E 13 L 0.56 0.008 242 3

ERC3 Ercée Turonian–Senonian 42◦49′55.00′′ N 1◦17′51.42′′ E 10 L 0.56 0.005 238 2

ERC4 Ercée Turonian–Senonian 42◦49′55.00′′ N 1◦17′51.42′′ E 11 L 0.56 0.011 242 4

ERC5 Ercée Turonian–Senonian 42◦49′54.69′′ N 1◦17′51.73′′ E 11 L 0.55 0.01 222 4

ERC6c Ercée Turonian–Senonian 42◦49′53.81′′ N 1◦17′52.71′′ E 11 L 0.55 0.01 219 5

ERC8 Ercée Barremian 42◦49′49.23′′ N 1◦17′51.84′′ E 13 B 0.21 0.07 543 6

ERC9 Ercée Barremian 42◦49′46.36′′ N 1◦17′48.48′′ E 10 B 0.18 0.05 560 8

ERC13 Ercée Barremian 42◦49′35.00′′ N 1◦17′32.10′′ E 11 B 0.09 0.07 597 9

ERC14 Ercée Barremian 42◦49′23.18′′ N 1◦17′48.49′′ E 18 B 0.04 0.06 620 6

ERC14a Ercée Barremian 42◦49′23.18′′ N 1◦17′48.49′′ E 10 B 0.19 0.06 555 9

ERC16 Ercée Aptian 42◦49′31.90′′ N 1◦17′35.23′′ E 10 B 0.2 0.08 551 11

ERC17 Ercée Berriasian–Hauterivian 42◦49′37.08′′ N 1◦18′46.17′′ E 11 B 0.15 0.1 578 9

ERC19 Ercée Barremian 42◦49′29.06′′ N 1◦18′44.60′′ E 9 B 0.25 0.07 531 10

ERC20 Sentenac d’Oust Albian 42◦52′36.45′′ N 1◦10′9.52′′ E 14 B 0.24 0.04 534 6

ERC21a Sentenac d’Oust Albian 42◦52′35.49′′ N 1◦10′13.58′′ E 13 B 0.18 0.05 560 5

ERC21b Sentenac d’Oust Albian 42◦52′35.49′′ N 1◦10′13.58′′ E 10 B 0.21 0.06 543 8

07LH01 Lherz Neocomian 42◦48′13.60′′ N 1◦24′44.87′′ E 15 B 0.27 0.07 520 8

07LH03a Lherz Neocomian? 42◦48′50.50′′ N 1◦25′19.86′′ E 15 B 0.5 0.06 428 4

ARG14 Bédeilhac Triassic gypsum 42◦52′29.59′′ N 1◦34′38.76′′ E 14 B 0.65 0.01 353 1

ARG6 Bédeilhac Triassic marble 42◦52′30.49′′ N 1◦34′36.71′′ E 10 B 0.16 0.08 568 9

LC05f Lherz Undefined Brecciated pelite 42◦48′49.49′′ N 1◦22′11.90′′ E 12 B 0.52 0.05 412 7

LHZ50 Lherz Liassic 42◦48′59.05′′ N 1◦21′44.55′′ E 13 B 0.5 0.06 421 7

LHZ63 Lherz Berriasian–Hauterivian? 42◦48′43.47′′ N 1◦22′15.74′′ E 10 B 0.17 0.04 564 6

LHZ65a Lherz Triassic 42◦47′51.93′′ N 1◦22′40.30′′ E 8 B 0.19 0.07 556 11

LHZ66 Lherz Jurassic 42◦47′42.11′′ N 1◦22′53.26′′ E 10 B 0.22 0.08 545 11

LHZ67 Lherz Jurassic 42◦47′39.03′′ N 1◦23′3.84′′ E 8 B 0.25 0.05 531 7

LHZ68 Lherz Jurassic 42◦47′53.78′′ N 1◦22′41.49′′ E 11 B 0.27 0.1 523 13

LHZ69 Lherz Jurassic 42◦47′42.87′′ N 1◦22′25.70′′ E 6 B 0.45 0.06 437 8

LHZ75 Lherz Berriasian–Hauterivian 42◦48′14.16′′ N 1◦24′44.71′′ E 11 B 0.22 0.07 541 9

LHZ76 Lherz Berriasian–Hauterivian 42◦48′13.94′′ N 1◦24′44.64′′ E 10 B 0.22 0.08 543 11

LHZ77 Lherz Berriasian–Hauterivian 42◦48′13.27′′ N 1◦24′45.12′′ E 12 B 0.23 0.05 540 6

LHZ78 Lherz Jurassic 42◦47′28.11′′ N 1◦24′23.71′′ E 12 B 0.23 0.07 538 10

LHZ79 Lherz Jurassic 42◦47′48.52′′ N 1◦24′17.17′′ E 11 B 0.19 0.13 556 17

LHZ80 Lherz Liassic 42◦47′54.42′′ N 1◦24′17.08′′ E 13 B 0.18 0.65 560 8

LHZ82 Lherz Jurassic 42◦47′21.07′′ N 1◦24′24.75′′ E 10 B 0.23 0.05 537 6

LHZ83 Lherz Liassic 42◦46′56.23′′ N 1◦24′17.22′′ E 11 B 0.23 0.09 540 13

LHZ85 Lherz Turonian–Senonian 42◦46′53.41′′ N 1◦23′43.51′′ E 7 L 0.63 0.01 321 5

LHZ86 Lherz Devonian 42◦46′53.13′′ N 1◦23′43.58′′ E 9 B 0.2 0.05 551 8

LHZ87 Lherz Berriasian–Hauterivian? 42◦48′45.50′′ N 1◦22′15.00′′ E 9 B 0.19 0.07 557 10

LHZ90 Lherz Liassic 42◦47′15.70′′ N 1◦23′3.90′′ E 14 B 0.03 0.03 626 4

LHZ91 Lherz Turonian–Senonian 42◦47′13.83′′ N 1◦21′9.54′′ E 15 L 0.65 0.02 343 6

LHZ92 Lherz Devonian 42◦46′50.10′′ N 1◦22′26.50′′ E 18 B 0.31 0.06 505 6

LHZ93 Lherz Turonian–Senonian 42◦46′26.50′′ N 1◦27′18.50′′ E 16 L 0.65 0.02 336 5

LHZ94 Lherz Turonian–Senonian 42◦46′40.73′′ N 1◦26′22.06′′ E 15 L 0.67 0.03 365 9

LHZ95 Lherz Liassic 42◦46′50.60′′ N 1◦25′49.70′′ E 15 B 0.18 0.06 559 7

LHZ96 Lherz Liassic 42◦46′54.60′′ N 1◦25′3.00′′ E 16 B 0.19 0.08 557 7

LHZ98 Lherz Turonian–Senonian 42◦46′30.60′′ N 1◦27′48.70′′ E 13 L 0.66 0.04 341 6

SUC3 Vicdessos Turonian–Senonian 42◦46′21.19′′ N 1◦29′31.87′′ E 12 B 0.65 0.03 353 4

SX2 Lherz Black metapelite (Liassic?) 42◦46′56.11′′ N 1◦23′59.86′′ E 8 B 0.15 0.07 576 10

MP10 Moncaup Liassic 42◦58′53.64′′ N 0◦42′38.04′′ E 4 L 0.56 0.07 235 42

MP12 Moncaup Liassic 42◦59′30.10′′ N 0◦43′19.80′′ E 12 L 0.64 0.03 333 8

MP13 Moncaup Liassic 42◦59′31.40′′ N 0◦43′13.20′′ E 17 L 0.63 0.02 322 5

MP14 Moncaup Liassic 42◦59′25.80′′ N 0◦43′7.70′′ E 10 B 0.64 0.02 358 2

MP16 Moncaup Barremian 42◦58′3.50′′ N 0◦42′38.40′′ E 10 L 0.6 0.03 303 7

MP17 Moncaup Jurassic 42◦57′50.30′′ N 0◦43′36.20′′ E 17 B 0.12 0.12 604 8

MP18 Moncaup Jurassic 42◦57′49.20′′ N 0◦43′35.70′′ E 24 B 0.18 0.15 587 10

MP21 Moncaup Gargasian to early Albian 42◦57′36.00′′ N 0◦43′12.00′′ E 18 L 0.6 0.07 301 5

MP22 Moncaup Urgonian 42◦57′47.20′′ N 0◦42′57.90′′ E 20 L 0.63 0.02 320 5

MP23 Moncaup Late Jurassic 42◦58′10.40′′ N 0◦42′27.40′′ E 17 L 0.61 0.03 289 9

MP26 Moncaup Liassic 42◦56′52.50′′ N 0◦44′12.80′′ E 16 B 0.48 0.14 406 5

MP27 total Moncaup Jurassic (Kimmeridgian) 42◦57′23.50′′ N 0◦44′25.60′′ E 23 B 0.47 0.1 425 6

MP27d cl bl Moncaup clast in Kimmeridgian breccia 42◦57′23.50′′ N 0◦44′25.60′′ E 4 B 0.52 0.03 410 6

MP27e cl n Moncaup clast in Kimmeridgian breccia 42◦57′23.50′′ N 0◦44′25.60′′ E 13 B 0.47 0.08 431 10

MP27e cl ool Moncaup clast in Kimmeridgian breccia 42◦57′23.50′′ N 0◦44′25.60′′ E 6 B 0.49 0.05 423 9
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Table 1. Continued.

Sample Location Lithology Position Nb Method Raman SD T SE

Sprectra parameter (◦C) (◦C)

MP28 Moncaup Jurassic 42◦57′20.00′′ N 0◦44′20.60′′ E 17 B 0.44 0.09 454 6

MP29 Moncaup Jurassic 42◦57′15.63′′ N 0◦44′17.94′′ E 20 B 0.42 0.09 448 9

MP30 Moncaup Jurassic 42◦57′12.20′′ N 0◦44′17.90′′ E 15 B 0.47 0.08 427 7

MP31 Moncaup Jurassic 42◦57′8.90′′ N 0◦44′13.00′′ E 17 B 0.59 0.03 380 4

MP34 Moncaup Jurassic 42◦57′0.50′′ N 0◦44′18.80′′ E 2 B 0.58 0.01 383 5

MP35 Moncaup Jurassic 42◦57′0.50′′ N 0◦44′18.80′′ E 24 L 0.63 0.04 319 9

MP36 Moncaup Jurassic 42◦57′00.50′′ N 0◦44′18.80′′ E 2 L 0.64 0.01 330 9

MP37a Moncaup Berriasien 42◦57′04.60′′ N 0◦43′54.10′′ E 18 L 0.64 0.01 327 4

MP38a Moncaup Paleozoic? Liassic? 42◦59′07.73′′ N 0◦44′20.47′′ E 19 B 0.12 0.09 594 5

11MP39 Moncaup Triassic? 42◦59′09.07′′ N 0◦44′21.21′′ E 16 B 0.19 0.08 555 9

11MP40 Moncaup Triassic? 42◦59′08.85′′ N 0◦44′21.08′′ E 10 B 0.18 0.07 559 10

SAR 34 Saraillé Albian–Cenomanian 0◦42′38.04′′ E 0◦37′22.85′′W 10 B 0.66 0.02 346 3

SAR5 Saraillé Urgonian 43◦03′9.89′′ N 0◦38′24.90′′W 7 L 0.61 0.03 297 14

SAR7 Saraillé Urgonian 43◦03′11.44′′ N 0◦38′14.71′′W 15 L 0.64 0.02 328 7

URD11 Urdach Cenomanian 43◦07′07.60′′ N 0◦39′46.12′′W 8 L 0.55 0.02 215 3

URD14 Urdach Cenomanian 43◦07′07.60′′ N 0◦39′46.12′′W 13 L 0.57 0 233 1

10AG2B Agly Liassic 42◦45′29.48′′ N 2◦45′27.76′′ E 14 B 0.68 0.03 337 4

10AG01B Agly Jurassic 42◦45′14.10′′ N 2◦46′31.39′′ E 15 B 0.64 0.01 356 2

10AG04A Agly Triassic 42◦45′04.46′′ N 2◦46′5.73′′ E 12 B 0.57 0.05 387 6

10AG03 Agly Silurian 42◦44′53.24′′ N 2◦46′14.76′′ E 14 B 0.65 0.02 351 3

10AG4B Agly 42◦45′04.68′′ N 2◦46′3.03′′ E 13 B 0.33 0.06 494 7

12 PB 02 Abarratia Turonian? 43◦20′56.18′′ N 1◦14′16.30′′W 20 L 0.5 0.08 < 200 21

12 PB 03 col d’Ibarburia Aptian–Albian “Marnes à Spicules” 43◦05′41.00′′ N 1◦0′54.00′′W 19 L 0.57 0.02 249 2

12 PB 05 Arhansus Albian–Cenomanian 43◦04′20.70′′ N 1◦1′11.60′′W 17 L 0.55 0.01 224 3

12 PB 06 Arhansus Albian–Cenomanian 43◦04′17.80′′ N 1◦1′19.80′′W 19 L 0.56 0.02 235 4

12 PB 07 Barlanès Albian–Cenomanian 43◦02′43.00′′ N 0◦47′21.40′′W 16 L 0.49 0.05 156 10

12 PB 08 Barlanès Liassic 43◦03′23.30′′ N 0◦47′40.40′′W 11 L 0.61 0.01 288 4

12 PB 09 Barlanès Albian–Cenomanian 43◦04′55.10′′ N 0◦48′3.70′′W 2 L 0.67 0.06 366 56

12 PB 10 Roquiague Albian–Cenomanian 43◦06′18.00′′ N 0◦51′15.40′′W 18 L 0.59 0.04 255 5

12 PB 11 Roquiague Early Cenomanian 43◦07′31.50′′ N 0◦48′32.00′′W 20 L 0.64 0.02 331 4

12 PB 12 Roquiague Early Cenomanian 43◦10′04.30′′ N 0◦46′25.60′′W 19 L 0.64 0.02 330 5

12 PB 13 Roquiague Late Cenomanian 43◦08′37.80′′ N 0◦48′33.62′′W 19 L 0.57 0.01 247 2

12 PB 15 Roquiague Cenomanian–Turonian 43◦12′25.80′′ N 0◦59′38.90′′W 20 L 0.55 0.01 224 3

12 PB 16 Roquiague Aptian–Albian 43◦10′20.10′′ N 0◦57′22.60′′W 19 L 0.61 0.01 295 2

12 PB 17 Saraillé Albian–Cenomanian 43◦02′55.59′′ N 0◦39′56.61′′W 19 L 0.6 0.02 278 5

12 PB 18 Saraillé Albian–Cenomanian 43◦02′25.80′′ N 0◦37′44.70′′W 19 L 0.59 0.01 263 3

12 PB 19 Saraillé Jurassic 43◦03′59.57′′ N 0◦36′07.12′′W 20 L 0.61 0.01 298 2

sanidine standard (28.03± 0.08 Ma; Jourdan and Renne,

2007) as flux monitor. Argon isotopic interferences on K

and Ca were determined by irradiation of KF and CaF2 pure

salts from which the following correction factors were ob-

tained: (40Ar/39Ar)K = 0.00969± 0.00038, (38Ar/39Ar)K =

0.01297± 0.00045, (39Ar/37Ar)Ca = 0.0007474± 0.000021

and (36Ar/37Ar)Ca = 0.000288± 0.000016. Argon analyses

were performed at Géosciences Montpellier (France) with

an analytical system that consists of (a) an IR CO2 laser

of 100 kHz used at 5–15 % during 60 s; (b) a lense sys-

tem for beam focusing; (c) a steel chamber, maintained

at 10−8–10−9 bar, with a drilled copper plate;(d) an inlet

line for purification of gases including two Zr–Al getters;

and (e) a MAP215-50 mass spectrometer or an Argus VI

Thermo-Fisher multi-collector mass spectrometer. Custom-

made software controlled the laser intensity, the timing of

extraction/purification, the data acquisition and reduction to

calculate ages. To measure the argon background within the

system, one blank analysis was performed every three sam-

ple analyses. The 1σ errors reported on plateau, isochron and

total gas ages include the error on the irradiation factor J.

Atmospheric 40Ar was estimated using a value of the initial
40Ar–36Ar of 295.5.

6.1.1 Metasediments samples

Muscovite of samples LHZ120 and FREYCH was extracted

from marbles of the Lherz areas (Fig. 8). Sample LHZ107 is

a centimeter-sized muscovite crystal extracted from a calcite

vein cutting through the Liassic metapelites of Port de Saleix.

Muscovites LHZ125 and LHZ152 were sampled in the brec-

cias reworking clasts of Mesozoic marbles exposed near the

peridotite bodies of Freychinède (LHZ125) and Etang de

Lherz (LHZ152). Similar breccias are described by Clerc et

al. (2013). The muscovite grains were extracted from the ma-

trix of the breccias (Fig. 9). Sample 11MP92 is a centimeter-

sized muscovite crystal found in the rim of a mafic intrusion

exposed in the Arguenos marble quarry, on the western side

of Montégut (Fig. 10a and b). Muscovite StB comes from

the Jurassic white marbles of the Rapp quarry, near St Béat.

The amphiboles of samples 11MP86 and 11MP87 were ob-

tained from metamorphosed Liassic tuffs (B. Azambre, per-

sonal communication, 2014) exposed in fresh cuts along road
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Figure 7. Geological map of the Arguenos–Moncaup area (after Barrère et al., 1984a; Hervouët et al., 1987; Canérot and Debroas, 1988)

with Raman temperature values and location of the samples used for 40Ar–39Ar dating. A clear increase of peak temperature appears in the

vicinity of the mantle peridotites.

D39 close to the intersection with roads D618. The tuffs

are highly recrystallized, hosting centimeter-long unoriented

amphiboles (Fig. 10c, d and e).

6.1.2 Magmatic rock samples

Three amphibole samples were extracted from the metado-

lerites of Freychinède (LHZ146, LHZ148) and from Caza-

unous (11MP88). These rocks, generally referred to as

ophites, were emplaced during the Triassic (Montigny et

al., 1982). The ophites of the NPZ are strongly affected

by a post-magmatic transformation responsible for their re-

crystallization and the neoformation of Al-rich amphibole,

clinopyroxene, plagioclase and scapolite under amphibolite

facies conditions (Azambre et al., 1987, 1971; Golberg and

Leyreloup, 1990). This recrystallization has been attributed

to the Cretaceous thermal event, and the neoformation of

amphiboles was dated at 95 Ma by 87Rb-87Sr on amphi-

bole in Lherz (Montigny et al., 1986). The centimeter-long

green amphibole of ARI was extracted from gypsum at the

Arignac gypsum quarry. TRI is a phlogopite sampled in the

hydrothermally altered rim of a pegmatite dyke in the foot-

wall of the Trimouns talc ore deposit. The outcrop is now

partly destroyed due to mining excavations.

Two gabbros were sampled in the localities of Port de

Saleix (LHZ102, Fig. 8) and Col de Menté (11MP62, out

of Fig. 7). At Port de Saleix, the hectometric gabbro body is

found on the southernmost part of the Aulus basin, between

the NPF and a complex unit containing marble breccias and

granulitized metasedimentary rocks including olivine- and
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Figure 8. Geological map of the central-eastern part of the Aulus basin, with Raman temperature values and location of samples used for
40Ar–39Ar dating. No clear thermal trend can be deciphered in the basins, which we interpret as an indication of post-peak-metamorphism

disruption of the sedimentary pile.

pyroxene-bearing marbles. At col de Menté, the gabbro con-

stitutes a small intrusion within the Mesozoic marbles. BUZ

is a sample of amphibole from a small teschenite dyke close

to the village of Buzy (Mauléon basin).

6.1.3 Results

The results are presented in Table 2, and relevant areas in

Fig. 3 are expanded in Fig. 7 (Moncaup), 8 (Lherz) and 11.

In the Lherz area, age spectra are mainly flat for a large

percentage of the argon released, with only minor evidence

of age scattering due to the presence of tiny inclusions and

of weak weathering. Muscovites and amphiboles from six

metamorphic rocks provide ages ranging from 89.5± 0.3 to

92.6± 1.1 Ma (late Cenomanian to Turonian), with the ex-

ception of one sample (LHZ120) for which muscovite has a

plateau date of 100.1± 1.2 Ma. In the Arguenos–Moncaup

areas (Fig. 7), the age spectra of amphiboles are more dis-

cordant due the low amount of potassium and probably

the contribution of some inclusions. Nevertheless, the cool-

ing ages of all the metamorphic samples are clustering be-

tween 101.1± 1.3 and 96.7± 7.5 Ma (Albian to Cenoma-

nian). Among the metamorphic ages, breccias from the Lherz

area gave the youngest ones and are all restricted to the Tur-

onian (92.0± 0.7, 89.8± 1.1 and 89.6± 1.6 Ma).

In both the Arguenos–Moncaup and the Lherz areas, un-

deformed gabbros yielded amphibole 40Ar–39Ar ages in the

range 94–100 Ma (samples LHZ102, 11MP62), which con-

firms that the magmatic and metamorphic activities are con-

temporaneous. We note that this age is younger than the

107–109 Ma 40K–40Ar age reported on a gabbro from Les

Plagneaux (Fig. 3; Montigny et al., 1986), which may in-

dicate either that magmatism occurred in several pulses be-

tween 109 and 94 Ma or that amphiboles from Les Plagneaux

have been contaminated by excess argon. However, this age

is consistent with the 109.2± 3.5 Ma age obtained on am-
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Figure 9. Microscopic view of breccia sample LHZ152. In plane-polarized light (a); redrawn (b); in cross-polarized light (c and d).

phiboles from the Arignac Triassic gypsum (ARI, Fig. 11),

which indicates that both metamorphism and magmatism

start to affect the Mesozoic cover as soon as the early Albian.

In Tarascon Valley, the 100.3± 1 Ma age obtained on phl-

ogopite (sample TRI, Fig. 11) from the rim of the Trimouns

talc deposit is in agreement with the 112–97 and 99 Ma

ages obtained from U–Pb dating of xenotime and monazite

(Schärer et al., 1999) and constrains the main period of hy-

drothermal activity to the Albian–Cenomanian transition.

To the west, in Buzy, the teschenite yielded an amphibole
40Ar–39Ar age of 92.9± 1.3 Ma, in good agreement with

a previous datum of 93± 4 Ma by Montigny et al. (1986)

which confirms contemporaneity of metamorphism with the

emplacement of the previously dated undeformed gabbro

bodies in the Cenomanian–lower Turonian.

6.2 U–Pb dating of albitite veins

In the Arguenos–Moncaup area, small decametric units of

Paleozoic basement resting between the mantle peridotites

and the pre-Albian Mesozoic marbles are cross cut by al-

bitite veins (Fig. 12). Ten analyses were performed in 10

different titanite grains present in one thin section (see Sup-

plement for detailed results and analytical procedure). In

a Tera Wasserburg diagram (Fig. 13), data plot in a con-

cordant to discordant position and define a lower intercept

age of 98.4± 1.1 Ma (MSWD= 1.4) if anchored to a com-

mon 207Pb/206Pb value calculated at 100 Ma using a single-

stage Stacey and Kramers (1975) value (98.3± 0.9 Ma,

MSWD= 1.7 Ma if the regression is free). Therefore we in-

fer that the titanite associated with this albitite crystallized

98 My ago. This age is consistent with the ages of the meta-

morphic event obtained in this area (Albian to Cenomanian,

cf. Sect. 6.1.3).

7 Discussion

7.1 Spatial distribution of the thermal anomaly at the

scale of the NPZ

A first-order zonation of the HT-LP metamorphism appears

at the scale of the whole Pyrenean domain. In agreement

with the previous results (Choukroune and Séguret 1973;

Choukroune 1976; Bernus-Maury 1984; Golberg 1987; Gol-

berg and Leyreloup 1990), we distinguish three main thermal

domains along the NPZ (Fig. 2c). From west to east, these are

the following:

1. The western domain, corresponding to the Béarn and

Pays Basque basins, shows low-grade HT-LP metamor-

phism with Raman temperatures generally lower than

350◦C. In this part of the belt, the thermal anomaly is
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Figure 10. (a) Boudinaged sill in the Montégut marble quarry; (b) detail of (a) showing centimetric muscovite at the contact (sample

11MP92b); (c) two beds of Early Jurassic tuffs intruding marbles at the new outcrop of road D39 (samples 11MP86 and 11MP88).

largely distributed in the prerift metasediments and in

the Albian–Cenomanian flyschs, with the highest tem-

peratures found close to exposures of mantle rocks and

Paleozoic basement (Saraillé, Roquiague).

2. The central domain – which includes the Ballongue,

Barousse and Baronnies basins – displays a higher grade

of HT-LP metamorphism, with RSCM temperatures of

300 to 450◦C, locally exceeding 550◦C close to mantle

exposures (Arguenos–Moncaup peridotites body). The

temperatures decrease toward the west.

3. The eastern domain – including the Boucheville, Agly,

Pays de Sault, and Aulus basins – has the highest grade

of HT-LP metamorphism, with Raman temperatures up

to 600◦C and above. In addition to the east–west ther-

mal zonation, a north–south thermal gradient is well

observed in this domain. The highest temperatures are

found in the southernmost regions (Boucheville and

Aulus basins), whereas the northern regions are charac-

terized by a rapid decrease of the HT-LP metamorphic

imprint. The isograds are here widely disturbed by later

faulting locally outlined by tectonic breccias.

Clerc and Lagabrielle (2014) correlated this thermal zonation

across the NPZ to a variable mode of crustal thinning across

the pre-Pyrenean paleomargins, suggesting the existence of

“hot” margins (eastern domain) in opposition to the cooler

western domain. For the authors the three domains can be

described as follows:

1. The basins of the cooler western domain are charac-

terized by well-developed coarse clastic formations re-

lated to paleoscarps on the border of the troughs, in re-

lation to high-angle faulting and dominant brittle be-

havior of the continental crust (e.g., the Igountze and

Mendibelza breccias; Boirie 1981; Boirie and Souquet

1982; Masini et al., 2014). In contrast, the central part

of these basins is a domain of exhumed mantle capped

by tectonic lenses of both ultramafic and sialic composi-

tions tectonically underlying the prerift metasediments.

Here, thinning of the crust occurred in a ductile mode,

but the continental crust does not form large massifs in

the center of the basins.

2. The central domain is characterized by basins of smaller

dimensions separated by blocks of continental material,

the North Pyrenean massifs, whose size globally in-

creases eastward. The basins are frequently triangle- or

losange-shaped (Debroas, 1990) with mantle rocks fre-

quently exposed in their central regions. Progressively,

toward the east, the continental crust of the North Pyre-
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Figure 11. 40Ar–39Ar step-heating data for the samples ARI, TRI, StB, 11MP62 and BUZ.

nean massifs is boudinaged and tends to form spindle-

shaped lenses.

3. The eastern domain is characterized by an intense HT

deformation of the Triassic to Albian sedimentary pile

and by the boudinage of the continental crust in the dis-

tal regions of the paleomargin. The Mesozoic sequence

is everywhere severely thinned under a ductile regime,

with frequent boudinage and tectonic subtractions of

comprehensive portions of the original succession. The

Albian–Cenomanian deposits are controlled by a wide

wavelength undulation of the top of the lithosphere in

relation to the boudinage of the hyper-thinned continen-

tal crust.

Several hypotheses are proposed in the following that may

explain such a variation of the thermal anomaly along the

paleomargin:

– The whole domain underwent similar HT-LP metamor-

phic evolution, but later tectonic inversion led to under-

thrusting and burial of the highest-grade rocks in the

western part of the NPZ. When considering the general

plunge of the Axial Zone toward the west, it is also clear

that the eastern part of the belt underwent more exhuma-

tion, hence extensively exposing the deepest units that

underwent more HT-LP metamorphism. In this case, the

western and eastern part of the NPZ could be considered

to represent both the shallow (west) and deep (east) pro-

cesses occurring during the contractional evolution of a

single passive margin. However, in that case the pre-

rift material should have undergone temperatures much

higher than the 366 and 298◦C obtained in the Liassic

and Jurassic of the Barlanès and Saraillé areas (Table 1;

Mauléon basin in Fig. 2).

– By contrast, and in better agreement with the struc-

tural variations observed along the paleomargin, we
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may also consider the thermal zonation of the NPZ

as a consequence of a lateral variation of the mode

of opening of the basins. Although the kinematic his-

tory of the domain is still poorly constrained, approx-

imately N–S extension is reported from field observa-

tions in the western NPZ (Jammes et al., 2009, 2010;

Masini, 2011; Masini et al., 2014), whereas a tran-

scurrent to oblique motion is generally reported in the

eastern NPZ (Choukroune et Mattauer, 1978; Debroas,

1990; Debroas, 2003; Clerc et al., 2012, Fig. 5). As

exemplified in Fig. 6, a rotation pole for the Iberian

plate located anywhere in the northeast of the NPZ

could lead to differential movement with strike-slip

to transtensional extension in the eastern domain and

orthogonal to oblique extension in the western do-

main. Since the deformation is prone to be more lo-

calized in a transform system, thermal fluxes are ex-

pected to increase with transcurrent motion (Golberg

and Leyreloup, 1990; Muffler and White, 1969; Mc-

Dowell and Elders, 1980, 1983). Furthermore, because

the deformation is more localized in the eastern do-

main than in the western domain, isotherms may have

been more spaced in the wider western NPZ than in

the narrower eastern NPZ. Regional strain partitioning

of a transtensional kinematic into orthogonal extension

and transcurrent movement within the future NPZ, the

Parentis, Cameros, Le Danois, Basque–Cantabrian and

Organya–Pedraforca basins may explain the localiza-

tion of the HT-LP metamorphism in the basins domi-

nated by transtensive movements (central and eastern

NPZ, Nappe des Marbres, Fig. 4), whereas extension

www.solid-earth.net/6/643/2015/ Solid Earth, 6, 643–668, 2015
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under cooler conditions is registered in the basins under-

going a dominant orthogonal extension (Mauléon basin

– Jammes et al., 2009, 2010; Masini et al., 2014). In ad-

dition, we can envisage that various modes of opening

induced a variety in hydrothermal circulations. If some

circulations were externally derived, which is actually

not identified in Albian basins using a stable-isotope

characterization of veins (Boulvais et al., 2015), they

may have produced differences in regional temperature,

the coolest temperatures being likely found in the basins

with the most efficient cooling circulations (e.g., Souche

et al., 2014).

– It is also possible to correlate the intensity of the HT

metamorphism to the rising velocity of the mantle peri-

dotites. For the eastern NPZ peridotites, Fabriès et

al. (1991) identified a single and rapid decompression

and cooling step attributed to their ascent from 50–

45 km depth to the surface. In contrast, for the western

NPZ peridotites, Fabriès et al. (1998) identified a slower

decompression and cooling from 25–15 km depth up to

the surface (see Fig. 11 in Clerc et al., 2013, for a syn-

thetic exhumation chronology of the NPZ peridotites).

– Finally, the lateral variability of the thermal anomaly

along the NPZ might be related to the scissors-shape

opening of the extended domain during the Cretaceous

(Masson and Miles, 1984; Srivastava et al., 1990; Sibuet

and Collette, 1991; Roest and Srivastava, 1991; Sibuet

2004; Jammes et al., 2010).

7.2 Spatial distribution of the thermal anomaly at the

basin scale

7.2.1 Reconstructing the initial thermal gradient

related to crustal thinning and mantle

exhumation: the Arguenos–Moncaup case study

The spatial distribution of the isograds at the scale of the en-

tire belt shows a first-order relationship between the highest

grades of HT metamorphism and the vicinity of deep mate-

rial exposed in the NPZ (peridotites, granulites, migmatites).

Such a relationship was already observed in the eastern part

of the NPZ (Golberg and Leyreloup, 1990). Based on their

metamorphic analysis in the eastern part of the NPZ, these

authors also suggested that these primary relationships were

often lost and disturbed by later faulting. Our new data set,

extending further west, reveals that the primary relationships

between thermal anomalies and basement rocks are better

preserved in the central part of the NPZ, and especially in the

Arguenos–Moncaup area (Fig. 7), where undisturbed thermal

gradients are still recognizable.

The Arguenos–Moncaup ultramafic body is part of a group

of peridotite exposures lying around the Milhas massif, in the

central Pyrenees (Fig. 2). They are associated with basement

rocks, variably brecciated Triassic sediments, ophites and Al-
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bian mafic intrusions. The Arguenos–Moncaup peridotites

are overlain in tectonic contact by highly metamorphosed

Mesozoic marbles (Debeaux and Thiébaut 1958; Hervouët

et al., 1987; Barrère et al., 1984a, b). Although the peri-

dotites have risen to near-surface levels, there is no evidence

for sedimentary reworking indicating their exhumation on

the basin floor. Indeed, on the basis of their geological set-

ting, it can be deduced that the mantle rocks have remained

capped by the Mesozoic marbles together with small slices

of continental crust, during their ascent along a detachment

fault (Lagabrielle et al., 2010). There, the highest tempera-

tures (500–600◦C) are recorded directly in marbles on top

of the peridotite massif, confirming the general trend already

suggested from the eastern domain. These Raman tempera-

tures reach values around 400–450◦C in the metasediments

resting over the Paleozoic crustal slice of Job Valley, and they

finally decrease to values around 300–350◦C in the regional

background. As suggested by Golberg and Leyreloup (1990),

this correlation is the result of the very strong thermal gradi-

ent in the locus of the extreme crustal thinning.

At the Pyrenean scale, the original distribution of the

thinning-related thermal gradient has not been preserved as

well as in the Arguenos–Moncaup area since it has been

disrupted by tectonic and sedimentary processes in many

places. However, there exist additional remnants of initial re-

lationships, with temperature increasing when approaching

the exhumed mantle rocks in some locations (e.g., Saraillé,

Roquiague, Montaut, Salvezines).

7.3 Pre- and post-metamorphic disruption of the

sedimentary pile

7.3.1 Triassic to Albian metasediments

An important, well-observed feature of the eastern domain

is that the intensity of the peak metamorphism is not corre-

lated with the stratigraphic age. High temperatures are found

in Triassic or Albian sediments as well. Also, in the Aulus

basin (Fig. 8) peak temperatures of 420 to 600◦C have been

measured in Neocomian material as well as in Jurassic or

Triassic material; e.g., one of the coolest temperatures of the

Aulus basins has been obtained in the Liassic fossiliferous

marbles of the Col Dret. This apparent chaotic disposition of

the isotherms within the Triassic to Albian sedimentary pile

can be explained by a combination of several mechanisms:

– It can be the consequence of the propagation of the ther-

mal anomaly by magmas or fluid circulations, as already

proposed by Dauteuil and Ricou (1989). Fluids circu-

lating through the sedimentary pile could be responsi-

ble for their hydraulic brecciation. We did not observe

any correlation between the intensity of peak metamor-

phism and the position of the breccias. For example, the

Neocomian material exposed in the western part of the

Aulus basin is nearly devoid of breccias, but it displays

peak temperatures of 500–600◦C. However, other evi-

dence for fluid circulations may be inconspicuous (cf.

Sect. 5).

– It can result from the tectonic dismembering affecting

the sedimentary pile before and/or during the peak of

metamorphism. This phenomenon is observed and de-

scribed further east, e.g., on the southern flank of the

Mouthoumet massif and on the northern flank of the

Agly massif, where sedimentary formations of various

ages, from the Triassic to the Aptian, are intensely trun-

cated and/or scalped (Durand-Delga, 1964; Bessière

et al., 1989; Clerc and Lagabrielle, 2014). Tectonic

contacts sealed by mid-Cenomanian deposits are com-

monly observed between Liassic and Paleozoic, Juras-

sic and Paleozoic, Middle or Upper Jurassic and Trias-

sic, Aptian and Liassic or Triassic, and Cretaceous and

Paleozoic. No stratigraphic repetition of any member of

the sedimentary series has been observed, and such a

disposition can be interpreted as the result of a pre-mid-

Cenomanian extensional tectonics described in the lit-

erature as the pre-Cenomanian phase (Casteras, 1933;

Mattauer and Proust, 1965; Durand-Delga, 1965).

– Finally, later Alpine compressive inversion of the NPZ

may also be responsible for the juxtaposition of meta-

morphic domains of various grades.

7.3.2 Cenomanian and younger metasediments

By contrast, the mid-Cenomanian, Turonian and younger

metasediments always display metamorphic record of lower

grade with respect to the metasediments on which they lie (up

to 350◦C in the Lherz and Vicdessos area; Fig. 8). This ob-

servation indicates that their deposition was contemporane-

ous to or followed the extensional tectonics described above.

The Cenomanian and later flyschs probably acted as a blan-

ket on the basins, facilitating the temperature increase.

8 Estimating the importance of fluid circulations

The HT-LP Cretaceous metamorphism was first considered

as isochemical by Ravier (1959) and Ravier and Thiebaut

(1982). Evidence of fluid circulations during the meta-

morphism was later presented by Bernus-Maury (1984).

For Bernus-Maury (1984), Golberg (1987) and Dauteuil et

al. (1987), CO2- and H2O-rich fluids released by the decar-

bonation reaction of siliceous dolomitic limestones are re-

sponsible for local brecciation of the Mesozoic metasedi-

ments. For Minnigh et al. (1980) massive quenching of the

peridotites and decarbonation reaction would have gener-

ated most of the carbonate- and peridotite-bearing breccias.

However, this hypothesis does not explain (i) the sedimen-

tary fabrics observed in some of these breccias and (ii) the

syn-metamorphic foliation observed in the Mesozoic clasts
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of these breccias (Choukroune, 1980; Lagabrielle and Bod-

inier, 2008; Clerc et al., 2012, 2013).

Most of the scapolite occurrences are limited to the Trias-

sic and Liassic units, which are known to be meta-evaporitic

sequences (Ravier and Thiebaut 1982). Furthermore these

minerals often display a chemical zonation resulting from

the interaction with Na- and Cl-rich fluids, suggesting small-

scale fluid circulation within the sedimentary pile (Golberg

and Leyreloup, 1990). Evidence of small-scale intra-basinal

fluid circulation is proposed in Fig. 14. In the NPZ, scapolite

is commonly observed in various marbles where it is local-

ized along discontinuities such as fractures (Fig. 14) or strati-

graphic joints. At the Col d’Agnes (Lherz Area), lagoonal de-

posits of Hettangian age (Ravier and Thiebaut 1982) show a

dotty aspect with numerous millimeter-size rounded pockets

filled by whitish carbonates (Fig. 14c). These pockets locally

interconnect and gather into veinlets and veins (Fig. 14d). We

interpret this feature as evidence of percolation, segregation

and migration of fluids (Fig. 14c and d). Such fluids origi-

nating from Triassic and Liassic lagoonal deposits are good

candidates to explain the allochemical scapolites observed

higher up in the sedimentary pile (Fig. 14a and b). Accord-

ing to Dauteuil and Ricou (1989), the high thermal gradi-

ent responsible for the HT-LP metamorphism (> 600◦C – 2

to 4 kbar) cannot be reached solely by thermal conduction.

Instead, enhancement of the heat propagation by the fluid

circulations would be efficient enough to reach gradients of

more than 100◦C km−1. Similar gradients are reported in the

Salton Sea (Muffler and White, 1969; McDowell and El-

ders, 1980; McDowell and Elders, 1983), where Younker et

al. (1982) identified small-scale convection cells beneath an

impermeable cap rock.

9 Evaporite-enhanced thermal conduction vs.

blanketing effect

Due to their high thermal conductivity, evaporitic rocks such

as anhydrite, halite or sylvite are very efficient at transferring

heat to the surrounding layers. This phenomenon, referred to

as the “chimney effect” in salt diapirs (Noack et al., 2010;

Kaiser et al., 2011), can be responsible for positive anoma-

lies of a few degrees in the covering and adjacent layers, and

negative anomalies of a few tens of degrees in the subjacent

layers (e.g., Yu et al., 1992). The temperature effect of the salt

is therefore well below the temperature differences recorded

in the IMZ. In the North Pyrenean realm, the abundant Tri-

assic evaporites may hence have played a minor role in the

propagation of the Cretaceous thermal anomaly. Moreover,

the contrast of conductivity between limestone and evaporitic

salts strongly diminishes with increasing temperatures (Ta-

ble 3); e.g., the thermal conductivities of halite and calcite

become equivalent around 400◦C. The pumping-up effect of

the evaporites is hence probably negligible in the hottest parts

of the eastern NPZ. But in the cooler central and western do-

main, it may explain the focalization of the thermal anoma-

lies around the Saraillé and Roquiague areas that are consid-

ered as former diapiric structures (Canérot 1989; Canérot and

James, 1999). Moreover, facilitation of heat transfer by the

evaporitic layers may also be expressed in a horizontal direc-

tion, which could explain the strong contrast of temperature

observed between the Triassic evaporites and the overlying

series in the Arnave, Arignac, Bonrepaux, Betchat, Salies du

Salat, Gotein and Caresse-Salies du Béarn areas (Thiébaut

et al., 1988, 1992). A similar process may explain the higher

temperatures obtained on the Mesozoic cover (up to 494◦C in

the Triassic of the Agly Paleozoic massif) than in the massif

itself (351◦C in the Silurian).

By contrast, claystone, shales and organic-matter-rich sed-

iments are characterized by remarkably low thermal conduc-

tivities in the range of 0.2–1.0 W m−1/◦C, lower by a factor

of 2 or more than other common sedimentary rocks (Black-

well and Steele, 1989). These rocks are known to act as a

thermal blanket retaining heat within the underlying rocks

(Blackwell and Steele, 1989; Pollack and Cercone, 1994;

Nunn and Lin, 2002). We hence propose that the organic-

matter-rich black shales of the Albian–Cenomanian black

flysch (Souquet et al., 1985; Debroas, 1990) may have par-

ticipated in the strong thermal anomaly registered within the

Albian–Cenomanian black flysch itself and in the underly-

ing Mesozoic series. In addition, its relative impermeabil-

ity due to high clay content must have consistently limited

the penetration of basinal and meteoric water in the system,

hence annihilating convective cooling (Boulvais et al., 2015).

In contrast with the starved paleotethys margin (Manatschal

and Bernoulli, 1999; Manatschal, 2004; Masini et al., 2012)

and Iberian margin (Shipboard Scientific Party, 1987; Man-

atschal and Bernoulli, 1999; Soares et al., 2012), the Pyre-

nean paleomargin seems to have developed in a sediment-

rich environment, favorable to a marked blanketing effect.

10 Timing and relationship between metamorphism

and magmatism

The ages obtained on our samples confirm the contempo-

raneity of the Cretaceous magmatism and metamorphism in

the NPZ. This is well demonstrated in the Lherz area where,

with the exception of one sample, metamorphic muscovite

and amphiboles provide ages similar to the amphibole age

of an undeformed gabbro at 94.7± 1.3 Ma. The age of about

100 Ma reported for a single muscovite grain from this area

suggests that the thermal anomaly started to develop earlier,

which is in accordance with the 40Ar–39Ar data reported fur-

ther east in the Arignac and Trimouns places (100–109 Ma)

as well as with the 40K–40Ar age of Les Plagneaux gabbros

(107–109 Ma; Montigny et al., 1986) and the U–Pb age of

several metasomatic albitite bodies in the eastern Pyrenees

(117–98 Ma; Fallourd et al., 2014, and references therein).

In the Moncaup area, the magmatic, metamorphic and hy-
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Figure 14. Top: Field indications of fluid circulations in the Urgonian marbles near Estagel (Bas-Agly syncline). Centimeter-long scapolite

ghosts are found in the immediate vicinity of fractures (a) or interbeds (b). Note that the former scapolite crystals show no preferential

orientation, whereas the marble presents a clear ductile foliation responsible for the stretching and flattening of fossils. In this case, the

fluid circulation hence postdates the main hot deformation event. Bottom: Percolation (c) and segregation (d) of fluids in the Triassic meta-

evaporites of the Col d’Agnes (Aulus basin). Such meta-evaporitic material is a potential source of Na- and Cl-rich fluids responsible for the

precipitation of scapolites.

drothermal activity is restricted to a shorter period as indi-

cated by 40Ar–39Ar and U–Pb ages close to 100 Ma.

Alteration and recrystallization of some of the NPZ Creta-

ceous alkaline magmatic rocks by the HT-LP metamorphism

indicate that magmatism cannot account for the regional ther-

mal anomaly (Azambre, 1967; Azambre et al., 1971, 1992;

Azambre and Rossy, 1976; Ternet et al., 1997; Azambre and

Monchoux, 1998). Consistently, the present-day distribution

of the Cretaceous magmatic rocks is clearly not correlated to

the distribution of the isograds. For example, magmatism is

abundant in the cold Mauléon basin whereas it is scarce in

the Lherz or Boucheville areas.
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Table 3. Thermal conductivity of calcite, halite and pure water at 0, 50, 100, 200, 300 and 400 ◦C, after Clark (1966) and Clauser and

Huenges (1995).

Thermal conductivity (Wm−1 ◦C−1)

0 ◦C 50 ◦C 100 ◦C 200 ◦C 300 ◦C 400 ◦C

Calcite 3.48 3.00 3.72 2.37 2.16 2.06

4.00 3.4 2.99 2.55 2.29 2.13

Halite (crystal) 6.11 5.02 4.21 3.12 2.49 2.09

Halite (Rock) > 6.65 > 6.57 > 6.57 > 4.80 > 3.67 > 2.98

< 8.25 < 4.80 < 4.80 < 3.67 < 2.98 < 2.47

Pure water 0.56 – 0.66 – – –

15 km

5 
km

Cenomanian to Coniacian: HT/LP m tamorphism in the Mesozoic cover

Late Aptian Albian: �uids and metasomatism in the crust
S N

North Pyrenean
massif

Future
Axial Zone

Unroofed
subcontinental

mantle

HT/LP Metamorphism
e.g., Boucheville

HT/LP Metamorphism
e.g., Bas Agly syncline

S N

? ?

Figure 15. Schematic representation of the evolution of the Pyrenenean Cretaceous metamorphism and magmatism in response to crustal

extension. Top: early hydrothermal-dominated phase affecting the crystalline basement. Down: Phase of HT-LP metamorphism, occurring

mainly in the pre- and syn-rift sedimentary cover, in response to the attenuation of the continental crust.

11 Hot versus cold margins?

Direct access to the present-day passive margin is limited by

thick sedimentary deposits, and information about the ther-

mal history of the margin is scarcely gathered. The use of

fossil margins exposed in mountain belts offers a unique op-

portunity to study the metamorphic imprint of the extension.

However, when not overprinted by the subduction metamor-

phism, the Alpine analog indicates only low-grade metamor-

phism. At present, very few examples of hot passive mar-

gin presenting evidence of exhumed subcontinental mantle

or deep crust have been reported. In the Zagros Mountains,

mapping reveals that pre-rift cover and mantle were super-

posed early in the Kermanshah ophiolite (Wrobel-Daveau et

al., 2010), where high temperatures are recorded in the Meso-

zoic sediments along their contact with the peridotites (Hall,

1980). In the Zagros of Iraq, Jassim et al. (1982) described a

similar metamorphism affecting sediments close to exhumed

ultramafic rocks with temperatures up to 750◦C over 2.5 km

thickness. In the light of our results, we propose a distinc-

tion between “cold” Iberian or Alpine-type passive margins

and “hot” Pyrenean –type margins. The cause of this thermal

variability along passive margins is still unclear. I could be

explained by several factors such as the kinematic context

(transtension versus extension), the mantle dynamics (hot

versus cold mantle), the sedimentary input or the extension

rate.

12 Conclusions

In this work, we measured more than 100 RSCM peak tem-

peratures relevant to the HT-LP metamorphism in the North

Pyrenean Zone, and we report 19 new 40Ar–39Ar and ages

from metamorphic and magmatic samples.

Our results are in full agreement with previous data and

confirm the first-order link between the metamorphism and

the Cretaceous crustal thinning. The primary link between

mantle exhumation and thermal anomaly is particularly well

illustrated by our new data set in the Arguenos–Moncaup

area.

At the scale of the whole NPZ, we observe a clear in-

crease of the temperatures from west to east that could be ex-

plained by a combination of several scenarios: (i) the whole

domain underwent the same HT-LP metamorphism, but later

tectonic inversion led to underthrusting and burial of the

highest-grade rocks in the western part of the NPZ. (ii) The

thermal zonation may be a consequence of the lateral vari-
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ation of the kinematics along the NPZ, implying a domi-

nant N–S extension in the west and a NW–SE transtension

in the east, leading to enhanced thermal gradients with vari-

able hydrothermal circulation patterns. (iii) The intensity of

the HT metamorphism seems correlated to the rising veloc-

ity of the exhumed peridotites. (iv) The lateral variability of

the thermal anomaly along the NPZ may be related to the

scissors-shape opening of the extended domain during the

Cretaceous. Isotherms may have been more spaced in the

wider western NPZ than in the narrower eastern NPZ.

Different parameters may have played a role in the prop-

agation of the metamorphism. We suggest that the circula-

tion of fluids originating from the basin rocks themselves

may have relayed the thermal anomaly across the sedimen-

tary column (Fig. 14). In addition, it is noteworthy that the

pre- and syn-rift material of the NPZ is generally limited at

its base by the highly conductive evaporites of the Triassic

and at its top by the thick and insulating organic-rich Albian–

Cenomanian black flysch. This salt effect and thermal blan-

ket effect of the organic-rich black flysch probably facilitated

the elevation of the temperatures.

Fig. 15 proposes a conceptual model in which the conti-

nental crust is first weakened, then thinned and altered by

hydrothermal circulations during the upper Aptian–Albian.

This first phase led to the extension and thinning of the con-

tinental crust where the North Pyrenean massifs constitute

crustal boudins. During the Cenomanian to Coniacian, the

hyper-thinned domains opened on each side of these boudins

concentrated most of the thermal anomaly in relation to the

development of thick sedimentary basins.

The presence of a long-lasting HT-LP metamorphic event

along the Pyrenean paleomargins has to be taken into con-

sideration when analyzing the thermo-structural history of

passive margins. Metamorphic events of this kind has never

yet been described along the fossil margins exposed within

the Alpine or Appalachian–Caledonian orogens. This bears

important consequences regarding (i) the variability of the

thermal regime that we may expect at the foot of worldwide

passive margins and (ii) the variability of structural style re-

sulting from this changing thermicity.

The Supplement related to this article is available online

at doi:10.5194/se-6-643-2015-supplement.

Author contributions. C. Clerc conducted and interpreted the struc-

tural and a part of the thermometric data and wrote most of the

paper; A. Lahfid brought his expertise in RSCM and conducted

part of the analysis; P. Monié conducted the 40Ar–39Ar dating;

Y. Lagabrielle, C. Clerc and J. C. Ringenbach directed C. Clerc’s

PhD and as such proposed the extensive use of the RSCM on the

NPZ. M. Poujol conducted U–Th dating on titanite from Arguenos–

Moncaup albitites; P. Boulvais contributed ideas on the crustal dis-

tribution of the HT-LP metamorphism. E. Masini participated in

a sampling campaign in the western NPZ. M. de St Blanquat fur-

nished some of the ductile lineation measurements from the eastern

NPZ. All authors contributed intellectually to the paper.

Acknowledgements. This work was made possible thanks to the

CNRS and TOTAL S.A. through a joint PhD grant to C. Clerc. We

are grateful to B. Goffé, who encouraged the application of the

Raman thermometry to the NPZ.

Edited by: D. J. J. van Hinsbergen

References

Albarède, F. and Michard-Vitrac, A.: Age and significance of the

North Pyrenean metamorphism, Earth Planet. Sci. Lett., 40, 327–

332, doi:10.1016/0012-821X(78)90157-7, 1978a.

Albarède, F. and Michard-Vitrac, A.: Datation du métamorphisme

des terrains secondaires des Pyrénées par des méthodes Ar-Ar et

Rb-Sr. Ses relations avec les péridotites associées, B. Soc. Geol.

Fr., XX, 681–688, doi:10.1016/ 0012-821X(78)90157-7, 1978b.

Andersen, T. B., Corfu, F., Labrousse, L., and Osmundsen, P.-

T.: Evidence for hyperextension along the pre-Caledonian mar-

gin of Baltica, J. Geol. Soc., 169, 601–612, doi:10.1144/0016-

76492012-011, 2012.

Azambre, B.: Sur les roches intrusives sous-saturées du Crétacé des

Pyrénées, Thèse, Université Paris 6, Paris, 1967.

Azambre, B. and Monchoux, P.: Métagabbros amphiboliques et

mise en place crustale des lherzolites des Pyrénées (France),

Comptes Rendus de l’Académie des Sciences, 327, 9–15,

doi:10.1016/S1251-8050(98)80012-8, 1998 (in French).

Azambre, B. and Rossy, M.: Le magmatisme alcalin d’âge crétacé

dans les Pyrénées occidentales; ses relations avec le métamor-

phisme et la tectonique, B. Soc. Geol. Fr., 7, 1725–1728, 1976.

Azambre, B., Ravier, J., and Thiebaut, J.: A propos du phénomène

de dipyrisation des roches éruptives d’âge secondaire des

Pyrénées, C. R. Sceances. Acad. Sci. Ser. D, 272, 2137–2139,

1971.

Azambre, B., Rossy, M., and Lago, M.: Caractéristiques

pétrologiques des dolérites tholéitiques d’âge triasiques (ophites)

du domaines pyrénéen, B. Mineral., 110, 379–96, 1987.

Azambre, B., Rossy, M., and Albarède, F.: Petrology of the alka-

line magmatism from the Cretaceous North-Pyrenean rift zone

(France and Spain), Eur J Miner., 4, 813–834, 1992.

Barrère, P., Bouquet, C., Debroas, E.-J., Pélissonier, H., Peybernès,

B., Soulé, J.-C., Souquet, P., and Ternet, Y.: Carte géol. France

(1/50 000), feuille Arreau (1072), 1984a.

Barrère, P., Bouquet, C., Debroas, E.-J., Pélissonier, H., Peybernès,

B., Soulé, J.-C., Souquet, P., and Ternet, Y.: Notice explicative,

Carte géol. France (1/50 000), feuille Arreau (1072), BRGM édi-

tions., BRGM, Orléans, 1984b.

Bernus-Maury, C.: Etude des paragéneses caractéristiques du mé-

tamorphisme mésozoïque dans la partie orientale des Pyrénées,

Thèse, Paris, 1984.

Bessière, G., Bilotte, M., Crochet, B., Peybernès, B., Tambareau,

Y., and Villatte, J.: Notice explicative, Carte géol. France (1/50

000), feuille Quillan (1077), BRGM éditions, BRGM, Orléans,

1989.

www.solid-earth.net/6/643/2015/ Solid Earth, 6, 643–668, 2015

http://dx.doi.org/10.5194/se-6-643-2015-supplement
http://dx.doi.org/10.1016/0012-821X(78)90157-7
http://dx.doi.org/10.1144/0016-76492012-011
http://dx.doi.org/10.1144/0016-76492012-011
http://dx.doi.org/10.1016/S1251-8050(98)80012-8


664 C. Clerc et al.: HT metamorphism at passive margins: the Pyrenean case

Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N.: Ra-

man spectra of carbonaceous material in metasediments: a

new geothermometer, J. Metamorph. Geol., 20, 859–871,

doi:10.1046/j.1525-1314.2002.00408.x, 2002.

Blackwell, D. D. and Steele, J. L.: Thermal Conductiv-

ity of Sedimentary Rocks: Measurement and Significance,

in: Thermal History of Sedimentary Basins, edited by:

Naeser, N. D. and McCulloh, T. H., Springer, New York,

available at: http://link.springer.com.biblioplanets.gate.inist.fr/

chapter/10.1007/978-1-4612-3492-0_2 13–36, 1989.

Bodinier, J.-L., Fabriès, J., Lorand, J.-P., and Dupuy, C.: Geochem-

istry of amphibole pyroxenite veins from the Lherz and Freych-

inède ultramafic bodies (Ariège, French Pyrenees), B. Mineral.,

110, 345–358, 1987.

Boillot, G., Winterer, E. L., Meyer, A. W., Baltuck, M., Bergen,

J. A., Comas, M. C., Davies, T. A., Dunham, K., Evans, C. A.,

Girardeau, J., Goldberg, D., Jansa, L. F., Johnson, J. A., Kasa-

hara, J., Loreau, J.-P., Luna, E., Moullade, M., Ogg, J., Sarti, M.,

Thurow, J., and Williamson, M. A.: Proceedings of the Ocean

Drilling Program, 103 Initial Reports, Vol. 103, Ocean Drilling

Program, doi:10.2973/odp.proc.ir.103.1987, available at: http://

www-odp.tamu.edu/publications/103_IR/103TOC.HTM, 1987.

Boirie, J.-M.: Etude sédimentologique des Poudingues de

Mendibelza (P.A.), Ph.D. thesis, Univ. de Toulouse, Toulouse,

France, 1981.

Boirie, J.-M. and Souquet, P.: Les poudingues de Mendibelza:

dépôTs de cônes sous-marins du rift Albien des Pyrénées,

B. Cent. Rech. Expl., 6, 405–435, 1982.

Boulvais, P., de Parseval, P., D’Hulst, A., and Paris, P.: Carbonate al-

teration associated with talc-chlorite mineralization in the eastern

Pyrenees, with emphasis on the St. Barthelemy Massif, Mineral.

Petrol., 88, 499–526, doi:10.1007/s00710-006-0124-x, 2006.

Boulvais, P., Ruffet, G., Cornichet, J., and Mermet, M.: Creta-

ceous albitization and dequartzification of Hercynian peralumi-

nous granite in the Salvezines Massif (French Pyrénées), Lithos,

93, 89–106, doi:10.1016/j.lithos.2006.05.001, 2007.

Boulvais, P.: O, C and Sr isotopic constraints on vein formation dur-

ing the North Pyrenean Metamorphism, Compte Rendus Géo-

sciences, accepted, 2015.

Canérot, J.: Rifting eocrétacé et halocinèse sur la marge ibérique

des Pyrénées Occidentale (France), Conséquences structurales,

B. Cent. Rech. Expl., 13, 87–99, 1989.

Canérot, J. and James, V.: Diapirism and post-Triassic structural de-

velopment of the western Pyrenees and southern Aquitaine, Eclo-

gae. Geol. Helv., 92, 63–72, 1999.

Carracedo, M., Larrea, F. J., and Alonso, A.: Estructura y orga-

nización de las coladas submarinas: características de las lavas

almohadilladas de edad cretácica que afloran en la Cordillera

Vasco- Cantábrica, Estud. Geológicos, 55(5-6), 45–53, 1999.

Castanares, L. M., Robles, S., and Vicente Bravo, J. C.: Dis-

tribution estratigrafica de los episodios volcanicos submarinos

del Albiense-Santoniense en la Cuenca Vasca (sector Gernika-

Plentzia, Bizkaia), Geogaceta, 22, 43–46, 1997.

Castanares, L. M., Robles, S., Gimeno, D., and Vicente Bravo,

J. C.: The Submarine Volcanic System of the Errigoiti Forma-

tion (Albian-Santonian of the Basque-Cantabrian Basin, North-

ern Spain): Stratigraphic Framework, Facies, and Sequences, J.

Sediment. Res., 71, 318–333, doi:10.1306/080700710318, 2001.

Casteras, M.: Recherches sur la structure du versant nord

des Pyrénées centrales et orientales, Serv Carte Géol Fr.,

XXXVII(189), 515p., 1933.

Casteras, M., Canérot, J., Paris, J.-P., Tisin, D., Azambre, B., and

Alimen, H.: Carte géol. France (1/50 000), feuille Oloron-Sainte-

Marie (1051), 1970.

Chevrot, S., Villaseñor, A., Sylvander, M., Benahmed, S., Beucler,

E., Cougoulat, G., Delmas, P., de Saint Blanquat, M., Diaz, J.,

Gallart, J., Grimaud, F., Lagabrielle, Y., Manatschal, G., Moc-

quet, A., Pauchet, H., Paul, A., Péquegnat, C., Quillard, O., Rous-

sel, S., Ruiz, M., and Wolyniec, D.: High-resolution imaging of

the Pyrenees and Massif Central from the data of the PYROPE

and IBERARRAY portable array deployments, J. Geophys. Res.

Solid Earth, 119, 6399–6420, doi:10.1002/2014JB010953, 2014.

Chevrot, S., Sylvander, M., Diaz, J., Ruiz, M., Paul, A.,

and the Pyrope working group: The Pyrenean architecture

as revealed by teleseismic P-to-S converted waves recorded

along two dense transects, Geophys. J. Int., 200, 1094–1105,

doi:10.1093/gji/ggu400, 2015.

Chew, M. and Van Staal, C. R.: The ocean-continent tran-

sition zones along the Appalachian-Caledonian margin of

Laurentia: exemples of large-scale hyperextension during

the openning of the Iapetus Ocean, Geosci. Can., 41,

doi:10.12789/geocanj.2014.41.040, 2014.

Choukroune, P.: Relation entre tectonique et métamorphisme dans

la zone nord-pyrénéenne centrale et orientale, B. Soc. Geol. Fr.,

XIV, 3–11, 1972.

Choukroune, P.: Structure et Evolution Tectonique de la Zone Nord

Pyrénéenne: Analyse de la déformation dans une Portion de

Chaîne à Schistosité Subverticale, Mem. Soc. Geol. Fr. Ser., 127,

176 pp., 1976.

Choukroune, P.: Comment and reply on “Quenching: An ad-

ditional model for emplacement of the Iherzolite at Lers

(French Pyrenees)”, Geology, 8, 514–515, doi:10.1130/0091-

7613(1980)8<514:CAROQA>2.0.CO;2, 1980.

Choukroune, P. and Mattauer, M.: Tectonique des plaques et

Pyrénées: Sur le fonctionnement de la faille transformante nord-

Pyrénéenne; comparaisons avec les modèles actuels, B. Soc.

Geol. Fr., 20, 689–700, 1978.

Choukroune, P. and Séguret, M.: Carte structurale des Pyrénées,

1973.

Clark, S. P.: Thermal conductivity. Handbook of physical constants,

rev. ed. Geol. Soc. Am. Mem. 97, 460–482, 1966.

Clauser, C. and Huenges, E.: Thermal Conductivity of Rocks and

Minerals, in Rock Physics and Phase Relations, edited by: T.

J. Ahrens, 105–126, American Geophysical Union, available

at: http://onlinelibrary.wiley.com/doi/10.1029/RF003p0105/

summary, 1995.

Clerc, C. and Lagabrielle, Y.: Thermal control on the modes

of crustal thinning leading to mantle exhumation, Insights

from the Cretaceous Pyrenean hot paleomargins, Tectonics,

2013TC003471, doi:10.1002/2013TC003471, 2014.

Clerc, C., Lagabrielle, Y., Neumaier, M., Reynaud, J.-Y., and Saint-

Blanquat, M.: Exhumation of subcontinental mantle rocks: evi-

dence from ultramafic-bearing clastic deposits nearby the Lherz

peridotite body, French Pyrenees, Bull. Soc. Geol. Fr., 183, 443–

459, doi:10.2113/gssgfbull.183.5.443, 2012.

Clerc, C., Boulvais, P., Lagabrielle, Y., and Blanquat, M.: Ophical-

cites from the northern Pyrenean belt: a field, petrographic and

Solid Earth, 6, 643–668, 2015 www.solid-earth.net/6/643/2015/

http://dx.doi.org/10.1046/j.1525-1314.2002.00408.x
http://link.springer.com.biblioplanets.gate.inist.fr/chapter/10.1007/978-1-4612-3492-0_2
http://link.springer.com.biblioplanets.gate.inist.fr/chapter/10.1007/978-1-4612-3492-0_2
http://dx.doi.org/10.2973/odp.proc.ir.103.1987
http://www-odp.tamu.edu/publications/103_IR/103TOC.HTM
http://www-odp.tamu.edu/publications/103_IR/103TOC.HTM
http://dx.doi.org/10.1007/s00710-006-0124-x
http://dx.doi.org/10.1016/j.lithos.2006.05.001
http://dx.doi.org/10.1306/080700710318
http://dx.doi.org/10.1002/2014JB010953
http://dx.doi.org/10.1093/gji/ggu400
http://dx.doi.org/10.12789/geocanj.2014.41.040
http://dx.doi.org/10.1130/0091-7613(1980)8<514:CAROQA>2.0.CO;2
http://dx.doi.org/10.1130/0091-7613(1980)8<514:CAROQA>2.0.CO;2
http://onlinelibrary.wiley.com/doi/10.1029/RF003p0105/summary
http://onlinelibrary.wiley.com/doi/10.1029/RF003p0105/summary
http://dx.doi.org/10.1002/2013TC003471
http://dx.doi.org/10.2113/gssgfbull.183.5.443


C. Clerc et al.: HT metamorphism at passive margins: the Pyrenean case 665

stable isotope study, Int. J. Earth Sci., 1–23, doi:10.1007/s00531-

013-0927-z, 2013.

Conquéré, F.: Les pyroxénolites à amphibole et les amphibololites

associées aux lherzolites du gisement de Lherz (Ariège, France):

un exemple du rôle de l’eau au cours de la cristallisation frac-

tionnée des liquides issus de la fusion partielle de lherzolites,

Contrib. Mineral. Petrol., 33, 32–61, doi:10.1007/BF00373793,

1971.

Costa, S. and Maluski, H.: Use of the 40Ar-39Ar stepwise heat-

ing method for dating mylonite zones: An example from the

St. Barthélémy massif (Northern Pyrenees, France), Chem.

Geol. Isot. Geosci. Sect., 72(2), 127–144, doi:10.1016/0168-

9622(88)90061-9, 1988.

Dauteuil, O., and Ricou, L. E.: Une circulation de fluides de

haute température à l’origine du métamorphisme crétacé nord-

Pyrénéen, Geodin. Acta, 3, 237–250, 1989.

Dauteuil, O., Raymond, D., and Ricou, L. E.: Brèches de fractura-

tion hydraulique dans la zone métamorphique des pyrénées, ex-

emple à l’Est du Saint-Barthélemy., C. R. Acad. Sci. Paris Ser.

II, 304, 1025–1028, 1987.

Debeaux, M. and Thiébaut, J.: Les affleurements du socle paléo-

zoique entre les massifs de la Barousse et de Milhas, Bull. Soc.

Hist. Nat. Toulouse, 93, 522–528, 1958.

Debroas, E.-J.: Sédimentogenèse et position structurale des flyschs

crétacés du versant nord des Pyrénées centrales, Bull. Bur. Rech.

Géol. Min., I, 305–320, 1976.

Debroas, E.-J.: Evolution de la fosse du flysch ardoisier de l’albien

supérieur au Sénonien inférieur (zone interne métamorphique

des Pyrénées navarro-langudociennes), Bull. Soc. Géol. Fr., 20,

639–648, 1978.

Debroas, E.-J.: Le flysch à fucoïdes d’Uchentein témoin d’un

escarpement turono-sénonien inférieur de la paléofaille nord

pyrénéenne, Pyrénées Centrales, France, Strata, 77–93, 1987.

Debroas, E.-J.: Le flysch noir albo-cenomanien témoin de la struc-

turation albienne à sénonienne de la Zone nord-pyrénéenne en

Bigorre (Hautes-Pyrénées, France), B. Soc. Geol. Fr., 8, 273–

285, 1990.

Debroas, E.-J.: Le bassin du Flysch noir albo-cénomanien dans les

Pyrénées centrales?: un rift à ouverture triphasée, en transten-

sion senestre, d’extension décroissante vers l’Est et d’amplitude

pluridécakilomé-trique, 2003.

Debroas, E.-J. and Azambre, B.: Des brèches aux lherzolites. La

mise en place des Lherzolites dans les fossés du flysch noir

albo-cénomanien de la Ballongues et d’Aulus (Zone Nord-

Pyrénéenne, Ariège), Excursion guide book, 120 pp., AGSO,

2012.

Demange, M., Lia-Aragnouet, F., Pouliguen, M., Perrot, X., and

Sauvage, H.: Les syénites du castillet (massif de l’agly, pyrénées

orientales, France): une roche exceptionnelle dans les pyrénées,

Comptes Rendus Académie Sci. – Ser. IIA – Earth Planet. Sci.,

329, 325–330, doi:10.1016/S1251-8050(00)88582-1, 1999.

Dinarès-Turell, J., and Garcia-Senz, J.: Remagnetization of Lower

Cretaceous limestones from the southern Pyrenees and relation to

the Iberian plate geodynamic evolution, J. Geophys. Res. Solid

Earth, 105, 19405–19418, doi:10.1029/2000JB900136, 2000.

Durand-Delga, M.: Remarques sur la stratigraphie et la struc-

ture du Mésozoïque situé entre Estagel et Perpignan (Pyrénées-

Orientales), Comptes Rendus Académie Sci. Paris, 259, 837–

840, 1964.

Durand-Delga, M.: Au sujet de la phase anté-cénomanienne à l’Est

de Quillan, C. R. Somm. Soc. Geol. Fr., 2, 61–62, 1965.

Fabriès, J., Lorand, J.-P., Bodinier, J.-L., and Dupuy, C.: Evo-

lution of the Upper Mantle beneath the Pyrenees: evidence

from orogenic spinel lherzolite massifs, J. Petrol., 2, 55–76,

doi:10.1093/petrology/Special_Volume.2.55, 1991.

Fabriès, J., Lorand, J.-P., and Bodinier, J.-L.: Petrogenetic evolu-

tion of orogenic lherzolite massifs in the central and western

Pyrenees, Tectonophysics, 292, 145–167, doi:10.1016/S0040-

1951(98)00055-9, 1998.

Fallourd, S., Poujol, M., Boulvais, P., Paquette, J.-L., Blanquat, M.

de S., and Rémy, P.: In situ LA-ICP-MS U–Pb titanite dating

of Na–Ca metasomatism in orogenic belts: the North Pyrenean

example, Int. J. Earth Sci., 103, 667–682, doi:10.1007/s00531-

013-0978-1, 2014.

Froitzheim, N., and Eberli, G. P.: Extensional detachment fault-

ing in the evolution of a Tethys passive continental mar-

gin, Eastern Alps, Switzerland, Geol. Soc. Am. Bull., 102(9),

1297–1308, doi:10.1130/0016-7606(1990)102< 1297:EDFITE>

2.3.CO;2, 1990.

Garcia-Senz, J.: Cuencas extensivas del Cretacico Inferior en los

Pireneos Centrales - formacion y subsecuente inversion, PhD

Thesis, University of Barcelona, Barcelona, Spain., 2002.

Garrido-Megias, A., and Rios, L. M.: Sìntesis geològica del Secun-

dario y Terciario entre los rìos Cinca y Segre (Pirineo Central

de la vertiente surpirenaica, provincias de Huesca y Lerida), Bol

Geol Min., 83, 1–47, 1972.

Golberg, J.-M.: Le métamorphisme mésozoïque dans la partie ori-

entale des Pyrénées: relation avec l’évolution de la chaîne au Cré-

tacé., Doc. Trav. Centre Geol. Geophys. Montpellier., Université

des Sciences et Techniques du Languedoc, Montpellier., 1987.

Golberg, J.-M., and Leyreloup, A.-F.: High temperature-low pres-

sure Cretaceous metamorphism related to crustal thinning (East-

ern North Pyrenean Zone, France), Contrib. Mineral. Petrol.,

104, 194–207, 1990.

Golberg, J.-M., and Maluski, H.: Données nouvelles et mise au

point sur l’âge du métamorphisme pyrénéen., C. R. Acad. Sci.

Paris, 306, 429–435, 1988.

Handy, M. R., M. Schmid, S., Bousquet, R., Kissling, E., and

Bernoulli, D.: Reconciling plate-tectonic reconstructions of

Alpine Tethys with the geological–geophysical record of spread-

ing and subduction in the Alps, Earth-Sci. Rev., 102), 121–158,

doi:10.1016/j.earscirev.2010.06.002, 2010.

Henry, P., Azambre, B., Montigny, R., Rossy, M., and Stevenson, R.

K.: Late mantle evolution of the Pyrenean sub-continental litho-

spheric mantle in the light of new 40Ar-39Ar and Sm-Nd ages on

pyroxenites and peridotites (Pyrenees, France), Tectonophysics,

296, 103–123, doi:10.1016/S0040-1951(98)00139-5, 1998.

Hervouët, Y., Torné, X., Fortané, A., Duée, G., and Delfaud, J.:

Resédimentation chaotique de méta-ophites et de marbres mé-

sozoïques de la vallée du Job (Pyrénées commingeoises): Rela-

tions détritisme/métamorphisme en zone nord-Pyrénéenne, C. R.

Acad. Sci., 305, 721–726, 1987.

Jammes, S., Manatschal, G., Lavier, L. L., and Masini, E.:

Tectonosedimentary evolution related to extreme crustal thinning

ahead of a propagating ocean: Example of the western Pyrenees,

Tectonics, 28, doi:10.1029/2008TC002406, 2009.

Jammes, S., Tiberi, C., and Manatschal, G.: 3D architecture of

a complex transcurrent rift system: The example of the Bay

www.solid-earth.net/6/643/2015/ Solid Earth, 6, 643–668, 2015

http://dx.doi.org/10.1007/s00531-013-0927-z
http://dx.doi.org/10.1007/s00531-013-0927-z
http://dx.doi.org/10.1007/BF00373793
http://dx.doi.org/10.1016/0168-9622(88)90061-9
http://dx.doi.org/10.1016/0168-9622(88)90061-9
http://dx.doi.org/10.1016/S1251-8050(00)88582-1
http://dx.doi.org/10.1029/2000JB900136
http://dx.doi.org/10.1093/petrology/Special_Volume.2.55
http://dx.doi.org/10.1016/S0040-1951(98)00055-9
http://dx.doi.org/10.1016/S0040-1951(98)00055-9
http://dx.doi.org/10.1007/s00531-013-0978-1
http://dx.doi.org/10.1007/s00531-013-0978-1
http://dx.doi.org/10.1130/0016-7606(1990)102< 1297:EDFITE> 2.3.CO;2
http://dx.doi.org/10.1130/0016-7606(1990)102< 1297:EDFITE> 2.3.CO;2
http://dx.doi.org/10.1016/j.earscirev.2010.06.002
http://dx.doi.org/10.1016/S0040-1951(98)00139-5
http://dx.doi.org/10.1029/2008TC002406


666 C. Clerc et al.: HT metamorphism at passive margins: the Pyrenean case

of Biscay-Western Pyrenees, Tectonophysics, 489, 210–226,

doi:10.1016/j.tecto.2010.04.023, 2010.

Jourdan, F. and Renne, P. R.: Age calibration of the Fish

Canyon sanidine 40Ar/39Ar dating standard using primary

K–Ar standards, Geochim. Cosmochim. Acta, 71, 387–402,

doi:10.1016/j.gca.2006.09.002, 2007.

Kaiser, B. O., Cacace, M., Scheck-Wenderoth, M., and Lew-

erenz, B.: Characterization of main heat transport processes

in the Northeast German Basin: Constraints from 3-D nu-

merical models, Geochem. Geophys. Geosystems, 12, 1–7,

doi:10.1029/2011GC003535, 2011.

Lacroix, A.: Les peridotites des Pyrénées et les autres roches intru-

sives non feldspathiques qui les accompagnent, C. R. Acad. Sci.

Paris, 165, 381–367, 1917.

Lagabrielle, Y. and Bodinier, J.-L.: Submarine reworking of ex-

humed subcontinental mantle rocks: field evidence from the

Lherz peridotites, French Pyrenees, Terra Nova, 20, 11–21,

doi:10.1111/j.1365-3121.2007.00781.x, 2008.

Lagabrielle, Y., Labaume, P., and St Blanquat, M.: Mantle exhuma-

tion, crustal denudation, and gravity tectonics during Cretaceous

rifting in the Pyrenean realm (SW Europe): Insights from the

geological setting of the lherzolite bodies, Tectonics, 29, 1–26,

doi:10.1029/2009TC002588, 2010.

Lagabrielle Y., Clerc C., Azambre B., Vauchez A., Lahfid A., and

Bousquet R.: Ductile to brittle deformation of pre-rift sediments

during mantle exhumation at a distal passive margin. Insigths

from the geological setting of ultramafic bodies in the Lherz area,

Comptes Rendus Géosciences, accepted, 2015.

Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C.,

and Goffé, B.: Evolution of the Raman spectrum of carbona-

ceous material in low-grade metasediments of the Glarus Alps

(Switzerland), Terra Nova, 22, 354–360, doi:10.1111/j.1365-

3121.2010.00956.x, 2010.

Lemoine, M., Tricart, P., and Boillot, G.: Ultramafic and gabbroic

ocean floor of the Ligurian Tethys (Alps, Corsica, Apen-

nines): In search of a genetic imodel, Geology, 15, 622–625,

doi:10.1130/0091-7613(1987)15_622:UAGOFO_2.0.CO;2,

1987.

López-Horgue, M. A., Owen, H. G., Rodriguez-Lázaro, J., Orue-

Etxebarria, Fernández-Mendiola, P. A., and Garcıa-Mondéjar, J.:

Late Albian–Early Cenomanian stratigraphic succession near

Estella-Lizarra (Navarra, central northern Spain) and its regional

and interregional correlation, Cretaceous Res., 20, 369–402,

doi:10.1006/cres.1999.0162, 1999.

López-Horgue, M. A., Owen, H. G., Aranburu, A., Fernandez-

Mendiola, P. A., and Garcia-Mondéjar, J.: Early late Al-

bian (Cretaceous) of the central region of the Basque–

Cantabrian Basin, northern Spain: biostratigraphy based on

ammonites and orbitolinids, Cretaceous Res., 30, 385–400,

doi:10.1016/j.cretres.2008.08.001, 2009.

Manatschal, G.: New models for evolution of magma-poor

rifted margins based on a review of data and concepts from

West Iberia and the Alps, Int. J. Earth Sci., 93, 432–466,

doi:10.1007/s00531-004-0394-7, 2004.

Manatschal, G. and Bernoulli, D.: Architecture and tectonic evo-

lution of nonvolcanic margins: Present-day Galicia and ancient

Adria, Tectonics, 18, 1099–1119, 1999.

Manatschal, G. and Nievergelt, P.: A continent-ocean transition

recorded in the Err and Platta nappes (eastern Switzerland), Eclo-

gae Geol. Helvetiae, 90, 3–27, 1997.

Masini, E.: L’évolution tectono-sédimentaire syn-rift des bassins de

marge passive profonde: Exemples du bassin de Samedan (Alpes

centrales, Suisse) et du bassin de Mauléon (Pyrénées basques

françaises), Thèse de Doctorat, Université de Strasbourg, Stras-

bourg, France, 2011.

Masini, E., Manatschal, G., Mohn, G., and Unternehr, P.: Anatomy

and tectono-sedimentary evolution of a rift-related detach-

ment system: The example of the Err detachment (central

Alps, SE Switzerland), Geol. Soc. Am. Bull., 124, 1535–1551,

doi:10.1130/B30557.1, 2012.

Masini, E., Manatschal, G., Tugend, J., Mohn, G., and Flament,

J.-M.: The tectono-sedimentary evolution of a hyper-extended

rift basin: the example of the Arzacq–Mauléon rift system

(Western Pyrenees, SW France), Int. J. Earth Sci., 103, 1–28,

doi:10.1007/s00531-014-1023-8, 2014.

Masson, D. G. and Miles, P. R.: Mesozoic seafloor spreading be-

tween Iberia, Europe and North America, Mar. Geol., 56, 279–

287, doi:10.1016/0025-3227(84)90019-7, 1984.

Mattauer, M.: Sur les schistosités d’âge tertiaire de la zone axiale

des Pyrénées, C. R. Acad. Sci., 259, 2891–2894, 1964.

Mattauer, M.: Les traits structuraux essentiels de la chaîne des

Pyrénées, Rev. Géogr Phys Géol Dyn, 10, 3–12, 1968.

Mattauer, M. and Proust, F.: Sur la présence et la nature de deux

importantes phases tectoniques dans les terrains secondaires des

Pyrénées orientales, C. R. Somm. Soc. Geol. Fr., fasc. 4, 132–

133, 1965.

McClay, K., Muñoz, J.-A., and García-Senz, J.: Extensional salt

tectonics in a contractional orogen: A newly identified tec-

tonic event in the Spanish Pyrenees, Geology, 32, 737–740,

doi:10.1130/G20565.1, 2004.

McDowell, S. D. and Elders, W. A.: Authigenic layer sili-

cate minerals in borehole Elmore 1, Salton Sea Geothermal

Field, California, USA, Contrib. Mineral. Petrol., 74, 293–310,

doi:10.1007/BF00371699, 1980.

McDowell, S. D. and Elders, W. A.: Allogenic layer silicate miner-

als in borehole Elmore Salton Sea geothermal field, California,

Am. Mineral., 68, 1146–1159, 1983.

Minnigh, L. D., van Calsteren, P. W. C., and den Tex, E.: Quench-

ing: An additional model for emplacement of the Iherzolite at

Lers (French Pyrenees), Geology, 8, 18–21, doi:10.1130/0091-

7613(1980)8<18:QAAMFE>2.0.CO;2, 1980.

Moine, B., Fortune, J. P., Moreau, P., and Viguier, F.: Compara-

tive mineralogy, geochemistry, and conditions of formation of

two metasomatic talc and chlorite deposits; Trimouns (Pyrenees,

France) and Rabenwald (Eastern Alps, Austria), Econ. Geol., 84,

1398–1416, doi:10.2113/gsecongeo.84.5.1398, 1989.

Monié, P., Soliva, J., Brunel, M., and Maluski, H.: Les cisaillements

mylonitiques du granite de Millas (Pyrenees, France); age Cre-

tace 40Ar/39Ar et interpretation tectonique, B. Soc. Geol. Fr.,

165, 559–571, 1994.

Montigny, R., Azambre, B., Rossy, M., and Thuizat, R.: Etude K/Ar

du magmatisme basique lié au Trias supérieur des Pyrénées –

Conséquences méthodologiques et pétrographiques, B. Mineral.,

105, 673–680, 1982.

Muffler, L. J. P. and White, D. E.: Active Metamorphism

of Upper Cenozoic Sediments in the Salton Sea Geother-

Solid Earth, 6, 643–668, 2015 www.solid-earth.net/6/643/2015/

http://dx.doi.org/10.1016/j.tecto.2010.04.023
http://dx.doi.org/10.1016/j.gca.2006.09.002
http://dx.doi.org/10.1029/2011GC003535
http://dx.doi.org/10.1111/j.1365-3121.2007.00781.x
http://dx.doi.org/10.1029/2009TC002588
http://dx.doi.org/10.1111/j.1365-3121.2010.00956.x
http://dx.doi.org/10.1111/j.1365-3121.2010.00956.x
http://dx.doi.org/10.1130/0091-7613(1987)15_622:UAGOFO_2.0.CO;2
http://dx.doi.org/10.1006/cres.1999.0162
http://dx.doi.org/10.1016/j.cretres.2008.08.001
http://dx.doi.org/10.1007/s00531-004-0394-7
http://dx.doi.org/10.1130/B30557.1
http://dx.doi.org/10.1007/s00531-014-1023-8
http://dx.doi.org/10.1016/0025-3227(84)90019-7
http://dx.doi.org/10.1130/G20565.1
http://dx.doi.org/10.1007/BF00371699
http://dx.doi.org/10.1130/0091-7613(1980)8<18:QAAMFE>2.0.CO;2
http://dx.doi.org/10.1130/0091-7613(1980)8<18:QAAMFE>2.0.CO;2
http://dx.doi.org/10.2113/gsecongeo.84.5.1398


C. Clerc et al.: HT metamorphism at passive margins: the Pyrenean case 667

mal Field and the Salton Trough, Southeastern Califor-

nia, Geol. Soc. Am. Bull., 80, 157–182, doi:10.1130/0016-

7606(1969)80[157:AMOUCS]2.0.CO;2, 1969.

Nicolas, R.: Etude géochronologique et pétrostructurale des my-

lonites du massif de l’Agly., D.E.A., Univerrsité Montpellier 2,

Montpellier, 1998.

Noack, V., Cherubini, Y., Scheck-Wenderoth, M., Lewerenz, B.,

Höding, T., Simon, A., and Moeck, I.: Assessment of the present-

day thermal field (NE German Basin) – Inferences from 3D

modelling, Chem. Erde – Geochem., 70, Supplement 3, 47–62,

doi:10.1016/j.chemer.2010.05.008, 2010.

Nunn, J. A. and Lin, G.: Insulating effect of coals and organic

rich shales: implications for topography-driven fluid flow, heat

transport, and genesis of ore deposits in the Arkoma Basin and

Ozark Plateau, Basin Res., 14, 129–145, doi:10.1046/j.1365-

2117.2002.00172.x, 2002.

Olivet, J. L.: La cinématique de la plaque ibérique, B. Cent. Rech.

Expl., 20, 131–195, 1996.

Le Pichon, X., Bonnin, J., and Sibuet, J.-C.: La faille nord-

Pyrénéenne: Faille transformante liée à l’ouverture du Golfe de

Gascogne, Comptes Rendus Académie Sci., 271, 1941–1944,

1970.

Pollack, H. N. and Cercone, K. R.: Anomalous thermal maturities

caused by carbonaceous sediments, Basin Res., 6, 47–51, 1994.

Poujol, M., Boulvais, P., and Kosler, J.: Regional-scale Cretaceous

albitization in the Pyrenees: evidence from in situ U-Th-Pb dat-

ing of monazite, titanite and zircon, J. Geol. Soc., 167, 751–767,

doi:10.1144/0016-76492009-144, 2010.

Puigdefàbregas, C., and Souquet, P.: Tecto-sedimentary cycles

and depositional sequences of the Mesozoic and Tertiary from

the Pyrenees, Tectonophysics, 129, 173–203, doi:10.1016/0040-

1951(86)90251-9, 1986.

Ravier, J.: Le métamorphisme des terrains secondaires des

Pyrénées, Mem. Soc. Geol. Fr., 86, 1–250, 1959.

Ravier, J., and Thiebaut, J.: Lagunar origin of mesozoic marbles and

hornfelds at the col-dagnes (ariege), C. R. Acad. Sci. Paris, 294,

127–130, 1982.

Roest, W. R., and Srivastava, S. P.: Kinematics of the plate bound-

aries between Eurasia, Iberia, and Africa in the North Atlantic

from the Late Cretaceous to the present, Geology, 19, 613–616,

doi:10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2,

1991.

Rossy, M.: Contribution à l’étude du magmatisme mésozoïque du

domaine Pyrénéen, I, Le Trias dans l’ensemble du domaine; II,

Le Crétacé dans les provinces Basques d’Espagne, Thèse, Uni-

versité de Besançon, Besançon, 1988.

Rossy, M., Azambre, B., and Albarède, F.: REE and Sr/1bNd iso-

tope geochemistry of the alkaline magmatism from the Creta-

ceous North Pyrenean Rift Zone (France-Spain), Chem. Geol.,

97, 33–46, doi:10.1016/0009-2541(92)90134-Q, 1992.

San Miguel de la Camara, M.: Las eruptiones y las rocas volcanicas

de las Vascongadas, Munibe, 2–3, 115–130, 1952.

Sawyer, D. S., Whitmarsh, R. B., Klaus, A., Beslier, M.-O.,

Collins, E. S., Carmen Comas, M., Cornen, G., de Kaenel,

E., de Menezes Pinheiro, L., Gervais, E., Gibson, I. L., Harry,

D. L., Hobart, M. A., Kanamatsu, T., Krawczyk, C. M., Liu,

L., Lofts, J. C., Marsaglia, K. M., Meyers, P. A., Milkert, D.,

Milliken, K. L., Morgan, J. K., Ramirez, P., Seifert, K. E.,

Shaw, T., Wilson, C., Yin, C., and Zhao, X.: Proceedings of the

Ocean Drilling Program, 149 Initial Reports, Ocean Drilling Pro-

gram. available at: http://www-odp.tamu.edu/publications/149_

IR/149TOC.HTM, 1994.

Schärer, U., de Parseval, P., Polvé, M., and St Blanquat, M.: Forma-

tion of the Trimouns talc-chlorite deposit (Pyrenees) from persis-

tent hydrothermal activity between 112 and 97 Ma, Terra Nova,

11, 30–37, doi:10.1046/j.1365-3121.1999.00224.x, 1999.

Schettino, A. and Turco, E.: Tectonic history of the western Tethys

since the late Triassic, Geol. Soc. Am. Bull., 123, 89–105,

doi:10.1130/B30064.1, 2010.

Shipboard Scientific Party: Introduction, Objectives, and Principal

Results: Ocean Drilling Program Leg 103, West Galicia Mar-

gin, edited by: Boillot, G., Winterer, E. L., Meyer, A. W., Ap-

plegate, J., Baltuck, M., Bergen, J. A., Comas, M. C., Davies,

T. A., Dunham, K., Evans, C. A., Girardeau, J., Goldberg,

D., Haggerty, J. A., EJansa, L., Johnson, J. A., Kasahara, J.,

Loreau, J.-P., Luna, E., Moullade, M., Ogg, J. G., Sarti, M.,

Thurow, J., and Williamson, M. A., 103, Ocean Drilling Pro-

gram, available at: http://www-odp.tamu.edu/publications/103_

IR/103TOC.HTM, 1987.

Sibuet, J.-C. and Collette, B.: Triple Junctions of Bay of Biscay

and North-Atlantic - New Constraints, Geology, 19, 522–525,

doi:10.1130/0091-7613(1991)019_0522:TJOBOB_2.3.CO;2,

1991.

Sibuet, J.-C., Ryan, W. B. F., Arthur, M. A., Barnes, R. O., Habib,

D., Iaccarino, S., Johnson, D., Lopatin, B., Maldonado, A.,

Moore, D. G., Morgan, G. E., Réhault, J.-P., Sigal, J., and

Williams, C. A.: Initial Reports of the Deep Sea Drilling Project,

47 Pt. 2, Vol. 47 Pt. 2, US Government Printing Office, University

of California, available at: http://deepseadrilling.org/47_2/dsdp_

toc.htm, 1979.

Sibuet, J.-C., Srivastava, S. P., and Spakman, W.: Pyrenean

orogeny and plate kinematics, J. Geophys. Res., 109, 18 pp,

doi:10.1029/2003JB002514, 2004.

Soares, D. M., Alves, T. M., and Terrinha, P.: The breakup sequence

and associated lithospheric breakup surface: Their significance in

the context of rifted continental margins (West Iberia and New-

foundland margins, North Atlantic), Earth Planet. Sci. Lett., 355–

356, 311–326, doi:10.1016/j.epsl.2012.08.036, 2012.

Souche, A., Dabrowski, M., and Andersen, T. B.: Modeling ther-

mal convection in supradetachment basins: example from west-

ern Norway, Geofluids, 14, 58–74, doi:10.1111/gfl.12042, 2014.

Souquet, P., Peybernès, B., Billotte, M., and Debroas, E.-J.: La

chaîne alpine des Pyrénées, Géologie Alp., 53, 193–216, 1977.

Souquet, P., Debroas, E.-J., Boirie, J.-M., Pons, P., Fixari, G.,

Dol, J., Thieuloy, J.-P., Bonnemaison, M., Manivit, H., and Pey-

bernès, B.: Le groupe du Flysch noir (albo-cénomanien) dans

les Pyrénées, Bull Cent. Rech Exlpo-Prod Elf-Aquitaine Pau, 9,

183–252, 1985.

Souriau, A., Chevrot, S., and Olivera, C.: A new tomographic im-

age of the Pyrenean lithosphere from teleseismic data, Tectono-

physics, 460, 206–214, doi:10.1016/j.tecto.2008.08.014, 2008.

Srivastava, S. P., Schouten, H., Roest, W. R., Klitgord, K. D., Ko-

vacs, L. C., Verhoef, J., and Macnab, R.: Iberian plate kinematics:

a jumping plate boundary between Eurasia and Africa, Nature,

344, 756–759, doi:10.1038/344756a0, 1990.

Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead

isotope evolution by a two-stage model, Earth Planet. Sci. Lett.,

26, 207–221, doi:10.1016/0012-821X(75)90088-6, 1975.

www.solid-earth.net/6/643/2015/ Solid Earth, 6, 643–668, 2015

http://dx.doi.org/10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2
http://dx.doi.org/10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2
http://dx.doi.org/10.1016/j.chemer.2010.05.008
http://dx.doi.org/10.1046/j.1365-2117.2002.00172.x
http://dx.doi.org/10.1046/j.1365-2117.2002.00172.x
http://dx.doi.org/10.1144/0016-76492009-144
http://dx.doi.org/10.1016/0040-1951(86)90251-9
http://dx.doi.org/10.1016/0040-1951(86)90251-9
http://dx.doi.org/10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2
http://dx.doi.org/10.1016/0009-2541(92)90134-Q
http://www-odp.tamu.edu/publications/149_IR/149TOC.HTM
http://www-odp.tamu.edu/publications/149_IR/149TOC.HTM
http://dx.doi.org/10.1046/j.1365-3121.1999.00224.x
http://dx.doi.org/10.1130/B30064.1
http://www-odp.tamu.edu/publications/103_IR/103TOC.HTM
http://www-odp.tamu.edu/publications/103_IR/103TOC.HTM
http://dx.doi.org/10.1130/0091-7613(1991)019_0522:TJOBOB_2.3.CO;2
http://deepseadrilling.org/47_2/dsdp_toc.htm
http://deepseadrilling.org/47_2/dsdp_toc.htm
http://dx.doi.org/10.1029/2003JB002514
http://dx.doi.org/10.1016/j.epsl.2012.08.036
http://dx.doi.org/10.1111/gfl.12042
http://dx.doi.org/10.1016/j.tecto.2008.08.014
http://dx.doi.org/10.1038/344756a0
http://dx.doi.org/10.1016/0012-821X(75)90088-6


668 C. Clerc et al.: HT metamorphism at passive margins: the Pyrenean case

St Blanquat, M., Lardeaux, J. M., and Brunel, M.: Petrolog-

ical arguments for high-temperature extensional deformation

in the Pyrenean Variscan crust (Saint Barthélémy Massif, Ar-

iège, France), Tectonophysics, 177, 245–262, doi:10.1016/0040-

1951(90)90284-F, 1990.

Ternet, Y., Colchen, M., Debroas, E.-J., Azambre, B., Debon,

F., Bouchez, J.-L., Gleizes, G., Leblanc, D., Bakalowicz, M.,

Jauzion, G., Mangin, A., and Soulé, J.-C.: Notice explicative,

Carte géol. France (1/50 000), feuille Aulus les Bains (1086),

BRGM éditions, BRGM, Orléans, 1997.

Thiébaut, J., Debeaux, M., Durand-Wackenheim, C., Souquet,

P., Gourinard, Y., Bandet, Y., and Fondecave-Wallez, M.-

J.: Métamorphisme et halocinèse crétacés dans les évaporites

de Betchat le long du chevauchement frontal Nord-Pyrénéen

(Haute-Garonne et Ariège, France), C. R. Acad. Sci. Paris, 307,

1535–1540, 1988

Thiébaut, J., Durand-Wackenheim, C., Debeaux, M., and Souquet,

P.: Métamorphisme des évaporites triasiques du versant nord

des Pyrénées centrales et Occidentales, Bull. Soc. Hist. Nat.

Toulouse, 128, 77–84, 1992.

Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn,

G., and Thinon, I.: Formation and deformation of hyper-

extended rift systems: Insights from rift domain mapping

in the Bay of Biscay-Pyrenees, Tectonics, 33, 1239–1276,

doi:10.1002/2014TC003529, 2014.

Vauchez, A., Clerc, C., Bestani, L., Lagabrielle, Y., Chauvet, A.,

Lahfid, A., and Mainprice, D.: Preorogenic exhumation of the

North Pyrenean Agly massif (Eastern Pyrenees-France), Tecton-

ics, 32, 95–106, doi:10.1002/tect.20015, 2013.

Vergés, J. and Garcia-Senz, J.: Mesozoic evolution and Cainozoic

inversion of the Pyrenean Rift, Mém. Muséum Natl. Hist. Nat.,

186, 187–212, 2001.

Vershure, R. H., Hebeda, E. H., Boelrigh, N. A., Priem, H. N. A.,

and Avé Lallemant, H. G.: K/Ar age of hornblende from horn-

blendite vein in the alpine ultramafic mass of the Etang de Lers

(Ariège), French Pyrénées, Leidse Geol Meded, 42, 59–60, 1967.

Vétil, J.-Y., Lorand, J.-P., and Fabriès, J.: Conditions de mise en

place des filons des pyroxénites à amphibole du massif ultra-

mafique de Lherz (Ar!ège, France), C. R. Acad. Sci. Paris, 307,

587–593, 1988.

Vielzeuf, D. and Kornprobst, J.: Crustal splitting and the emplace-

ment of Pyrenean lherzolites and granulites, Earth Planet. Sci.

Lett., 67, 87–96, doi:10.1016/0012-821X(84)90041-4, 1984.

Vissers, R. L. M. and Meijer, P. T.: Iberian plate kinematics and

Alpine collision in the Pyrenees, Earth-Sci. Rev., 114, 61–83,

doi:10.1016/j.earscirev.2012.05.001, 2012a.

Vissers, R. L. M. and Meijer, P. T.: Mesozoic rotation of Iberia:

Subduction in the Pyrenees?, Earth-Sci. Rev., 110, 93–110,

doi:10.1016/j.earscirev.2011.11.001, 2012b.

Whitmarsh, R. B., Sawyer, D. S., Klaus, A., and Masson, D. G.: Pro-

ceedings of the Ocean Drilling Program, 149 Scientific Results,

Vol. 149, Ocean Drilling Program, available at: http://www-odp.

tamu.edu/publications/149_SR/149TOC.HTM, 1996.

Whitmarsh, R. B., Beslier, M.-O., Wallace, P. J., Abe, N., Basile, C.,

Beard, J. S., Froitzheim, N., Gardien, V., Hébert, R., Hopkinson,

L. J., Kudless, K. E., Louvel, V., Manatschal, G., Newton, A. C.,

Rubenach, M. J., Skelton, A. D. L., Smith, S. E., Takayama, H.,

Tompkins, M. J., Turrin, B. D., Urquhart, E., Wallrabe-Adams,

H.-J., Wilkens, R. H., Wilson, R. C. L., Wise Jr., S. W., and

Zhao, X.: Proceedings of the Ocean Drilling Program, 173 Ini-

tial Reports, Vol. 173, Ocean Drilling Program, available at: http:

//www-odp.tamu.edu/publications/173_IR/INTRO.HTM, 1998.

Wopenka, B. and Pasteris, J. D.: Structural characterization of kero-

gens to granulite–facies graphite: Applicability of Raman micro-

probe spectroscopy, Am. Mineral., 78, 533–557, 1993.

Wrobel-Daveau, J.-C., Ringenbach, J.-C., Tavakoli, S., Ruiz, G.,

Masse, P., and Frizon de Lamotte, D.: Evidence for mantle ex-

humation along the Arabian margin in the Zagros (Kermanshah

area, Iran), Arab. J. Geosci., 3, 499–513, doi:10.1007/s12517-

010-0209-z, 2010.

Wynne-Edwards, H. R.: Flow folding, Am. J. Sci., 261, 793–814,

doi:10.2475/ajs.261.9.793, 1963.

Younker, L. W., Kasameyer, P. W., and Tewhey, J. D.: Geologi-

cal, geophysical, and thermal characteristics of the Salton Sea

Geothermal Field, California, J. Volcanol. Geotherm. Res., 12,

221–258, doi:10.1016/0377-0273(82)90028-2, 1982.

Yu, Z., Lerche, I., and Lowrie, A.: Thermal impact of salt: Simu-

lation of thermal anomalies in the gulf of Mexico, Pure Appl.

Geophys., 138, 181–192, doi:10.1007/BF00878894, 1992.

Solid Earth, 6, 643–668, 2015 www.solid-earth.net/6/643/2015/

http://dx.doi.org/10.1016/0040-1951(90)90284-F
http://dx.doi.org/10.1016/0040-1951(90)90284-F
http://dx.doi.org/10.1002/2014TC003529
http://dx.doi.org/10.1002/tect.20015
http://dx.doi.org/10.1016/0012-821X(84)90041-4
http://dx.doi.org/10.1016/j.earscirev.2012.05.001
http://dx.doi.org/10.1016/j.earscirev.2011.11.001
http://www-odp.tamu.edu/publications/149_SR/149TOC.HTM
http://www-odp.tamu.edu/publications/149_SR/149TOC.HTM
http://www-odp.tamu.edu/publications/173_IR/INTRO.HTM
http://www-odp.tamu.edu/publications/173_IR/INTRO.HTM
http://dx.doi.org/10.1007/s12517-010-0209-z
http://dx.doi.org/10.1007/s12517-010-0209-z
http://dx.doi.org/10.2475/ajs.261.9.793
http://dx.doi.org/10.1016/0377-0273(82)90028-2
http://dx.doi.org/10.1007/BF00878894

	Abstract
	Introduction
	The HT-LP metamorphism: ages and coeval magmatism
	The age of HT-LP metamorphism: a review

	Metamorphism and deformation: the S1 deformation (Choukroune, 1976) is syn-extensional
	Magmatism
	Raman spectroscopy of carbonaceous materials: analytical method and thermometry
	Geochronology
	40Ar--39Ar dating of metamorphic and magmatic samples from the NPZ
	Metasediments samples
	Magmatic rock samples
	Results

	U--Pb dating of albitite veins

	Discussion
	Spatial distribution of the thermal anomaly at the scale of the NPZ
	Spatial distribution of the thermal anomaly at the basin scale
	Reconstructing the initial thermal gradient related to crustal thinning and mantle exhumation: the Arguenos--Moncaup case study

	Pre- and post-metamorphic disruption of the sedimentary pile
	Triassic to Albian metasediments
	Cenomanian and younger metasediments


	Estimating the importance of fluid circulations
	Evaporite-enhanced thermal conduction vs. blanketing effect
	Timing and relationship between metamorphism and magmatism
	Hot versus cold margins?
	Conclusions
	Author contributions
	Acknowledgements
	References

