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Abstract 19 

Cell Based Association is an innovative mineral favorability procedure designed to answer special 20 

needs of the mining industry in data wise critical situations where usual favorability methods may 21 

not yield satisfactory results. Those situations relate to input data quality (e.g.: clustered points, 22 

mixed and scarce data, approximate location) or some assumptions that are considered 23 

unreasonable (e.g.: map areas relevance, conditional independence). 24 

The principle of CBA consists in replacing polygons of geological units with a square cell grid 25 

(hence the 'cell-based'). Each cell contains a range of units ('association') that are binary coded in 26 

terms of their presence (1) or absence (0) within study area. The loss of resolution inherent to this 27 

procedure is compensated by the enriched information contained in each cell owing to the notion of 28 

(lithological) association. 29 

Lithological associations are considered as binary spectra and as such are classified using 30 

Ascendant Hierarchical Clustering (AHC) thus obtaining a synthetic map of lithological 31 

associations. The prospectivity map shows as favorable the cells of the same AHC classes that the 32 

ones including mineral occurrences. 33 

It was observed that CBA can distinguish between different ore deposit varieties from a blended 34 

mineral occurrences data set. CBA can theoretically include any spatialized data (e.g.: geophysics, 35 
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structural data) as an extra variable to specify classification and narrow favourable areas. Doing so 36 

would make it an independent favorability mapping procedure and is still under development. 37 

 Cell size in a grid is a critical parameter of the procedure; it must be compatible with the 38 

looked-for phenomena and should have a sufficient lithological variability.  39 

 In addition to its use for producing favorability maps, a CBA-derived map could help in 40 

understanding the background information contained in geological maps. CBA can also be applied 41 

to other fields, such as agriculture and urban planning. 42 

 43 

Key words: Favorability mapping, grid cell, classification, attribute association 44 
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1. Introduction 46 

Mineral favorability is a branch of predictive analytics that focuses on designing statistical methods 47 

to point out favourable zones in terms of mining potential. 48 

From Carranza (2009) : "The term mineral prospectivity (…) is similar to the terms mineral potential 49 

and mineral favourability, both of which imply the chance or likelihood that mineral deposits of the 50 

type sought are contained in a region or district under investigation. (…)  51 

Modeling of mineral prospectivity is a regional- or district scale mapping activity, whether field 52 

based or GIS based, which aims to delineate prospective areas for further exploration at the next 53 

higher scales of mapping. Notwithstanding the scale of mapping, mineral prospectivity is related to 54 

the degrees of presence and degrees of importance of individual pieces of spatial evidence of 55 

occurrence of mineral deposits of the type sought. That is, in a region or district under 56 

investigation, if there are more important pieces of spatial evidence in an area than in another 57 

area, then the former is considered to have higher prospectivity than the latter".  58 

The most basic case relates to measuring the statistical link between a mineral occurrence (MO) 59 

data set (points) and a geological map (polygons). This can roughly be translated as finding what 60 

makes places where mineral occurrences were observed distinguishable and trying to target 61 

similar locations. 62 

End result is often a favorability map that displays the odds of finding something of interest. 63 

Cell Based Association (CBA) is meant to be used during the strategic stages of exploration when 64 

available data often does not meet the requirements (independence, representativeness of MO) of 65 

usual favorability methods such as Weight of Evidence, Fuzzy Logic, Artificial Neural Networks to 66 

be used effectively (Bonham-Carter, 1984, Carranza, 2011, Schaeben, 2011)). 67 

Usually the requirements are not met due to poor quality of the mineral occurrence data set. 68 

Indeed, the mineral occurrence data set is normally considered as a unique representative sample 69 

of unique elements of a single population (or at least a known number of different populations). 70 

This is not always the case as mineral occurrences data sets are most of the time classified 71 

according to the (potential) resource observed (e.g.: zinc mineral occurrences) which can lead to 72 

mixing different types of mineral occurrences that relate to different genesis processes (hence 73 
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different lithological environments) into a single mineral occurrence data set. Ultimately this means 74 

the user will obtain a mixed favorability map that, at best, roughly ranks the different types of 75 

mineral occurrences on a single scale that may make no sense because each type should be 76 

analysed separately from the others or, at worst, a global fuzzy favorability map that makes even 77 

less sense.  78 

Also, when the mineral occurrences data set is too scarce it is impossible to assess if it is 79 

representative which is one major assumption/requirement of most favorability methods.  80 

Lastly, considering each mineral occurrence as individual leads to an overestimate of the 81 

importance of clustered areas that in fact describe a single object geologically wise which is even 82 

more critical in the case of mixed mineral occurrence data sets. 83 

 To address these problems, we propose a procedure called 'Cell-Based Associations' (CBA). 84 

 Using a square grid (of appropriate cell size fixed by user) in which each cell records the presence 85 

or absence of lithological units  from the geological map and a hybrid driven (combining data and 86 

user driven approaches) classification of all cells, this procedure allows to generate a synthetic 87 

map that can be coupled to the mineral occurrence data set. CBA thus allows  better 88 

characterization and sorting of a number of different complex environments associated with the 89 

looked for phenomena. 90 

 91 

 A technique consisting in applying a grid with included attributes over a study area was 92 

previously described by McCammon et al. (1983) for generating predictive maps, but rather than 93 

using their Characteristic Analysis method of data processing of a logical type, CBA uses statistical 94 

ranking of coded cells for identifying the different associations/environments contained in the map. 95 

 96 

2. The principles of CBA 97 

The case study presented here in for illustrating the principles of the CBA procedure is a mapping 98 

of mineral favorability, where the points are mineralized occurrences (MO) and the polygons are 99 

geological units (lithologies). The artificial map in Figure 1 shows the type of document used by 100 

geologists when looking for prospective areas that are a-priori favourable to the presence of 101 

mineralization. On this map, mineral occurrences are present in the B, D and E units. Occurrence 102 
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"OCC-4" is located in unit C, but its position very close to the limit between units E and D might be 103 

imprecise. 104 

  The CBA procedure was applied to that dataset. First, the optimal cell size of the grid 105 

had to be defined. This size relies on two main constraints: 1) it should be coherent with the size of 106 

the studied phenomena (Carranza, 2009), and 2) it must allow a sufficient variability of the 107 

geological units. Too small cells will contain only one unit, but too large ones will contain too many 108 

(if not all) units.  109 

 The relationship between the variability inside the grid cell and its size has been studied in 110 

the dataset in order to define the optimized size for a cell. Variability has been estimated using 2 111 

parameters: the average number of geological units per cell and the number of lithological spectra 112 

(or associations, see definition below) generated by the 'cut-out' of the map by grids with different 113 

cell sizes (Table 1). The graphic representation (Figure 2) of this result shows that the optimal size 114 

of a cell ranges from 7 to 12 km (side length of square cells), which corresponds to a number of 115 

spectra comprised between 15 and 17 (for a theoretical maximum of 36 [i.e. 25] possible 116 

combinations, 17 being the maximum number of combinations present in the map) and an average 117 

number of lithologies per cell ranging from 1.8 to 2.2 (Table 1). In this example, the cell size was 118 

arbitrarily set at 10 km that is between 7 and 12km. 119 

 Once the cell size has been defined by user, the grid is generated and superimposed on the 120 

geological map (Figure 3). All cells have for attributes all the units represented in the map. The 121 

geological information contained in each cell is coded as presence = 1 or absence = 0 of each 122 

geological contained in the map (Figure 4 and Table 2). Each cell is then characterized by a 123 

binary-type attribute spectrum showing the presence/absence of each unit within it.There is thus a 124 

transition from a discrete categorical variable (rock type) to a set of binary variables describing a 125 

lithological spectrum or – more generally - an attribute spectrum. This operation does not consider 126 

the relative or absolute surface of the geological units, but only their presence or absence. This 127 

reasoning is based on the idea that the projected surface of a unit on a geological map is irrelevant 128 

for determining its real importance as a small area unit may be the critical factor that determines a 129 

particular lithological environment (e.g.: dyke fields) or may be the end of a much larger body (e.g.: 130 

plutonic intrusion) it also may be partially masked surficial deposits. It seems preferable to 131 



 

6 
 

emphasize the presence of poorly represented units than to lose that information because mining 132 

favorability is ultimately a 3D problem. The processing of each unit as an independent binary 133 

variable assumes that a geological map is a combination of exclusive events, in other words: at 134 

every location of the map a single lithology may be observed. 135 

 This technique avoids the loss of attribute information (Bai et al., 2011) and renders it directly 136 

usable for multivariate analysis. The maximum number of possible combinations is 2n, where n is 137 

the number of attributes, here geological units. If the number of attributes is large, the individual 138 

processing of all present combinations becomes impossible, implying the need to use a method 139 

that allows grouping the attribute spectra into representative classes of existing combinations.  140 

Same processing should have been possible in raster mode but that implies a multiplication of 141 

layers (one per unit) and a possible loss of information for small surface covering units. The 142 

creation of a single table containing all the attributes is less time consuming, makes it easier to 143 

treat and is coherent with the notion of spectrum created by concatenation of the attributes. 144 

In the present work, the hybrid driven Ascendant Hierarchical Clustering (AHC) method has been 145 

used to classify the associations within the cells. 146 

 147 

3. The principles of AHC 148 

AHC uses a system of aggregation by pairs of elements according to: 1) their proximity based on a 149 

dissimilarity function that measures the multivariate statistical distance between the elements; and 150 

2) an aggregation function that groups those that are iteratively the closest (Rolet and Seguin, 151 

1986) 152 

 In the present case, the calculation relies on a dissimilarity index based on "percent 153 

disagreement" (Equation 1) and an aggregation function based on the reciprocal neighbours 154 

method (Rham, 1980) after centring and reduction of the data. 155 

 The dissimilarity index is as follows: 156 

𝑑𝑃(𝐼𝑖 , 𝐼𝑗) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑥𝑖𝑘≠𝑥𝑗𝑘)

𝐾
                                          (1) 157 

Where i and j are the identifiers of the compared elements I, k is the variable (geological unit) 158 

identifier, x is the variable value, and K the number of variables (number of units). This type of 159 
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dissimilarity function is used for variables of the categorical/discrete type, and is the most suitable 160 

for evaluating the distance between elements. 161 

 However, in our specific case it is also possible to use the usual Euclidean distance 162 

(Equation 2) as it is easier to apply instead of the dissimilarity function.  163 

𝑑𝐸(𝐼𝑖 , 𝐼𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑘                                              (2) 164 

For this, equations 3.1 to 3.2 are used. As x can only take the values 0 or 1, we have: 165 

 166 

√∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓(𝑥𝑖𝑘 ≠ 𝑥𝑗𝑘) ∀𝑥 = {0,1}      (3.1) 167 

Where 168 

𝑑𝐸(𝐼𝑖 , 𝐼𝑗) = 𝑑𝑃(𝐼𝑖, 𝐼𝑗) ∗ 𝐾 ∀𝑥 = {0,1}                                   (3.2) 169 

Where i and j are the identifiers of the compared elements I (cells), k the variable (unit) identifier, x 170 

the value of the variable, and K the number of variables (units). 171 

The choice of Euclidian distance is arbitrary as it is the most "intuitive" but other kind of distance 172 

could be used as Manhattan distance for example. The aggregation factor for classes is minimum 173 

in-class variance. Varying those parameters could lead to significantly different results in 174 

classification that have not been tested. 175 

 AHC produces a binary hierarchical grouping of the attributes characterizing each element in 176 

a class. The quality of such grouping progressively degrades with a diminishing number of classes 177 

(Hastie et al., 2009). This is generally expressed as a dendrogram (Figure 5) showing intermediate 178 

grouping results and their hierarchical relations, which allows to select the number of classes to 179 

represent lithological environments. That number of classes is based on the morphology of the 180 

dendrogram and has to be balanced by the user between a low level of aggregation (numerous 181 

classes) that will give a fine description of lithological associations with the risk to describe very 182 

local associations and a high level of aggregation (few classes) that will be too comprehensive and 183 

thus not applicable to the searched result. Once the level of cutting chosen by the user, an attribute 184 

is added to the table to store  the AHC class attribute (Table 3) in order to mark the classes 185 

attributed to each cell, each class corresponding to a group of associated units. 186 



 

8 
 

 It is also possible to calculate classification quality for each cell and each level. This quality 187 

criteria corresponds to the Euclidean distance between the cell and the barycentre of the class to 188 

which the cell belongs. The quality value associated with each cell ('Qual' columns in Table 3) thus 189 

shows the strength of the link between the cell and its attributed class. This parameter ideally 190 

should be 0, but this is conceptually impossible when grouping the lithological associations by 191 

using AHC. This quality parameter is useful for comparing different classification levels (number of 192 

classes) of the same dataset.  193 

 194 

4. Results 195 

 Figure 6 shows a cartographic plot of classes and thematic analysis for a 10 class cut-off of 196 

the dendrogram. 197 

 Cells of the same class do not exactly present the same lithological spectrum. This is the 198 

case, for instance, for the four cells of class 7 (no filling) from which 2 are of type 00110 and 2 of 199 

type 00111. The grouping of class 7 was thus based on a common spectrum of type 0011x (x 200 

being 1 or 0). Class 5 (horizontal and vertical cross-hatching) shows a similar case with a spectrum 201 

of the 01x11 type and class 10 (left inclined wide-spaced hatching) with a spectrum of the 1x101 202 

type. This clearly illustrates that classification quality decreases along with the number of classes. 203 

Nevertheless, the fundamental characteristics of the associations forming the classes are 204 

conserved. 205 

 Producing the favorability map (Figure 7) consists in (i) selecting the classes of the cells that 206 

contain occurrences, and (ii) extracting all the cells showing one of the favourable classes. In this 207 

example, cells of class 6 (association of units D and E), 7 (units C, D and E) and 8 (units C and D) 208 

are associated to mineral occurrences and are, thus corresponding to geological environments 209 

favourable for the presence of mineralisation. In this example, other classes do not contain any 210 

occurrence and are thus considered as non-favourable 211 

 212 
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5. Discussion 213 

 The CBA procedure goes counter to the natural tendency of trying to obtain the finest 214 

possible resolution. CBA, on the contrary, aims to define an association of elementary signatures 215 

present in a larger area, rather than looking for the smallest elementary signature possible. This 216 

led to the idea of considering a larger cell that integrates an environment defined as the presence 217 

or absence of all lithological units in the study area. 218 

 Moreover, this type of approach mimics the thought process of geoscientists as it associates 219 

phenomena with a multifactorial context rather than a single criterion. In mineral exploration, for 220 

instance, the exploration geologist will favour a complex geological setting over a single unit (e.g. 221 

Billa et al., 2004; Roy et al., 2006; Cassard et al., 2008).  222 

Cell size is a critical parameter to the procedure and must comply with two major constrains: 223 

coherence with the size of the phenomena of interest (Carranza, 2009), and sufficient variability of 224 

the attributes per cell. For correct operation of the procedure, the cells should neither be too small 225 

(mono-attribute cells that pixelate the map), nor too large (cells containing most or all attributes). It 226 

also is the cell size parameter that allows CBA to deal with over and under sampling issues of the 227 

mineral occurrence data set. 228 

As discussed in section 2, given that the MO display minute to no clustering effect, a grid of 229 

suitably-sized meshes can be calculated, based on the variability of the lithology parameter 230 

estimated either on the average number of unit contained in grid cells or on the number of unique 231 

lithological associations 'generated' by this grid. Conversely, statistics based on MO spatial 232 

behaviour (i.e. "kernel density method for univariate data" (Silverman,1986) or "pair correlation 233 

function g(r)"  (Van Leeuwen et al, 1959) )  may be used as indicators to optimize cell size 234 

provided that they allow for sufficient variability of the units in the cells. As a last resort, the size of 235 

the cells is a decision of the user who must reconcile a size compatible with the map(s) scale and 236 

the searched for events.  CBA, as described in this paper, is based on a regular grid, but it will 237 

work just as well with cells of variable size adapted to the influence of the units, so as to limit the 238 

number of mono-attribute cells. 239 
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 The idea of 'specific surface' of a unit, whether by cell or within the study area, was 240 

considered as irrelevant as this is a variable induced by the intersection between topography and 241 

units that may be partly covered by overlapping units. It is supposed that the area of a mapped unit 242 

is not a critical criterion and that mineral deposits are likely to be linked to “rare” units as much as 243 

more frequent ones. This is why only existence is taken into account (0 or 1) which in return 244 

favours presence over absence: it highlights details over global trends because we consider that 245 

only the proximity to observed MO is important in this case. 246 

CBA uses positive reasoning assuming that "non-links" are impossible to demonstrate. In reality, it 247 

is impossible to conclude that the absence of a certain unit reduces the odds of finding a MO. 248 

Geological maps and geologists observation are never perfect and, having no MO in a certain 249 

lithological setting does not make it unfavourable, it makes it non-favourable. As such, positive 250 

reasoning (observations lead to consider the environment in which they are found as favourable) 251 

should be preferred over negative reasoning (environments in which no observation are found are 252 

unfavourable). Ultimately, this relates to the way field geologists work, describing the environment 253 

where the presence of MO proves that it is a favourable one, whatever are the respective surfaces 254 

of the units on the geological map. 255 

For other subjects, however, such as agricultural or town-planning studies, this surface factor may 256 

be introduced as the respective percentage covered by each attribute in the cell, with 0 indicating 257 

its absence. This type of approach has not yet been tested but could be an interesting 258 

development of this work. 259 

 For cell ranking, the Ascendant Hierarchical Clustering (AHC) has been selected because, in 260 

addition to being a hybrid driven classification function, it produces a hierarchical tree 261 

(dendrogram) that shows the relations between the different classes. The number of classes is a 262 

user decision helped by the shape of the branches of the dendrogram and the level of details he 263 

requires. Based on the cut-off level (i.e., the number of classes) of the tree, the classes will be 264 

more or less informative, thus more or less focused on relevant lithological spectrum. For rather 265 

low cut-off levels (i.e., few classes), AHC commonly produces a "garbage" class that covers all 266 

cells poorly classified for this level. In the case of several occurrences falling within this class, it is 267 

however always possible to extract the related cells for an independent re-classification. 268 
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Other methods of multivariate classifications – as, for example, IsoData, K-means clustering - may 269 

yield different results. They are still to be tried.  270 

The result obtained from such data processing is a new synthetic map of the assemblage of 271 

classified cells showing the different groups of associations in the study area.  272 

Family of cells containing MO will be regarded as favourable and the capability of the procedure to 273 

describe the contained association of lithologies is helpful for exploration teams to point out the 274 

cells showing the same environment than the ones with MO. Even in that case, results must be 275 

interpreted to check their relevance. 276 

 CBA can induce a bias for points located near a cell boundary that might correspond to a 277 

different lithological spectrum from that effectively favourable. This drawback is limited if the 278 

number of occurrences is sufficiently large. However, if too many showings lie close to cell 279 

boundaries, it may be necessary to shift the grid origin or change the cell size (Pakyuz-Charrier, 280 

2013). 281 

 According to points presented and discussed here above, predictive results of the CBA 282 

procedure could possibly be further improved by: 283 

- Ignoring specific units (such as alluvium) that clearly are irrelevant to the phenomenon 284 

looked for. Classification will then be based on a partial lithological spectrum, which might 285 

improve the quality of the result. 286 

- Introducing relevant parameters into the cells that come from other thematic layers, such 287 

as the presence/absence of faults or geophysical anomalies. Such additional attributes 288 

enrich the information contained in the spectrum and can be used for classification, which 289 

then becomes multi-thematic. The approach would then shift from a "bivariate-data driven" 290 

to a "multivariate-data driven" method (Carranza, 2011) that resembles McCammon's 291 

"characteristic analysis" (1983). 292 

- Producing more relevant classes by using other classification methods. 293 

 In supervised mode, CBA can be used by processing only cells that contain occurrences, 294 

provided they are sufficiently numerous for statistical processing. In this case, only the lithological 295 

spectra associated to mineralization would be classified. A predictive map would then be produced 296 

by selecting all cells with comparable spectra to those deriving from the classification. This 297 
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approach (Cassard et al., 2012; Tourlière et al., 2012) is not illustrated here. In simple cases, it 298 

may allow dispensing with classification, becoming comparable to the "characteristic analysis" 299 

approach (McCammon, 1983). 300 

  301 

In addition the synthetic map produced by spectra classification with the CBA procedure can help 302 

in (i) interpreting a thematic map and (ii) highlighting the presence of distant but similar association 303 

areas.  304 

 305 

6. Conclusions 306 

The Cell-Based Associations (CBA) procedure was developed for overcoming the limitations 307 

caused by low quality input data sets often used in early stages of mining exploration. 308 

 Application of a cell grid ('cell based') of suitable size (fixed by the user) over a study area 309 

and the coding of the units found in each cell as 1 (presence) or 0 (absence), allows obtaining a 310 

binary attribute spectrum ('association') that can be statistically classified. 311 

Decrease in resolution of the original data induced by the procedure is compensated by the 312 

concept of association that, after classification, allows the extraction and regrouping of more 313 

complex environments and their cartography as a synthetic map. 314 

This approach better considers the complexity of geological phenomena favouring the 315 

presence of mineralization and is able to distinguish different types of favourable lithological 316 

environments. It is also possible to integrate data from other thematic layers (e.g., tectonic 317 

structures, geophysical properties…) into the cells which enriches the attribute spectrum, thus 318 

opens the possibility of creating multi-thematic synthetic maps. 319 

As presented in that paper, CBA can be a guide to mining exploration essentially at strategic scale 320 

when the mining occurrences are scarce or clustered and units areas are irrelevant or small areas 321 

are suspected to be important. 322 

The hybrid driven statistical method (Ascendant Hierarchical Clustering) has been used in 323 

this study for calculating the grouping of geological environments by cell but other methods of 324 

classification can be relevant too. CBA can also be used as a dataset for predictive methods of the 325 

supervised type by using cells containing showings as learning sets. 326 
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 327 

Apart from any search for predictions the CBA procedure produces a synthetic thematic 328 

representation that may help in the interpretation of complex and/or very large scale maps. 329 
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Figures :  391 

Figure 1: Geological map and mineral occurrences (theoretical example) 392 

Figure 2: Optimal cell size range estimated by the number of different spectra generated by the 393 

gridding 394 

Figure 3: Grid mesh of 10km applied to the geological map of Figure 1 and numbering of cells 395 

Figure 4: Grid applied to the geological map of Figure 1 and binary coding of the lithological 396 

spectra of cels 397 

Figure 5: Dendrogram of lithological associations; data are those of Figure 4; dotted lines indicate 398 

cut-offs according to the desired number of classes (15 10, 7 and 5 classes) 399 

Figure 6: Result of cell classification with AHC in the case of a cut-off at 10 classes. The binary 400 

series correspond to the lithological spectra of the different cells (Figure 4)  401 

Figure 7: Favorability map: cells of the same class as those containing occurrences, bold numbers 402 

indicating the class of association. 403 

 404 

Tables :  405 

Table 1: Relationships between the cell size and lithological variability. Grey area = optimal cell 406 
size range. 407 

Table 2: Attributes of the grid after extracting the lithological information. For each cell (line) a 408 

lithological spectrum is defined by the presence/absence of all lithologies on the map (columns) 409 

Table 3: Attributes of the grid after AHC. The different AHC columns correspond to different cut-off 410 

levels in the dendrogram. Whole numbers correspond to the lithological association for a given cell 411 

and for a set cut-off level (see Figure 5). 'Qual' measures the quality of each cell in terms of the 412 

dissimilarity between it and the multivariate centre of gravity of the class comprising the cell  413 

 414 
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 417 

CELL BASED ASSOCIATIONS, A PROCEDURE FOR CONSIDERING SCARCE AND MIXED 418 

MINERAL OCCURRENCES IN PREDICTIVE MAPPING 419 

 420 

 421 

 422 

Figure 1: Geological map and mineral occurrences (theoretical example) 423 

 424 

 425 
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 426 
 427 
Figure 2: Optimal cell size range estimated by the number of different spectra generated by the gridding 428 

 429 
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 430 

Figure 3: Grid mesh of 10 km applied to the geological map of Figure 1 and numbering of cells 431 
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 432 

Figure 4: Grid applied to the geological map of Figure 1 and binary coding of the lithological spectra of cells 433 
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 434 

 435 

Figure 5: Dendrogram of lithological associations; data are those of Figure 4; dotted lines indicate cut-offs 436 

according to the desired number of classes (15, 10, 7 and 5 classes) 437 

 438 

 439 
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 440 

Figure 6: Result of cell classification with AHC in the case of a cut-off at 10 classes. The binary series correspond to the 441 

lithological spectra of the different cells (Figure 4) 442 

 443 
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 444 

 445 

Figure 7: Favorability map: cells of the same class as those containing occurrences, bold numbers indicating the class of 446 

association.  447 

 448 

 449 

 450 
 451 
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 452 
 453 
 454 
 455 
Table 1: Relationships between the cell size and the lithological variability. Grey area = 456 

optimal cell size range. 457 

 458 

 459 

 460 

Number of 

cells

Cell size 

(km)

Average 

number of 

lithologies 

by cell

Number of 

Speciific 

lithologic 

spectra

Number of 

cells with 

occurrences

4 30 4.25 3 4

9 20 3.11 6 4

16 15 2.56 9 5

25 12 2.16 15 4

36 10 2.06 15 5

64 7.5 1.78 17 5

100 6 1.57 17 5

144 5 1.51 17 5

225 4 1.4 17 6

400 3 1.3 17 6

900 2 1.2 17 6

3600 1 1.1 17 6

Cell# A B C D E

Lithological 

Spectrum Cell# A B C D E

Lithological 

Spectrum

0--0 1 1 0 0 0 11000 3--0 0 0 1 0 1 00101

0--1 1 1 0 0 0 11000 3--1 0 0 1 0 1 00101

0--2 1 1 0 0 0 11000 3--2 0 0 1 1 1 00111

0--3 1 1 0 0 0 11000 3--3 0 0 1 1 0 00110

0--4 1 1 0 0 0 11000 3--4 0 0 1 1 1 00111

0--5 1 0 0 0 0 10000 3--5 0 0 1 0 1 00101

1--0 0 1 0 0 0 01000 4--0 1 0 1 0 1 10101

1--1 0 1 0 0 1 01001 4--1 1 1 1 0 1 11101

1--2 0 1 0 0 1 01001 4--2 0 1 1 1 1 01111

1--3 0 1 0 0 1 01001 4--3 0 0 1 1 0 00110

1--4 1 1 0 0 1 11001 4--4 0 0 1 0 0 00100

1--5 1 1 0 0 0 11000 4--5 0 0 1 0 0 00100

2--0 0 1 0 0 1 01001 5--0 1 0 0 0 0 10000

2--1 0 1 0 0 1 01001 5--1 1 1 0 0 0 11000

2--2 0 0 0 1 1 00011 5--2 0 1 1 0 0 01100

2--3 0 0 0 1 1 00011 5--3 0 1 1 0 0 01100

2--4 0 1 0 1 1 01011 5--4 0 0 1 0 0 00100

2--5 0 1 0 0 1 01001 5--5 0 0 1 0 0 00100

 Formations  Formations
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Table 2: Attributes of the grid after extracting the lithological information. For each cell (line) 461 

a lithological spectrum is defined by the presence/absence of each lithology on the map 462 

(columns) 463 

 464 

 465 

Table 3: Attributes of the grid after AHC. The different AHC columns correspond to different cut-off levels in the 466 

dendrogram. Whole numbers correspond to the lithological association for a given cell and for a set cut-off level (see 467 

Figure 5). 'Qual' measures the quality of each cell in terms of the dissimilarity between it and the multivariate centre of 468 

gravity of the class comprising the cell  469 

 470 

Cell#

Lithological 

spectrum 

ABCDE AHC15 Qual15 AHC10 Qual10 AHC7 Qual7 AHC5 Qual5

0--0 11000 11 0.00 8 0.00 6 0.44 4 0.44

0--1 11000 11 0.00 8 0.00 6 0.44 4 0.44

0--2 11000 11 0.00 8 0.00 6 0.44 4 0.44

0--3 11000 11 0.00 8 0.00 6 0.44 4 0.44

0--4 11000 11 0.00 8 0.00 6 0.44 4 0.44

0--5 10000 12 0.00 9 0.00 6 1.54 4 1.54

1--0 01000 3 0.00 3 1.32 2 1.32 1 2.34

1--1 01001 5 0.00 4 0.00 3 0.00 2 0.00

1--2 01001 5 0.00 4 0.00 3 0.00 2 0.00

1--3 01001 5 0.00 4 0.00 3 0.00 2 0.00

1--4 11001 13 0.00 10 1.48 7 1.48 5 1.48

1--5 11000 11 0.00 8 0.00 6 0.44 4 0.44

2--0 01001 5 0.00 4 0.00 3 0.00 2 0.00

2--1 01001 5 0.00 4 0.00 3 0.00 2 0.00

2--2 00011 8 0.00 6 0.00 4 1.11 3 1.42

2--3 00011 8 0.00 6 0.00 4 1.11 3 1.42

2--4 01011 7 0.00 5 0.99 4 1.11 3 2.00

2--5 01001 5 0.00 4 0.00 3 0.00 2 0.00

3--0 00101 1 0.00 1 0.00 1 1.13 1 1.52

3--1 00101 1 0.00 1 0.00 1 1.13 1 1.52

3--2 00111 10 0.00 7 0.99 5 0.99 3 1.02

3--3 00110 9 0.00 7 0.99 5 0.99 3 1.73

3--4 00111 10 0.00 7 0.99 5 0.99 3 1.02

3--5 00101 1 0.00 1 0.00 1 1.13 1 1.52

4--0 10101 14 0.00 10 1.48 7 1.48 5 1.48

4--1 11101 15 0.00 10 0.94 7 0.94 5 0.94

4--2 01111 6 0.00 5 0.99 4 1.79 3 1.74

4--3 00110 9 0.00 7 0.99 5 0.99 3 1.73

4--4 00100 2 0.00 2 0.00 1 0.85 1 0.86

4--5 00100 2 0.00 2 0.00 1 0.85 1 0.86

5--0 10000 12 0.00 9 0.00 6 1.54 4 1.54

5--1 11000 11 0.00 8 0.00 6 0.44 4 0.44

5--2 01100 4 0.00 3 0.66 2 0.66 1 1.52

5--3 01100 4 0.00 3 0.66 2 0.66 1 1.52

5--4 00100 2 0.00 2 0.00 1 0.85 1 0.86

5--5 00100 2 0.00 2 0.00 1 0.85 1 0.86


