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The propagation of elastic waves in polycrystals is
revisited, with an emphasis on configurations relevant
to the study of ice. Randomly oriented hexagonal
single crystals are considered with specific, non-
uniform, probability distributions for their major axis.
Three typical textures or fabrics (i.e. preferred grain
orientations) are studied in detail: one cluster fabric
and two girdle fabrics, as found in ice recovered
from deep ice cores. After computing the averaged
elasticity tensor for the considered textures, wave
propagation is studied using a wave equation with
elastic constants c¢=(c) + éc that are equal to an
average plus deviations, presumed small, from that
average. This allows for the use of the Voigt average
in the wave equation, and velocities are obtained
solving the appropriate Christoffel equation. The
velocity for vertical propagation, as appropriate to
interpret sonic logging measurements, is analysed in
more details. Our formulae are shown to be accurate
at the 0.5% level and they provide a rationale for
previous empirical fits to wave propagation velocities
with a quantitative agreement at the 0.07-0.7%
level. We conclude that, within the formalism
presented here, it is appropriate to use, with
confidence, velocity measurements to characterize
ice fabrics.

1. Introduction

The propagation of sound in polycrystals has long been
the subject of studies (for a review, see [1]). Polycrystals
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are inhomogeneous media, the inhomogeneity being in the size and/or in the crystallographic
orientations of the grains. To describe the propagation of elastic waves through a large number
of grains, averaged wave properties have to be determined and, until the 1980s, these properties
were determined by considering a spatial average. This average was obtained from the inverse
of the velocity following the intuitive argument that the time of flight is the correct ‘intensive’
variable to consider: the time of flight needed to travel along a given distance is equal to the sum of
the times needed to go through subsequent grains on the wave path [2,3]. However, this intuitive
approach neglects the mode conversion between longitudinal and transverse waves at the grain
boundaries, and it does not guarantee that the obtained velocities respect the symmetries of the
polycrystal. Alternatively, velocities have been derived using averaged elasticity parameters in
the static limit, that is, interrogating the average of the stress to strain relation, rather than the
wave equation (the wave velocity is a sub-result of the primary average). Thus, the square of the
velocity (Voigt average) or the square of the inverse of the velocity (Reuss average) have been
considered, and it is commonly accepted that these two average values bound the observed or
measured values. Most of these studies considered the case of randomly oriented grains, with
a uniform distribution of orientations, that is, an isotropic fabric in which preferred orientations
were disregarded, and they used an average for the longitudinal wave and for the transverse
waves independently, thus again neglecting mode conversion [4]. The influence of microstructure
on the macroscopic properties of random heterogeneous materials has been surveyed by
Torquato [5].

Starting with Karal and Keller in the 1960s [6,7], stochastic methods have been developed in
which the spatial averages are replaced by ensemble averages [8]. These statistical approaches
simplify the problem in a mathematically rigorous formalism and it is widely accepted that
the assumption of ergodicity in the stochastic process ensures that the two averages, spatial
average and ensemble average, are equivalent [9]. The basic idea behind ergodicity is that,
for a sufficiently long wave propagation distance, all the realizations of the averaged quantity
(for instance, all possible crystallographic orientations) will be interrogated by the wave. Note
that, if this is not the case, a spatial average is questionable as well. Indeed, in that case,
the apparent velocity along a short propagation distance will be dependent on the particular
realization, that is, dependent on the states (size, crystallographic orientations, etc.) of a small
number of grains. Rather, spatial or ensemble averages have to refer to the most probable
realization, to which any particular single realization is believed to be close. Nowadays, the
statistical approach is the method used in most studies. An important advantage is that a
perturbative method can be properly iterated to extract information on the effective medium,
such as the attenuation and the backscattering, which appear as a second-order effect, that
cannot be obtained by simple-minded averaging. The successive iterations are often referred to
as the successive Born approximations [1,10,11] or the successive approximations of the Dyson
equation [12-15].

Textured polycrystals are structures which have crystallized with a preferred orientation or
which have been loaded by a non-uniform stress after formation. This latter case concerns notably
ice polycrystals, as recovered in ice sheets along deep ice cores, which is the motivation of
this study. We consider hexagonal single crystals, the predominant form of ice found on Earth.
As usual, we denote by c the long axis of the unit cell and by a the short axis on the plane
perpendicular to c. In the central part of deep ice sheets, ice is deformed at very low strain rates
(1071 to 10712571y induced by progressive accumulation of snow layers at the surface. In the
simplest case (for instance, under perfect domes), ice is loaded by uniaxial compression due to
gravity, and the fabric evolves from nearly isotropic at the surface towards a cluster fabric, where
the c-axes are randomly distributed within a cone with vertical axis. The cone angle decreases
with depth or ice age, until a strong single maximum close to the bedrock is reached [16,17]. At
the scale of thousands of years, ice may also flow along flow lines that depend on a deformation
field that is mainly influenced by the surface slope and the bedrock properties, and also because
a geographical dome can shift in position [18]. Under these conditions, ice fabrics result from a
complex stress field, the c-axes rotating towards the axes of compressive stress and away from
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the axes of tensional stress (or equivalently the a-axes in the basal plane tend to be aligned
with the tensional axis). Among the many possible fabrics, girdle fabrics (defined below) are
characteristic of ice encountered in convergent flow regions, where the vertical axis corresponds
to the compression due to gravity and with a tensional axis due to a given ice flow direction [19].
This is the case for ice along a ridge, a few hundred metres from a geographical dome; here, the
dissymmetry in the surface slopes along and perpendicular to the ridge can induce a horizontal
tension component in the strain field [20].

Until recently, this fabric was mostly determined by recovering the individual grain
orientations on an ice thin section (dimensions of about 10 x 10 cm? or 100~ 500 grains) and this
method is certainly the most precise when a statistically sufficient number of grains can be found
in the thin section. An alternative approach was initiated in the 1970s by Bennett [21] (see also
[22, ch. 6]) and Bentley [23]: the use of borehole sonic measurements to determine in situ depth-
continuous fabric. This method has been tested at Dome C, East Antarctica [24], and it reveals
the sensitivity of both the longitudinal and transverse waves with depth, and thus, possibly, the
variation of ice fabrics with depth. However, uncertainties appear in the inversion process as
used in [24], which are partially due to the measurements themselves but which are also due
to the model of the sonic velocities that is employed (this latter point will be discussed in this
study). Thus, there is a need to provide accurate models for these media to answer the question
of whether or not sonic logging is able to discriminate the different fabrics and, within a given
fabric, to determine the degree of anisotropy. This is the goal of this paper, where the propagation
of elastic waves in polycrystals with cluster and girdle fabrics is studied. Note that the presence
of stress may affect the wave speeds (acoustoelastic effect) but it is excluded from consideration
in our study.

Section 2 presents the definition and derivation of the second-order orientation tensor,
whose maximum eigenvalue is a common characteristic of the degree of anisotropy of ice
polycrystals [17]. This is done in order to get closed forms of the orientation tensors by defining
simple orientation distribution functions (ODFs) of the c-axes for cluster and girdle fabrics.
The realism of these ODFs with respect to existing physical modelling of the fabrics (see
[25,26]) will be discussed elsewhere. In §3, we derive the Voigt matrices for the considered
fabrics, starting by averaging the tensors of a single crystal expressed in an arbitrary coordinate
frame. The expected effective anisotropies are obtained: hexagonal with vertical transverse
isotropy (VTI) for clusters, orthorhombic for partial girdles and hexagonal with horizontal
transverse isotropy (HTI) for thick girdles. Direct application of these calculations consists in
setting the determinant of the Christoffel matrix equal to zero and this is presented in §4
for an arbitrary direction of the wave propagation. Except in the case of the partial girdle,
closed forms for the velocities for the P-wave and for the S-waves are obtained. Because our
calculations are primary motivated by their application in glaciology, we collect in §5 elements
of discussion in this particular context. This concerns notably the inspection of the accuracy
of our approximation, which assumes that the local deviation ¢ of the elastic stiffness is
small with respect to its average value. In the Introduction and throughout the paper, we
use interchangeably the term anisotropy for the anisotropy (in its purest form) of the single
crystals and for the effective anisotropy characteristic of the fabric, both resulting from a
homogenization process (at the scale of many atoms and at the scale of many grains). Finally,
when used, the values of the elastic constants for ice single crystals are taken from [21] and
reported below

A=1406 x 10°Nm2, C=1524x 10°Nm2,
ice single crystal { L. =3.06 x 10 Nm™2, N =3.455 x 10°Nm~2, (1.1)

F=588 x10°Nm™2, p=917kgm~2,

where (A, C, L, N, F) are the elastic parameters of the elasticity tensor (see equation (3.3)).
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2. Orientation distribution function and second-order orientation tensor

It is usual to characterize the anisotropy of ice polycrystals using the second-order orientation
tensor a defined by

ajj = (cicj), (2.1)

where (.) denotes ensemble averages. That is, an average over all possible realizations of the
directions of the c-axis [27]. In this section, we define the possible orientations of the c-axis using
the ODF associated with the angles # and ¢, the co-latitude and longitudinal angles for cluster
and girdle fabrics (figure 1); within girdle fabrics, we have restricted our study to the cases of
partial and girdle fabrics (e.g. [28]). These three fabrics are relatively simple as they are defined
by a single parameter in the ODF (the parameter is 6y for the cluster fabric and for the partial
girdle and it is &y for the thick girdle; figure 2). Obviously, more complex fabrics may involve two
or more parameters [26,29].

The largest eigenvalue of a, denoted a; in the following, will be used further to characterize in a
unified way the strength of the anisotropy of the resulting structure (limiting cases being a1 =1/3
for a fully isotropic structure and a1 =1 for a fabric with a single maximum; that is, when all the
c-axes have the same direction) [27]. From figure 1, one can anticipate that cluster and thick girdle
fabrics correspond to a resulting structure with hexagonal symmetry, whereas the partial girdle
corresponds to a resulting structure with orthorhombic symmetry. In the case of the clusters, the
structure is invariant by rotation along the vertical axis ez, thus it is isotropic in the transverse
plane (often referred to as VTI for vertical transverse isotropy). In the case of a thick girdle, the
structure is isotropic in a plane perpendicular to a horizontal axis (e; in figure 2c, referred to as
HTT for horizontal transverse isotropy).

(@) Cluster fabric

Clustered fabrics, figure 1a, correspond to c-axes being oriented within a cone about the vertical
axis e3 and we denote 6y the opening angle this cone makes with the vertical. This configuration
is naturally described by the spherical angles (¢, 6) (figure 1), with the c-axis defined by

sin 6 cos ¢

c=|sinfsing |, (2.2)

cos6
with ¢ € [0,27r] and 6 € [0, 6y]. The probability distribution function p(¢, 0) is, as in [22,27],

H(0)

27(1 — cosfp)’ 23)

p(q),@) =

with Hy(0) =1, for 0 <6 <6y and zero otherwise. For the spherical angles, the average of any
quantity A is defined by

21 /2
(A) = J de J do sin 0p(g, 0)A. (2.4)
0 0

It follows, using equations (2.1)—(2.4), that the second orientation tensor a is given as (denoting
(0, c0) for (sin @, cos ), respectively, (cy, s@) for (cos ¢, sin ¢))

342 3 2
. o 6 s0”ce s0”cpsp  sB“cHce a3 0 0
A= J dth do | s63cpsp  s63s¢?  s6cHsp | =10 a 0], (2.5)
27 (1 — cos ) Jo 0
s62chcp  sH2chsp  cHZsh 0 0 m

with
a = %[1 + cos By + cos? 6]
(2.6)
) =a3 = %[2 — cosfy — cos? 6ol,
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basal plane

€

Figure 1. Orientation (¢, 6) of the c-axis in the frame (e, e,, e;). The basal plane containing the g-axes is perpendicular to
the c-axis.

Figure 2. (a) Clustered ice fabrics resulting in VTI symmetry and (b,¢) girdle fabrics. (b) Partial girdle resulting in orthorhombic
symmetry and (c) thick girdle resulting in HTI symmetry. Dotted points in the (e;, e,) plane correspond to the projections of
possible c-axes in the Schmidt net.

in agreement with [22,27]. We have ordered the eigenvalues a1 > a; =a3, and ay =a3 is obtained
because the directions along e; and e, are equivalent for the VTI symmetry. The cluster fabrics
cover all the degrees of anisotropy, from full isotropy with a; =1/3 (6p = 7/2, corresponding to all
possible orientations of the c-axes) to the maximum anisotropy, with a; =1 (6p =0, corresponding
to all the c-axes being aligned with e3, often referred to as a single-maximum fabric).

(b) Partial girdle

This configuration is two dimensional (figure 2b), and the polar angle 6 is sufficient to describe
the orientation of the c-axis
0
c=|=+siné |, (2.7)
cos

for 6 €[0,6p] (the & signs correspond to ¢ =m/2(+) and 37 /2(—)). The problem being two
dimensional in (e, e3), the projection onto (ej, e2) is not needed and the average is defined with
0 being considered as a polar angle. For any quantity A, we now have

2 /2
(A) = JO d(pJO dbp(e, 0)A, (2.8)

and we have kept ¢ in the average as the plane of rotation of the c-axes has to be defined by a
delta-function to fix the ¢-values, with

1 7 3w
Po)= [s (v-3)+o (qo - 7)} Ha(6) (29)
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Figure 3. Parametrization angles (¢, 6) used for the thick girdle and the correspondences between the coordinate frames
(&), &, &) and (e;, e, e3).

and H»(0) =1 for 6 in [0, 6y], zero otherwise. Note that we could use 6 € [—6),6y] and ¢ = /2 but
the calculations shown below are easier using the form above. From equations (2.7) and (2.8), and
summing the two contributions of the c-axes for ¢ = /2 and 37 /2 (with projections £ sin 6 on ey),
a is diagonal, with

0 0 0

1 (o az 0 O
a=—J do|o s¥2 0 |=|0 a O (2.10)
0 Jo
0 0 62 00 m
and
a1 = 1[1 +sinc26p], ap = 3[1 —sinc26p], a3 =0, (2.11)

where we have defined sincx = sinx/x, and sincO = 1. As we could have anticipated, the partial
girdle is always anisotropic, with a; varying between a; = % (perfect girdle, for 6y =n/2) and
a1 =1 (single maximum fabric for 6y = 0).

(i) Thick girdle

The thick girdle is parametrized by two angles but, as defined, 6 and ¢ are not adapted to deal
with it in a simple way: indeed, as defined, 6 € [7/2 — &; /2 4+ &] and ¢ € [0;27] describe a
thick girdle with VTI symmetry (symmetry by rotation with respect to e3); the thick girdle has
HTI symmetry, with a symmetry by rotation with respect to e;. To avoid additional calculations
in the forthcoming calculations of the Voigt matrix (see §3), we use the following ‘trick’.
(i) We denote (8, ¢) the co-latitude and longitudinal angles in a frame (é1, €2, €3), as previously
(figure 3); (ii) the ODF is defined to produce a thick girdle with rotational invariance around é3,
thus 8 € [m/2 — &y; /2 4+ &] and ¢ €[0;27]; and (iii) the characteristics of the thick girdle with
rotational invariance around e; are simply deduced by defining

€] =e3, €)= él and €3 = éz. (2.12)

Now, the c-axis is parametrized by § and ¢ in equation (2.2) when expressed in terms of
(e1, €2, e3). When expressed in terms of (e1, ep, e3), it is

cos
c=|sinfcos¢ |, (2.13)
sinf sin ¢
with ¢€[0,27] and ée[n/2 — &, /2 + &]. Averages are defined by

2 b4
(A):J dgﬁj désindp(@d, £)A, (2.14)
0 0
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(@) 1.0, : i ®)

O

thick girdle

partial girdle

< N4

S¥ e« a1=a,

=~ 04} cluster :

N

0.2
as
0 20 40 60 80 [0 9]0 o0

0,(°) 0,(°) NG

Figure 4. Eigenvalues (&, a;, as) of the second-order orientation tensor a. (a) As a function of 6y, for the cluster (equation (2.6)),
and (b) as a function of 6, for the girdle (equation (2.11)), and as a function of &, for the thick girdle (equation (2.17)).

with the simple ODF

p(@,0)= mHa(Q), (2.15)

and H3(0)=1 for fe[n/2— &), m/2+&], and zero otherwise. The c-axis is given by
equations (2.13), and, using equations (2.14) and (2.15), the a tensor is again diagonal
cfs62s¢

s6ch?  chsh2cd

1 27 72+&% | . N ) a3z 0 O
I= Jrsing J d@J do | csh2cg  s03cg?  sh2s¢cg |=|0 a1 O], (2.16)
0Jo 2-¢ . a - o
e csfs¢?  sh3sgcp  sh2s@pd 0 0 m
with
1 in? 1
m=m=7 |:1 - Sm3 $0:| ; a3=g sin? &. (2.17)

As for the clustered fabrics, two of the eigenvalues are equal. This reflects the equivalence between
two of the principal directions of the structure (e; and e3 for the thick girdle). As expected, the
thick girdles prolongate the range of anisotropy of the partial girdles, with a; varying from a; =
1/2 (perfect partial girdle for & = 0) to a; = 1/3 (perfect isotropy for &y = 7/2).

(c) Evolution of the anisotropy with the a;

Figure 4 shows the variation of the a;, i=1,2,3, as a function of 6y for the cluster fabric and as
a function of 6y and &p for the partial and thick girdles, respectively. Inspecting the value of a;
allows us to characterize the degree of anisotropy of a polycrystalline structure in a unified way,
that is, independently of the considered fabric.

3. Elasticity tensors of single crystals and textured polycrystals

In this section, we derive the elasticity tensor c;j; of a single crystal when expressed in an arbitrary
coordinate frame, with the c-axis being parametrized by the two spherical angles (6, ¢). The
result is further used to derive the elasticity tensors for the cluster and girdle fabrics, describing
average macroscopic properties of the polycrystalline materials. We use the elasticity tensor in
Voigt’s notation [30], Cjj with the standard correspondences cjjx, — Cyj, for (i,j) — I, (k,I) — J and
1,1)—1,22)—2,3,3)—3,3,2),23)—431),(@1,3) > 5and (1,2),(2,1) - 6.
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(a) The elasticity tensor of a single crystal

The elasticity tensor is derived for an arbitrary direction of the c-axis (equation (2.2)) in (e1, e2, e3)

(figure 1). The crystal frame (e, eg, eg) is defined by the principal directions of anisotropy, e(l), eg

being in the basal plane and eg = c. In the reference frame (eq, e3, e3), we have

cos 6 cos ¢ —sing sin 6 cos ¢
etl) = cos@sing |, eg =] cosg and c¢= eg = | sinfsing |, (3.1)
—sin@ 0 cos 6

and we define the rotation matrix R

cosfcosg cosfsing —sinf
R=| —sing cos ¢ 0 . (3.2)
sinfcosgp sinfsing  cosé

Note a non-conventional form of the rotation matrix when compared with the rotation matrix
that takes Cartesian to spherical coordinates; indeed, in this usual notation, the vector e is
transformed into the radial vector, which is the first vector in spherical coordinates, but for
convenience it is the third vector eg in the present case. This produces a c-axis oriented along
the vertical direction e3 for ¢ =6 =0.

When expressed in the local frame (e(l), e(z), eg), the single crystal with hexagonal symmetry is
described by the elasticity tensor Cg‘kl' written as (© in Voigt’s notation,

A A-2N F 0 0 O

A—2N A F 0 0 O

F F C 0 0 O

0 _

“=1 o 0 0L 0 0 (33)

0 0 0 0L O

0 0 0 0 0 N

In a frame (e1, ey, e3), the elasticity tensor ¢, is deduced from Cg'kl using

Cabed = RiaRjp chRlng'kg/ (3.4)

according to the transformation laws for tensors (see, for example, [31] for the calculation of
anisotropic properties from texture data using an open source package). The corresponding
relation between the Voigt matrices (" and Cis in general involved, and the use of the Bond matrix
is often preferred [32]. We do not use the Bond matrix formalism but, owing to the hexagonal
symmetry in (°, we use a reasonably tractable expression, similar to the one used in [33],

Cabed = A[R1aR1p + RoaRopl[R1cR1g + RacRog] + CRsaR3pRscR3g
+ N[R1aRop + RoaR1p)(R1cRog + RocRid) — 2(R1aR1pR2cRog + RoaRopRicR1a)]
+ L[(R1aR3p + R3aR1p)(R1cR3g + RacRia) + (RaaRap + RaaRop)(RocRap + RacRop)]
+ F[(R1aR1p + RogRop)R3cR3g + RaaRap(RicRig + RocRoa)]- (3.5)
These terms are calculated and we obtain, for the diagonal terms,
C11 = A[1 — s6%cp?]? + Cegp*st* + 2(2L + F)so?c?[1 — s6%cp?],
Cop = A[1 — 562591 + Csp*s6* + 2(2L + F)s6?s@?[1 — s62s¢?],
Ca3 = Ast* + 2(2L + F)s6*ct® + Cct*,
(3.6)
Cag = (A + C — 2F)s0%c6?sp? + L[sp?(ch? — s6%)* + c6%cp?] + Nsb?cg?,

Cs5 = (A + C — 2F)s6%ch%cp? + L[cg?(ch? — s6%)? + ch%s¢?] + Nsb?s¢?,

Ce6 = (A + C — 2F)s0cep?sp? + Lso*(1 — 4s6s¢pce?) + Ncb?,
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and the off-diagonal terms

Cpp= A(C92 + s64c<pzs<p2) +(C— 4L)s94s<p2c<p2 —2Nch? + Fs@Z(l — 2502s<p2c<p2),

Ciz= As@z(l - s@zcgaz) +(C — 4L)s<92c92c<p2 — 2Nsh2sp? + F[c<p2(504 + c04) + s¢%ch?],
Cra = s0c0sp[—A(1 — c9?s02) + (C — 4L)s0%cg?® + 2N + F(1 — 2cp?s62)],

C15 = s0ccp[—A(1 — cp?s62) + Csh%c® + (2L + F)(1 — 2cp?s62)],

C16 = s6%spcp[—A(1 — cp?s6?%) + Cs6%cg® + 2L + F)(1 — 2c¢®s6)],

Coz = sO?[A(1 — s¢?s62) + (C — 4L)co2%s¢> — 2Ncg?] + Flch? + sp?s62(2s6% — 1)],

Coy = cO0sp[—A(1 — s602s¢?) + Cs62sp? + 2L+ F)(1 — 25<p2502)],

Cos = chscp[—A(1 — s6%s¢?) + (C — 4L)s6%s¢* 4 2N + F(1 — 2s6%s¢?)], 67
Cog = spcpst’[—A(1 — sp?s62) + Csh%sp> + (2L + F)(1 — 2s¢?s62)],

Caq = —spsOch[AsH? — Cch? + (2L + F)(1 — 2s6?)],

C35 = —cesHch[AsH? — Cch? + (2L + F)(1 — 2s62)],

C36 = spcgst’[—AsH? + (C — 4L)ch? + 2N + F(1 — 2¢62)],

Cu5 = spcst?[(A + C — 2F)ch? + L(1 — 4c6?) — N},

Cup = cHs0co[(A + C — 2F)s6%sg? + L(1 — 4s6%s¢%) — N],

Cs6 = cOs0s@[(A + C — 2F)s6%cg® + L(1 — 4s6%ce?) — N].

(b) Elasticity tensors of textured polycrystals: cluster and girdle fabrics

Next, we derive the averaged elasticity tensors that are needed for the description of the effective
macroscopic properties of polycrystals with cluster or girdle fabrics. This is done by averaging
the Voigt matrices of single crystals (equations (3.6) and (3.7)) using the ODF in equations (2.3),
(2.9) and (2.15).

(i) The clustered fabric
The averages of the Voigt matrix with elements C;; in equations (3.6) and (3.7) are averaged

according to

2 /2
(Cij) = JO de L do sin0p(p, 0)C; (3.8)

with the ODF for the clustered fabric in equation (2.3). It is shown in appendix A that the resulting
Voigt matrix is associated with a structure with VTI, as expected

(C11) (C11) — 2(Ce6)  (C13) 0 0 0
(C11) — 2(Ces) (C11) (Ciz) O 0 0
C
(C13) (C13) (Cs3) 0 0 0 , (3.9)
0 0 0 (Cyq) 0 0
0 0 0 0 (Caa) 0

0 0 0 0 0 (Ce6)
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with the elastic constants

(Cn) = %[A(zw +19X +9Y) 4 3C(15 — 7X + 3Y) + 2(2L + F)(15 + X — 9Y)],
(C33) = —[A(15 7X +3Y) + 3C(X + Y) + 2QL + F)(2X — 3Y)],
cluster { (Cyy) = [(A +C = 2F)(2X — 3Y) + 3L(5 — X + 4Y) 4+ 5N(3 — X)], (3.10)
(Co6) = T35 L (A4 C—2F)(15 - 7X +3Y) + 12L(5 — X — Y) + 40NX],
(C13) = —[3A(5 X —Y) + (C — 4L)(2X — 3Y) — 10N(3 — X) + F(15 + X + 6Y)]

with

X=1+costp + cos? 6o,
(3.11)
Y = cos® 6o + cos? 6.

(1) The single maximum fabrics for 6p=0 (X=3, Y=2) lead to (C11)=A, (C33)=C,
(Caa) =L, (Ces) =N and (Cy3) =F; the effective medium is, as expected, the same as a
homogeneous medium with a unique orientation of the c-axis along es, in agreement
with the expression of the Voigt matrix @ in equation (3.3).

(2) For 6p =n/2 (X=1, Y =0), the average is done for c-axes varying randomly over all
directions, resulting in an effective isotropy; we obtain

(C11)1%° = (C33)1%° = £[8A +3C + 4(2L + F)],
effective isotropy (3.12)

(C44)1%° = (Cg6)° = 75[A + C — 2F + 6L + 5N],
and (C13)™° = (C17)15° — 2(Cyy)is°, resulting in effective Lamé coefficients
heff = 15[6A + C — 4L + 8F — 10N],

(3.13)
jteft = 75[A + C + 6L — 2F + 5N].

These elastic constants in the isotropic case agree with previous derivations, referred to
as the Markham derivation [2] (see also [33, eqn (4.b)]).

(ii)) Partial girdle fabrics
The average of the Voigt matrix is carried out according to the two-dimensional configuration
2 /2
€= dv| " dene0rcy, (3.14)

with p being defined in equation (2.9). Calculations are straightforward (see details in appendix B)
and the resulting Voigt matrix is associated with a structure with orthorhombic symmetry

@)
kS
L
@)
N
L
@)
N
<
o
o o o
o o o o

, (3.15)

o

Q)
'
=
o
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with

(C11) =4,

(C22) = §[A(B +4S +S4) + C(3 — 4S; + S4) + 2(2L + F)(1 — Sy)],

(C33) = §[A(3 — 45y +S4) + C(3 +4S, + S4) + 2(2L + F)(1 — Sy)],

(Caa) = §[(A + C = 2F)(1 — Sy) +4L(1 + Sy)],

partial girdle { (Css) = 1[L(1 +S5) + N(1 — Sp)], (3.16)
(Ces) = 3[L(1 — S2) + N(1 +S)],

(C12) = 3[(A —2N)1 + Sp) + F(1 — Sp)],

(C13) = 3[(A — 2N)(1 — Sp) + F(1 + Sy)],

(Co3) = §[(A + C — 4L)(1 — Sy) + 2F(3 + Sy)],

where we have defined

Sy =sinc20y and Sy = sinc4d, (3.17)

and sincx =sinx/x (and sinc0=1). As previously noted, partial girdles always have isotropic
structure. For 6p =0 (S, =S4 = 1), we recover the hexagonal symmetry of a single crystal with
the c-axis along e3 (equation (3.3)). Also, for 6y =m/2 (S; =S4 =0), the effective medium has
hexagonal symmetry with HTI corresponding to a perfect girdle, with (C3)PG = (Cpp)TC —
2(C44)"C and

(Ci)Pe=A4,
(C22)PC = (C33)PC = §[3(A + C) + 2(2L + F)],
perfect girdle { (C44)7C = }[A + C — 2F +4L], (3.18)

(C55)FC = (Ce6)PC = F[L + N1,
(C12)P6 = (C13)76 = %[A — 2N + F].

(iiii) The thick girdle

The elasticity tensor for the thick girdle is derived using the same trick that was previously used
for the derivation of the second-order orientation tensor in §2b(i). It allows for a straightforward
use of the expression of the elasticity tensor derived in §3a for single crystals. Namely,

(1) We denote C,p the elements of the Voigt matrix in equations (3.6) and (3.7), expressed
in the frame (€1, &2, €3), with the usual conventions of the co-latitude and longitudinal
angles (4, ¢) defined in figure 3.

(2) The averages are performed as for the a tensor (equations (2.14) and (2.15)) to obtain

21 T
(Cap) = J d¢ J df sinOp(0,£)Cpp- (3.19)
0 0

(3) The Voigt matrix (;; expressed in the material frame (e1, e, e3) is rearranged according to
correspondences e = €3, e; = €1 and e3 = €y, leading to

(C,']') = (Cﬂb), withi=1,2,3,4,5,6 corresponding toa=3,1,2,6,4,5 (resp. j,b). (3.20)
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It is shown in appendix C that the resulting Voigt matrix is associated with a structure with HTI
symmetry (with respect to eq),

(C11) (C12) (C12) 0 0 0

(C12) (Ca2) (Ca2) —2(Caa) O 0 0

(C12)  (Ca2) — 2(Cya) (C2) 0 0 0 , (3:21)
0 0 0 (Ca4) 0 0
0 0 0 0 (Cs5) O
0 0 0 0 0 (Css)

with
(C11) = £[A(15 — 10s89> + 3s&*) + 3Csé* + 2(2L + F)(5s&o? — 3sé0h)],

(Cs3)

35 [A(45 + 10s£0% + 9s&p*) + 3C(15 — 10s&p> + 3s&o?) + 2(2L + F)(15 + 10s£o? — 9s&o*)],
(Cas) = 755[(A + C — 2F)(15 — 10s£0? + 3s&o*) + 12L(5 — s&o*) + 40Ns&o?],

(Cs5) = 55 [(A + C — 2F)(5s£0? — 3so*) + 3L(5 — 5s£0” + 4s&o*) + 5N(3 — s&?)],

(C12) = 55 [3A(5 — s&o*) + (C — 4L)(5s&0* — 3s&p*) — 10N(3 — s&o?) + F(15 — 5s£o? + 6s£0™)],

(3.22)
where

s&p = sin &. (3.23)

(4) Thick girdles (with a1 between 1/3 and 1/2) have in general a lower degree of anisotropy
than partial girdles (a7 between 1/2 and 1). Nevertheless, the two structures coincide
when realizing a perfect girdle (partial with 6p =7/2 and thick with & =0); in that
case, the effective parameters in equation (3.22) (with sy =0) coincide with those in
equation (3.18).

(5) The thick girdle becomes isotropic &y = /2 (s&y = 1), and we indeed recover the effective
isotropic parameters (equation (3.12)).

4. Wave propagation in a textured polycrystal

In this section, we derive the velocities of elastic waves propagating in polycrystals (with cluster
or girdle fabrics). Using the Voigt average, the calculation is straightforward using the expressions
of the averaged elasticity tensors established in the previous section. Velocities are given for an
arbitrary direction of the wave propagation, afterwards we will focus on the case of a propagation
along the vertical direction e (§5). This is because our motivation comes from application to sonic
logging measurements in ice cores, as previously commented.

As a warm up, the case of propagation in single crystals is first considered; this also allows for
a validation of our expressions in equations (3.6) and (3.7). Indeed, these are given as a function
of the longitudinal angle ¢ of the c-axis; with a wave propagation along the vertical direction,
the problem becomes invariant by rotation around e3 so that the wave velocities have to be
found independent of ¢. Then, the propagation in polycrystals using ensemble averages is briefly
recalled and the wave velocities are derived.

(a) The case of propagation in a single crystal
(i) Exact expressions of the velocities for single crystals

The propagation of monochromatic waves of frequency w in single crystals is described by the
wave equation
52

szua + Cabed U
dxpIxe

4 =0. (4.1)
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In our case, the problem will be solved considering the wave propagating along the vertical e3
direction for a c-axis having arbitrary direction (thus, without loss of generality at this stage). This
approach slightly differs from previous ones where the elasticity tensor is written in the crystal
frame (e(l), eg, eg associated with the principal directions of anisotropy of the crystal) but where an
arbitrary direction of the wave propagation is considered (see [34]; see also [35], which corrects
a misprint in the former reference). Obviously, the two approaches are equivalent, and, when
propagation in a single crystal only is needed, this latter approach is simpler.

Waves propagating along e3 correspond to 1, = U, ek with k the wavenumber, and equation
(4.1) simplifies to

pw? — k2ci331 —k%c1332 —k%c1333 Uy
—k2cos31 pw? —Kcossn —k%ca333 U, | =0, (4.2)
—k?c3331 —k?c333 pw? —kcazsz ) \Us

which admits a non-zero solution for (Ui, Uy, U3) if the discriminant of the matrix vanishes,
leading to a dispersion relation D(w,k)=0. The dispersion relation admits in general three
solutions for the frequencey w as a function of wavenumber k. They correspond to three
eigenvectors: one longitudinal wave and two transverse waves. One obtains the dispersion
relation in the form of a Christoffel equation

pw? — k*Css —K2Cy5 —K2C35
—k2Cys5 pw? — k2Cyy —k%*Cay | =0, (4.3)
—k2Cs5 —K2C3y pw? —k*Cz3

with (, the Voigt matrix, associated with the elasticity tensor c,q4, in equations (3.6) and (3.7).
Obviously, for a single crystal, the use of ¢ is useless as the problem is invariant by rotation around
e3 and this has been done in [34]. We have checked that the solutions of the dispersion relation do
not depend on ¢ (this has been done numerically by solving the eigenvalue problem associated
with equation (4.3) for various ¢-values and the eigenvalues are found to be independent of ¢, as
expected). For simplicity, we report below the result for ¢ =0, where the coefficients C;;, i =3,4,5
and Czy4, Cs5, C35 needed in the dispersion relation (equation (4.3)), have the simpler form (from
equations (3.6) and (3.7))

Ca3 = Ast* + 2(2L + F)s6%cH? + Cco?,

Cy= Lc6? + NS@Z,

(4.4)
Cs5 = (A + C — 2F)s6%c0? + L(cH? — s62)?,
C35 = —sOch[AsH? — Cch? + (2L + F)(1 — 2s6%)],
and Cz4 = C45 = 0. The discriminant simplifies to
[pw® = K*Caall(pw® — K*Cs5)(pe” — K*Ca3) + k*C351=0. (4.5)

The wavenumber k%= pw?/Cay corresponds to a non-zero eigenmode (0, U, 0) associated
with the transverse SH-wave perpendicular to the propagation plane (e3,c). The two other
wavenumbers satisfy a second-order equation (vanishing second term in equation (4.5)), and
they correspond to the longitudinal wave P and the transverse wave SV that are coupled when
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Figure 5. Elastic wave velocities as a function of the 0 = (E,\c)—angle inan icesingle crystal. (a) Plain lines Vsy and dotted lines
Vsy; (b) Vp.Inboth (a,b), red curves refer to the exact values (equations (4.6)), and green curves refer to Thomsen’s approximation
(equations (4.7)).

propagating. The associated velocities are
pVéH =L cos? 0 + N sin? 0,
pVey =3[C+L+(A—C)sin*0 — VD],

(4.6)
pVE=LC+L+(A-C)sin?0 + D],

with D =[As6? — Cch?][AsH? — Cch? + 2L(ch? — s6%)] + 4s6%co>(F> + 2FL) + L2,

in agreement with [34, eqns A(10) and A(11)].

(ii) Approximate expressions: the case of an ice single crystal

The variations of the wave velocities as a function of 6 (equations (4.6)) are shown in figure 5
(with values from (1.1)).

As ice single crystals are only weakly anisotropic, approximate expressions for the velocities
are often used. In 1986, Thomsen [35] remarked that a common approximation is to neglect
the anisotropy because ‘the mathematical equations for anisotropic wave propagation are
algebraically daunting” and he proposed a simplified version, which is commonly used in the
context of geophysics. They are

|C
VIh= =1+ §sin?6 cos? 6 + Bsin? 6],
P

4.7)
V§$ = \/z [1 + %(ﬁ — 8)sin’ 6 cos? 0] , Vgg = \/Z[1 +ysin?6],
P P
with
_A-C _ (F+L?-(C-Ly  N-L
P="5c = acc-n ™ T (48)

being small parameters (8 ~ 4%, y ~ 7% and § ~20%), and the reference velocities being VIT)h ~
VC/p=4077ms ™! and VIt ~ \/L/p = 1827 ms~!. These approximate velocities are also reported
in figure 5 for comparison with the exact ones. The errors in Thomsen’s approximations are indeed
small: 0.5% for an SP-wave, 0.3% for SH-waves and 0.4% for P-waves.
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(b) Effective elastic velocities in textured polycrystals

When an ensemble of grains with different anisotropy directions is considered, it is difficult
and not useful to describe wave propagation through a single, particular, distribution. Rather,
as discussed in the Introduction, ensemble averages can be considered, leading to a description
of the properties averaged over all possible realizations of the disorder. In this paper, we shall
write the elastic constants as a sum of an average plus deviations from that average: cp.s =
(Cabed) + SCaped, SO the wave propagation in a given realization reads

9 3

0
= ——8Caped 7 Ud, (4.9)

>
w U, + (c —1U
PO Uy (abcd)axbaxc d 0% ox

where §cgpq is the local deviation of the elasticity tensor from its average value, and it is
assumed to be small; that is, if ¢ and dc are the typical magnitudes of (cse) and dcgpeg, We
define the small parameter € = §c/c. Equation (4.9) is the wave equation through a medium with
average properties given by the effective stiffness tensor (c;.s) and submitted to a “potential’
Viaa = (8/0xp)8¢ap04(3/0xc) which reflects the fluctuations of the real medium with respect to the
averaged one. If € « 1, the wave propagation is mainly determined by the simplified equation

52

P&t + (Cabed) (4.10)

T
and any particular realization of the propagation will be close to this average, up to €2. Indeed,
because (8c;pc7) =0 by construction, the potential V,; has no contribution at first order in €. At
second and higher orders, it produces a hierarchy of corrections, including wave attenuation and
backscattering (e.g. [1,15]). The successive iterations correspond to the successive approximations
of the Dyson equation. Below, the zeroth-order approximation is considered and the accuracy of
this zeroth-order will be discussed in more detail in the case of ice polycrystals in §5c.

The elasticity tensor (cjx) has been expressed in the previous section using a frame where
the direction e, ey or e3 is an axis of symmetry. To get the dispersion relation in a general case,
one has to consider now an arbitrary direction of the wave propagation given by the wave
vector k = (k1, ko, k3) (and we defined k using the co-latitude and longitudinal angles ® and &;
figure 6). Our Voigt matrices for the considered cluster and girdle fabrics are at least orthorhombic
(equation (3.15)), and we restrict the dispersion relations to this symmetry (which includes the
hexagonal symmetry). Within this symmetry and looking for a wave u, = U, el1¥1thx2+ks35) the
dispersion relation takes the form,

pw? —A1es  —kikoB1os  —k1ksBiss
—kikyBiog  pw® — Ags  —kok3Bosa | =0, (4.11)
—kiksBiss  —koksBoza  pw? — Asss

where we have defined A = [k%(Cm + k%(ij) + k%(Ckk)] and Bjjr =[(Cjj) + (Ci)]. Depending on
the fabric, we will derive in the following sections the corresponding velocities owing to the Voigt
matrices previously calculated (equations (3.10), (3.16) and (3.22)).

(i) Cluster fabric

The cluster fabric has hexagonal symmetry, being isotropic in the (e1,e;) plane. It is thus
sufficient to define the angle ® that k forms with e3. With ky =0,kp =ksin® and k3 =kcos®,
equation (4.11) simplifies to

pw? — [{Co6)50? + (Caa)cO?]K? 0 0
0 pw? — [(C11)80? + (Caa)cO?]K? —$OcO[(C13) + (Caa) IK* =0
0 —$OcO[(C13) + (Caa) 1K pw? — [(Cas)sO? + (Cz3)cO?]k?

(4.12)
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(@) (®)

Figure 6. Orientation of Ehe [(-vector (a) as used for the cluster and partial girdle fabrics with (©, @), and (b) as used for the
thick girdle fabric with (©, @).

(with s®, c® denoting sin ©, cos @), and with the Voigt matrix defined in equation (3.10), with
(Cs5) = (Ca4). We deduce the velocities (the plane of incidence being (e, e3))

pVésy = (Caa) cos® O + (Ceg) sin” O,

pVay = 31(Ca8) + (Cas) + ((C11) — (C33)) sin® @ — VD],

cluster pVp = 3[(Cs3) + (Cas) + ({C11) — (C33))sin® © + v/D], (4.13)
with D =[(C11)s0 — (C33)c@?][(C11)s0* — (C33)cO?

+2(Caa)(cO? — 50?)] + 4502cO?((C13)? + 2(C13)(Caa)) + (Caa)?.

Obviously, these expressions are analogous to the expressions found for single crystals
in equations (4.6) as the hexagonal symmetry is the same. Also, the limiting cases are the
direct consequences of the limiting cases for the Voigt matrix: for 6y =7/2 in equations (3.10)
(leading to equations (3.12)), the polycrystal is isotropic with shear and compressional velocities
simplifying to

Viso _ [BA 4 3C +4(2L + F)]
L 15p !
isotropic case (4.14)
Viso_\/[A+C—2F+6L+5N]
5 15p '

These expressions of the velocities in the isotropic case do not coincide with the leading order
in Thomsen’s approximation [35] (equations (4.7)), with 8 =8 =y ~0 (leading to Vgh ~./C/p
and Vgh ~ /L/p). This is because Thomsen defines the anisotropy of polycrystals with respect to
the isotropy of a single crystal (21 = 1), while the isotropy leading to the velocities above refers
to an isotropic polycrystal with a; =1/3; this will be discussed further in §54. The dependence
of the largest S-wave velocity and of the P-wave velocities on the k-direction of propagation
is illustrated in figure 7 for different a; values. For a value of a; between 1 and 1/3, the range
of the ®-dependent velocities decreases to a single value in the isotropic case. For a1 =1, we
recover the angular dependence of single crystals (figure 5), with Vs € [1831.8,2177.5]ms~! and
Vp € [3775.7,4044.5]m s~ L. For the isotropic case, a1 = 1/3, we get Visso =1956.1ms~ ! and V%,SO =
3847.7ms 1.

(ii) Girdle fabrics

The case of partial girdles does not lead to substantial simplifications of the dispersion relation,
as one has to account in general for the three components of k. The dispersion relation has to
be solved for a given ® and @, the co-latitude and longitudinal angles of k in (e, e, e3), and
no tractable expression can be given. Closed forms of the velocities will be considered in §5 for
waves propagating along the vertical direction. Nevertheless, it is straightforward to solve the
dispersion relation, for instance by determining the eigenvalues of the Voigt matrix divided by
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a,=0.8 =0. a;=04 a,=1/3

Figure 7. Directional dependence of the S- and P-velocities (as a function of the direction of propagation of the wave),
Vs(®, @) (the highest value is considered) and Vp (®, @), for cluster fabrics. The distance between zero and any point on the
surfaces is equal to the velocity V,, — V= in that direction, with w = S, P; V™" is a value of the velocity chosen to illustrate
the anisotropy (1800 m s~ for Vs velocity and 3750 m s for I/p).

p, with V2 = »?/k?. This has been done numerically and the results for a; = 0.8 and 0.5 (perfect
girdle with symmetry by rotation around e;) are reported in figure 8.

For a thick girdle, the symmetry is hexagonal with isotropic behaviour in the (e», e3) plane.
Using the notations in figure 6b, we can use directly the result of equations (4.16), with the Voigt

matrix C. Next, using the correspondences in equations (3.20), we get, for k» =0, k1 =k cos é and
k3 =ksin @ (that is, for & = 77/2), the dispersion relation

pw? = [(C11)cO? + (Cs5)s02 ]k 0 —sOcO[(Cr2) + (Cs5)]k?
0 pa? — [(C14)sO? + (Cs5)cO2 ]k 0 —0,
—sOcO[(Cr2) + (Cs5) 1k 0 pa? — [(C22)s0? + (Cs5)cO?k?

(4.15)

where we have used that (Czz) = (C2), (Ces) =(Cs5) and (Ci3) = (C12) (equation (3.21)). We
deduce the velocities

pV3i; = (Cs5) cos® © + (Caa) sin® O,

pVE; = 1(C11) + (Cs5) + ((Co2) — (C11)) sin? © — VD] (4.16)
and pVE = L[(C11) + (Ce) + ({C2) — (C11))sin® & + VD],

with D= [(Cp)sO? — (C11)c®3][(Cx)s02 — (C11)cO®? + 2(Cs5)(cO? — sO2)] + 4s02cO2((C12)% +
2(C12)(Cs5)) + (Cs5)%.

5. Comments and comparison with previous work on ice polycrystals

In this section, we focus more specifically on the application to ice fabric characterization using
a sonic log of the deep boreholes, as tested during January 2011 at Dome C, East Antarctica, by
Gusmeroli et al. [24]. To the best of our knowledge, this is only the second in sifu measurement
campaign, the first one being the deep drill hole at Byrd Station, Antarctica, during the 1969-1970
field seasons by Bentley [23]. In between, laboratory measurements of the velocity have been
performed using core samples: in the Greenland Ice Sheet Project II (GISP2) deep core [36,37]
and in the Dye 3, Greenland, deep ice core [38,39]. Except in [24], these studies have confirmed
qualitatively, but not quantitatively, the sensitivity of the elastic waves to the degree of anisotropy
of cluster fabrics (which are the dominant fabrics at Dye 3, GISP2 and Dome C). The exception
in [24] is the quantitative inspection that is proposed, by means of an inversion procedure and
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Figure 8. Directional dependence of the S- and P-velocities, I/s(&, @) (the highest value is considered) and Vp(®, @), for
girdle fabrics (partial girdle for @, > 0.5 and thick girdle for @, > 0.5). Same representation as in figure 7.

by means of a comparison between the in situ measurements of the velocities and values of the
velocities deduced from the measures of c-axis orientations in thin sections of core samples. The
logs as used in in situ measurements provide the time of flight between two receivers located
on a vertical logger which can be used to obtain the S- and P-wave velocities. Then, an inverse
procedure has to be used to obtain information on the fabric in the interrogated zone. This
procedure raises several questions that we will address in this section. They are (i) a comparison
of our expressions of the velocities with the semi-empirical determination of the elastic velocities,
as proposed by Bennett [21] for clustered fabrics because of their averred successful comparisons
with experiments. We did not find an expression of the velocities for girdle fabrics in the previous
literature that could be used for comparison with our present result. (ii) A discussion on the
variation of the velocities from one fabric to another; and within a given fabric, how the velocities
change with the degree of anisotropy. It is, of course, necessary that the velocity change that
a purported fabric or anisotropy induces is quantified and that this change is larger than the
accuracy of the experimental data, if it is to be used as initial data in an inverse problem. (iii) In
connection with the previous question, the modelling presented in this paper has to be sufficiently
accurate if it is to be used in the inverse process. Thus, the accuracy of the zeroth-order Dyson
equation that we employ is addressed. As a prerequisite, note that the sonic measurements are
performed at about 20 KHz, so the wavelength in ice is typically 10-20 cm, much larger than the
grain size (1 mm-1cm).

(a) Velocities for vertical wave propagation in an ice polycrystal

As discussed in §1, we have chosen the e3 axis to coincide with the vertical direction, a convenient
choice to analyse sonic logging measurements of antarctic ice. As a first step, we report below the
expression of the velocities for propagation of the wave along the vertical e3 axis. In this case,
the expressions from equations (4.11) simplify to Vp = /C33/p, Vs1 = /Cas/p and Vo = /Cs5/p
(to see this, take k1 =k, =0 in equations (4.11); it leads to the determinant of a diagonal matrix).
Here, we use Vg1 and Vsp with Vg; the largest velocity (when different, the two S-waves cannot
be identified a priori and the term of ‘quasi-" S-wave is preferred, e.g. [40]). For cluster fabrics,
from equations (3.10) (or using ® =0 in equations (4.16) and VD = (Cs3) — (Cyq) > 0), we get

\/(L+N) [2A+C)—4F—3L—5N], _[(A+0)—20L+R]

300 10p
cluster

(.1)

Y,

\/ [-7A+3C+4QL+F)], | [A+C—20L+ )
Vp=,—+
15p 5p

with, as previously, X =1 + cos 6y + cos? 6p and Y = cos® 6y + cos? ;.
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For partial girdle fabrics (P.G.), with Ca3, C44 and Css given by equations (3.16), we get

A 2L+ F A— A —2(2L+F

Voo [BATO+20L4P] [A=Cl o0 [A+C-20L+PI
8p 2p 8p
A+ C—2F+4L A+C—-2(F+2L
PG vg = [AF ALl AT Cm2ER 2T, g, (5.2)
8p 8p
Ve = [L+N] + L~ N] sinc26y.
20 2p

For the thick girdle (T.G.), with Cs3, C44 and Cs5 being given in equations (3.22), we have

A 2L+ F A— 2L+ F A —2Q2L+F
yoe [BATO+20L+PI [A=3C+20L+P] 5 HA+C—20L+PI
8p 12p 40p
A —2F +4L A —-2(2 F A —2QRL+F
TG. (Vg = [A+C + ]—[ +C (2N + )]Sin2§0+[ +C @L + )]sin4$0,
8p 12p 40p
L A —2F —-3L — A —2QL+F
Ve = [L+ N] + [A+C 3L — N] sin? £ — [A4+C—-22L+F)] sin® &.
2p 6 10p
(5.3)

Figure 9 shows the variation of the velocities as a function of the degree of anisotropy of
the polycrystal, measured with a; (defined in equations (2.6), (2.11) and (2.17)). For comparison,
we also present the velocities for the isotropic single crystal, which is the leading order in the
Thomsen’s approximation (equations (4.7) with 8 =8 = y ~0), and the velocities that correspond
to an ice polycrystal with randomly oriented c-axes (equations (4.14)). As expected, these two
limits correspond to velocities obtained at a7 =1 (single maximum) and a; =1/3 (isotropic
polycrystal), respectively. It is often tempting to neglect the anisotropy of an ice polycrystal and
we report here the relative errors in the velocities when using this approximation—when using
single-crystal isotropy (Thomsen'’s leading order): for the cluster 3.5% and 5.7% (P- and S-waves)
and for the girdles 3.8%, 7.7% and 3.7% (for P-, SV- and SH-waves, respectively); when using
polycrystal isotropy: for the cluster 1.9% and 2.5% (P- and S-waves) and for the girdles 1.4%,
2.3% and 3.7% (for P-, SV- and SH-waves, respectively); thus, polycrystal isotropy is a better
approximation.

Next, we come back to the range of variation of the velocities with respect to the degree of
anisotropy of the fabrics. We report the relative variation 2(Vmax — Vmin)/(Vmax + Vmin) for each
fabric

for clusters:  5-9.0%, P-5.5%.

for girdle: $1-11.7%, Sp-7.7%, P-5.2%. (54

These ranges of variation are small, because an ice single crystal is weakly anisotropic; with
the same definitions of the velocity relative variation (for ice single crystal: SV-17.8%, SH-6.1%,
P-7.0%). Thus, in all the steps of the measurements and of the inversion process, the errors have
to be smaller than, say, 1%.

(b) Comparison with previous results

(i) Remark on the importance of the -average

As discussed in the Introduction, a common approach to derive the effective velocities in a
polycrystal consists in averaging the ‘time of flight’, that is,

Vpl=((Vp)™h) and Vg'=((Vs)™, (5.5)

and, in most of the studies on clusters (as used in [24]), the average is done on the colatitude
0 only, that is, the angle between the c-axis and the direction e3 of the wave propagation, and
not on the longitude ¢. At first sight, this approach appears reasonable. However, there are two
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Figure 9. Variation of the compressional P-wave velocity, Vp, and shear S-wave velocities, Vs; and Vs,, as a function of the
degree of anisotropy of the polycrystal, for: (a,b) a cluster fabric, from equations (5.1) with equation (2.6) and (c,d) for a girdle
fabric, from equations (5.2) with (2.11) and (5.3) with (2.17).

pitfalls. (i) The times of flight are calculated for each S- or P-wave separately, assuming that the
wave energies originally distributed into S- and P-waves remain unchanged; in other words,
the re-repartition of the energy between SH-, SV- and P-waves at each grain boundary by mode
conversion is disregarded. (ii) More seriously in our opinion, it is assumed that an ensemble of
grains with the same 6 but different ¢-value behaves as a homogeneous medium, which is clearly
not the case. Although this crystallographic arrangement is artificial, it allows us to exemplify the
error made when ignoring the ¢-dependence. Let us first remark that the structure resulting from
such an arrangement has an anisotropy with hexagonal symmetry (effective c-axis along e3), thus
the two shear velocities are the same for waves propagating along the ez-axis. From appendix A,
the velocities for grains with the same 6 and different ¢-values are equivalent to an HTI structure
(with symmetry around e3), and, from equations (3.7) and (A 3), we get

1
V3(0) = ~[As6* + 2(2L + F)s6c6? + Cco*],
all ¢ with same 6 pl (5.6)
V3(6) = > [(A+ C —2F)s6c6? + L(4s6* — 5s6* + 2) + Ns¢?],
0

and the S-velocities are correctly found to be the same. On the contrary, if the average is performed
on 6 only (and the average in this case consists in selecting a unique value of 6 by a delta function),
equations (5.5) predict that the ensemble of grains behaves as a single crystal with SH- and SV-
wave velocities being given by equations (4.6), and this cannot be the case. Incidentally, note that
not only the Vs(0) but also Vp(#) is false when using equations (5.5) (see Vp in equations (4.6)
and (5.6)).

88607107 :LL ¥ 205§ 20ig BioBuiysigndiaposieforeds;


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on June 16, 2015

(ii) Bennett’s prediction

Alternatively to the slowness average, Bennett [21] provides a prediction for Vp and Vg based on
acoustic measurements. The details of the method are given in [21, ch. 5] and in [22, ch. 6] and they
are not discussed here. These semi-empirical derivations of the velocities have been shown to be
in agreement with experiments so it makes sense to use them as a validation. For a propagation
along the e3-axis, Bennett’s velocities read

1 4(851 — 5C1) 16b1 :|
VEe)2 [1 — X
R P . 15(a1 — b1 +c1)” 5@ — by +c1)
(5.7)
1 2(5b3 — 8by) 8by
yBey2~ Z | Ty Ty
(V") a3 [ 1543 503

where (X, Y) are the same as used in equations (3.11), and the 4; and b; are constants given by
Bennett’s fits: a1 =256.28, by =5.92, ¢c; =5.08, a3 =531.40, by =45.37 and b3 =15.94 (in ps m_l).
Bennett’s fits are usually reported in the literature with a different form. For convenience, we

have rewritten them in the form of equations (5.7):
VE=V3[1-eX X — €l Y],
(5.8)
V2=Vl - X X - edY].

Inspecting equations (5.1) and (5.7), we get the correspondences between our velocities and
Bennett’s ones. The results of (5.1) are obtained from (5.8) by

L + N
Vpo = > Vso= ( )
from (5.1) { X _ [7A 3C —4(F + 2L) oy [A+C-2QL+P)] (5.9)
P 15A © P 5A ’
X [2(A 4+ C —2F) — 3L — 5N] o [A+C—2F —4L]
5 15(L + N) rs 5(L + N) !
and the results of (5.7) are obtained from (5.8) by
Vep=————, Vso= S
po_(a1—b1+c1)' SO—a3/

4(8b — 5¢1) v 16b1
Te/- 1 N\’ €p=—— s
15 — b1 +c1)’ © 5(a; — by +c1)
s 1503 ' S Bay

Table 1 reports the values of the coefficients defined in equations (5.8), from equations (5.9)
using Bennett’s values of the elastic constants (A, L, N, F) and density p given by (1.1), and from
equations (5.10) using the values of (a;, b;) given above. The agreement is excellent, although less
good for the S-wave than for the P-wave, and this will be analysed in more detail in forthcoming
work. The resulting agreement on the velocities is 0.07% for the P-wave and 0.7% for the S-wave,
without any adjustment (figure 10) (red and black curves). For completeness, we also report in
figure 10 the results obtained from slowness averaging as used in [24], omitting the g-average
(equations (5.5)) (green curves). This latter case leads to two different S-wave velocities, which is
unphysical as the wave propagates along the symmetry axis. Incidentally, there is a slightly more
notable disagreement with Bennett [21], with 0.9% for both the P- and the S-wave velocities (when
compared with the highest S-velocity).

from (5.7) § eX (5.10)

€

(c) Inspecting the accuracy of our prediction

In our study, (cijir) corresponds to anisotropic, or textured, effective media, with orthorhombic
or hexagonal symmetry. For ice, §c is a small correction as ice single-crystal anisotropy is weak,
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Figure 10. Comparison of the velocities from our expressions (equations (5.1)) (red), Bennett’s fits (equations (5.7)) and as used
in [24], omitting the g-average. For Vs, this latter calculation leads to two (unphysical) velocities (green solid and dotted lines).

Table 1. Comparison between Bennett’s prediction and our calculation.

coeffs in equations (5.8)

from (5.9) 0.0223 —0.0754 —0.0883 0.1627 3.915710° 1.884810°

.914810° 1.881810°

as previously commented. Thus, the zeroth order of the Dyson equation, which we have used
by solving equation (4.10) instead of equation (4.9), is justified but the results are accurate up to
€2 = (8c/c)? only. It is of importance to get an estimate of €2 as the accuracy of the prediction on
the velocities has to be sufficient to resolve the typical variations of the velocities.

This is reported in figures 11 and 12. First, we report typical fluctuations of the C;; parameters
(four terms are shown in figure 11), for a cluster fabric as a function of a1, that is, for decreasing
cone angle 6p; each point in these plots corresponds to a value of C;; of one grain with an
orientation randomly chosen in [0, 6]. The dispersion of the C;; indicates how far the actual grains
are from their effective medium. For all a1 values, the effective medium has hexagonal symmetry,
thus vanishing (Ci4), (C15) and they indeed fluctuate with zero mean. For the non-zero terms of
the Voigt matrix (Ci2 and Ci3 are considered), fluctuations occur, with mean values being our
(C12) and (Cy3); the dotted line shows the value Cs° (equations (3.12) with Cif‘zo = Cils3°), which
appears to be a good estimate of the mean for low a; values. Next, we can get an estimate of
€2, the accuracy of our zeroth-order approximation. This is done by calculating numerically the
error €

2 <Zi,j ICij — (Cij)||2> 511)
o (zyc) '

with the averages defined in equations (2.4), (2.8) and (2.14). Results are reported in figure 124;
the error appears to be less than 0.5% for any degree of anisotropy a1 and for both fabrics.

We also report (figure 12b) the error €;so, which defines the accuracy of the results if effective
isotropy is assumed,

(Zi,j IC; — C}]?OH)

<Zi,j ”Cij”) (5.12)

€iso =

and the error is here of first order, as (C,-]- - C?O) does not vanish, except for a; =1/3. As expected,
the error is significantly higher and it increases with the degree of anisotropy a; up to about 10%.
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Figure T1. Fluctuations of the ; coefficients within actual grains (composed by single crystal ice) whose assembly forms a
cluster fabric. Symbols show the (;-values, for each a; value, for 20 different orientations (randomly chosen in [0, 6]). (a) Two
parameters with zero mean, (b) two parameters with non-zero mean; (G;,) and (G3) are indicated by solid lines. The dotted
line shows (5 = (i

@3 - @1 ,
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Figure 12. Accuracy of the approximations (a) at second-order €2 when considering an effective anisotropy, equation (4.10)
and (b) at first-order €;5, when considering affective isotropy. In red, for clusters and in green for girdles.

6. Concluding remarks

We have derived closed forms of the elasticity tensors and of the elastic wave velocities for ice
textured polycrystals with cluster and girdle fabrics. The prediction is accurate up to the second
order in the local deviation of the elasticity parameters from their average values. This is justified
for weak anisotropic single crystals or for fabrics with concentrated c-axes, that is, in general a
system with a low variability in the elasticity tensor of the grains. Motivated by measurements
in deep ice cores, we have inspected this small variability case in more detail, revealing an
accuracy better than 0.5%. This suggests that velocity measurements can confidently be used to
characterize ice fabrics. In a forthcoming publication, we will address the specifics related to a
more complete inspection of this problem. More generally, extensions of this study are at least
twofold. (i) As few theoretical studies of the effects of texture on backscattering and attenuation
have been conducted, it should be interesting to iterate the Dyson equation using the potential
defined in equation (4.9) to quantify such effects. (ii) We have used simple ODFs which are based
on the observation of the textures; other ODFs, as proposed in [27,41], use two or three tuneable
parameters, being related to the fabric evolution under external stresses (due to the gravity and
to possible ice flows). Being more involved, it does not allow for analytical calculations, but it
should be used to quantify the sensitivity of the velocities on the form of the ODF.
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Appendix A. Effective stiffness tensor for a cluster fabric

(@) The average over ¢

This first average over ¢ corresponds to a c-axis rotating about the vertical axis e3 with a constant
angle 6. To omit multiple notations, we note C;;(0) is the resulting average ((C;) is the final result).
With ¢ € [0, 2], we thus have

1 (27
Cye, )= Cy6) = 3 | * doCyv,6). A1)

Using (c?) = (s¢?) =1/2, (cp*) = (sp*) =3/8 and (sp?cp?) =1/8 (the odd power vanishes on
average), we get, from equations (3.6) and (3.7), the following form of the Voigt matrix:

C1(9) C11(0) — 2Ce6(0)  C13(9) 0 0 0
C11(9) — 2Ce6(0) C11(9) C13(0) 0 0 0
C13(0 C13(0 Cs3(0 0 0 0
13(0) 13(0) 33(0) (A2)
0 0 0 Cu®) O 0
0 0 0 0 Caa(0) 0
0 0 0 0 0 Ces(0)
with the non-zero coefficients for this medium with transversely isotropic symmetry
C11(0) = $[ABs6* + 8cH?) + 3Cs6* + 2(2L + F)so*(4 — 3s62)],
C33(0) = As6* + 2(2L + F)s6*c6? + Cch*,
Caa(0) = 3[(A + C — 2F)s6%cH? + L(4s6* — 556 + 2) + Nso?], (A3)
Co6(0) = L 1(A + C — 2F)s6* + 4Ls0*(2 — s6%) + 8Nco?],
C13(0) = $[As6%(2 — s6%) + (C — 4L)s6%co? — 2Ns6? + F(256* — 3562 + 2)].

(b) The average over &

Next, we average the coefficients in equations (A 3) over 6. In agreement with equations (2.3) and
(2.4), we use

1 oo
= T casiy |y 0 "

with C;;(0) defined in equations (A 1) and (A 3). We use (c62) = X/3, (s#2ch?) = (2X — 3Y)/15 and
(c6*) = (X + Y)/5 with X =1+ cosfp + cos 63 and Y = cos® f + cos* 7. We get

1
(C11) = g7z [AE5 +19X +9Y) +3C(15 — 7X +3Y) +2(2L + P15+ X ~9)],
X

(Ca3) = 115[14(15 —7X +3Y) +3C(X +Y) + 2(2L + F)(2X — 3Y)],
(Cag) = 31—0[(A +C = 2F)(2X — 3Y) 4+ 3L(5 — X + 4Y) + 5N(3 — X)], (A5)

1
(Ces) = g5 [(A +C = 2F)(15 — 7X +3Y) + 4L(15 — 3X — 3Y) + 40NX],
X

(C13) = %[A(IS —3X —3Y) + (C — 4L)(2X — 3Y) + F(15 + X 4 6Y) — 10N(3 — X)].
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Appendix B. Effective stiffness tensor for a partial girdle fabric

First, the elastic Voigt matrix is considered for ¢ = /2,37 /2 (3-functions in equation (2.9)) to make
the configuration symmetric, so we consider

Cij(p,0) — Ci(0) = % [C (%9) e (37”9)] . (B1)

We get a Voigt matrix which has orthorhombic symmetry

C11(0) Ci2(8) Cy3(0) 0 0 0
C12(0) Cx(0) Cy3(0) 0 0 0
C13(0) Ci3(0) Cz3(0 0 0 0
13(0) C13(0) Cs3(0) 52)
0 0 0 Cyq(0) 0 0
0 0 0 0 Cs5(0) 0
0 0 0 0 0 Ce(0)
with non-zero terms
Cr®) =4, Cxn(0)=Act* + Cs6* +2(2L + F)s6%c6?,
C33(0) = Ast* + Cco* + 2(2L + F)s6%cH?,
Cua(6) = (A + C — 2F)s6%cH? + L(cH?* — s6%)?, (B3)

Cs5(0) = Lco? + Ns#?,  Ces(0) = Ls6* 4+ Ncb?,

C12(0) = AcH? — 2NcH? + Fs6?,  Ci3(0) = As6? — 2Ns6? + Feo?.

We now average over 6 € [0; 6], according to equation (2.9) (the problem in 6 is two dimensional),
thus

1 (%
€= | avcie) (B4)

We use (c62) = (1 — sinc26y)/2 and (c6*) = (3 + 4sinc26y + sinc46y)/8, with sincx = sinx/x (and
sinc0 = 1). The resulting Voigt matrix is, with S, = sinc26, and Sy = sinc46,

(Cr1) =4,

(Ca2) = S[A(3+4Sp +S4) + C(3 — 4Sy + S4) +2(2L + F)(1 — Sy)],
(C33) = §[A(3 — 45y +S4) + C(3 +4S; + S4) + 2(2L + F)(1 — Sy)],
(Caa) = §[(A + C = 2F)(1 — Sy4) +4L(1 + Sy)],

(Css) = 3[L(1 +S2) + N(1 = S)], (B5)
(Ces) = 3[L(1 = S2) + N(1 + S2)],

(C12) = 3[(A — 2N)(1 + S2) + F(1 — Sy)],

(C13) = 3[(A = 2N)(1 — S) + F(1 + $p)],

(C23) = §[(A + C — 4L)(1 — Sy) + 2F(3 + Sy)1.

() Comparison with [33]

In their paper [33], Nanthikesan and Shyam Sunder considered a configuration equivalent to the
partial girdle. For some reason, they took the c-axes in the horizontal plane with opening angle
Yo, and we take their results with eg‘] =ey, eIZV =e3 and eé\] =e1 (N refers to Nanthikesan and

88607107 :LL ¥ 205§ 20ig BioBuiysigndiaposieforeds;


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on June 16, 2015

Shyam Sunder’s notations). Their results on the mean elastic constants are denoted by Cf}’ (egn
15(b) in [33], not reported here for brevity) and are easily compared with our own. Owing to the
correspondences between the coefficients (Yo, «, B, b1, bz, b3) (defined after eqns (15b) in [33]) and
our coefficients Sy and Sy

b1 by b3 1
ﬁ *(3 + 452 + 54) W *(3 452 + 54), m = g(l - 54),
(B6)
Yo o w0/4:|:,3 1 3ve/2+28 1
2'(/] *(1 + 52) 2¢ *(1 + 54) and T *(3 + 54)

It is now sufficient to rearrange the Voigt matrix according to the changes of axes C b= (CU)
fora= 1 2,3,4,5,6 (resp b) correspondmg toi=2,3,1,5,6,4 (resp. a). We get C11 = (C22), C22 =
(Ca3), CY = (C11), C, = (Cs5), CEL = (Cep), CI. = (Caa), CI, = (Ca3), CI; = (C12) and CY; = (C13),
in agreement with eqns (15b) in [33] and with our equation (3.16).

Appendix C. Effective stiffness tensor for a thick girdle fabric

We use the notations of figure 3, § and ¢ in (é1,8,&3) for the ODF in equation (2.15).
The derivation of Cuh(é)zl/(Zn)fgn Cup(0,9) is the same as in appendix A, resulting in
equations (A 2) and (A 3)

C11(0) = C2(9) = L[ABsH* + 8cd%) + 3Csd* + 2(2L + F)sb*(4 — 3s6?)],
Cs3(0) = Ash* + 2(2L + F)sh%chH? + Cch?,
Cua(d) = Cs5(0) = (A + C — 2F)s6%ch? + L(4sh* — 586 +2) + Nsb?], (C1)

Co6(0) = LI(A + C — 2F)sh* + 4Ls0*(2 — s6%) + 8Ncd?],

C13(0) = L[As62(2 — s6%) + (C — 4L)sh?ch* — 2Nsb? + F(2s6* — 362 +2)],

with VTI symmetry in this frame (Clz(é) = @11(9) — ZCég(é)). The next average is now done on
felr /2 — &y, /2], according to equations (2.14) and (2.15), with

. 1 /246 AA oA
(Cap) = 5= J do sin& Cpp(0), (C2)
2sinép Jr/o-g

with Cij(§) given by equations (B3). We use (ch?) =sin? &/3, (ch*) =sin*&y/5 (thus, (s62) =
1 —sin®&/3 and (s6*) =1 — 2sin? §/3 + sin* &y /5) leading to (611) = (622), and

(C11) = %15[14(45 + 10s&0% + 9s£9*) 4+ 3C(15 — 10s£9% + 3s&o*) + 2(2L + F)(15 4 10s&2 — 9s&0™)],
(Caz) = = [A(15 — 10s£0> + 3s£0*) + 3Csép* + 2(2L + F)(5s£0> — 3s&0?)],
(Caa) = (Cs5) = ;—O[(A + C — 2F)(5s&p” — 3séo*) + BL(5 — 5so? + 4s&o*) + 5N(3 — s&?)],

(Ces) = %15[(,4 + C — 2F)(15 — 10s&) + 3s&p*) + 12L(5 — s&p*) + 40Ns&y?],

(Ci3) = = [3A(5 —s&o?) + (C — 4L)(5s&0” — 3s£o*) — 10N(3 — s&o?) + F(15 — 5s&” + 6s&o?)],

(C3)
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and (éu) = (611) - 2(@66) with s§=sin&p. It is now sufficient to use the correspondences
resulting from equation (2.12) to HTI symmetry with respect to e (see equations (3.21) and (3.22)),

(C11) = (Ca3), (Co2) =(C11) =(C11), (Caa) = (Ces),

. R (C9
(Cs5) = {Cep) = (Caq) and (Ci12) =(C13).
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